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Abstract. The object of the present paper is to study n-Ricci
solitons in a 3-dimensional non-cosymplectic quasi-Sasakian man-
ifolds. We study a particular type of second order parallel tensor
in this manifold. Beside this we consider this manifold satisfying
some curvature properties of Ricci tensor.
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1 Introduction

Ricci soliton is a natural generalization of Einstein metrics on a Riemannian
manifold, being generalized fixed points of Hamilton’s Ricci flow % g=—25
[14]. The evaluation equation defining the Ricci flow is a kind of nonlinear
diffusion equation, an analogue of the heat equation of the metrics. Under
the Ricci flow a metric can be improved to evolve into a more canonical one
by smoothing out its irregularities, depending on the Ricci curvature of the
manifold: it will expand in the directions of the negative Ricci curvature and
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shrink in the positive case.

A more general notion of Ricci soliton named 7-Ricci soliton was intro-
duced by J. T. Cho and M. Kimura [8], which was treated by C. Calin and M.
Crasmareanu on Hopf hypersufaces in complex space forms [7]. An 7-Ricci
soliton is a quadruple (g, V, A, 1), where V' is a vector field on M, A and p are
constants and ¢ is a Riemannian (or pseudo-Riemannian) metric satisfying
the equation

£yvg+2S+2 g+ 2un®n =0, (1)

where S is the Ricci tensor associated to g and 7 is an one form. In this
connection we mention the works of Blaga ([2], [3]), Majhi et al. [15] and
Prakasha and Hadimani [17]. In particular, if g = 0, then the notion of
n-Ricci soliton (g, V, A\, ) reduces to the notion of Ricci soliton (g, V, \).

An important geometrical object in studying Ricci solitons is well-known
to be a symmetric (0, 2)-tensor field which is parallel with respect to the Levi-
Civita connection, some of its geometric properties being described in ([1],
[10]) etc. In [3], the author studied the second order parallel tensor field in
the context of para-Kenmotsu manifolds admitting n-Ricci solitons. In [17]
authors studied non-existence of certain kinds of para-Sasakian manifolds
admitting n-Ricci soliton. Beside these Ricci solitons on a three dimensional
quasi-Sasakian manifolds have been studied by U. C. De and A. K. Mondal
in [11]. n-Ricci solitons on Sasakian 3-manifolds have been studied in [15].

Quasi-Sasakian manifold is a natural generalization of Sasakian manifold.
Motivated by the above studies, in this paper we consider the n-Ricci solitons
in a 3-dimensional quasi-Sasakian manifold.

The present paper is organized as follows:

After preliminaries in section 2, section 3 is devoted to study n-Ricci solitons
in a 3-dimensional non-cosymplectic quasi-Sasakian manifold and we prove
that the manifold is an 7-Einstein 3-Sasakian manifold with A\ + u = —23.
Here we construct an example to verify the result. In the next part of this
section we prove that if the symmetric second order tensor field o = £L¢g +
25+2un®n is parallel with respect to the Levi-Civita connection of the metric
tensor, then the manifold admits an n-Ricci soliton. Section 4 deals with the
study n-Ricci solitons satisfying some curvature properties of Ricci tensor in
3-dimensional non-cosymplectic quasi-Sasakian manifolds. In the first part
of this section we prove that an 7-Ricci soliton in non-cosymplectic quasi-
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Sasakian manifolds with Ricci tensor of Codazzi-type becomes a Ricci soliton.
We also prove that in an 7-Ricci soliton in non-cosymplectic 3-dimensional
quasi-Sasakian manifolds the Ricci tensor is cyclic parallel. Beside these, we
prove a corollary in this section. Finally, in section 5, we prove that ¢-Ricci
symmetric n-Ricci soliton on 3-dimensional non-cosymplectic quasi-Sasakian
manifolds becomes a Ricci soliton.

2 Preliminaries

A (2n+ 1)-dimensional differentiable manifold M is said to admit an almost
contact structure if it admits a tensor field ¢ of type (1, 1), a vector field &
and a 1-form 7 satisfying ([4], [5])

PX =-X+nX)E, =1 ¢=0 and nop=0, (2)

where X € T'M.

Let g be the compatible Riemannian metric with an almost contact struc-
ture (¢, &, n), that is,

9(dX,0Y) = g(X,Y) = n(X)n(Y), (3)

for X,Y € TM. Then M becomes an almost contact metric manifold
equipped with an almost contact metric structure (¢,&,7,¢g). From (2) and
(3) it can be easily seen that for X, Y € T'M

An almost complex structure J can be defined on the product M x R
of M and the real line R by J(X,vd) = (¢X — v&,n(X)L), where v is a
scalar field on M x R. If the structure J is complex analytic, the almost
contact metric structure (¢,&,7,g) is said to be normal. A necessary and
sufficient condition of an almost contact metric manifold to be normal is
that the Nijehaus tensor field N vanishes on the manifold ([4], [18]). A
normal almost contact metric manifold is quasi-Sasakian if the fundamental
2-form @, defined by ®(X,Y) = ¢g(¢X,Y) is closed ([6], [19]). Beside this,
Olszak [16] proved that a 3-dimensional almost contact metric manifold M
is a quasi-Sasakian manifold if and only if

ng = _/8¢X7 (5)
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where X € T'M and f is some function on M, such that {8 = 0, V being
the operator of the covariant differentiation with respect to the Levi-Civita
connection of M. Hence a 3-dimensional quasi-Sasakian manifold is cosym-
plectic if and only if 5 = 0. For f = constant, the manifold reduces to a
[-Sasakian manifold and g = 1 gives the Sasakian structure.

In a non-cosymplectic 3-dimensional quasi-Sasakian manifold the follow-
ing relations hold ([12], [16]):

(Vx@)Y = Blg(X.Y)¢ = n(¥)X] (6)
R(X,Y)¢ = ~(XB)6Y + (YB)oX + Fn(V)X —n(X)Y],  (7)
SELY) = (5= B)g(X,Y) + (38° = Hn(X)n(Y) (®)

—n(X)dB(¢Y) — n(Y)dB(6X),

(Vxn)(Y) = —Bg(¢X,Y), 9)

where X, Y € TM, R, S and r being the curvature tensor of type (1, 3), Ricci
tensor of type (0, 2) and the scalar curvature of the manifold respectively.

A manifold M is said to be an n-Einstein manifold if the Ricci tensor S
is of the form

S(X,Y) = ag(X,Y) + n(X)n(Y), (10)
and Einstein if

S(X,Y) = rg(X,Y) (11)
where a and b are smooth functions on the manifold and & is a constant.
A. Gray [13] introduced the notion of cyclic parallel Ricci tensor and

Codazzi-type of Ricci tensor. A Riemannian manifold is said to have cyclic
parallel Ricci tensor if the Ricci tensor of the manifold satisfies the following:

(VxS (Y, Z)+ (VyS)(Z, X) + (V2S)(X,Y) = 0. (12)

Again a Riemannian manifold is said to have Codazzi-type of Ricci tensor
if the Ricci tensor S is non-zero and satisfies the following:
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(VxS)(Y, Z) = (VyS)(X. 2). (13)

3 n-Ricci soliton on 3-dimensional quasi-Sasakian man-
ifolds

Let M be a 3-dimensional quasi-Sasakian manifold. We write (1) as

25(X,Y) = =(£eg)(X,Y) = 209(X,Y) = 2pun(X)n(Y'), (14)

for XY € TM. In a quasi-Sasakian manifold, £ is a Killing vector field [6].
Therefore (£:9)(X,Y) = 0. Hence (14) takes the form

S(X,Y) = =2g(X,Y) — pn(X)n(Y). (15)

In view of (15) we state the following:

Proposition 3.1. A 3-dimensional quasi-Sasakian manifold admitting n-
Ricci soliton is an n-Einstein manifold.

Comparing the equations (8) and (15), we have

(A+5 = B)9(XY) + (438 = n(X)n(Y) (16)
= n(X)dB(GY) +n(Y)dB(6X).

Replacing X by ¢ in (16) and using (2), we get

A+ p+28%)n(Y) = dB(4Y). (17)
Replacing Y by ¢Y in (17) and using (2) yields

dB(¢*Y) = 0. (18)

Since in a 3-dimensional quasi-Sasakian manifold ¢?Y # 0, in general,
therefore (18) gives df = 0 i.e., § = constant. Again using df = 0 and in
virtue of the fact n(Y) # 0, in general, (17) gives A + u = —23%. Therefore
we state the following:
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Theorem 3.1. A 3-dimensional non-cosymplectic quasi-Sasakian manifold
admitting an n-Ricci soliton is an n-Finstein B-Sasakian manifold with X +

pu=—232

Example:

Here we construct an example [11] of a 3-dimensional non-cosymplectic
quasi-Sasakian manifold which verifies the above theorem. We consider the
3-dimensional manifold M = {(z,y,2) € R? (z,y,2) # (0,0,0)}, where
(z,y,2) are the standard coordinates of R®. We consider the linearly inde-
pendent vector fields

0 0 0 0

1 =7y

o @;6228—3/63:£

at each point of M. Let g be a Riemannian metric given by

glei,ej) = 0, for i # 7.
Let n be the 1-form defined by n(Z) = g(Z, e3), for any Z € TM.

Let ¢ be the (1, 1)-tensor field defined by

per = —ey, pex =e1, ez =0.

Then using the linearity of ¢ and g, we have

n(es) =1,0°Z = —Z 4+ n(2)es,
9(Z, W) = g(Z, W) — n(Z)n(W),

for Z,W € TM. Thus for e3 = &, (M, ¢,£,m,9) becomes an almost contact
metric manifold.

Let V be the Levi-Civita connection with respect to the metric g. Then
we have

le1,e2]) = €3, [e1,e3] =0 and [eg, e3] =0.

The Riemannian connection V of the metric ¢ is given by
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29(VxY,Z) = XgYV,2)+Yg(Z,X)—Zg(X,Y) (19)
_g(Xv [Y, Z]) +g(Y7 [Zv X]) +g(Zv [X,Y]),

which is known as Koszul’s formula.

Using (19) we calculate the following:

1 1
Ve, €3 = —562; Ve e = 5637V6161 =0, (20)
1
V6263 = 5617 V6262 = 07V32€1 = —563,
1 1
V5363 = 07Ve362 = 5617V€3€1 = _562.

Therefore for X = aje; + ases + ases, ay, as, ag being functions, we have

1

Therefore the manifold under consideration is a 3-dimensional non-cosymplectic

quasi-Sasakian manifold with g = —%.

It is known that

R(X,Y)Z =VxVyZ —VyVxZ —Vixy|Z. (22)
Using the above results, (22) gives

1

1
R(e1,e2)es =0, R(e2, e3)es = 1 R(eq,e3)es = 16

R(ey,e9)es = —16173(62, e3)ey = 1% R(e1,e3)es =0,
1

3
R(ey,ez)e; = Zeg,R(eg,eg)el =0, R(ey,e3)e; = 163.

From the above relations we obtain the following non-vanishing Ricci
tensors:

1 1 1
S(€1a€1) = —575(62762) = —5,5(63763) = 5

Therefore for Y = byey + baes + byes we have
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1 1 1
S(X, Y) = —§a1b1 - 5&2 + 5(13()3. (23)

Hence

25(X,Y) + 22g(X,Y) + 2un(X)n(Y) (24)
= (2)\ — 1)a161 + (2)\ - ].)CLQbQ + (2)\ + 2/L + 1)a3b3.

From (24) it is clear that for A = % and p = —1

25(X,Y) +20(X,Y) + 2un(X)n(Y) =0

i.e.,

Leyg+ 25 +20g+2un @ n =0, (25)

since in 3-dimensional quasi-Sasakian manifold £.,g = 0.

Therefore (M, &, g, A, p) is an n-Ricci soliton for A = £ and p = —1. Also
we see that S(X,Y) = =A\g(X,Y) — un(X)n(Y) and A + p = —5 = =252
Therefore the manifold is an 7-Einstein f-Sasakian manifold with A + p =
—2(3?, which verifies the Theorem 3.1.

Next part of this section is devoted to the study of second order parallel
tensor in a 3-dimensional quasi-Sasakian manifold. Let M be a 3-dimensional
quasi-Sasakian manifold. Suppose that M is endowed with a second order
covariant tensor field « satisfying Va = 0, where V is the Levi-Civita con-
nection on M.

Therefore we have

a(R(X,Y)Z,W) + a(Z, R(X,Y)W) = 0. (26)
In particular for W = Z = &, (26) yields

a(R(X,Y)E € = 0. (27)

In a non-cosymplectic 3-dimensional quasi-Sasakian manifold admitting
an n-Ricci soliton, from (7) we have

R(X,Y)s = B*n(Y)X — n(X)Y], (28)
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since [ = constant.

Therefore using (28) in (27) yields

B n(Y)a(X,€) — n(X)a(Y,€)] = 0. (29)

Since the manifold under consideration is non-cosymplectic, hence for
Y = £ (29) gives

a(X,§) = g(X, §)a(, ). (30)
Differentiating (30) covariantly along Y, we get

a(Vy X, §)+a(X, VyE) = a(§, §)[g(Vy X, §)+9(X, Vy&)+2g(X, f)a(VY%f;-
31
Using (5) and (30) in (31), we obtain

a(X,9Y) = [, §)g(X, ¢Y) + 2n(X)a(¢Y, €], (32)

since 3 # 0.
Now, from (30) we see that a(¢X, ) = 0. Therefore from (32), we have

a(X,6Y) = a(€, )g(X, 6Y). (33)
Replacing Y by ¢Y in (33) and using (2) and (30), we obtain

a(X,Y) = o, §)g(X,Y). (34)

As « is a parallel tensor field, «(&,&) is constant. Therefore in view of
(34) we state the following:

Proposition 3.2. In a 3-dimensional non-cosymplectic quasi-Sasakian man-
ifold, any parallel symmetric (0,2)-tensor field is a constant multiple of the
metric tensor.

Now, we consider the symmetric parallel tensor field o = £Leg + 25 +
2pm @ n. Therefore a(§, §) = 25(¢,€) + 2um(E)n(§)-

In view of (15) we have S(§,&) = —\ — u. Therefore a(&, &) = —2X and
we have £¢g + 25 4+ 2 = —2\g. This relation defines an n-Ricci soliton on
M. Therefore we state the following:
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Theorem 3.2. Let M be a 3-dimensional non-cosymplectic quasi-Sasakian
manifold. If the symmetric second order tensor field o = Leg+ 25 +2un®n
1s parallel with respect to the Levi-Civita connection of the metric tensor,
then M admits an n-Ricci soliton.

4 n-Ricci solitons in quasi-Sasakian manifolds with some
curvature properties of Ricci tensor

First part of this section deals with the n-Ricci soliton in 3-dimensional non-
cosymplectic quasi-Sasakian manifolds with Ricci tensor of Codazzi-type.

Differentiating (15) covariantly along Z and using (9), we have

(VzS)(X,Y) = ublg(¢Z, X)n(Y) + 9(62,Y)n(X)]. (35)
Using (35) in (13), we get

pBlg(0Z, X)n(Y) + 9(02,Y)n(X)] = uplg(6Y, Z)n(X) + g(4Y, X)n(Zz]' |
36
Replacing Z by ¢ in (36) and using (2), we obtain

1Bg(oY, X) = 0. (37)

Since the manifold under consideration is non-cosymplectic and g(¢Y, X) #
0, in general, therefore (36) yields u = 0. Therefore the n-Ricci soliton be-
comes Ricci soliton. Hence we state the following:

Theorem 4.1. Ann-Ricci soliton in a non-cosymplectic 3-dimensional quasi-
Sasakian manifold whose Ricci tensor is of Codazzi-type becomes a Ricci soli-
ton.

Again for p =0, (15) becomes

S(X,Y) = —\g(X,Y). (38)

Therefore the manifold becomes an Einstein manifold. Again it is known
that [20] a 3-dimensional Einstein manifold is a manifold of constant curva-
ture. Thus we have:
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Corollary 4.1. An n-Ricci soliton in a non-cosymplectic 3-dimensional quasi-
Sasakian manifold whose Ricci tensor is of Codazzi-type s a manifold of con-
stant curvature.

In the next part of this section we prove the following:

Theorem 4.2. In a non-cosymplectic 3-dimensional quasi-Sasakian mani-
fold admitting an n-Ricci soliton, the Ricci tensor is cyclic parallel.

Proof. In view of (35) and (4), we have

(VxS)(Y, Z) + (VyS)(Z,X) + (VzS)(X,Y)

= uBm(Z){g(¢X,Y) + g(X,8Y)} +n(Y){9(¢X, 2)
+9(0Z, X)} +n(X){9(¢Y, Z) + g(0Z, X)}]

= 0.

Hence the theorem.

5 ¢-Ricci symmetric 7-Ricci soliton in 3-dimensional
quasi-Sasakian manifold

In this section we study ¢-Ricci symmetric n-Ricci soliton on 3-dimensional
quasi-Sasakian manifolds. A quasi-Sasakian manifold is said to be ¢-Ricci
symmetric if

P*(VxQ)Y =0, (39)
for all vector fields X, Y.

In view of (15), the Ricci operator () can be written as

QY = =Y — un(Y)E, (40)
for Y e TM.

Differentiating (40) covariantly along the vector field X and using (5) and
(9), we obtain
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(VxQ)Y = nflg(¢X,Y)§ +n(Y)pX]. (41)

Therefore in view of (2), we get

P (VxQ)Y = —Bun(Y)pX. (42)

Here we consider the manifold to be non-cosymplectic. Therefore (42)
yields u = 0. Hence we state the following:

Theorem 5.1. A ¢-Ricci symmetric n-Ricci soliton on 3-dimensional non-
cosymplectic quasi-Sasakian manifolds becomes a Ricci soliton.

Again p = 0 implies that the manifold is an Einstein one and hence the
manifold is of constant curvature. Thus we have:

Corollary 5.1. A ¢-Ricci symmetric n-Ricci soliton on a 3-dimensional non-
cosymplectic quasi-Sasakian manifold is a manifold of constant curvature.
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