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Systems: Information networks

Information networks arise in Health domain.

Health Information exchanges (HIE)
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Information networks appear in other domains:

Social networks
Cloud computing

Enterprise networks
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Application: Data exchange in HIE

Why exchange data? Boost the data value

Example in HIE:

Patient in Emory hospital: “l just did my blood
test in Grady hospital two days ago. Can | use
that data?”

The case of unconscious patient

Sharing information in HIEs creates privacy
Issues
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Proposal: Privacy aspect of RLS

Location of health care data should be
private in certain cases.

Location of health care records could
suggest type of medical condition a
patient might be suffering from

Privacy preservation is regulated.

HiPAA for privacy of healthcare records
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Abstract: System/trust model

Owners to providers: Selected trust relationship
HIE: “A patient only trusts the hospitals s/he visited”

— |Information network

Providers to providers: |
No mutual trust
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Each providerin a

separate domain

: : Trust relationship
Different providers

compete for the same
customer base

Data owners



Record Locator Service (RLS)

RLS: a standard procedure in HIE
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“Given a patient ID, where are the medical records located?”

RLS server Information network
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Where are the medical |
records of my patient?
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RLS: Data model and privacy

- RLS server \
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Essentially an inverted index.
Mapping between a patient/owner and a provider.
Assumption:

Owner/patient has the same ID globally _
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Proposal: Privacy-preserving index in

information networks

PPl is a Privacy-Preserving Index for RLS.

RLS server — Informatlon network
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Previous Approach: k-Anonymity Using Groups

Organize providers into disjoint groups
Satisfy query with a group containing a valid provider

Providers in same group are indistinguishable by
searchers

Valid searcher may need to contact each providerin a
group to find a record

Drawbacks

Assumes providers are willing to share private local
indices

Cannot provide privacy levels personalized to individual

patients Georgia
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Contribution

We are the first to consider an untrusted RLS
with privacy preservation.

Traditional RLS server requires trusts from
participating hospitals and providers.

We are the first to study the following two
problems:

Personalized privacy preservation

Practical ePPIl construction. Georgia
Tech
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Problem 1: Personalized privacy preservation

Different people have different levels of
privacy concerns.

Famous athlete/ An average person
politician
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ePPIl: Personalized privacy protection

e-privacy: e is privacy degree=> proportion of false positives.
Moderately-private: e =0.5 for balanced perf./privacy prsvn.

Non-private: e =0 for best search performance.

& Extremely private: e =0.75 for best privacy preservation.
PPI host server — Information network
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Where are the medical
records of patient .?

Adversary

k-anonymity does not apply here. _
Georgia
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How to specify €?

Heuristics:
Value e depends on how famous the person is?
“Average person” bige

“Average person” smalle

Use social network analysis to recommend e
automatically.

Social users with big degree  bige

Social users with small degree  small e
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Secure ePPI construction

ePPIl construction:
Input: sensitive mapping data on untrusted providers

It needs to be secure

RLS wo. noises — Information network
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Problem 2: Efficient ePPIl construction

A challenge for the large-scale index construction:

Traditional technique: MPC (multi-party
computations).

Sample Problem: Answer “Who is the richest person in this
room?” while keeping financial data private

MPC is very expensive for big data and computations

[(DNInin. IOSNDI 2012 Nlaravan R Haoharlanl)
FairplayMP [4], need about 10 seconds to eval-

uate (very simple) functions that can be expressed with
1,024 logic gates.
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ePPIl construction overview

Information network —
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Index construction framework: Secure computation
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Randomized publication

Inspired by the privacy preserving voting technique

Voting: “Vote for/against President Obama wo. disclosing
my decision”

ePPl: “Releasing match/non-match data wo. disclosing

‘Input Output ‘Input Output
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Randomized publication

Randomized publication: given a probability B, each
provider flips their “coins” to decide tell a truth or lie.
Essentially, a process of Bernoulli trials.

Provide quantitative privacy guarantees with Chernoff bounds.

Theorem 4.1: Given desired success rate y > 50%, let
(where m is the number of providers) and

In 7 —

Gj — (1—o,)m

Proof in
ePPI paper

Bu(t;) > Bult;) + G, + \/ G2 +26,(t)G;  (3) |llink

Then, the randomized publishing with 3(t;) = B.(t,)
statistically guarantees that the actual false positive rate
in the published e-PPI is larger than € with success rate

Pp = 7.
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Secure computation: secret sharing
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P S Reconstruct-ability:
Merging sh 1+4+2=0+1+1+0+0

=2 mod 5

Secrecy: knowing <3

shares can’t deduce the
secret sum, 2.
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Secure MPC reduced by secret sharing

m |UB Modular operation:
0=0+3+2 mod 5

”

Secrecy: knowing <3
shares can’t deduce the
secret sum, 2.
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Exp-1: Privacy (Problem 1)

By simulation

Exp-2: Performance (Problem 2)

By real system implementation.
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Comparing eDDl wnth L_anAanuvumaida kased PPIS

ePPI preserves privacy with
high success ratio on large e
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Experiment setup for performance evaluation

Implementation:

Secret sharing reduction with limited MPC using:
Protocol Buffers for object serialization.

Netty for network communication.
MPC by FairplayMP[CCS08]

Evaluation platform:

Emulab: with 10 machines
Machine with a 2.4GHz core and 12G RAM
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Performance
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ePPI construction incurs time constant to the number of

parties.

Pure-MPC construction incurs exponentially growing time.
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Talk summary for QA

Systems: Information networks Privacy-preserving index in information networks

Information networks arise in many application areas. PPl is a Privacy-Preserving Master Patient Index.

Health: Information exchanges (HIE) PPl is public, without access controls.
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Trust relationship

IT business: Multi-clouds
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