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Many applications involve large datasets with entries from exponential
family distributions. Our main motivating application is photon-limited imag-
ing, where we observe images with Poisson distributed pixels. We focus on
X-ray Free Electron Lasers (XFEL), a quickly developing technology whose
goal is to reconstruct molecular structure. In XFEL, estimating the princi-
pal components of the noiseless distribution is needed for denoising and for
structure determination. However, the standard method, Principal Component
Analysis (PCA), can be inefficient in non-Gaussian noise.

Motivated by this application, we develop ePCA (exponential family
PCA), a new methodology for PCA on exponential families. ePCA is a fast
method that can be used very generally for dimension reduction and denois-
ing of large data matrices with exponential family entries.

We conduct a substantive XFEL data analysis using ePCA. We show that
ePCA estimates the PCs of the distribution of images more accurately than
PCA and alternatives. Importantly, it also leads to better denoising. We also
provide theoretical justification for our estimator, including the convergence
rate and the Marchenko–Pastur law in high dimensions. An open-source im-
plementation is available.

1. Introduction. In many applications we have large collections of data vec-
tors with entries sampled from exponential families (e.g. Poisson or Binomial).
Our main motivating application is the important problem of molecular structure
reconstruction using single-particle imaging. X-ray Free Electron Lasers (XFEL)
are an experimental technique which leads to 2-D snapshots of imaged particles.
The pixels have Poisson noise due to the small number of photons available in the
short imaging time. To denoise the images and to reconstruct the 3-D structure, it
is useful to estimate the covariance and principal components (PCs) of the pixels
[see, e.g., Pande et al. (2015), Starodub et al. (2016)]. In addition to image process-
ing, dimension reduction with non-Gaussian noise also arises in other settings such
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as computational biology [Patterson, Price and Reich (2006)] and natural language
processing [Deerwester et al. (1990)].

The standard method for dimension reduction and denoising of large datasets
is Principal Component Analysis (PCA) [e.g., Anderson (2003), Jolliffe (2002)].
However, PCA is most naturally designed for Gaussian data, and there is no com-
monly agreed upon extension to exponential families [see, e.g., Jolliffe (2002),
Section 14.4]. While there are some proposals, each of them has limitations, such
as computational intractability for large datasets (see Section 2).

Motivated by single-particle imaging, we propose the new general method
ePCA for PCA in exponential families. ePCA involves the eigendecomposition
of a new covariance matrix estimator. Like usual PCA, it can be used for visual-
ization and denoising of large data matrices. Moreover, ePCA has several appeal-
ing properties. First, it is a computationally efficient deterministic algorithm using
basic linear algebra, making it as fast as usual PCA. This is in contrast to noncon-
vex likelihood methods, whose numerical solution has no convergence guarantees.
Second, it is suitable for datasets with multiple types of variables (such as Poisson,
binomial, and negative binomial). Third, it has substantial theoretical justification.
We provide finite-sample convergence rates, and a precise high-dimensional anal-
ysis building on random matrix theory. Fourth, each step of ePCA is interpretable,
which can be important to practitioners.

We conduct a substantive analysis of XFEL data using ePCA. We show that
ePCA estimates the PCs more accurately than PCA and alternatives. Importantly,
it also leads to better denoising, which is a crucial component in the overall XFEL
pipeline. We perform extensive simulations with ePCA and show that in various
metrics it outperforms usual PCA, PCA after standardization, and earlier PCA
alternatives for exponential families (see Section 6.2). ePCA is publicly available
in an open-source Matlab implementation from github.com/lydiatliu/epca/. That
link also has software to reproduce our computational results.

To motivate our method, we now discuss in more detail the application to XFEL
imaging, as well as potential applications in genomics.

1.1. Single-particle imaging: XFEL. XFEL is a rapidly developing and in-
creasingly popular experimental method for understanding the three-dimensional
structure of molecules [e.g., Bergmann, Yachandra and Yano (2017), Favre-
Nicolin et al. (2015), Maia and Hajdu (2016)]. Single molecule XFEL imaging
collects two-dimensional diffraction patterns of single particles at random orien-
tations. A key advantage is that XFEL uses extremely short femtosecond X-ray
pulses, during which the molecule does not change its structure. On the other hand,
we only capture one diffraction pattern per particle and the particle orientations
are unknown, so it is challenging to reconstruct the 3D structure at low signal-to-
noise ratio. As illustrated in Figure 1, these images are very noisy due to the low
number of photons that are typical for single particles [Pande et al. (2015)]. The
count-noise at each detector is modeled with the Poisson distribution [see, e.g.,
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(a) Clean intensity maps (b) Noisy photon counts

(c) Denoised (PCA) (d) Denoised (ePCA + EBLP)

FIG. 1. XFEL diffraction pattern formation and denoising. See Section 6 for details.

Martin et al. (2012)]. The standard deviation of a Poisson(λ) random variable is√
λ, which is much larger than the mean λ when λ ≪ 1. This explains why the

images are noisier when the number of photons is low.
In order to reconstruct the 3-D structure of the particle, it may be possible to

use Kam’s method [Kam (1977, 1980), Saldin et al. (2009)]. A key requirement
of Kam’s method is to estimate the covariance matrix of the noiseless 2-D images,
which is extremely difficult due to low photon counts. There has been much recent
progress in using Kam’s method for XFEL imaging [Starodub et al. (2016), Pande
et al. (2014, 2015), Kurta et al. (2017)]. This motivates us to develop the ePCA
method.

As a first example of the performance of ePCA, in Figure 1 we show the result
of denoising synthetic XFEL using PCA and EBLP, a denoiser based on ePCA.
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Clearly ePCA leads to better denoising than PCA. See Section 6 for details on the
data generation and analysis.

1.2. Genetic polymorphism data/SNPs. In genomics, Single Nucleotide Poly-
morphism (SNP) data are the basis of thousands of Genome-Wide Association
Studies (GWAS), which have recently led to hundreds of novel associations be-
tween common traits and genetic variants [e.g., Visscher et al. (2012)]. These types
of studies are the backbone of modern medical genomics, and thus there is a great
deal of interest in improving statistical inference in this area.

SNP data can be represented as an n×p matrix X with Xij equal to the number
of minor alleles (0, 1 or 2) of the j th SNP in the genome of the ith individual. The
number of individuals n can be more than 10,000, while the number of SNPs p can
be as large as 2.5 million. Binomial models are natural for such data, because each
entry is a count. In addition to these genetic variants, a key health outcome (such
as heart disease status) is also measured. The goal of a GWAS is to find genetic
variants associated with the outcome.

PCA is already commonly used in the analysis of SNP data. One of the most
common applications is to infer population structure and correct for population
stratification [see, e.g., Patterson, Price and Reich (2006)]. For instance, in a
dataset of European populations, there are subpopulations corresponding to the
various countries. These subpopulations may not be known ahead of time. Since
these subpopulations are systematically different, the inference of association be-
tween the outcome and the SNPs may be improved by correcting for the population
structure. To correct for population structure, it is common to extract the PCs from
the SNP data, and use them as covariates in the regression of the outcome on the
SNPs. It is thus of interest to understand the proper way to estimate the covariance
matrix and PCs. Our methods may lead to improved estimation and accuracy of
the PCs, with improved downstream inferences in GWAS.

Another potential application area is RNA-sequencing, a new and rapidly de-
veloping experimental methodology in genomics that allows scientists to probe
information at the single-cell level, to an unprecedented degree of granularity [see,
e.g., Stegle, Teichmann and Marioni (2015) for a review]. In scRNA-seq, we ob-
serve read counts of many genes extracted from a large number of individual cells.
Suppose Xij is the number of reads mapped to gene j for sample cell i. A simple
possible model assume that Xij follows a negative binomial or a Poisson distribu-
tion. In the latter case, Xij ∼ Poisson(λij ) where λij represents the rate at which
reads map to gene j relative to other genes in sample cell i. Reads from single cells
typically have many zeros, and therefore the Poisson or negative binomial models
are more appropriate than a Gaussian approximation. Related negative binomial
models are already in use [Anders and Huber (2010)].

1.3. Our contributions. We now briefly summarize our contributions:
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1. We propose the new method ePCA, consisting of a new covariance estimator.
We develop this in a sequence of steps (Sections 3 and 4): diagonal debiasing of
the sample covariance matrix, homogenization, shrinkage, and heterogenization.
We justify it by proving the standard Marchenko–Pastur law [Marčenko and Pastur
(1967)] for the homogenized sample covariance matrix (Section 4.1.1), and by
showing that homogenization improves the signal strength (Section 4.2.2).

An additional highly nontrivial eigenvalue shrinkage step—that we call scal-

ing—is needed. We derive it by leveraging deep recent results from random ma-
trix theory. This novel bias-correction step cannot be derived using classical low-
dimensional asymptotics. We view this as a surprising theoretical discovery.

2. We apply ePCA to develop a new empirical Best Linear Predictor (EBLP)
denoising method (Section 5), relying on random effects models [Searle, Casella
and McCulloch (1992), Section 7.4].

3. We denoise synthetic XFEL data using ePCA, where it leads to more accu-
rate PC estimates and better denoising than PCA (Section 6).

We also evaluate our covariance estimators in a simulation study, and show
that they reduce the MSE for covariance, eigenvalue, and eigenvector estimation
(Section 4.2.3), providing numerical justification for ePCA.

2. Related work. To give context for our method, we review related work.
The reader interested in the methodology can skip directly to Section 3. We refer
to Jolliffe (2002) for a detailed overview of PCA methodology, to Anderson (2003)
for a more general overview of multivariate statistical analysis, and to Yao, Zheng
and Bai (2015) for discussions of high-dimensional statistics, random matrix the-
ory and PCA.

2.1. Standardization and weighting in PCA. In applying PCA, a key concern
is whether or not to standardize the variables [e.g., Jolliffe (2002), Section 2.3].
Standardization ensures that results for different sets of random variables are more
comparable, and also that PCs are less dominated by individual variables with
large variances. Not standardizing makes statistical inference more convenient. In
exploratory analyses, however, standardization is usually preferred. In our setting,
the homogenization method (Section 4.1) has several advantages over standardiza-
tion.

A more general class of methods is weighted PCA, where PCA is applied to
rescaled random variables wjX(j), for some wj > 0 [Jolliffe (2002), Section 2.3,
Section 14.2] In general, choosing the weights can be nontrivial. Our homogeniza-
tion step of ePCA (Section 4.1) is a particular weighting method, justified for data
from exponential families. In addition to proposing it, we provide several theoret-
ical justifications: the standard Marchenko–Pastur law, and the improvements in
signal to noise ratio (SNR) (see Section 4.1).



2126 L. T. LIU, E. DOBRIBAN AND A. SINGER

2.2. PCA in non-Gaussian distributions, GLLVMs. There have been several
approaches suggested for extending PCA to non-Gaussian distributions; see, for
example, Jolliffe (2002), Section 14.4. One possibility is to use robust estimates
of the covariance matrix [see Jolliffe (2002), Section 14.4, for references]. An-
other approach assumes that the natural parameter lies in a low-dimensional space
[Collins, Dasgupta and Schapire (2001)], and then attempts to maximize the log-
likelihood. This leads to a nonconvex optimization problem for which an alter-
nating maximization method is proposed, without global convergence guarantees.
More recently, Udell et al. (2014, 2016) described a similar generalization of PCA,
while Li and Tao (2010) proposed another likelihood-based method, both without
global convergence guarantees. Scalable methods include Josse and Wager (2016),
albeit without precise performance guarantees in high dimensions.

Within factor analysis, generalized linear latent variable models (GLLVMs)
model the relationship of an observed variable from a general distribution with
unobserved latent variables [Bartholomew and Knott (1999), Huber, Ronchetti
and Victoria-Feser (2004)]. These flexible likelihood-based methods enable care-
ful modeling and statistical inference for parameters of interest in low-dimensional
settings. However, estimation and inference are computationally challenging,
and published examples have at most 10-20 dimensions [Huber, Ronchetti and
Victoria-Feser (2004)]. In contrast our algorithm is as fast as PCA and we avoid
any optimization problems. In addition, we have some understanding of the per-
formance in high dimensions, by connecting to random matrix theory.

Finally, Chen and Storey (2015) recently proposed a method for the consistent
estimation of low-dimensional latent structure in high-dimensional data. They take
p → ∞, while n is fixed, so this is an even more extremely high-dimensional
setting. They have a diagonal bias-correction step similar to ours. However, we
are able to leverage powerful eigenvalue shrinkage and rank selection methods, by
working in a setting where probabilistic tools from random matrix theory apply.

2.3. Denoising and covariance estimation by singular value shrinkage. Re-
cently, results from random matrix theory have been used for studying covariance
estimation and PCA for Gaussian and rotationally invariant data [e.g., Nadakuditi
(2014), Shabalin and Nobel (2013), Donoho, Gavish and Johnstone (2013)]. While
the qualitative insights they identify—for example, the improvements due to eigen-
value shrinkage—are relevant to our setting, the specific results and methods do
not apply directly.

The recent work of Bigot, Deledalle and Féral (2016) develops a generalized
Stein’s Unbiased Risk Estimation (SURE) approach for singular value shrinkage
denoising of low-rank matrices in exponential families. However, their shrinkage
formulas become numerically intractable for Frobenius norm beyond Gaussian er-
rors, and they instead introduce a heuristic algorithm. Their work is geared toward
higher signal-to-noise ratio settings.
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2.4. Image processing and denoising. There are many approaches to denois-
ing in image and signal processing, the majority designed for Gaussian noise [see,
e.g., Starck, Murtagh and Fadili (2010)]. Most classical methods are designed for
“single-image denoising,” and do not share information across multiple images.
Our setting is different, because we have many very noisy samples—for example,
XFEL images.

Starck, Murtagh and Fadili (2010) Section 6.5 provides an overview of the clas-
sical methods for Poisson noise (but of course our method works for all expo-
nential families). Popular approaches reduce to the Gaussian case by a wavelet
transform such as a Haar transform [Nowak and Baraniuk (1999)]; by adaptive
wavelet shrinkage; or by approximate variance stabilization such as the Anscombe
transform. The latter is known to work well for Poisson signals with large param-
eters, due to approximate normality. However, the normal approximation breaks
down for the Poisson with a small parameter, such as photon-limited XFEL [see,
e.g., Starck, Murtagh and Fadili (2010), Section 6.6].

Other methods are based on singular value thresholding (SVT), with various ap-
proaches to handling non-Gaussian noise. For example, Furnival, Leary and Midg-
ley (2017) performs SVT of the data matrix of image time-series in low noise, pick-
ing the regularization parameter to minimize the Poisson–Gaussian Unbiased Risk
Estimator. We instead homogenize the data and propose a second-moment based
denoising method. Alternatively, Cao and Xie (2014) frames denoising as a regu-
larized maximum likelihood problem and uses SVT to optimize an approximation
of the Poisson likelihood. Our approach avoids nonconvex likelihood optimization
problems, and works beyond the Poisson distribution for all exponential families.

3. Covariance estimation. ePCA is the eigendecomposition of a new covari-
ance matrix estimator. To develop this estimator, we start with the sample covari-
ance matrix and propose a sequence of improvements (see Table 1 and below). Our
method is directly motivated by XFEL, so we explain the scientific background for
every step along the way.

TABLE 1
Covariance estimators

Not. Name Formula Def. Motivation

S Sample covariance S = n−1 ∑n
i=1(Yi − Ȳ )(Yi − Ȳ )⊤ (4) –

Sd Diagonal debiasing Sd = S − diag[V (Ȳ )] (5) Hierarchy

Sh Homogenization Sh = D
− 1

2
n SdD

− 1
2

n (6) Heteroskedasticity
Sh,η Shrinkage Sh,η = η(Sh) (7) High dimensionality

She Heterogenization She = D
1
2
n Sh,ηD

1
2
n (8) Heteroskedasticity

Ss Scaling Ss = ∑
α̂i v̂i v̂

⊤
i , where She = ∑

v̂i v̂
⊤
i (13) Heteroskedasticity
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We will work with observations Y from the canonical one-parameter exponen-
tial family with density

(1) pθ (y) = exp
[
θy − A(θ)

]

with respect to a σ -finite measure ν on R [see, e.g., Lehmann and Romano (2005)].
Here θ ∈ R is the natural parameter of the family and A(θ) = log

∫
exp(θy)dν(y)

is the log-partition function. We assume the distribution is well defined for all θ

in an open set. The mean and variance of Y can be expressed as EY = A′(θ) and
Var[Y ] = A′′(θ), where we denote g′(θ) = dg(θ)/dθ .

While our method works for all exponential families, we will use the Poisson
distribution y ∼ Poisson(x) as a running example. Here the carrier measure is the
discrete measure with density ν(dy) = 1/y! with respect to the counting measure
on the nonnegative integers, while θ = log(x) and A(θ) = exp(θ).

3.1. The observation model. Let Y ∈ R
p be a random vector with some un-

known distribution. We observe n i.i.d. noisy data vectors Yi ∼ Y . In the XFEL
application, Y is the noisy image with the pixels as coordinates. We consider the
following hierarchical model for Y . First, a latent vector—or hyperparameter—
θ ∈ R

p is drawn from a probability distribution D with mean μθ and covariance
matrix �θ . Conditional on θ , the coordinates of Y = (Y (1), . . . , Y (p))⊤ are drawn
independently from an exponential family Y(j) ∼ pθ(j)(y) defined in (1). For-
mally, denoting by ∼̇ the mean and the covariance of a random vector:

θ∼̇(μθ ,�θ ),

Y (j)|θ(j) ∼ pθ(j)(y), Y = (
Y(1), . . . , Y (p)

)⊤
.

Therefore, the mean of Y conditional on θ is

X := E(Y |θ) = (
A′(θ(1)

)
, . . . ,A′(θ(p)

))⊤ = A′(θ),

so the noisy data vector Y can be expressed as Y = A′(θ) + ε̃, with E(ε̃|θ) = 0,
while the marginal mean of Y is EY = EA′(θ). Thus one can think of Y as a noisy
realization of the clean vector X = A′(θ). However, the latent vector θ is also
random and varies from sample to sample. In the XFEL application, A′(θ) are the
unobserved noiseless images.

Our model is quite realistic in the XFEL application, where a small number
of latent parameters determines the clean image, and the noise is added indepen-
dently afterwards. Conditional independence given θ means that all latent effects
that induce correlations do so through θ and not through some other mechanism.
This is reasonable, as we can always capture much of the latent correlations in the
“mean” structure by increasing the number of PCs. In addition, similar conditional
independence is also common in empirical work such as bulk RNA-Seq analysis
[e.g., Anders and Huber (2010)].
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It is important that we model the mean A′(θ) of the exponential family as our
clean signal, as opposed to the natural parameter θ . This is a reasonable assump-
tion in many applications, where the means of the noisy signals lie on an approx-
imately low-dimensional linear subspace. For instance, Basri and Jacobs (2003)
found that the images of a single face under different lighting conditions inhabit
an approximately nine-dimensional linear space. As mentioned in Section 2, this
is a key modeling assumption distinguishing our approach from prior work like
Collins, Dasgupta and Schapire (2001), and it enables a deterministic noniterative
algorithm.

We thus have Y = A′(θ) + diag[A′′(θ)] 1
2 ε, where the coordinates of ε are con-

ditionally independent and standardized given θ . Therefore, the covariance of Y

conditional on θ is

Cov[Y |θ ] = diag
[
A′′(θ(1)

)
, . . . ,A′′(θ(p)

)] = diag
[
A′′(θ)

]
.

The marginal covariance of Y is given by the law of total covariance:

(2) Cov[Y ] = Cov
[
E(Y |θ)

] +E
[
Cov[Y |θ ]] = Cov

[
A′(θ)

] +Ediag
[
A′′(θ)

]
.

In particular, the coordinates of Y are independent only conditionally on θ , but
not marginally. For the special case of Poisson observations Y ∼ Poissonp(X),

where X ∈ R
p is random, we can write Y = X+diag(X)

1
2 ε. The natural parameter

is the vector θ with θ(j) = logX(j). Since A′(θ(j)) = A′′(θ(j)) = exp(θ(j)) =
X(j), we see EY = EX, and Cov[Y ] = Cov[X] +Ediag[X].

3.2. Diagonal debiasing. We will propose several estimators of increasing so-
phistication to estimate the covariance matrix �x = Cov[A′(θ)] of the noiseless
vectors Xi = A′(θi) (see Table 1). Clearly, due to the covariance equation (2), the
sample covariance matrix of Yi is biased for estimating the diagonal elements of
�x . Fortunately, this bias can be corrected. Indeed, we only need to subtract the
noise variances EA′′(θ(j)). We know that EY(j) = EA′(θ(j)), so it is natural to
define associated estimators via the variance map of the exponential family, which
takes a mean parameter A′(θ) into the associated variance parameter A′′(θ). For-
mally,

(3) V (m) = A′′[(A′)−1
(m)

]
.

If the distribution of Y is nondegenerate, A′′(θ) = Varθ (Y ) > 0, so A′ is increasing
and invertible, and the variance map is well defined.

We define the sample covariance estimator

(4) S = n−1
n∑

i=1

(Yi − Ȳ )(Yi − Ȳ )⊤,
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where Ȳ = n−1 ∑n
i=1 Yi is the sample mean. We estimate EA′′(θ) by V (Ȳ ), and

define the diagonally debiased covariance estimator

(5) Sd = S − diag
[
V (Ȳ )

]
.

Continuing with the special case of a Poisson example, A′(θ) = A′′(θ) =
exp(θ), so V (m) = m, and Sd = S − diag[Ȳ ]. In this example the estimator is
unbiased, because V is linear. When V is nonlinear, the estimator can become
slightly biased.

3.2.1. The rate of convergence. Our first theoretical result characterizes the
finite-sample convergence rate of the diagonally debiased covariance estimator Sd ,
for any fixed n,p. This estimator is not a sample covariance matrix, which is in-
consistent in our case when n → ∞ and p is fixed. Thus it is necessary to study
its convergence rate from first principles.

For this we need to make a few technical assumptions. First, we assume that the
variance map V is Lipschitz with constant L. It is easy to check that this is true
for the Gaussian, Poisson, and Binomial distributions. We also assume that the
coordinates of the random vector θ are almost surely bounded, ‖θ‖∞ ≤ B . Since
A′ is continuous and invertible, this is equivalent to the boundedness of A′(θ).
This is reasonable in the areas that we are interested in—XFEL imaging does
not have infinite energy, so we have an upper bound on the intensity of pixels.
Finally we assume that m4 = maxi E[Y(i)4] ≥ C for some universal constant C >

0. This is reasonable, as it states that at least some entries of the random vector
have nonvanishing magnitude.

Let � denote inequality up to constants not depending on n and p. Let ‖ · ‖Fr
be the Frobenius norm and ‖ · ‖ be the operator norm. Our result, proved in Sec-
tion A.1, is

THEOREM 3.1 (Rate of convergence of debiased covariance estimator). The

diagonally debiased covariance estimator Sd has the following rates of conver-

gence. In the Frobenius norm, with μ := EY = EX = EA′(θ),

E
[‖Sd − �x‖Fr

]
�

√
p

n

[√
p · m4 + ‖μ‖]

.

In operator norm, with the dimensional constant C(p) = 4(1 + 2⌈logp⌉):

E
[‖Sd − �x‖

]
�

√
C(p)

(E‖Y‖4)
1
2 + (logn)3(logp)2

√
n

+
√

p

n

[
1 +

√
p

n
+ ‖μ‖

]
.

The two error rates are both of interest, and complement each other. The Frobe-
nius norm rate captures the deviation across all entries of the covariance matrix.
The operator norm rate is typically faster than the Frobenius norm rate. For in-
stance, in XFEL it is reasonable to assume that the total intensity across all detec-
tors is fixed as the resolution increases. This leads to a fixed value for E‖Y‖4 that
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does not grow with n. The operator norm rate can be as fast as (p/n)
1
2 while the

Frobenius norm rate is p/n
1
2 .

Our operator norm concentration result implies that Sd is positive semidefinite
with high probability, as long as the bound is sufficiently small. While we always
see in simulations that Sd is positive semidefinite, this property can be guaranteed
if need be, by computing the eigendecomposition of Sd and setting any negative
eigenvalues to zero.

Our proof of Theorem 3.1 exploits that exponential family random variables
are sub-exponential, so we can use corresponding moment bounds. We also rely
on operator-norm bounds for random matrices from Tropp (2016) and on moment
bounds from Boucheron et al. (2005).

We point out here that later we will consider a different set of asymptotics, to
understand the effects of high dimension. In that setting, Sd is typically of much
larger rank than �x , and the rest of the ePCA algorithm exploits this structure to
improve Sd . The analysis in this section is informative when the dimension is fixed
and small.

4. Homogenization and shrinkage.

4.1. Homogenization. In the previous sections, we showed that the diagonally

debiased sample covariance matrix converges at a rate O(pn− 1
2 ). Next we pro-

pose a shrinkage method to improve this estimator in the high-dimensional regime
where n,p → ∞ and p/n → γ > 0. As a preliminary step, it is helpful to homog-
enize the empirical covariance matrix and remove the effects of heteroskedasticity.
This allows us to get closer to the standard spiked model [Johnstone (2001)] where
the noise has the same variance for all features. In that setting covariance estima-
tion via eigenvalue shrinkage has been thoroughly studied [Donoho, Gavish and
Johnstone (2013)].

The vector of noise variances affecting the different components is E[A′′(θ)].
For a given signal Y = A′(θ) + diag[A′′(θ)] 1

2 ε, homogenization transforms it

to Yh = diag[A′′(θ)]− 1
2 A′(θ) + ε. The covariance is transformed from Cov [Y ]

to diag[A′′(θ)]− 1
2 Cov [Y ] diag[A′′(θ)]− 1

2 . Since the diagonal correction Dn =
diag[V (Ȳ )] estimates Ediag[A′′(θ)], we define the homogenized covariance es-
timator by

(6) Sh = D
− 1

2
n SdD

− 1
2

n = D
− 1

2
n SD

− 1
2

n − Ip.

For the special case of Poisson observations, every entry of the noisy vector has
to be divided by square root of the corresponding entry of the sample mean, so

Sh = diag[Ȳ ]− 1
2 S diag[Ȳ ]− 1

2 − Ip .
Homogenization is different from standardization, the classical method for re-

moving heteroskedasticity. To standardize, each feature—for example, pixel—is
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divided by its empirical standard deviation [e.g., Jolliffe (2002), Section 2.3]. This
ensures that all features have the same norm. The sample covariance matrix be-
comes a sample correlation matrix. In our case it turns out that this procedure
“over-corrects.” The overall variance Var[Y(i)] of each feature is the sum of the
signal variance Var[A′(θ(i))] and the noise variance E[A′′(θ(i))]. Homogeniza-
tion divides by the estimated noise standard errors, while standardization divides
by the overall standard error due to the signal and noise.

Therefore, in our setting homogenization is more justified than standardization.
Moreover, the standard Marchenko–Pastur law holds for the homogenized estima-
tor (Theorem 4.2 in the next section). This also suggests that the top “noise” eigen-
value has a well-understood Tracy–Widom distribution asymptotically [Johnstone
(2001)], which can be used to devise tests of significance. Another justification
is that standardization improves the signal strength for “delocalized” eigenvectors
(Section 4.2.2). We discuss these in detail below.

4.1.1. Marchenko–Pastur law. A key advantage of homogenization is that the
homogenized estimator has a well-understood asymptotic behavior. In contrast,
the unhomogenized estimator has a more complicated behavior. In this section, we
show both of the above claims. We show that the limit spectra of our covariance
matrix estimators are characterized by the Marchenko–Pastur (MP) law [Marčenko
and Pastur (1967)], proving the general MP law for the sample covariance S, and
the standard MP law for the homogenized covariance Sh.

For simplicity, we consider the case is when θ ∈ R
p is fixed. This can be

thought of as the “null” case, where all mean signals are the same. Then we

can write Yi = A′(θ) + diag[A′′(θ)] 1
2 εi , where εi have independent standardized

entries. Therefore, letting Y be the n × p matrix whose rows are Y⊤
i , we have

Y = �1A′(θ)⊤ + E diag[A′′(θ)] 1
2 , where �1 = (1,1, . . . ,1)⊤ is the vector of all ones,

and E is an n × p matrix of independent standardized random variables.
Let Hp be the uniform distribution on the p scalars A′′(θ(i)), i = 1, . . . , p. We

assume that A′′(θ(i)) > c for some universal constant c > 0. In the special case of
the Poisson example, this means that the individual rates x(i) are bounded away
from 0. The reason for this assumption is to avoid the very sparse regime, where
only a few nonzero entries per row are observed. In that case, the MP law is not
expected to hold.

Consider the high-dimensional asymptotic limit when n,p → ∞ so that p/n →
γ > 0. Suppose moreover that Hp converges weakly to some limit distribution, that
is, Hp ⇒ H . Since diag[A′′(θ)] can be viewed as the population covariance ma-
trix of the noise, H is the limit population spectral distribution (PSD). Since E has
independent standardized entries with bounded moments, it follows that the dis-
tribution of the p eigenvalues of n−1Y⊤Y converges almost surely to the general
Marchenko–Pastur distribution Fγ,H [Bai and Silverstein (2010), Theorem 4.3].
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Now the sample covariance matrix S is a rank-one perturbation of n−1Y⊤Y .
Therefore its eigenvalue distribution also converges to the MP law. We state this
for comparison with the next result.

PROPOSITION 4.1 (Marchenko–Pastur law for sample covariance matrix).
The eigenvalue distribution of S converges almost surely to the general

Marchenko–Pastur distribution Fγ,H .

Since the general MP law has a complicated implicit description that needs
to be studied numerically [see, e.g., Dobriban (2015)], it is useful to work with
the homogenized covariance matrix Sh. Indeed, we establish that the standard
Marchenko–Pastur law characterizes its limit spectrum. The standard Marchenko–
Pastur distribution has a closed-form density, and there are many useful tools
already available for low-rank covariance estimation [e.g., Shabalin and Nobel
(2013), Donoho, Gavish and Johnstone (2013)].

THEOREM 4.2 (Marchenko–Pastur law for homogenized covariance matrix).
The eigenvalue distribution of Sh + Ip converges almost surely to the standard

Marchenko–Pastur distribution with aspect ratio γ .

In the proof presented in Appendix A.1.3 [Liu, Dobriban and Singer (2018)],

we deduce this from the Marchenko–Pastur law for the error matrix n− 1
2E , for

which standard results from Bai and Silverstein (2010) apply. The emergence of
the standard MP law motivates the shrinkage method presented next.

4.2. Eigenvalue shrinkage. Since the early work of Stein [Stein (1956)] it is
known that the estimation error of the sample covariance can be decreased by
eigenvalue shrinkage. Therefore, we will apply an eigenvalue shrinkage method
to the homogenized covariance matrix Sh. Let η(·) be a generic matrix shrinker,
defined for symmetric matrices M with eigendecomposition M = U�U⊤ as
η(M) = Uη(�)U⊤. Here η(�) is defined by applying the scalar shrinker η—
typically a nonlinear function—elementwise on the diagonal of the diagonal ma-
trix �. Then our homogenized and shrunken estimators will have the form

(7) Sh,η = η(Sh) = η
(
D

− 1
2

n SdD
− 1

2
n

)
.

We are interested in settings where the clean signals lie on a low-dimensional
subspace. We then expect the true covariance matrix �x of the clean signals to
be of low rank. However, based on Theorem 4.2, even in the case when �x = 0,
the empirical homogenized covariance matrix is of full rank, and its eigenvalues
have an asymptotic MP distribution. We are thus interested in shrinkers η that set
all noise eigenvalues to zero, specifically η(x) = 0 for x within the support of the
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shifted MP distribution x ∈ [(1 − √
γ )2, (1 + √

γ )2] − 1. An example is operator
norm shrinkage [Donoho, Gavish and Johnstone (2013)].

However, homogenization by Dn �= Ip also changes the direction of the eigen-
vectors. Therefore, to improve the accuracy of subspace estimates after eigenvalue
shrinkage, we heterogenize, multiplying back by the estimated standard errors. We
define the heterogenized covariance estimator as

(8) She = D
1
2
n · Sh,η · D

1
2
n .

Heterogenization is a nonlinear operation that changes both the eigenvectors and
eigenvalues. While it improves the estimates of the eigenvectors (PCs), it turns out
that it introduces a bias in the eigenvalues. Therefore, we will need a final scaling

step to correct this bias (Section 4.2.3).
To understand homogenization empirically, we perform two simulations. First,

we generate nonnegative i.i.d {Xi}1≤i≤n lying in a low-dimensional space of di-
mension r : we pick r vectors v1, . . . , vr ∈ R

p whose coordinates are i.i.d uni-
formly distributed in [0,1], and normalize each to have an L1 norm of unity. For
each i, sample r coefficients ai1, . . . , air independently from the uniform distri-
bution on [0,1]. Define Xi = ai1v1 + · · · + airvr . Note that Xi are nonnegative,
reside in a hyperplane spanned by v1, . . . , vr , and the mean and covariance of Xi

can be found easily in terms of v1, . . . , vr . The coefficients ai1, . . . , air are also
normalized so that ai1 + · · · + air = A, where A = 25(1 + √

γ )2 is a constant re-
lating to signal strength, chosen empirically to push the top eigenvalue outside of
the bulk. Finally we sample Yi ∼ Poissonp(Xi) independently.

We display a Monte Carlo instance of the eigenvalue histogram of Sh on
Figure 2. When r = 1, the covariance matrix has rank 0 and the standard MP

(a) Rank 0 covariance matrix (b) Rank 1 covariance matrix (Spiked)

FIG. 2. Empirical distribution of eigenvalues of homogenized sample covariance Sh for different

values of γ = p/n, with the corresponding shifted Marchenko–Pastur density overlaid as a red curve.
Data simulated according to 4.2. In the legend for (b), “Top Debiased EV” refers top eigenvalue of

Sh, while “True EV” refers to the top eigenvalue of D
− 1

2
n �xD

− 1
2

n , which we want to estimate.
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TABLE 2
Spiked models: Summary of the original and homogenized spiked model

Model Original Homogenized

Latent Signal Xi = u + ziv D− 1
2 Xi = D− 1

2 u + ziD
− 1

2 v

Marginal Covariance Cov[Y ] = vv⊤ + D Cov[Yh] = D− 1
2 vv⊤D− 1

2 + Ip

Eigenvector vnorm = v/‖v‖ w = D− 1
2 v/‖D− 1

2 v‖
Spike t = v⊤v ℓ = v⊤D−1v

SNR v⊤v
trD

v⊤D−1v
p

distribution—shifted by −1—is a good match [Figure 2(a)]. This is in accordance
with Theorem 4.2. When r = 2, the covariance matrix has rank 1 and the standard
MP distribution still matches the bulk of the noise eigenvalues [Figure 2(b)]. More-
over, we observe the same qualitative behavior as in the classical spiked model,
where the top empirical eigenvalue overshoots the population eigenvalue. Next
we study this phenomenon more precisely.

4.2.1. The spiked model: Colored and homogenized. To develop a method for
estimating the eigenvalue after homogenization and heterogenization, we study a
generalization of the spiked model [Johnstone (2001)] appropriate for our setting.
Specifically, based on the covariance structure of the noisy signal, equation (2),
we model the mean parameter X = A′(θ) of the exponential family—the clean
observation—as a low rank vector. For simplicity, we will present the results in the
rank one case (summarized in Table 2), but they generalize directly to higher rank.

Suppose that the ith clean observation has the form Xi = A′(θi) = u + ziv,
where u, v are deterministic p-dimensional vectors, and zi are i.i.d. standardized
random variables. In the Poisson case where Yi ∼ Poissonp(Xi), this assumes that
the latent mean vectors are Xi = u + ziv. The vector u is the global mean of the
clean images, while v denotes the direction in which they vary.

For Xi to be a valid mean parameter, we need the additional condition that
u(j) + zi |v(j)| ∈ A′(), for all i, j , where  is the natural parameter space of
the exponential family, and f (S) denotes the forward map of the set S under the
function f . For instance, in the Poisson case, we need that Xi(j) ≥ 0 for all i, j .
If we take zi to be uniform random variables on [−

√
3,

√
3], so that their variance

is unity, then a sufficient condition is that u(j) ≥
√

3|v(j)| for all j .
Using our formula for the marginal covariance of the noisy observations,

Cov[Y ] = Cov[X] +Ediag[V (X)], and defining D = Ediag[V (X)], we obtain

(9) Cov[Y ] = vv⊤ + D.

For instance, in the Poisson case we have Cov[Y ] = vv⊤ + diag[u].
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We homogenize the observations dividing by the elements of D
1
2 . The elements

of D are expected values of variances. They are thus positive, except for coor-
dinates that can be discarded because they have no variability. The homogenized

observations are Yh = D− 1
2 Y , and their population covariance matrix is

(10) Cov[Yh] = D− 1
2 vv⊤D− 1

2 + Ip.

We now compare this with the usual standard spiked model [Johnstone (2001)]
where the observations Yh are Gaussian and have covariance matrix Cov[Yh] =
ℓww⊤ + Ip , where ℓ ≥ 0 and the vector w has unit norm. The top eigenvalue
is called the “spike.” This model has been thoroughly studied in probability the-
ory and statistics. In particular, the Baik–Ben Arous–Péché (BBP) phase transition
(PT) [Baik, Ben Arous and Péché (2005)] shows that when n,p → ∞ such that
p/n → γ > 0, the top eigenvalue of the sample covariance matrix asymptotically
separates from the Marchenko–Pastur bulk if the population spike ℓ >

√
γ . Oth-

erwise, the top sample eigenvalue does not separate from the MP bulk. This was
shown first for complex Gaussian observations, then generalized to other distribu-
tions [see, e.g., Yao, Zheng and Bai (2015)].

Heuristically, comparing with (10), we surmise that a spiked model with ℓ =
v⊤D−1v and w = D− 1

2 v/ ‖D− 1
2 v‖ is a good approximation in our case. In partic-

ular the BBP phase transition should happen approximately when v⊤D−1v = √
γ .

In the Poisson case the condition is v⊤ diag[u]−1v = √
γ . Next we provide numer-

ical evidence for this surmise, and develop its consequences.

4.2.2. Homogenization improves SNR. In this section we justify our homoge-
nization method theoretically, showing that it can improve the signal-to-noise ratio.
This was observed empirically in previous work on covariance estimation in a re-
lated setting, but a theoretical explanation is lacking [Bhamre, Zhang and Singer
(2016)].

As usual, we define the SNR of a “signal + noise” vector observation y = s + n

as the ratio of the trace of the covariances of s and of n. In the unhomogenized
model from equation (9)

SNR = tr Cov[X]
trEdiag[V (X)] = trvv⊤

trD
= v⊤v

trD
.

In particular, the SNR is of order O(1/p) in the typical case when the vector v has
norm of unit order. In the homogenized model from equation (10), the SNR equals
v⊤D−1v/p.

Suppose now that v is approximately delocalized in the sense that p ·v⊤D−1v ≈
trD−1 · v⊤v. This holds for instance if the entries of v are i.i.d. centered ran-
dom variables with the same variance σ 2. In that case, Ev⊤D−1v = σ 2 trD−1 and
Ev⊤v = σ 2p, and under higher moment assumptions it is easy to show the concen-
tration of these quantities around their means, showing delocalization as above. If
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v is delocalized, then we obtain that the SNR in the homogenized model is higher
than in the original model. Indeed, this follows because D is diagonal, so by the
Cauchy–Schwarz inequality

v⊤D−1v

p
≈ trD−1 · v⊤v

p2 =
∑p

i=1 D−1
i · v⊤v

p2 ≥ v⊤v
∑p

i=1 Di

= v⊤v

trD
.

Moreover, we can define the improvement (or amplification) in SNR as

(11) I = trD

p
· v⊤D−1v

v⊤v
.

The above heuristic can be formalized as follows:

PROPOSITION 4.3. Suppose the signal eigenvector v is delocalized in the

sense that for some ε > 0,

v⊤D−1v

v⊤v
≥ (1 − ε)

tr[D−1]
p

.

Let moreover β be the following measure of heteroskedasticity:

β =
∑p

i=1 Di · ∑p
i=1 D−1

i

p2 ≥ 1.

Then the SNR is improved by homogenization, by a ratio I ≥ (1 − ε)β .

If β is large and ε > 0 is small, the SNR can improve substantially.

4.2.3. Eigenvalue shrinkage and scaling. We now continue with our over-
all goal of estimating the covariance matrix Cov[X] = vv⊤ of X. This has one
nonzero eigenvalue t = ‖v‖2 and corresponding eigenvector vnorm = v/‖v‖. We
use the top eigenvector of the heterogenized covariance matrix She as an estima-
tor of vnorm. To estimate t , a first thought is to use the top empirical eigenvalue
of She, but as we show next, this naive estimator is biased. To correct the bias,
we will leverage recent results from random matrix theory. The need for this step
can be understood by leveraging deep insights from that area, specifically precise
asymptotic results on the inconsistency of eigenvectors, presented below.

For data with independent coordinates and equal variances, the cumulative work
of many authors [e.g., Baik, Ben Arous and Péché (2005), Paul (2007), Baik and
Silverstein (2006), Benaych-Georges and Nadakuditi (2011) etc.] shows that if the
population spike ℓ is above the BBP phase transition—that is, ℓ >

√
γ —then the

top sample spike pops out from the Marchenko–Pastur distribution of the “noise”
eigenvalues. The top eigenvalue will converge to the value given by the spike for-

ward map:

λ(ℓ;γ ) =

⎧
⎪⎨
⎪⎩

(1 + ℓ)

(
1 + γ

ℓ

)
if ℓ > γ

1
2 ,

(
1 + γ

1
2
)2 otherwise.
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We conjecture that the BBP phase transition also applies to our case, and de-
scribes the behavior of the spikes after homogenization. We have verified this in
numerical simulations in certain cases (data not shown due to space limitations).
Therefore, as in previous work, we propose to estimate ℓ consistently by inverting
the spike forward map [see, e.g., Lee, Zou and Wright (2010), Donoho, Gavish
and Johnstone (2013)], that is, defining ℓ̂ = λ−1(λmax(Sh)). Donoho, Gavish and
Johnstone (2013) provided an asymptotic optimality result for this estimator of the
spike in operator norm loss.

Once we have a good estimator ℓ̂ of ℓ = v⊤D−1v, a first thought is to esti-
mate t = v⊤v as the top eigenvalue of the heterogenized covariance matrix She.
However, this estimator is biased. The estimation accuracy is affected in a signif-
icant way by the inconsistency of the empirical eigenvector ŵ of Sh as an esti-

mator of the true eigenvector w = D− 1
2 v/‖D− 1

2 v‖. We can quantify this heuris-
tically based on results for Gaussian data. In the Gaussian standard spiked model
the empirical and true eigenvectors have an asymptotically deterministic angle:
(w⊤ŵ)2 → c2(ℓ;γ ) almost surely, where c(ℓ;γ ) is the cosine forward map given
by [e.g., Paul (2007), Benaych-Georges and Nadakuditi (2011) etc.]:

c(ℓ;γ )2 =

⎧
⎪⎨
⎪⎩

1 − γ /ℓ2

1 + γ /ℓ
if ℓ > γ

1
2 ,

0 otherwise.

Heuristically, in finite samples we can write ŵ ≈ cw + sε, where s = s(ℓ;γ ) ≥ 0
is the sine defined by s2 = 1 − c2, and ε is white noise with approximate norm
‖ε‖ = 1. Then, since w⊤Dw = v⊤v/v⊤D−1v = t/ℓ, and ε⊤Dε ≈ tr(D)/d , we
have

‖v̂‖2 ≈ ℓ · ŵ⊤Dŵ ≈ ℓ · (cw + sε)⊤D(cw + sε)

≈ ℓ · (
c2w⊤Dw + s2ε⊤Dε

) ≈ tc2 + ℓs2 tr(D)/p.

Comparing this to ‖v‖2 = t = tc2 + ts2, we find that the bias is

‖v̂‖2 − t ≈ s2(
v⊤D−1v · tr(D)/p − v⊤v

) = s2t · (I − 1) ≥ 0.

This suggests that ‖v̂‖2 is an upward biased estimator of t = ‖v‖2. Interestingly,
the bias is closely related to the improvement I in SNR. Moreover, this calcula-
tion makes it clear that the bias comes from the inconsistency of the eigenvectors
in high dimensions. Thus, the random matrix theoretic results characterizing the
inconsistency are crucial in this step.

To correct the bias, we propose an estimator of the form t̂ (α) = α‖v̂‖2 for which
α‖v̂‖2 ≈ ‖v‖2. We have ‖v̂‖2 ≈ t · [1 + s2(I − 1)], suggesting that we define
α = [1 + s2(I − 1)]−1. This quantity is an unknown population parameter, and it
depends on s2 and I . We can estimate s2 in the usual way by ŝ2 = s2(ℓ̂;γ ). Since
I itself depends on the parameter t we are trying to estimate, we plug in the same
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estimator t̂ (α) = α‖v̂‖2, leading to the following estimator of I (where we also
define τ for future use):

Î(α) = trDn

p
· ℓ̂

t̂ (α)
= trDn

p
· ℓ̂

α‖v̂‖2
= τ

α
.

Since α = [1+s2(I−1)]−1, it is reasonable to require that the fixed-point equation
α̂ = [1 + ŝ2(Î(α̂) − 1)]−1 holds.

We can equivalently rewrite the fixed-point equation as 1/α̂ = ĉ2 + ŝ2Î(α̂) =
ĉ2 + ŝ2τ/α̂. Or, when ĉ2 > 0,

(12) α̂ = 1 − ŝ2τ

ĉ2 .

When ĉ2 = 0, that is, when ℓ̂ ≤ √
γ , the equation reads 1/α̂ = τ/α̂. If τ = 1, this

has solution α = 1, else it has no solution. Therefore, when ĉ2 = 0, we define
α̂ = 1. We finally define t̂ (α̂) = α̂‖v̂‖2. The implication is that we ought to rescale
the estimated magnitude of the signal subspace corresponding to v by α̂.

In the multispiked case, suppose Xj = u + ∑r
i=1 zijvi . Then the marginal co-

variance of Y is Cov [Y ] = ∑r
i=1 viv

⊤
i + D. Suppose that the vi are sorted in the

order of decreasing norm. Suppose moreover that the heterogenized sample covari-
ance She has the form She = ∑r

i=1 v̂i v̂
⊤
i = ∑r

i=1 λ̂i ûi û
⊤
i , where ûi are orthonor-

mal, and the λ̂i ≥ 0 are sorted in decreasing order. Based on our above discussion,
we define the scaled covariance matrix as

(13) Ss =
r∑

i=1

α̂i v̂i v̂
⊤
i ,

where α̂i is defined in (12), with ŝ2 = ŝ2
i = s2(ℓ̂i;γ ). This concludes our method-

ology for covariance estimation. We use the terminology ePCA for the eigende-
composition of the covariance matrix estimator (13). Both the eigenvalues and the
eigenvectors of this estimator are different from those of the sample covariance
matrix.

ePCA is summarized in Algorithm 1. Clearly, ePCA is applicable when the
variables x(i) have known nonidentical distributions, which the modification that
homogenization should be done by the mean-variance map of the distribution of
each particular coordinate. As discussed at the beginning of Section 4.2, we as-
sume here that we have a guess r for the number of PCs. In exploratory analyses,
one can often try several choices for r . While there are many formal methods for
choosing the rank r [see, e.g., Jolliffe (2002)], it is beyond our scope to investigate
them in detail here.
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Algorithm 1: Covariance matrix estimation and ePCA

Input: Data Y = [Y1, . . . , Yn]⊤ ∈R
n×p; Desired rank r ≤ p;

Mean-variance map V of exponential family, as defined in (3).
Output: Covariance estimator Ss ∈ R

p×p of noiseless vectors; ePCA:
eigendecomposition of Ss .

1 Compute the sample mean Ȳ = n−1 ∑n
i=1 Yi

2 Compute the sample covariance matrix S = n−1 ∑n
i=1(Yi − Ȳ )(Yi − Ȳ )⊤

3 Compute the variance estimates Dn = diag[V (Ȳ )]
4 Homogenize and diagonally debias the covariance matrix

Sh = D
− 1

2
n SD

− 1
2

n − Ip

5 Compute the eigendecomposition Sh = Ŵ�Ŵ⊤

6 Shrink the eigenvalues Sh,η = Ŵη(�r)Ŵ
⊤ = ∑r

i=1 ℓ̂iŵiŵ
⊤
i of top r

eigenvalues �r = diag(λ1, . . . , λr).
7 Compute the scaling coefficients α̂i = [1 − s2(ℓ̂i;γ )τi]/c2(ℓ̂i;γ ) [as in (12)]

8 Heterogenize the covariance matrix She = D
1
2
n Sh,ηD

1
2
n

9 Scale the covariance matrix Ss = ∑
α̂i v̂i v̂

⊤
i , where the eigendecomposition

of She is She = ∑
v̂i v̂

⊤
i

4.2.4. Simulations with ePCA. We report the results of a simulation study
with ePCA. As an example, we simulate data Yi from a Poisson model. We re-
mind the reader that our algorithm works for all exponential families. We let Yi ∼
Poissonp(Xi), where the mean parameters are Xi = u+ ziℓ

1
2 v, the zi are i.i.d. unit

variance random variables uniformly distributed on [−
√

3,
√

3], and u ∈ R
p has

entries u(i) sorted in increasing order on a uniform grid on [1,3], while v ∈ R
p has

entries v(i) sorted in increasing order on a uniform grid on [−1,1], standardized
so that ‖v‖2 = 1. We take the dimension p = 500, and γ = 1

2 , so n = 1000. The
phase transition occurs when the spike is ℓ = √

γ /v⊤ diag[u]−1v ≈ 1.2. We vary
the spike strength ℓ on a uniform grid of size 20 on [0,3]. We generate nM = 100
independent Monte Carlo trials, and compute the mean of the heterogenized spike
estimator t̂ = ‖v̂‖2 and the ePCA—or scaled—estimator t̂ (α̂) = α̂‖v̂‖2.

The results displayed in Figure 3 (left) show that the ePCA/scaled estimator (top
eigenvalue of Ss ) reduces the bias of the heterogenized estimator (top eigenvalue of
She) especially for large spikes. Both are much better than the debiased estimator
(top eigenvalue of Sd ). Below the phase transition (vertical line), both estimators
have the same approximate value.

We can also define an estimator of the improvement in SNR I , as Î(α̂). The
mean of this estimator over the same simulation is displayed in Figure 3 (middle).
We observe that it is approximately unity below the PT. This makes sense, because
the spike is below the PT both before and after homogenization. The improvement
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FIG. 3. Simulation with ePCA. Left: Spike estimation; true, debiased, heterogenized, and scaled

(ePCA). Middle: Estimated improvement in SNR due to homogenization. Right: Squared correlation

between v and leading eigenvector of various covariance estimates; sample, debiased, heterogenized

(ePCA). Plotted against the spike.

in SNR has a “jump” just above the PT, because the spike pops out from the bulk
after homogenization. This is where homogenization helps the most. However,
Î is not “infinitely large” because the signal is detectable in the unhomogenized
spectrum, except it is spread across all eigenvalues [see, e.g., Dobriban (2017)].
Finally, Î(α̂) drops to a lower value, still above unity, and stabilizes. We find this
an illuminating way to quantify the improvement due to homogenization.

Finally, we also display the mean of the squared correlation between the true and
empirical eigenvectors of various covariance estimators in Figure 3 (right). The
predicted PT matches the empirical PT. The ePCA eigenvector—top eigenvector
of Ss—in this case agrees with the eigenvector of the heterogenized covariance
matrix She, because both are of rank one. ePCA has the highest correlation, and
the improvement is significant just above the PT.

4.3. Homogenization agrees with HWE normalization. It is of special interest
that for Binomial(2) data, and specifically for biallelic genetic markers such as
Single Nucleotide Polymorphisms, our homogenization method recovers exactly
the well-known normalization assuming Hardy–Weinberg equilibrium (HWE). In
these datasets the entries Xij are counts ranging from 0 to 2 denoting the number
of copies of the variant allele of biallelic marker j in the genome of individual i.

The HWE normalization divides the entries of SNP j by
√

2p̂j (1 − p̂j ), where

p̂j = (2n)−1 ∑
i Xij is the estimated allele frequency of variant j [e.g., Patterson,

Price and Reich (2006), page 2075]. It is easy to see that this is exactly the same
as our homogenization method assuming that the individual data points Xij are
Binomial(2)-distributed.

Previously, the HWE normalization was motivated by a connection to genetic
drift, and by the empirical observation that it improves results on observational
and simulated data [Patterson, Price and Reich (2006), p. 2075]. Our theoreti-
cal results justify HWE normalization. In particular, our Theorem 4.2 suggests
that the Marchenko–Pastur is an accurate null distributions after homogenization.
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Numerical results also suggest that the approximations to both the MP law and
the Tracy–Widom distribution for the top eigenvalue are more accurate than after
standardization (data not shown for space reasons). In addition, our result on the
improved SNR (Proposition 4.3) suggests that “signal” becomes easier to identify
after homogenization.

However, in practice we often see similar results with homogenization and stan-
dardization. In many SNP datasets, the variants not approximately in HWE—that
is, the variants for which a goodness of fit test to a Binomial(2) distribution is
rejected—are removed as part of data quality control. Therefore, most remaining
SNPs have an empirical distribution well fit by a Binomial(2). In such cases stan-
dardization and homogenization lead to similar results.

5. Denoising. As an application of ePCA, we develop a method to denoise the
observed data. Formally the goal of denoising is to predict the noiseless signal vec-
tors Xi = A′(θi). Our model is a random effects model [see, e.g., Searle, Casella
and McCulloch (1992)], hence we predict Xi using the Best Linear Predictor—or
BLP [Searle, Casella and McCulloch (1992), Section 7.4]. Let Ẽ(X|Y) = BY + C

denote the minimum MSE linear predictor of the random vector X using Y , where
B is a deterministic matrix, and C is a deterministic vector. This is known under
various names, including the Wiener filter; see Section 1.3. We will refer to it as
the BLP, which is the common terminology in random effects models. It is well
known [e.g., Searle, Casella and McCulloch (1992), Section 7.4] that

B = �x

[
diag

[
EA′′(θ)

] + �x

]−1 and

C = diag
[
EA′′(θ)

][
diag

[
EA′′(θ)

] + �x

]−1
EA′(θ).

The BLP depends on the unknown parameters �x , diag[EA′′(θ)], and E[A′(θ)].
The standard strategy, known as Empirical BLP or EBLP [e.g., Searle, Casella
and McCulloch (1992)] is to estimate these unknown parameters using the entire
dataset, and denoise the vectors Yi by plug-in:

X̂i = �̂x

[
diag

[
ÊA′′(θ)

] + �̂x

]−1
Yi + diag

[
ÊA′′(θ)

][
diag

[
ÊA′′(θ)

] + �̂x

]−1
Ȳ .

We will use ePCA, that is, the scaled covariance matrix Ss proposed in (13) to
estimate �x . As before in Section 3.2, we will use the sample mean Ȳ to estimate
E[A′(θ)], and V (Ȳ ) to estimate the noise variances EA′′(θ). However, in principle
different estimators could be used.

For the special case of the Poisson distribution, we have

X̂i = Ss

(
diag[Ȳ ] + Ss

)−1
Ŷi + diag[Ȳ ](diag[Ȳ ] + Ss

)−1
Ȳ .

In some examples there are coordinates where Ȳ (j) = 0. In our XFEL application
this corresponds to pixels where no photon was observed during the entire ex-
periment. This causes a problem because the matrix �̂ = diag[Ȳ ] + Ss may no
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longer be invertible: Ss is of low rank, while diag[Ȳ ] is also not of full rank.
To avoid this problem, we implement a ridge-regularized covariance estimator
�̂ε = (1−ε)�̂+ε ·m̃Ip as in Ledoit and Wolf (2004), where m̃ = tr �̂/p and ε > 0
is a small constant. Note that tr �̂ε = tr �̂. The ridge-regularized estimator �̂ε has
a small bias, but is invertible. In our default implementation we take ε = 0.1. Sim-
ilar results are achieved in our XFEL application for ε in the range of 0.05–0.2.
In new applications we suggest that the user try this range of ε and choose one
based on empirical performance. The same method can be implemented for any
exponential family. Another potential solution to the invertibility problem—not
pursued here—is to discard the pixels with Ȳ (j) = 0.

6. Experiments. We conduct a substantive XFEL data analysis example us-
ing ePCA, and compare with PCA. We generate n0 = 70,000 noiseless XFEL
diffraction intensity maps of a lysozyme (Protein Data Bank 1AKI) with physi-
cal realism using the state of the art methods [Hantke, Ekeberg and Maia (2016)].
We rescale the average pixel intensity to 0.04 such that shot noise dominates, as
suggested in prior work [e.g., Schwander et al. (2012)]. To sample an arbitrary
number n of noisy diffraction patterns, we sample an 64-pixel-by-64-pixel inten-
sity map at random, and then sample the photon count of each detector pixel from
a Poisson distribution whose mean is the pixel intensity. The resulting images are
also 64 pixels by 64 pixels, so p = 4096. Figure 1 illustrates the intensity maps
and the resulting noisy diffraction patterns.

6.1. Covariance estimation. To evaluate performance on covariance estima-
tion, we vary the sample size n in the range 3 ≤ log10(n) ≤ 5. We fix the rank of
each estimator to be 10, though other choices lead to similar results. The diago-
nally debiased, heterogenized, and scaled covariance estimates Sd , She, Ss each
improve on the sample covariance S (Figure 4) in MSE. The largest improvement
is due to diagonal debiasing, but scaling leads to the smallest MSE.

Figure 5 summarizes the error of eigenvalue estimation. The ePCA eigenvalues
are indeed much closer to the true eigenvalues than the eigenvalues of the debiased
or sample covariance matrices Sd or S. The estimation error for ePCA eigenvalues
is small regardless of sample size.

We visualize the eigenvectors (or eigenimages) for XFEL diffraction patterns
in Figure 6. The ePCA eigenvectors—those of the heterogenized matrix She—
accurately estimate two more eigenimages with small eigenvalues than alternative
methods. This shows that ePCA significantly improves on PCA for covariance
estimation in XFEL data.

The ePCA/heterogenized eigenvectors 1 to 2 in Figure 6 appear misaligned with
the corresponding true eigenvectors. A likely explanation is that the top eigenvec-
tors have similar eigenvalues, leading to some reordering and rotation in the esti-
mated eigenvectors. Therefore, we also report the error of estimating the overall
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FIG. 4. Error of covariance matrix estimation, measured as the spectral norm (left) and Frobenius

norm (right) of the difference between each covariance estimate (Sample, Debiased, Heterogenized,
Scaled) and the true covariance matrix.

low-rank subspace, for rank r = 10, measured as the estimation MSE of the pro-
jection matrix UrU

T
r . Other values of r lead to comparable results. Figure 7 clearly

shows that the ePCA/heterogenized covariance matrix best estimates the low-rank
subspace inhabited by the clean data.

6.2. Denoising. Finally, we report the results of denoising the XFEL patterns.
We compare “PCA denoising” or “vanilla projection,” that is, orthogonal projec-
tion onto sample or ePCA/heterogenized eigenimages; and EBLP denoising. PCA
denoising results in clear artifacts, while the reconstructions after EBLP denois-
ing are always the closest to the clean images (Figure 8). In EBLP denoising, our

FIG. 5. Error of eigenvalue estimation for the top five eigenvalues, measured as percentage error

relative to the true eigenvalue, for XFEL data. We plot the mean and standard deviation (as error

bars) over 50 Monte Carlo trials.
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FIG. 6. XFEL Eigenimages for γ = 1
4 , ordered by eigenvalue.

scaled covariance matrix leads to much better results than the sample covariance
matrix. EBLP also does better when measured by reconstruction mean squared
error,

MSE := (pn)−1
n∑

i=1

‖X̂i − Xi‖2.

We also compare ePCA to the exponential family PCA method based on alter-
nating minimization proposed by Collins, Dasgupta and Schapire (2001) in Fig-
ure 9. ePCA is faster and recovers the images with higher accuracy, as measured
by MSE (see the caption of Figure 9). Our experiments with variance stabilizing
transforms, such as the Anscombe [Anscombe (1948)] and Freeman–Tukey trans-
forms [Freeman and Tukey (1950)], all gave denoising results significantly worse
than standard PCA (results not shown due to space limitations). This may be be-

FIG. 7. Subspace estimation error for XFEL data. We plot the mean and standard deviation (as

error bars) over 50 Monte Carlo trials.



2146 L. T. LIU, E. DOBRIBAN AND A. SINGER

FIG. 8. Sampled reconstructions using the XFEL dataset (n = 16,384; p = 4096), fixing the rank

of covariance estimates at r = 10. Color scale of each reconstruction clipped to match that of clean

images.

cause the known inverse transforms [e.g., Mäkitalo and Foi (2011)] are ineffective
in the photon-limited regime.

In conclusion, ePCA is accurate for the covariance estimation and PCA in XFEL
data analysis. It also works well for denoising XFEL diffraction patterns.

7. Future work. In the context of XFEL imaging, each diffraction pattern
is equally likely to appear in any possible in-plane rotation. As a result, the co-
variance matrix commutes with rotations and is block diagonalized in any basis
made of outer products of radial functions and angular Fourier modes, such as the
Fourier–Bessel basis [Zhao, Shkolnisky and Singer (2016)]. Indeed, the eigenim-
ages in Figure 5 clearly show angular oscillation. Incorporating “steerability” into
our methodology, that is, including the block diagonal structure into the estimation
framework would lead to more accurate covariance estimation, as it effectively re-
duces the dimension p.

Furthermore, it would be valuable to prove rigorously the results about the
spiked model for exponential families. Our results in Section 4.1.1 only cover the
null case, but it would be useful to know rigorously the behavior of the signal
eigenvalues in nonnull cases. In addition, it could be useful to have a principled
method to choose the rank. Moreover, it would also lead to a better theoretical
understanding of our scaled estimator Ss .

Finally, it would be important to go beyond the one-parameter exponential fam-
ily considered in this paper. For instance, a lot of nominally Poisson problems have

FIG. 9. Comparing various methods’ sampled reconstructions of the XFEL dataset (n = 1000;
p = 4096), fixing the rank estimate for each method to r = 8. For reference, the MSE for noisy

images is 0.0401. We also note that ePCA took 13.9 seconds, while Collins, Dasgupta and Schapire

(2001)’s exponential family PCA took 10,900 seconds, or three hours, to finish running on a 2.7 GHz

Intel Core i5 processor.
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overdispersion. Our model allows some overdispersion, because the parameter θ

can be random. To handle overdispersion more generally, it would be of interest
to extend ePCA to the setting where the mean-variance map V is unknown but es-
timable. This would allow us to handle overdispersed data with low-rank structure
more flexibly, for example, when the variance is an unknown function of the mean
[Anders and Huber (2010)].
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