η-Ricci Solitons on Quasi-Sasakian Manifolds

Sujit Ghosh ${ }^{1}$

Abstract

The object of the present paper is to study η-Ricci solitons in a 3 -dimensional non-cosymplectic quasi-Sasakian manifolds. We study a particular type of second order parallel tensor in this manifold. Beside this we consider this manifold satisfying some curvature properties of Ricci tensor.

AMS Subject Classification (2000). 53C15; 53C25
Keywords. η-Ricci soliton, quasi-Sasakian manifold, Codazzitype Ricci tensor, cyclic parallel Ricci tensor, η-Einstein manifold, Einstein manifold, ϕ-Ricci symmetric

1 Introduction

Ricci soliton is a natural generalization of Einstein metrics on a Riemannian manifold, being generalized fixed points of Hamilton's Ricci flow $\frac{\partial}{\partial t} g=-2 S$ [14]. The evaluation equation defining the Ricci flow is a kind of nonlinear diffusion equation, an analogue of the heat equation of the metrics. Under the Ricci flow a metric can be improved to evolve into a more canonical one by smoothing out its irregularities, depending on the Ricci curvature of the manifold: it will expand in the directions of the negative Ricci curvature and

[^0]shrink in the positive case.

A more general notion of Ricci soliton named η-Ricci soliton was introduced by J. T. Cho and M. Kimura [8], which was treated by C. Calin and M. Crasmareanu on Hopf hypersufaces in complex space forms [7]. An η-Ricci soliton is a quadruple (g, V, λ, μ), where V is a vector field on M, λ and μ are constants and g is a Riemannian (or pseudo-Riemannian) metric satisfying the equation

$$
\begin{equation*}
£_{V} g+2 S+2 \lambda g+2 \mu \eta \otimes \eta=0 \tag{1}
\end{equation*}
$$

where S is the Ricci tensor associated to g and η is an one form. In this connection we mention the works of Blaga ([2], [3]), Majhi et al. [15] and Prakasha and Hadimani [17]. In particular, if $\mu=0$, then the notion of η-Ricci soliton (g, V, λ, μ) reduces to the notion of Ricci soliton (g, V, λ).

An important geometrical object in studying Ricci solitons is well-known to be a symmetric (0,2)-tensor field which is parallel with respect to the LeviCivita connection, some of its geometric properties being described in ([1], [10]) etc. In [3], the author studied the second order parallel tensor field in the context of para-Kenmotsu manifolds admitting η-Ricci solitons. In [17] authors studied non-existence of certain kinds of para-Sasakian manifolds admitting η-Ricci soliton. Beside these Ricci solitons on a three dimensional quasi-Sasakian manifolds have been studied by U. C. De and A. K. Mondal in [11]. η-Ricci solitons on Sasakian 3-manifolds have been studied in [15].

Quasi-Sasakian manifold is a natural generalization of Sasakian manifold. Motivated by the above studies, in this paper we consider the η-Ricci solitons in a 3 -dimensional quasi-Sasakian manifold.

The present paper is organized as follows:
After preliminaries in section 2 , section 3 is devoted to study η-Ricci solitons in a 3 -dimensional non-cosymplectic quasi-Sasakian manifold and we prove that the manifold is an η-Einstein β-Sasakian manifold with $\lambda+\mu=-2 \beta^{2}$. Here we construct an example to verify the result. In the next part of this section we prove that if the symmetric second order tensor field $\alpha=£_{\xi} g+$ $2 S+2 \mu \eta \otimes \eta$ is parallel with respect to the Levi-Civita connection of the metric tensor, then the manifold admits an η-Ricci soliton. Section 4 deals with the study η-Ricci solitons satisfying some curvature properties of Ricci tensor in 3-dimensional non-cosymplectic quasi-Sasakian manifolds. In the first part of this section we prove that an η-Ricci soliton in non-cosymplectic quasi-

Sasakian manifolds with Ricci tensor of Codazzi-type becomes a Ricci soliton. We also prove that in an η-Ricci soliton in non-cosymplectic 3-dimensional quasi-Sasakian manifolds the Ricci tensor is cyclic parallel. Beside these, we prove a corollary in this section. Finally, in section 5, we prove that ϕ-Ricci symmetric η-Ricci soliton on 3-dimensional non-cosymplectic quasi-Sasakian manifolds becomes a Ricci soliton.

2 Preliminaries

A $(2 n+1)$-dimensional differentiable manifold M is said to admit an almost contact structure if it admits a tensor field ϕ of type $(1,1)$, a vector field ξ and a 1 -form η satisfying ([4], [5])

$$
\begin{equation*}
\phi^{2} X=-X+\eta(X) \xi, \quad \eta(\xi)=1, \quad \phi \xi=0 \quad \text { and } \quad \eta \circ \phi=0, \tag{2}
\end{equation*}
$$

where $X \in T M$.

Let g be the compatible Riemannian metric with an almost contact structure (ϕ, ξ, η), that is,

$$
\begin{equation*}
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y) \tag{3}
\end{equation*}
$$

for $X, Y \in T M$. Then M becomes an almost contact metric manifold equipped with an almost contact metric structure (ϕ, ξ, η, g). From (2) and (3) it can be easily seen that for $X, Y \in T M$

$$
\begin{equation*}
g(X, \phi Y)=-g(\phi X, Y), \quad g(X, \xi)=\eta(X) \tag{4}
\end{equation*}
$$

An almost complex structure J can be defined on the product $M \times \mathbb{R}$ of M and the real line \mathbb{R} by $J\left(X, \nu \frac{d}{d t}\right)=\left(\phi X-\nu \xi, \eta(X) \frac{d}{d t}\right)$, where ν is a scalar field on $M \times \mathbb{R}$. If the structure J is complex analytic, the almost contact metric structure (ϕ, ξ, η, g) is said to be normal. A necessary and sufficient condition of an almost contact metric manifold to be normal is that the Nijehaus tensor field N vanishes on the manifold ([4], [18]). A normal almost contact metric manifold is quasi-Sasakian if the fundamental 2-form Φ, defined by $\Phi(X, Y)=g(\phi X, Y)$ is closed ([6], [19]). Beside this, Olszak [16] proved that a 3 -dimensional almost contact metric manifold M is a quasi-Sasakian manifold if and only if

$$
\begin{equation*}
\nabla_{X} \xi=-\beta \phi X, \tag{5}
\end{equation*}
$$

where $X \in T M$ and β is some function on M, such that $\xi \beta=0, \nabla$ being the operator of the covariant differentiation with respect to the Levi-Civita connection of M. Hence a 3-dimensional quasi-Sasakian manifold is cosymplectic if and only if $\beta=0$. For $\beta=$ constant, the manifold reduces to a β-Sasakian manifold and $\beta=1$ gives the Sasakian structure.

In a non-cosymplectic 3-dimensional quasi-Sasakian manifold the following relations hold ([12], [16]):

$$
\begin{gather*}
\left(\nabla_{X} \phi\right) Y=\beta[g(X, Y) \xi-\eta(Y) X] \tag{6}\\
R(X, Y) \xi=-(X \beta) \phi Y+(Y \beta) \phi X+\beta^{2}[\eta(Y) X-\eta(X) Y] \tag{7}\\
S(X, Y)=\left(\frac{r}{2}-\beta^{2}\right) g(X, Y)+\left(3 \beta^{2}-\frac{r}{2}\right) \eta(X) \eta(Y) \tag{8}\\
-\eta(X) d \beta(\phi Y)-\eta(Y) d \beta(\phi X) \\
\left(\nabla_{X} \eta\right)(Y)=-\beta g(\phi X, Y) \tag{9}
\end{gather*}
$$

where $X, Y \in T M, R, S$ and r being the curvature tensor of type (1,3), Ricci tensor of type (0,2) and the scalar curvature of the manifold respectively.

A manifold M is said to be an η-Einstein manifold if the Ricci tensor S is of the form

$$
\begin{equation*}
S(X, Y)=a g(X, Y)+b \eta(X) \eta(Y) \tag{10}
\end{equation*}
$$

and Einstein if

$$
\begin{equation*}
S(X, Y)=\kappa g(X, Y) \tag{11}
\end{equation*}
$$

where a and b are smooth functions on the manifold and κ is a constant.
A. Gray [13] introduced the notion of cyclic parallel Ricci tensor and Codazzi-type of Ricci tensor. A Riemannian manifold is said to have cyclic parallel Ricci tensor if the Ricci tensor of the manifold satisfies the following:

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)+\left(\nabla_{Y} S\right)(Z, X)+\left(\nabla_{Z} S\right)(X, Y)=0 \tag{12}
\end{equation*}
$$

Again a Riemannian manifold is said to have Codazzi-type of Ricci tensor if the Ricci tensor S is non-zero and satisfies the following:

$$
\begin{equation*}
\left(\nabla_{X} S\right)(Y, Z)=\left(\nabla_{Y} S\right)(X, Z) \tag{13}
\end{equation*}
$$

$3 \quad \eta$-Ricci soliton on 3-dimensional quasi-Sasakian manifolds

Let M be a 3-dimensional quasi-Sasakian manifold. We write (1) as

$$
\begin{equation*}
2 S(X, Y)=-\left(£_{\xi} g\right)(X, Y)-2 \lambda g(X, Y)-2 \mu \eta(X) \eta(Y) \tag{14}
\end{equation*}
$$

for $X, Y \in T M$. In a quasi-Sasakian manifold, ξ is a Killing vector field [6]. Therefore $\left(£_{\xi} g\right)(X, Y)=0$. Hence (14) takes the form

$$
\begin{equation*}
S(X, Y)=-\lambda g(X, Y)-\mu \eta(X) \eta(Y) . \tag{15}
\end{equation*}
$$

In view of (15) we state the following:

Proposition 3.1. A 3-dimensional quasi-Sasakian manifold admitting η Ricci soliton is an η-Einstein manifold.

Comparing the equations (8) and (15), we have

$$
\begin{align*}
\left(\lambda+\frac{r}{2}-\beta^{2}\right) g(X, Y)+ & \left(\mu+3 \beta^{2}-\frac{r}{2}\right) \eta(X) \eta(Y) \tag{16}\\
& =\eta(X) d \beta(\phi Y)+\eta(Y) d \beta(\phi X)
\end{align*}
$$

Replacing X by ξ in (16) and using (2), we get

$$
\begin{equation*}
\left(\lambda+\mu+2 \beta^{2}\right) \eta(Y)=d \beta(\phi Y) \tag{17}
\end{equation*}
$$

Replacing Y by ϕY in (17) and using (2) yields

$$
\begin{equation*}
d \beta\left(\phi^{2} Y\right)=0 \tag{18}
\end{equation*}
$$

Since in a 3 -dimensional quasi-Sasakian manifold $\phi^{2} Y \neq 0$, in general, therefore (18) gives $d \beta=0$ i.e., $\beta=$ constant. Again using $d \beta=0$ and in virtue of the fact $\eta(Y) \neq 0$, in general, (17) gives $\lambda+\mu=-2 \beta^{2}$. Therefore we state the following:

Theorem 3.1. A 3-dimensional non-cosymplectic quasi-Sasakian manifold admitting an η-Ricci soliton is an η-Einstein β-Sasakian manifold with $\lambda+$ $\mu=-2 \beta^{2}$.

Example:

Here we construct an example [11] of a 3-dimensional non-cosymplectic quasi-Sasakian manifold which verifies the above theorem. We consider the 3 -dimensional manifold $M=\left\{(x, y, z) \in \mathbb{R}^{3},(x, y, z) \neq(0,0,0)\right\}$, where (x, y, z) are the standard coordinates of \mathbb{R}^{3}. We consider the linearly independent vector fields

$$
e_{1}=\frac{\partial}{\partial x}-y \frac{\partial}{\partial z}, e_{2}=\frac{\partial}{\partial y}, e_{3}=\frac{\partial}{\partial z}
$$

at each point of M. Let g be a Riemannian metric given by

$$
\begin{aligned}
g\left(e_{i}, e_{i}\right) & =1 \\
g\left(e_{i}, e_{j}\right) & =0,
\end{aligned} \quad \text { for } \quad i \neq j .
$$

Let η be the 1 -form defined by $\eta(Z)=g\left(Z, e_{3}\right)$, for any $Z \in T M$.
Let ϕ be the (1,1)-tensor field defined by

$$
\phi e_{1}=-e_{2}, \quad \phi e_{2}=e_{1}, \quad \phi e_{3}=0 .
$$

Then using the linearity of ϕ and g, we have

$$
\begin{aligned}
& \eta\left(e_{3}\right)=1, \phi^{2} Z=-Z+\eta(Z) e_{3} \\
& g(\phi Z, \phi W)=g(Z, W)-\eta(Z) \eta(W)
\end{aligned}
$$

for $Z, W \in T M$. Thus for $e_{3}=\xi,(M, \phi, \xi, \eta, g)$ becomes an almost contact metric manifold.

Let ∇ be the Levi-Civita connection with respect to the metric g. Then we have

$$
\left[e_{1}, e_{2}\right]=e_{3}, \quad\left[e_{1}, e_{3}\right]=0 \quad \text { and } \quad\left[e_{2}, e_{3}\right]=0
$$

The Riemannian connection ∇ of the metric g is given by

$$
\begin{align*}
2 g\left(\nabla_{X} Y, Z\right)= & X g(Y, Z)+Y g(Z, X)-Z g(X, Y) \tag{19}\\
& -g(X,[Y, Z])+g(Y,[Z, X])+g(Z,[X, Y]),
\end{align*}
$$

which is known as Koszul's formula.
Using (19) we calculate the following:

$$
\begin{align*}
& \nabla_{e_{1}} e_{3}=-\frac{1}{2} e_{2}, \nabla_{e_{1}} e_{2}=\frac{1}{2} e_{3}, \nabla_{e_{1}} e_{1}=0, \tag{20}\\
& \nabla_{e_{2}} e_{3}=\frac{1}{2} e_{1}, \nabla_{e_{2}} e_{2}=0, \nabla_{e_{2}} e_{1}=-\frac{1}{2} e_{3}, \\
& \nabla_{e_{3}} e_{3}=0, \nabla_{e_{3}} e_{2}=\frac{1}{2} e_{1}, \nabla_{e_{3}} e_{1}=-\frac{1}{2} e_{2} .
\end{align*}
$$

Therefore for $X=a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}, a_{1}, a_{2}, a_{3}$ being functions, we have

$$
\begin{equation*}
\nabla_{X} e_{3}=\frac{1}{2} \phi X \tag{21}
\end{equation*}
$$

Therefore the manifold under consideration is a 3-dimensional non-cosymplectic quasi-Sasakian manifold with $\beta=-\frac{1}{2}$.

It is known that

$$
\begin{equation*}
R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y} \nabla_{X} Z-\nabla_{[X, Y]} Z \tag{22}
\end{equation*}
$$

Using the above results, (22) gives

$$
\begin{aligned}
& R\left(e_{1}, e_{2}\right) e_{3}=0, R\left(e_{2}, e_{3}\right) e_{3}=\frac{1}{4} e_{2}, R\left(e_{1}, e_{3}\right) e_{3}=\frac{1}{4} e_{1}, \\
& R\left(e_{1}, e_{2}\right) e_{2}=-\frac{3}{4} e_{1}, R\left(e_{2}, e_{3}\right) e_{2}=\frac{1}{4} e_{3}, R\left(e_{1}, e_{3}\right) e_{2}=0 \\
& R\left(e_{1}, e_{2}\right) e_{1}=\frac{3}{4} e_{2}, R\left(e_{2}, e_{3}\right) e_{1}=0, R\left(e_{1}, e_{3}\right) e_{1}=\frac{1}{4} e_{3}
\end{aligned}
$$

From the above relations we obtain the following non-vanishing Ricci tensors:

$$
S\left(e_{1}, e_{1}\right)=-\frac{1}{2}, S\left(e_{2}, e_{2}\right)=-\frac{1}{2}, S\left(e_{3}, e_{3}\right)=\frac{1}{2} .
$$

Therefore for $Y=b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}$ we have

$$
\begin{equation*}
S(X, Y)=-\frac{1}{2} a_{1} b_{1}-\frac{1}{2} a_{2}+\frac{1}{2} a_{3} b_{3} . \tag{23}
\end{equation*}
$$

Hence

$$
\begin{align*}
& 2 S(X, Y)+2 \lambda g(X, Y)+2 \mu \eta(X) \eta(Y) \tag{24}\\
= & (2 \lambda-1) a_{1} b_{1}+(2 \lambda-1) a_{2} b_{2}+(2 \lambda+2 \mu+1) a_{3} b_{3} .
\end{align*}
$$

From (24) it is clear that for $\lambda=\frac{1}{2}$ and $\mu=-1$

$$
2 S(X, Y)+2 \lambda g(X, Y)+2 \mu \eta(X) \eta(Y)=0
$$

i.e.,

$$
\begin{equation*}
£_{e_{3}} g+2 S+2 \lambda g+2 \mu \eta \otimes \eta=0 \tag{25}
\end{equation*}
$$

since in 3 -dimensional quasi-Sasakian manifold $£_{e_{3}} g=0$.
Therefore $(M, \xi, g, \lambda, \mu)$ is an η-Ricci soliton for $\lambda=\frac{1}{2}$ and $\mu=-1$. Also we see that $S(X, Y)=-\lambda g(X, Y)-\mu \eta(X) \eta(Y)$ and $\lambda+\mu=-\frac{1}{2}=-2 \beta^{2}$. Therefore the manifold is an η-Einstein β-Sasakian manifold with $\lambda+\mu=$ $-2 \beta^{2}$, which verifies the Theorem 3.1.

Next part of this section is devoted to the study of second order parallel tensor in a 3 -dimensional quasi-Sasakian manifold. Let M be a 3-dimensional quasi-Sasakian manifold. Suppose that M is endowed with a second order covariant tensor field α satisfying $\nabla \alpha=0$, where ∇ is the Levi-Civita connection on M.

Therefore we have

$$
\begin{equation*}
\alpha(R(X, Y) Z, W)+\alpha(Z, R(X, Y) W)=0 \tag{26}
\end{equation*}
$$

In particular for $W=Z=\xi$, (26) yields

$$
\begin{equation*}
\alpha(R(X, Y) \xi, \xi)=0 \tag{27}
\end{equation*}
$$

In a non-cosymplectic 3-dimensional quasi-Sasakian manifold admitting an η-Ricci soliton, from (7) we have

$$
\begin{equation*}
R(X, Y) \xi=\beta^{2}[\eta(Y) X-\eta(X) Y] \tag{28}
\end{equation*}
$$

since $\beta=$ constant.

Therefore using (28) in (27) yields

$$
\begin{equation*}
\beta^{2}[\eta(Y) \alpha(X, \xi)-\eta(X) \alpha(Y, \xi)]=0 \tag{29}
\end{equation*}
$$

Since the manifold under consideration is non-cosymplectic, hence for $Y=\xi(29)$ gives

$$
\begin{equation*}
\alpha(X, \xi)=g(X, \xi) \alpha(\xi, \xi) \tag{30}
\end{equation*}
$$

Differentiating (30) covariantly along Y, we get

$$
\begin{equation*}
\alpha\left(\nabla_{Y} X, \xi\right)+\alpha\left(X, \nabla_{Y} \xi\right)=\alpha(\xi, \xi)\left[g\left(\nabla_{Y} X, \xi\right)+g\left(X, \nabla_{Y} \xi\right)+2 g(X, \xi) \alpha\left(\nabla_{Y} \xi, \xi\right)\right. \tag{31}
\end{equation*}
$$

Using (5) and (30) in (31), we obtain

$$
\begin{equation*}
\alpha(X, \phi Y)=[\alpha(\xi, \xi) g(X, \phi Y)+2 \eta(X) \alpha(\phi Y, \xi)] \tag{32}
\end{equation*}
$$

since $\beta \neq 0$.
Now, from (30) we see that $\alpha(\phi X, \xi)=0$. Therefore from (32), we have

$$
\begin{equation*}
\alpha(X, \phi Y)=\alpha(\xi, \xi) g(X, \phi Y) \tag{33}
\end{equation*}
$$

Replacing Y by ϕY in (33) and using (2) and (30), we obtain

$$
\begin{equation*}
\alpha(X, Y)=\alpha(\xi, \xi) g(X, Y) \tag{34}
\end{equation*}
$$

As α is a parallel tensor field, $\alpha(\xi, \xi)$ is constant. Therefore in view of (34) we state the following:

Proposition 3.2. In a 3-dimensional non-cosymplectic quasi-Sasakian manifold, any parallel symmetric (0,2)-tensor field is a constant multiple of the metric tensor.

Now, we consider the symmetric parallel tensor field $\alpha=£_{\xi} g+2 S+$ $2 \mu \eta \otimes \eta$. Therefore $\alpha(\xi, \xi)=2 S(\xi, \xi)+2 \mu \eta(\xi) \eta(\xi)$.

In view of (15) we have $S(\xi, \xi)=-\lambda-\mu$. Therefore $\alpha(\xi, \xi)=-2 \lambda$ and we have $£_{\xi} g+2 S+2 \mu=-2 \lambda g$. This relation defines an η-Ricci soliton on M. Therefore we state the following:

Theorem 3.2. Let M be a 3-dimensional non-cosymplectic quasi-Sasakian manifold. If the symmetric second order tensor field $\alpha=£_{\xi} g+2 S+2 \mu \eta \otimes \eta$ is parallel with respect to the Levi-Civita connection of the metric tensor, then M admits an η-Ricci soliton.

$4 \quad \eta$-Ricci solitons in quasi-Sasakian manifolds with some curvature properties of Ricci tensor

First part of this section deals with the η-Ricci soliton in 3-dimensional noncosymplectic quasi-Sasakian manifolds with Ricci tensor of Codazzi-type.

Differentiating (15) covariantly along Z and using (9), we have

$$
\begin{equation*}
\left(\nabla_{Z} S\right)(X, Y)=\mu \beta[g(\phi Z, X) \eta(Y)+g(\phi Z, Y) \eta(X)] . \tag{35}
\end{equation*}
$$

Using (35) in (13), we get

$$
\begin{equation*}
\mu \beta[g(\phi Z, X) \eta(Y)+g(\phi Z, Y) \eta(X)]=\mu \beta[g(\phi Y, Z) \eta(X)+g(\phi Y, X) \eta(Z)] . \tag{36}
\end{equation*}
$$

Replacing Z by ξ in (36) and using (2), we obtain

$$
\begin{equation*}
\mu \beta g(\phi Y, X)=0 \tag{37}
\end{equation*}
$$

Since the manifold under consideration is non-cosymplectic and $g(\phi Y, X) \neq$ 0 , in general, therefore (36) yields $\mu=0$. Therefore the η-Ricci soliton becomes Ricci soliton. Hence we state the following:

Theorem 4.1. An η-Ricci soliton in a non-cosymplectic 3-dimensional quasiSasakian manifold whose Ricci tensor is of Codazzi-type becomes a Ricci soliton.

Again for $\mu=0$,(15) becomes

$$
\begin{equation*}
S(X, Y)=-\lambda g(X, Y) \tag{38}
\end{equation*}
$$

Therefore the manifold becomes an Einstein manifold. Again it is known that [20] a 3-dimensional Einstein manifold is a manifold of constant curvature. Thus we have:

Corollary 4.1. An η-Ricci soliton in a non-cosymplectic 3-dimensional quasiSasakian manifold whose Ricci tensor is of Codazzi-type is a manifold of constant curvature.

In the next part of this section we prove the following:

Theorem 4.2. In a non-cosymplectic 3-dimensional quasi-Sasakian manifold admitting an η-Ricci soliton, the Ricci tensor is cyclic parallel.

Proof. In view of (35) and (4), we have

$$
\begin{aligned}
& \left(\nabla_{X} S\right)(Y, Z)+\left(\nabla_{Y} S\right)(Z, X)+\left(\nabla_{Z} S\right)(X, Y) \\
= & \mu \beta[\eta(Z)\{g(\phi X, Y)+g(X, \phi Y)\}+\eta(Y)\{g(\phi X, Z) \\
& +g(\phi Z, X)\}+\eta(X)\{g(\phi Y, Z)+g(\phi Z, X)\}] \\
= & 0 .
\end{aligned}
$$

Hence the theorem.

5ϕ-Ricci symmetric η-Ricci soliton in 3-dimensional quasi-Sasakian manifold

In this section we study ϕ-Ricci symmetric η-Ricci soliton on 3-dimensional quasi-Sasakian manifolds. A quasi-Sasakian manifold is said to be ϕ-Ricci symmetric if

$$
\begin{equation*}
\phi^{2}\left(\nabla_{X} Q\right) Y=0, \tag{39}
\end{equation*}
$$

for all vector fields X, Y.
In view of (15), the Ricci operator Q can be written as

$$
\begin{equation*}
Q Y=-\lambda Y-\mu \eta(Y) \xi, \tag{40}
\end{equation*}
$$

for $Y \in T M$.

Differentiating (40) covariantly along the vector field X and using (5) and (9), we obtain

$$
\begin{equation*}
\left(\nabla_{X} Q\right) Y=\mu \beta[g(\phi X, Y) \xi+\eta(Y) \phi X] . \tag{41}
\end{equation*}
$$

Therefore in view of (2), we get

$$
\begin{equation*}
\phi^{2}\left(\nabla_{X} Q\right) Y=-\beta \mu \eta(Y) \phi X . \tag{42}
\end{equation*}
$$

Here we consider the manifold to be non-cosymplectic. Therefore (42) yields $\mu=0$. Hence we state the following:

Theorem 5.1. A ϕ-Ricci symmetric η-Ricci soliton on 3-dimensional noncosymplectic quasi-Sasakian manifolds becomes a Ricci soliton.

Again $\mu=0$ implies that the manifold is an Einstein one and hence the manifold is of constant curvature. Thus we have:

Corollary 5.1. A ϕ-Ricci symmetric η-Ricci soliton on a 3-dimensional noncosymplectic quasi-Sasakian manifold is a manifold of constant curvature.

References

[1] C. L. Bejan and M. Crasmareanu, Ricci solitons in manifolds with quasi-constant curvature, Publ. Math. Debrecen, 78, (2011), 235-243
[2] A. M. Blaga, η-Ricci soliton on Lorentzian para-Sasakian manifolds, Filomat, 30, (2016), 489-496
[3] A. M. Blaga, η-Ricci soliton on para-Kenmotsu manifolds, Balkan J. Geom. Appl., 20, (2015), 1-13
[4] D. E. Blair, Contact manifolds in Riemannian geometry, Lecture Notes in Math., 509, (1976)
[5] D. E. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics, 203, (2002)
[6] D. Blair, The theory of quasi-Sasakian structures, J. Diff. Geom., 1, (1967), 331-345
[7] C. Calin and M. Crasmareanu, η-Ricci solitons on Hopf hypersurfaces in complex space forms, Revue Roumaine de Mathematiques pures et appliques, 57, (2012), 55-63
[8] J. T. Cho and M. Kimura, Ricci solitons and real hypersurfaces in a complex space form, Tohoku Math. J., 61, (2009), 205-212
[9] O. Chodosh and F. T-H. Fong, Rotational symmetry on canonical Kähler-Ricci solitons
[10] M. Crasmareanu, Parallel tensors and Ricci solitons in $N(k)$-quasi Einstein manifolds, Indian J. Pure Appl. Math., 43, (2012), 359-369
[11] U.C. De and A. K. Mondal, 3-dimensional quasi-Sasakian manifolds and Ricci solitons, SUT J. Math., 48, (2012), 71-81
[12] U. C. De, A. Yildiz, M. Turan, and B.E. Acet, 3-dimensional quasi-Sasakian manifolds with semi-symmetric non-metric connection, Hacettepe J. Math. Stat., 41, (2012), 127-137
[13] A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata, 7, (1978), 259-280
[14] R. S. Hamilton, The Ricci flow on surfaces, Math. and general relativity (Santa Cruz, CA, 1986), Contemp. Math., 71, (1988), 237-262
[15] P. Majhi, U. C. De, and D. Kar, η-Ricci solitons on Sasakian 3-manifolds, Analele Universitatii de Vest, Timisoara Seria Matematica-Informatica, LV 2, (2017), 143156
[16] Z. Olszak, Normal almost contact metric manifolds of dimension three, 47, (1986), 41-50
[17] D. G. Prakasha and B.S. Hadimani, η-Ricci soliton on para-Sasakian manifolds, J. Geom., 108, (2017), 383-392
[18] S. Sasaki and Y. Hatakeyama, On differentiable manifold with certain structures which are closely related to almost contact structure II, Tohoku Math. J., 13, (1961), 281-294
[19] S. Tanno, Quasi-Sasakian structures of rank $2 p+1$, J. Diff. Geom., 5, (1971), 317-324
[20] K. Yano and M. Kon, Structures on manifolds, World Scientific, (1984)
Received: 12.06.2018
Accepted: 10.10.2018
Revised: 8.10.2018

[^0]: ${ }^{1}$ Department of Mathematics, Krishnagar Govt. College, West Bengal, India, ghosh.sujit6@gmail.com

 This work is supported by the UGC MRP NoF. PSW-166/15-16 (ERO) Dated 02.01.2017.

