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de novo assembly using NGS data have been 
proposed. Among the most popular, we men-
tion SOAPdenovo [6] and ABySS [7] (see [8] for 
an updated list). The assemblies produced by 
tools designed for NGS data are, in general, not 
comparable in quality with the assemblies pro-
duced by instruments like Arachne [9] and those 
designed for capillary sequencing data. The 
reason for this is that while, with NGS instruments, 
coverage is no more a bottleneck, read length, 
as well as the reduced size of the insertion be-
tween paired reads, makes correct assembly 
and positioning of repeats much more of an is-
sue. De novo assembly with short reads is still very 
difficult [5] and, when assembling complex and 
repeated genomes, reasonably conservative de 
novo assembly programs are likely to produce 
collections of highly fragmented contigs. An in-
teresting strategy to improve de novo assemblies 
has been termed “assembly reconciliation”. The 
goal of assembly reconciliation is to merge the 
assemblies produced by different tools and to 
detect possible mis-assemblies [10].

The number of organisms whose genomes 
have been completely sequenced has been in-
creasing rapidly each year and, for this reason, 
it is becoming viable to sequence an organism 
and then to align the sequence against a closely 
related genome. This strategy goes by the name 
of Reference Guided Assembly (RGA), its main 
advantage being the fact that, in general, even 
low coverage is sufficient to yield useful results. 
RGA consists of two phases: first, all the reads are 
aligned against the reference genome; then, a 
consensus sequence is extrapolated. Everywhere 
the coverage drops to zero, a sequence of Ns is 
placed. This problem has already been studied 
in the context of Sanger sequencing. In [11] and 
[12], two methods were proposed that use refer-
ence sequences to assist the assembly of new 
organisms. The challenge is becoming even 
more interesting with the advent of next genera-
tion sequencers, beginning with the technicali-
ties and the practical considerations involved in 
the alignment phase. 

As a matter of fact, many tools capable of 
rapidly aligning millions of short reads against 
a reference genome have been proposed re-
cently. Tools like SOAP2 [13] and rNA [14] are es-
sential for performing reference-guided assem-
bly. The main problem with RGA and NGS is that 
(essentially for efficiency reasons) mapping al-
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Introduction
DNA sequencing is becoming cheaper every 
day. Instruments like the Illumina HiSeq 2000 or 
Solid 4 System are able to produce higher than 
30X coverage of a human genome for less than 
$10,000. Next Generation Sequencing (NGS) al-
lows sequencing at low cost and at a fraction 
of the time with respect to the Sanger Method 
[1]. NGS technologies (Illumina, Roche and Solid, 
to mention just a few) are capable of producing 
an enormous amount of raw data (for a com-
plete review, see [2]). The throughput of such in-
struments is increasing so fast that descriptions 
of their performance became obsolete in just a 
few months.

Even though many papers have presented 
high-quality assemblies based on NGS data (see 
[3,4]), de novo assembly, especially for large-ge-
nome eukaryota, is still a ‘holy grail’ [5].

When a completely new organism is to be 
sequenced, the basic assembly strategy is still 
the celebrated Whole-Genome Shotgun (WGS) 
method. A number of tools that aim to perform 

Abstract
Next Generation Sequencing has totally changed ge-
nomics: we are able to produce huge amounts of data 
at an incredibly low cost compared to Sanger sequenc-
ing. Despite this, some old problems have become even 
more difficult, de novo assembly being on top of this list. 
Despite efforts to design tools able to assemble, de novo, 
an organism sequenced with short reads, the results are 
still far from those achievable with long reads. In this paper, 
we propose a novel method that aims to improve de novo 
assembly in the presence of a closely related reference. 
The idea is to combine de novo and reference-guided as-
sembly in order to obtain enhanced results.
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gorithms are highly conservative: it is possible to 
align reads with only a low number of errors and 
usually without gaps. In other words, we are able 
to reconstruct the conserved regions, while we 
cannot reconstruct areas that are divergent and 
(usually) more interesting. While, for example, 
there are techniques that use the paired-reads 
information to identify insertions/deletions (struc-
tural variations) [15,16], there is no clear way to 
reconstruct them. 

In [17], a tool (MAIA) has been proposed to in-
tegrate multiple de novo and reference-guided 
assemblies. This tool uses the output of different 
assemblers, and of different reference-guided 
assemblies obtained with several reference se-
quences, to improve the final assembly result. 
MAIA constructs an overlap graph from the pair-
wise alignments of all the contigs. In large and 
repetitive genomes, like plant genomes, this step 
is computationally expensive and could easily 
lead to a large number of ambiguous or false 
overlaps.

Velvet’s Columbus module tries to improve the 
assembly results using a reference sequence. In 
particular, the Columbus module aims to recon-
struct candidate structural variations. Again, in 
this case, as a consequence of the repeats, this 
approach cannot be used on large, repetitive 
genomes.

In this paper, we briefly discuss and present 
results of a novel strategy to assemble genomes 
in the presence of a related sequence. In par-
ticular, we study how to merge the de novo and 
reference-guided assembly strategies, in order 
to assemble new organisms and improve the re-
sult achievable using only either one of the two. 
We will show how, by applying some of the ideas 
of assembly reconciliation, we can obtain an en-
hanced reference assembly of a new organism. 
All the alignments are guided by the reference 
sequence, in this way avoiding mis-assemblies 
and ambiguous overlaps. In [18], we illustrated 
the results obtained by our pipeline on a set of 
small organisms (chloroplasts and microbial); in 
this work, we show how the same pipeline can 
be effectively used for the assembly of large, 
highly repetitive and heterozygous genomes 
(plant genomes).

Reference-guided assembly
When a reference sequence A and a set of reads 
R are given, there are essentially two possible 

ways to perform reference assembly. The stand-
ard way simply involves aligning all the reads in 
R against the reference A, and then obtaining 
some consensus sequences. In the text that fol-
lows, we refer to this method as standard-RGA 
(s-RGA), and similarly, we call the consensus se-
quence produced s-A. An alternative approach 
is to perform de novo assembly on R first, and 
then to align the resulting contigs against the ref-
erence A. We call this second method de novo-
RGA (dn-RGA), and the consensus sequence 
produced from it dn-A. Both the output sequenc-
es have “N” everywhere the coverage drops to 0. 
In order to simplify the discussion, we suppose A 
to be a single sequence (and therefore s-A and 
dn-A are also single sequences). It will be clear 
that this is not a limitation. 

In the presence of NGS data, we have to use 
aligners like SOAP2 [13] and rNA [14] to obtain s-A. 
These aligners are highly conservative, they allow 
alignment of reads with a low number of errors, 
usually without gaps. For this reason, the length 
of s-A is the same of A. The sequence dn-A is ob-
tained in three phases: first, reads are assembled 
using a short-read assembler ([6,7]); the resulting 
contigs are then aligned against A; after this, the 
consensus is generated. The challenge is to find 
an order for the contigs generated through the 
de novo assembly procedure. Several tools have 
been proposed to address this task. OSLay [19] 
computes a synthetic layout of the contigs using 
a reference sequence to anchor the de novo se-
quences; the Mauve aligner [20] gives as output 
an ordered version of the de novo contigs; and 
PGA [21] is able to layout the contigs with more 
than one reference genome at a time using glo-
bal searches. All these tools implement or use 
a BLAST-like [22] search to align contigs against 
the reference. This alignment technique allows us 
to place reads on a reference with low similar-
ity constraints. In particular, the contigs can be 
aligned against the reference sequence allow-
ing partial hits and gaps. 

This situation is similar to the already studied 
situation of assembly reconciliation. Casagrande 
et al. [10] proposed a method capable of merg-
ing two draft assemblies without performing glo-
bal alignment. In particular, they proposed the 
use of one of the two assemblies as an “anchor”, 
in order to resolve conflicts (Master Assembly).

Given the two assemblies s-A and dn-A, a 
suitable adaptation of this idea can be applied 
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in the current context to obtain an enhanced ref-
erence assembly. 

Methods
The Merge Graph: Definition
In this section, we briefly sketch the formal steps 
necessary to define the Merge Graph, at the 
base of our technique. More details can be 
found in [18].

With S[i,j] (S being either Δ or Γ), we identify 
the so-called “slice” of a string S, namely the sub-
string of S from position i to j. If S[i,j] belongs to 
{a,c,g,t}*, we call it a (pure) contig, while if S[i,j] 
belongs to {N}*, it is named gap. In this context, 
when a (pure) contig is maximally extended, we 
say that it is a max-contig, and we define, in an 
analogous way, a max-gap (in general, we speak 
of max-area). Given two strings δ and γ, the func-
tion D(δ,γ,d) returns a value between 0 and 1, rep-
resenting a percentage difference between the 
two strings. This value is naturally computed using 
a distance metric d (e.g., Hamming). The merge 
graph MG(Δ,Γ) is a directed graph such that V 
is contained in IΔ×IΓ (IΔ and IΓ being all possi-
ble intervals in Δ and Γ, respectively) and can 
be partitioned into four sets: gap-nodes (Vg, gap 
against gap), delta-nodes (Vδ, a Δ-contig against 

a Γ-gap), gamma-nodes (Vγ, a Δ-gap against a 
Γ-contig) and merge-nodes (Vm, contig against 
contig). We also fix t and s, two thresholds that ex-
press bounds on the distance (alignment similar-
ity) and the absolute position (within the relative 
string), respectively.

Edges are defined in such a way as to con-
nect pairs of intervals (one on Δ and one on Γ) 
that can subsequently be put in the output as-

Table 1. Table of symbols and definitions. 

A Reference sequence

s-A Consensus sequence obtained 
aligning short reads against refer-
ence A

dn-A Consensus sequences obtained 
aligning de novo contigs against ref-
erence A

e-A Enhanced reference-guided as-
sembly obtained through the e-RGA 
pipeline

∆, Γ Generic sequences

MG(∆,Γ) Merge graph for the sequences ∆ 
and Γ

MGA Merging Global Alignment

Figure 1 (a). The strings ∆ and Γ (|∆|=68, |Γ|=69).

Figure 1 (b). A possible Merge Graph G for ∆ and Γ with s=2 and t=2.

Figure 1 (c). A possible Global Alignment obtained from the Merge Graph G (M means match, S means substitution, I means 
insertion, while D means deletion).

Figure 1 (d). A Global Alignment that does not allow the creation of an MGA.
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sembly. The resulting graph must be acyclic. 
In Figure 1B, an example of a merge graph is 
given.

In order to clarify the notation, we have sum-
marised the symbols used throughout the paper 
in Table 1.

Merge Graph and Global Alignment
Given the strings ∆ and Γ, there is a deep connec-
tion between the merge graph MG(∆,Γ) and a 
global alignment between them. Building global 
alignments turns out to be equivalent to building 
a merge graph. In following text, we refer to the 
global alignment ensuing from a merge graph 
as Merging Global Alignment (MGA). 

The merge graph MG(∆,Γ) can be used to 
extract a family of edit strings. From each node, 
we can produce an edited version of the two 
substrings that are represented. From delta and 
gamma nodes, we simply extract the contigs, 
while from the merge and gap nodes we can 
produce an edited version of one of the two 
strings. In the case of gap nodes, the edited ver-
sion will contain only insertions and deletions (see 
Figures 1A, 1B and 1C). Once the edit strings are 
computed, the corresponding MGA can be cal-
culated. 

Given an MGA, the construction of a merge 
graph is more complicated. An MGA is a glo-
bal alignment with two kinds of local properties: 
locality and similarity. In general, a global align-
ment does not guarantee these local properties, 
hence we can easily construct a global align-
ment that violates a local constraint. It can be 
proved that the global alignments we are seek-
ing must respect the following properties: if ∆[i,j] 
and Γ[k,l] are aligned one against the other, 
then |i-k|-1<s and |j-l|-1<s (locality); if ∆[i,j] and 
Γ[k,l] are aligned and at least one is a max-con-
tig or ∆[i-1]=Γ[l+1]=N (or ∆[j+1]=Γ[k-1]=N), then 
D( ∆[i,j],Γ[k,l],d ) (similarity).

If such an alignment exists, calling Δ´ and Γ´ 
the two strings over the alphabet {a,c,g,t,N,-} re-
turned by the global alignment between Δ and 
Γ, we can build MG(Δ,Γ) by simply reading from 
left to right Δ´ and Γ .́ For each position, we have 

to judge if a new node is beginning, or if we can 
continue extending the current one.

The determination of this global alignment 
can be computationally cumbersome. We can-
not simply use an algorithm that calculates an 
optimal sequence alignment because a choice 
that can create an optimal global alignment 
will not necessarily lead to an alignment that re-
spects all the local constraints (see Figure 1(d)). 
We will now sketch a complete algorithm that, 
given the strings Δ and Γ, generates all possible 
MG(Δ,Γ).

The algorithm starts by reading the two se-
quences from left to right. For every contig in Δ 
and Γ, we can recursively compute all the pos-
sible alignments that satisfy the locality, and pos-
sibly the similarity, constraints. More detail is given 
in Figure 2. Let us assume that the last generated 
node was <[z,i],[m,v]>. From the merge graph 
definition, we have that at least one of i or v must 
be the end of a max-area, in this case i. At this 
point, we have to calculate the nearest (from i) 
max area end, n in the case shown in Figure 2. 
So the node we are going to create is <[i,k],[v,n]>, 
with n-a<k<n+s (paying attention to some spe-
cial case, we can reduce the search space). 
In order to generate all the possible graphs, we 
have to recursively generate all the nodes. In 
case we are generating a merge node, we have 
also to check if the similarity constraint is respect-
ed. The algorithm terminates because at every 
step it proceeds forward along both strings.

Minimal Merge Graph
Given two strings ∆ and Γ, it is clear that the exist-
ence of an MG(Δ,Γ) depends on the two thresh-
olds s (the bound on the relative distance be-
tween intervals involved in the same node) and 
t (the bound on the similarity distance between 
strings involved in the same merge node). By 
setting s to be large enough, we can easily go 
towards computing a merge graph composed 
only by gap, delta and gamma nodes. Another 
trivial solution can be found when t is set in such 
a way that merge nodes accept very low levels 
of similarity. 

Figure 2. MGA construction. A possible scenario.
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It is clear that a merge graph between a pair 
of sequences is interesting when s is a small con-
stant when compared to ∆ and Γ lengths and 
when t is sufficiently strict. These two constraints 
can strongly help in designing a better perform-
ing algorithm. 

Merge graph and reference-
guided assembly
A merge graph is a data-structure able to de-
scribe a global alignment between two strings, 
with further constraints on local alignment and 
similarity. This data-structure can be used both to 
describe the relations between two strings, and 
to extract a consensus.

When working with s-A and dn-A, we elect one 
of the two sequences to be the Master Assembly 
(MA), that is the assembly we believe to be cor-
rect. In practice, in presence of a merge node, 
instead of calculating a consensus, we simply 
keep the sequence from the MA. Usually, even 
though two choices are possible, the MA will al-
most always be dn-A, with regions present in the 
sequenced organism and absent in the refer-
ence. If the merge graph MG(s-A,dn-A) is avail-
able, it can be used to extract a new assembly. 
Each node p in MG(s-A,dn-A) is characterised by 
two intervals, [i,j] and [k,l]. For p=<[i,j],[k,l]>, we 
extract the sequence dn-A[k,l], if p is a gamma 
or a merge node, s-A[i,j], if p is a delta-node, or 
the shortest between s-A[i,j] and dn-A[k,l], if p is 
a gap node. This assembly is named e-A (en-
hanced Reference Guided Assembly).

The difficult part is the MG(s-A,dn-A) construc-
tion. The correct and complete algorithm pre-
sented in section 3.2 takes a time proportional 
to O(s(j-i)²) for each max-contig in the worst case. 
Additionally, the parameters s and t are unknown 
and, in general, there is no clear way to estimate 
them in advance, or to at least sensibly approxi-
mate them.

When working with s-A and dn-A, we have 
that the MG(s-A,dn-A) merge graph must exist for 
some s belonging to the set {0,...,|dn-A|-|s-A|}. 
This follows directly from the construction of the 
two strings. It is more difficult to limit t. A good 
working approximation is the percentage differ-
ence allowed in the de novo contig alignment.

The particular context provided by s-A and 
dn-A allows us to further improve the construction 
algorithm, concentrating only on a significant 
subset of all the global alignments associated to 
MG(s-A,dn-A). Thanks to some intrinsic properties 
of s-A and dn-A, the brute-force algorithm can 
be improved, avoiding the generation of all pos-
sible global alignments. See Figure 3 for a graph-
ical representation, and [18] for further details.

Enhanced-rga: implementation 
details
The pipeline represented in Figure 4 was imple-
mented using several third-party tools and a set 
of Perl scripts implemented by the authors.

In order to construct s-A, first, a short-string 
aligner is used to align all the reads against the 
reference sequence, and a consensus is then 
extracted. In all cases in which a read is found 
in multiple occurrences, we randomly choose 
one of the alignments. We used the short-string 
aligner rNA [14] and the “pileup” command pro-
vided by samtools [23] to extract the consensus 
sequence. 

dn-A was obtained by first performing de novo 
assembly with ABySS [7] and the CLC assembler 
Cell 3.0 [24].  Together with SOAPdenovo, [6] these 
are the only two assemblers able to assemble 
complex genomes using a reasonable amount 
of time and RAM memory. We noticed that, us-
ing contigs from both assemblies, the amount of 
genome reconstructed in dn-A greatly improves. 
The delicate phase of mapping contigs against 

Figure 3. Practical identification of Merge-nodes for the Merge Graph Construction.
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the reference sequence was accomplished with 
the CLC-Workbench1.

Although we used these specific tools, clearly 
the production of s-A and dn-A can be carried 
out using different software without significant 
modification of the pipeline. 

 The core of e-RGA is the MG(s-A,dn-A) con-
struction and e-A generation. These crucial 
phases are implemented within a Perl script that 
uses BLAST [22] to perform the approximate align-
ment. The program first memorises both s-A and 
dn-A, and localises all the max-areas (max-con-
tigs and max-gaps). The MG(s-A,dn-A) construc-
tion proceeds as outlined  in Section  4, with all 
the alignments performed by BLAST.

The software, together with a small example, 
can be downloaded at http://sole.dimi.uniud.
it/~francesco.vezzi/software.php.

1 www.clcbio.com

Figure 4. eRGA implementation

Experiments and results
The Datasets
In [18], the e-RGA pipeline was tested on small 
genomes, demonstrating the effectiveness of 
our pipeline. We have further improved our pipe-
line and successfully used e-RGA on two large 
and complex plant genomes. The first data-
set, named Sangiovese, comprises 5 Illumina 
lanes used to re-sequence a grapevine variety 
(Sangiovese, Rauscedo clone R24) with 100bp 
paired-end reads for a 90X total raw coverage. 
For this dataset, we used as reference sequence 
the genome of the highly homozygous grape 
clone, PN40024, used as reference genotype 
from the French-Italian Consortium for grape ge-
nome characterisation [25]. The second dataset, 
named Poplar, comprises 6 Illumina lanes used 
to sequence a Poplar individual belonging to the 
Populus nigra species, with 100bp paired-end 
reads for an 85X total raw coverage. In this case, 
we used as reference sequence the Populus tri-
chocarpa genome [26]. While in the Sangiovese 
dataset we used a reference sequence belong-
ing to the grapevine species, in the Poplar data-
set the reference belongs to a different species. 
This difference is important in order to understand 
the differences obtained in the results. In both 
cases, before assembling and aligning, all the 
reads were filtered for quality, and we eliminated 
all sequences belonging to chloroplasts and mi-
tochondria.

Both grapevine and poplar are character-
ised by long, repetitive genomes (480Mbp and 
417Mbp respectively); moreover, both the se-
quenced individuals are highly heterozygous. 
These three conditions (length, repetitiveness 
and heterozygosity), together with the presence 
of two reference genomes, are perfect for our 
pipeline. 

Results Discussion
Tables 2 and 3 summarise the results from the 
Sangiovese and Poplar datasets. As a measure 
of the assembly quality and correctness, we re-
port the percentage of aligned reads (the same 
reads used to perform reference and de novo 
assembly), the number of contigs reconstructed, 
the mean contig length, the L50g (the length of 
the longest contig such that the sum of all the 
contigs greater than it represents half the expect-
ed genome length) and, in brackets, the L50c 
(the length of the longest contig such that the 

http://www.clcbio.com
http://sole.dimi.uniud.it/~francesco.vezzi/software.php
http://sole.dimi.uniud.it/~francesco.vezzi/software.php
www.clcbio.com
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sum of all the contigs greater than it represents 
half the total contig length), and the percent-
age of Ns in the sequence. The L50g gives us a 
normalised value that describes the connectivity 
level of the assembly.

Those statistics have been computed for the 
reference sequence A, for the s-RGA output s-A, 
for the de novo assembly output dn, for the dn-
RGA output dn-A, and finally, for the e-RGA out-
put e-A. 

Statistics such as the mean contig length, 
contig number, L50c and L50g, give us an idea 
of the quality of the assembly. In the Sangiovese 
case, we can see how the mean length ob-
tained through e-RGA is longer than the other 
approaches, and although the dn-A mean 
length has a close value, we must consider the 
fact that these contigs cover only half the ge-
nome length as described by the high percent-
age of unknown characters. In the Sangiovese 
dataset, the most impressive results are the L50g 
and L50c improvements. Both e-A’s L50g and 
L50c are better than those of s-A, and they large-
ly improve the results achievable with de novo 
assembly alone. This shows that our pipeline can 
effectively improve the final assembly result.

Similar results are summarised in Table 2 for 
the Poplar dataset. Owing to the distance be-

tween the sequenced organism (Populus nigra) 
and the reference genome (Populus trichocar-
pa), the Poplar results can look less promising 
than those of Sangiovese. However, the number 
of mapped reads against e-A is higher than the 
number of reads mapped against both s-A and 
dn-A. The fact that we are able to map a higher 
number of reads against dn should also be a 
consequence of the distance between the ref-
erence and the sequenced genome. As far as 
the standard assembly statistics are concerned 
(L50g, L50c and mean contig length), we can 
again see how the e-A results are better than 
those achievable by simply mapping reads or 
contigs back to the reference. Despite the de 
novo assembly result looking much better than 
the other approaches, we must stress the fact 
that de novo assembly alone gives us a set of 
289,854 unordered contigs, with no information 
about their position in the final genome. It would 
be interesting, but outside the scope of this work, 
to understand the composition of the contigs not 
used to construct dn-A. These contigs, if correctly 
assembled, represent the areas belonging to the 
sequenced organism exclusively.

A further measure of the improvements intro-
duced by the use of e-RGA is the number of suc-
cessfully aligned paired reads (i.e., paired reads 

Table 2. Results obtained for the Sangiovese dataset.
For all the techniques used, we show the percentage of aligned reads, the number of contigs, the mean contig length, the L50 length com-
puted both on the expected genome length and on the total contig length, and the number of unknown characters “N”.

Sangiovese

% aligned reads Contigs number Mean contig length L50g (L50c) % Ns

A 80.21% - - - 3.00%

s-A 80.99% 246752 1758 bp 8514 bp (9901 bp) 7.64%

dn 53.10% 289854 1942 bp 1753 bp (3328 bp) 0.70%

dn-A 50.71% 109833 2246 bp 600  bp (3947 bp) 47.70%

e-A 81.77% 198194 2282 bp 12494 bp (14219 bp) 6.40%

Table 2. Results obtained for the Poplar dataset.
For all the techniques used, we show the percentage of aligned reads, the number of contigs, the mean contig length, the L50 length com-
puted both on the expected genome length and on the total contig length, and the number of unknown characters “N”.

Poplar

% aligned reads Contigs number Mean contig length L50g (L50c) % Ns

A 55.00% - - - 2.14%

s-A 58.00% 778065 365 bp 525 bp (1105 bp) 25.22%

dn 67.84% 116683 2728 bp 2906 bp (4487 bp) 0.40%

dn-A 37.00% 77370 1335 bp 0 bp (2085 bp) 62.46%

e-A 59.00% 558762 482 bp 957 bp (1959 bp) 18.56%
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that align on the sequence at the expected dis-
tance and orientation). In both datasets, e-A is 
the sequence on which the largest number of 
constraints is respected.

More Applications
A possible e-RGA application, not explored in this 
work, is the identification and, more importantly, 
the reconstruction of structural variation. Two dif-
ferent steps of the e-RGA pipeline can be instru-
mental to this purpose. First is in the construction 
of dn-A. We can identify contigs that are aligned 
with gaps: alignments that introduce gaps in 
the reference sequence represent a putative in-
sertion in the sequenced genome; conversely, 
alignments that introduce gaps in contigs reveal 
a putative deletion in the sequenced genome. 
The second step in which we might be able to 
identify structural variations is in e-A construc-
tion from the MG(s-A,dn-A) graph. In this case, a 
gamma-node <[i,j],[k,l]> (dn-A-contig against a 
s-A-gap) in which the interval [i,j] (the s-A-gap) is 
shorter than [k,l] (the dn-A-contig) is witness to an 
insertion in the sequenced genome; conversely, 
if the interval [i,j] is longer than [k,l] then the node 
is witness to a deletion in the sequenced ge-
nome. In the case of delta-nodes, the situation 
is symmetric.

Conclusions
The e-RGA pipeline was successfully applied to 
small organisms in [18]; in this paper, we have 
shown how the same approach can easily scale 
to large datasets with high coverage over com-
plex (large and highly repetitive) genomes like 
the Grapevine and Poplar genomes. 

e-RGA needs a reference genome belonging 
to a closely related organism. With the number of 
available genomes growing at a speed believed 
impossible only few years ago, this requirement is 
becoming standard.

Several research efforts are ongoing to design 
tools to identify and study structural variations 
(SV) [16], in particular within individual genomes. 
One major stumbling block is that it is still unclear 
how the identified or putative SV can be recon-
structed. A future development of e-RGA will be 
to output putative SV identified during e-A con-
struction. In this way, our pipeline, coupled with 
a tool able to identify/verify SV, could be used 
to reconstruct sequences that are specific to a 
particular individual.
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