

ePPI: Locator Service in Information Networks with Personalized Privacy Preservation

Yuzhe Tang, Ling Liu, Arun Iyengar, Kisung Lee and Qi Zhang

Background

ePPI: Personalized privacy preservation

Practical ePPI construction

Evaluation

Systems: Information networks

- Information networks arise in Health domain.
 - Health Information exchanges (HIE)

Software

- Information networks appear in other domains:
 - Social networks
 - Cloud computing
 - Enterprise networks

Application: Data exchange in HIE

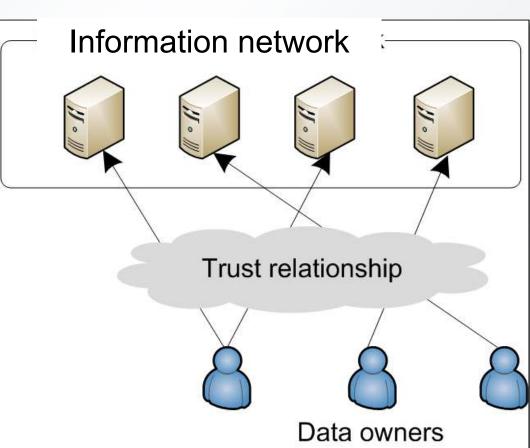
- Why exchange data? Boost the data value
- Example in HIE:
 - Patient in *Emory* hospital: "I just did my blood test in *Grady* hospital two days ago. Can I use that data?"
 - The case of unconscious patient
- Sharing information in HIEs creates privacy issues

Proposal: Privacy aspect of RLS

- Location of health care data should be private in certain cases.
 - Location of health care records could suggest type of medical condition a patient might be suffering from
- Privacy preservation is regulated.
 - -HiPAA for privacy of healthcare records

Abstract: System/trust model

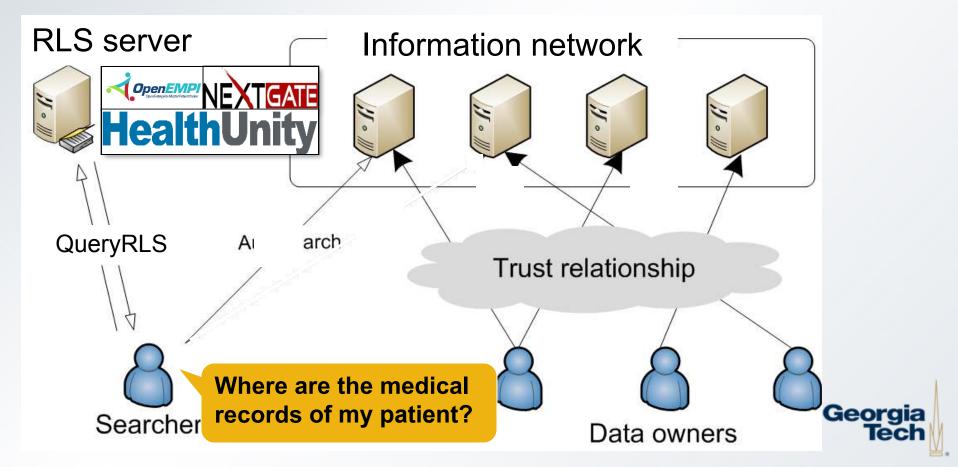
- Owners to providers: Selected trust relationship
 HIE: "A patient only trusts the hospitals s/he visited"
- Providers to providers:
 No mutual trust
 - Each provider in a separate domain
 - Different providers
 compete for the same
 customer base



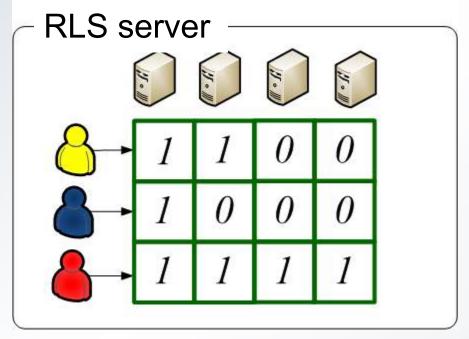
Record Locator Service (RLS)

RLS: a standard procedure in HIE

• "Given a patient ID, where are the medical records located?"



RLS: Data model and privacy

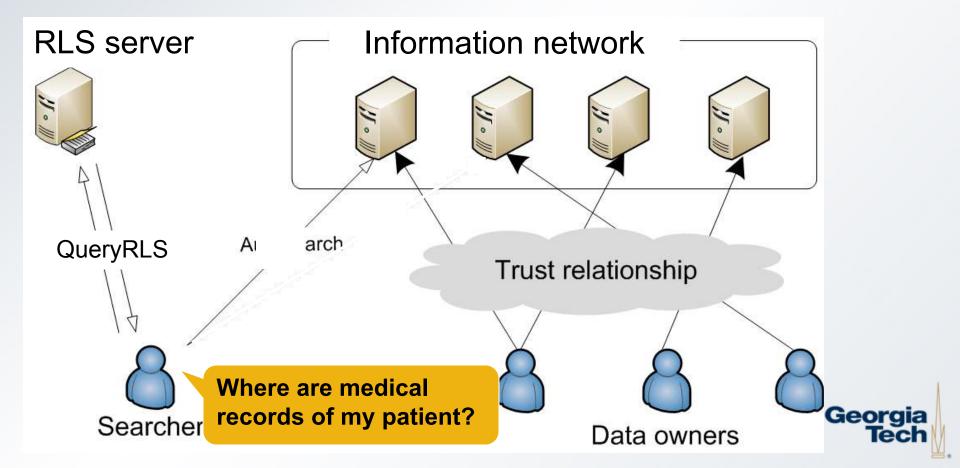


- Essentially an inverted index.
 - Mapping between a patient/owner and a provider.
- Assumption:
 - Owner/patient has the same ID globally
 - Related work: Record linkage/MPI (UTD, Vanderbilt) ⁸

Georgia

Proposal: Privacy-preserving index in information networks

• PPI is a Privacy-Preserving Index for RLS.



Previous Approach: k-Anonymity Using Groups

- Organize providers into disjoint groups
- Satisfy query with a group containing a valid provider
- Providers in same group are indistinguishable by searchers
 - Valid searcher may need to contact each provider in a group to find a record
- Drawbacks
 - Assumes providers are willing to share private local indices
 - Cannot provide privacy levels personalized to individual patients
 - Cannot specify quantitative privacy guarantees

Contribution

- We are the first to consider an untrusted RLS with privacy preservation.
 - Traditional RLS server requires trusts from participating hospitals and providers.

- We are the first to study the following two problems:
 - Personalized privacy preservation
 - Practical ePPI construction.

Background

• ePPI: Personalized privacy preservation

Practical ePPI construction

Evaluation

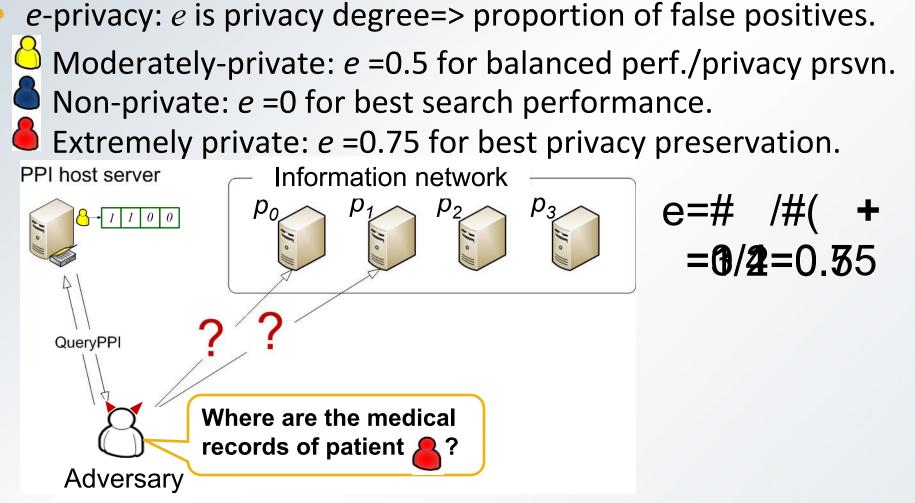
Different people have different levels of privacy concerns.

Famous athlete/ politician visited a hospital

An average person visited a hospital

13

ePPI: Personalized privacy protection



k-anonymity does not apply here.

• Grouping *k* providers is agnostic to patients.

How to specify *e*?

- Heuristics:
 - Value e depends on how famous the person is?
 - "Average person" big e
 - "Average person" small e
- Use social network analysis to recommend *e* automatically.
 - Social users with big degree big e
 - Social users with small degree small e

Background

ePPI: Personalized privacy preservation

Practical ePPI construction

Evaluation

Secure ePPI construction

- ePPI construction:
 - Input: sensitive mapping data on untrusted providers
 - It needs to be secure

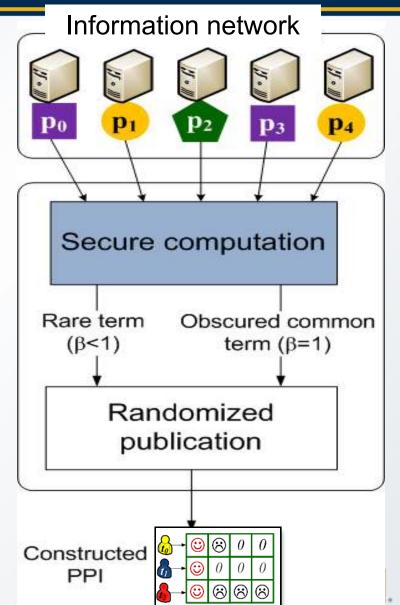
Add noises () quantitatively

Problem 2: Efficient ePPI construction

- A challenge for the large-scale index construction:
- Traditional technique: MPC (multi-party computations).
 - Sample Problem: Answer "Who is the richest person in this room?" while keeping financial data private
- MPC is very expensive for big data and computations (Dioin [OSDI 2012: Narayan & Haeberlen]) FairplayMP [4], need about 10 seconds to evaluate (very simple) functions that can be expressed with 1,024 logic gates.

ePPI construction overview

- Design: Separate secure and non-secure computations
 - Minimize secure computations
- Index construction framework:
 - 1. Secure computation producing a probability β
 - 2. Randomized publication based on β [link]
 - Generate a false positive for a provider which does not store a record with probability β.



Randomized publication

- Inspired by the privacy preserving voting technique
 - Voting: "Vote for/against President Obama wo. disclosing my decision"
 - ePPI: "Releasing match/non-match data wo. disclosing match information" Input Output Input Output 0 () ()

I

Georgia

Randomized publication

- Randomized publication: given a probability β, each provider flips their "coins" to decide tell a truth or lie.
 - Essentially, a process of *Bernoulli trials*.
 - Provide quantitative privacy guarantees with Chernoff bounds.

Theorem 4.1: Given desired success rate $\gamma > 50\%$, let $G_j = \frac{\ln \frac{1}{1-\gamma}}{(1-\sigma_j)m}$ (where *m* is the number of providers) and

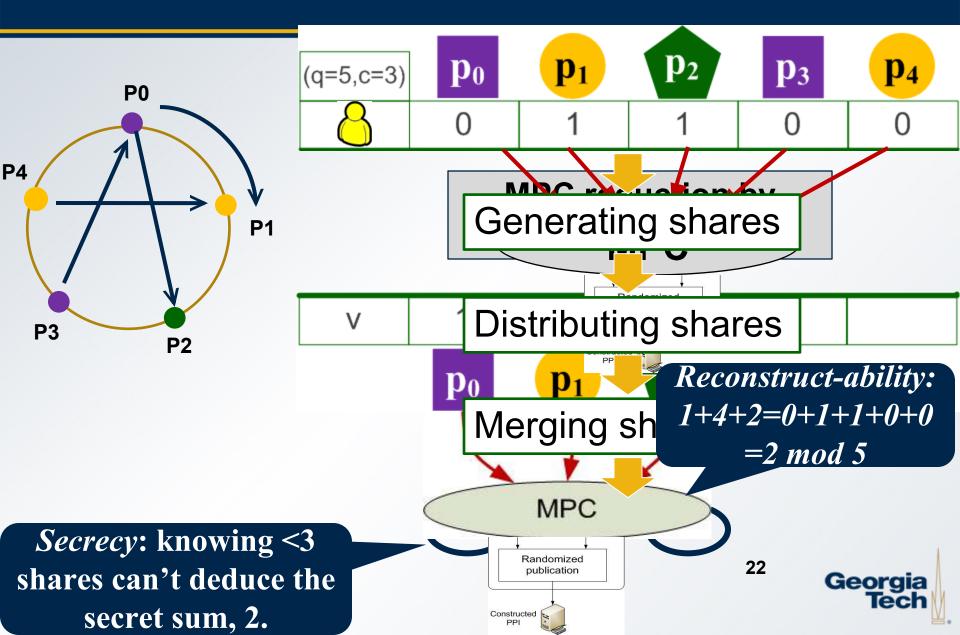
$$\beta_c(t_j) \ge \beta_b(t_j) + G_j + \sqrt{G_j^2 + 2\beta_b(t_j)G_j} \qquad (3)$$

Proof in ePPI paper [link]

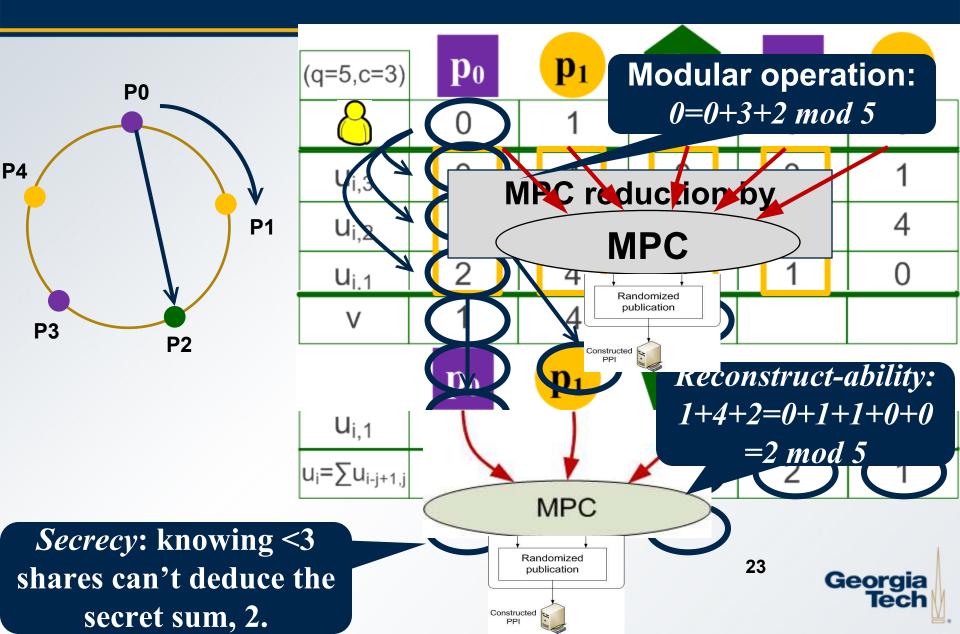
Then, the randomized publishing with $\beta(t_j) = \beta_c(t_j)$ statistically guarantees that the actual false positive rate in the published ϵ -PPI is larger than ϵ with success rate $p_p \ge \gamma$.

21

Secure computation: secret sharing



Secure MPC reduced by secret sharing



Background

ePPI: Personalized privacy preservation

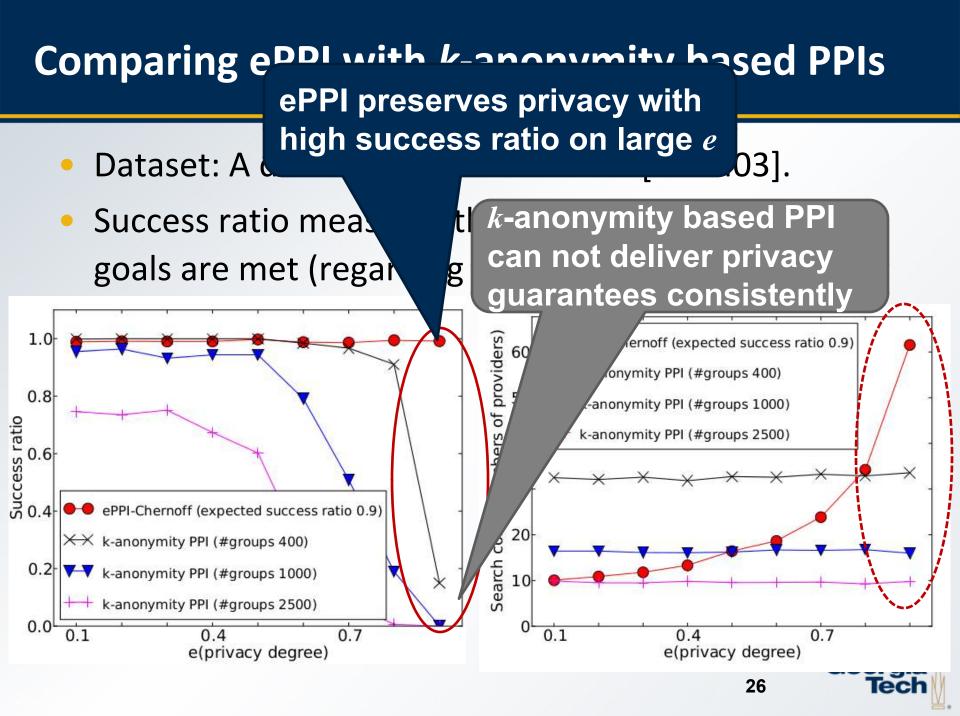
Practical ePPI construction

Evaluation

Evaluation

- Exp-1: Privacy (Problem 1)
 - By simulation
- Exp-2: Performance (Problem 2)
 - By real system implementation.

25



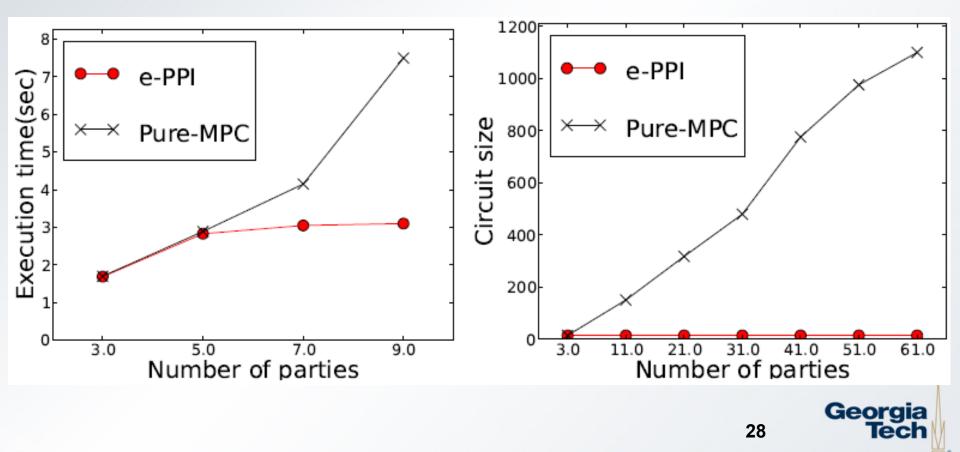
Experiment setup for performance evaluation

- Implementation:
 - Secret sharing reduction with limited MPC using:
 - Protocol Buffers for object serialization.
 - Netty for network communication.
 - MPC by FairplayMP[CCS08]
- Evaluation platform:
 - Emulab: with 10 machines
 - Machine with a 2.4GHz core and 12G RAM

27

Performance

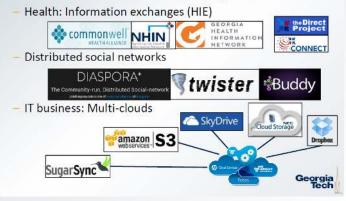
- ePPI construction incurs time constant to the number of parties.
- Pure-MPC construction incurs exponentially growing time.



Talk summary for QA

Systems: Information networks

Information networks arise in many application areas.



Problem 1: Personalized privacy preservation

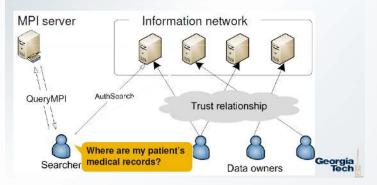
 Different people have different levels of privacy concerns.

Georgia Tech

12

Privacy-preserving index in information networks

- PPI is a Privacy-Preserving Master Patient Index.
- PPI is public, without access controls.



ePPI construction overview

- Design: Separate secure and non-secure computations
- Index construction framework:
 - 1. Secure computation producing a probability β
 - Randomized publication based on β [link]

