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Abstract A semigroup S is called η-simple if S has no semilattice congruences ex-
cept S × S. Tamura in (Semigroup Forum 24:77–82, 1982) studied η-simple semi-
groups with a unique idempotent. In the present paper we consider a more general sit-
uation, that is, we investigate η-simple semigroups (without zero) with a least idem-
potent. Moreover, we study η∗-simple semigroups with zero which contain a least
non-zero idempotent.
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1 Preliminaries

Let S be a semigroup and a ∈ S. An element x ∈ S is called a weak inverse of a if
xax = x; the set of all weak inverses of a is denoted by WS(a). A semigroup S is said
to be E-inversive if for every a ∈ S there is x ∈ S such that ax ∈ ES , where ES (or
briefly E) is the set of idempotents of S (more generally, if A ⊆ S, then EA denotes
the set of idempotents of A). If A ⊆ S, then by A∗ we shall mean the set of all non-
zero elements of A. Since each semigroup with zero is E-inversive, then we define a
semigroup S with zero to be E-inversive if for all a ∈ S∗ there exists x ∈ S such that
ax ∈ E∗

S . Finally, put W ∗
S (a) = WS(a) \ {0} (a ∈ S). Recall from [3] that a semigroup

S [with zero] is E[∗]-inversive if and only if W
[∗]
S (a) �= ∅ for every a ∈ S[∗].

Lemma 1.1 A semigroup S [with zero] is E[∗]-inversive if and only if every [non-
zero] ideal of S contains some [non-zero] idempotent of S.
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Proof Suppose that every non-zero ideal of S contains some non-zero idempotent
of S, a ∈ S∗. Then S1aS1 contains at least one non-zero idempotent of S, that is,
xay = e for some x, y ∈ S1 (in fact, we may suppose that x, y ∈ S), e ∈ E∗

S . Hence
exaye = e, so (yex)a(yex) = yex �= 0; otherwise 0 = xa(yex) = (xay)ex = ex.
Thus 0 = exay = e, a contradiction. Consequently, yex ∈ W ∗

S (a).
The converse implication is clear. �

Lemma 1.2 Let S be an E[∗]-inversive semigroup. Then eSe is E[∗]-inversive for
every e ∈ E

[∗]
S .

Proof Observe first that e ∈ eSe, so eSe �= {0}. Let a ∈ (eSe)∗ and x ∈ W ∗
S (a). Then

x = xax = x(eae)x. Hence exe = (exe)a(exe). Furthermore, if exe = 0, then we get
xe = [(xe)a(ex)]e = (xea)(exe) = 0, so x = (xe)a(ex) = 0, a contradiction. Thus
exe ∈ W ∗

eSe(a), as exactly required. �

We say that a semigroup S is a semilattice if a2 = a, ab = ba for all a, b ∈ S.
Further, a congruence ρ on a semigroup S is called a semilattice congruence if S/ρ

is a semilattice. It is clear that the least semilattice congruence η on an arbitrary
semigroup exists. Finally, a semigroup is said to be η-simple if η = S × S.

The next lemma follows immediately from the Second Isomorphism Theorem.

Lemma 1.3 A homomorphic image of an η-simple semigroup is η-simple.

Let S be a semigroup. Recall that the natural partial order is the relation ≤, de-
fined on ES by e ≤ f if e = ef = f e. We say that a semigroup S (without zero) has
a least idempotent e if e ≤ f for every f ∈ ES . Note that If S has a zero, say 0, then
clearly 0 is the least element of ES with respect to ≤, but in such a case, we may say
that S has a least non-zero idempotent if E∗

S contains the least element with respect
to the natural partial order.

Let A be an ideal of a semigroup S. We say that S is an ideal extension of the
semigroup A by the semigroup T if the Rees semigroup S/A is isomorphic to T .
Finally, an ideal P of a semigroup S is called prime if the condition ab ∈ P implies
that a ∈ P or b ∈ P for all a, b ∈ S.

2 The main results

Remark that by Corollary 3.9 of [4], a semigroup S is η-simple if and only if S has
no proper prime ideals.

Proposition 2.1 Let S �= S0 be an η-simple semigroup with a least idempotent. Then
S is E-inversive. Moreover, S is an ideal extension of a group by an η-simple semi-
group.

Proof Let e be the least element of ES . Then every ideal of S must contain e. Indeed,
suppose by way of contradiction that there is an ideal A of S such that e /∈ A. Let B
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be the set theoretic union of all such ideals A of S. Then clearly B is the largest ideal
of S such that e /∈ B . Next, consider the Rees quotient S/B . Notice that we may think
about S/B as a semigroup with zero, where all products not falling in S/B are zero.
Consider now an arbitrary non-zero ideal C of S/B . Then by construction of B , {e}
must belong to C. Hence the intersection of all non-zero ideals of S/B contains {e}.
In particular, S/B is E∗-inversive (see Lemma 1.1). Also, B is a prime ideal of S.
Indeed, let a, b /∈ B be such that ab ∈ B . Then fg ∈ B for some f,g ∈ ES \ B (be-
cause S/B is E∗-inversive). Hence e = efg ∈ B (which is a contradiction). It follows
that S has a proper semilattice congruence (by the above remark), a contradiction
with the assumption of the theorem. Consequently, every ideal of S must contain e.
Thus S has a kernel G (say) and S is E-inversive (Lemma 1.1). Hence for every
a ∈ S there exists x ∈ S such that ax, xa ∈ ES . Therefore e = (ax)e = a(xe) ∈ aS.
We may equally well show that e ∈ Sa. It follows easily that S contains both a min-
imum left ideal L (say) and a minimum right ideal R (say). Furthermore, for every
a ∈ S, La is a minimal left ideal of S (see [1], Lemma 2.32). Hence La = L, so
L is an ideal of S (and L = L2). We can show in a similar way that R is an ideal
of S, so L = R = G = eS = Se (because Se ⊆ L,eS ⊆ R, since e ∈ L,R). Conse-
quently, G = eSe. Indeed, evidently eSe ⊂ SeS = G. Also, G = GG = eSSe ⊂ eSe.
By Lemma 1.2, G is an E-inversive monoid (with an identity element e). Moreover,
if f ∈ EeSe , then f e = ef = f i.e. f ≤ e. Thus f = e. Consequently, G is a group
ideal of S and so S is an ideal extension of the group G by the semigroup S/G which
is η-simple, by Lemma 1.3, as required. �

Lemma 2.2 Let S �= S0 be an η-simple semigroup with the least idempotent e. Then
ea = ae for all a ∈ S.

Proof Let a ∈ S. Then ea, ae ∈ eSe = eS = Se, where eSe is a group ideal of S (see
the proof of Proposition 2.1). Hence e · ae = ae, ea · e = ea. Thus ea = ae. �

A congruence on a semigroup is called a group congruence if the quotient semi-
group is a group.

Corollary 2.3 Let S �= S0 be an η-simple semigroup with a least idempotent, say e.
Then the mapping s → es of S onto the group eS is an epimorphism leaving the
elements of eS fixed. Moreover, the congruence σ induced by this morphism, that is
σ = {(a, b) ∈ S × S : ea = eb}, is the least group congruence on S.

Proof The first part of the result follows from Proposition 2.1 and Lemma 2.2. Fur-
ther, if ρ is a group congruence on S, then clearly (s, es) ∈ ρ for every s ∈ S. Hence
σ ⊆ ρ. �

Remark 1 Notice that if a semigroup S �= S0 with the least idempotent e is η-simple,
then ρeS ∩ σ = 1S and so S is a subdirect product of an (E-inversive) η-simple semi-
group S/eS (with zero) and the group eS.

Further, the converse of Proposition 2.1 is valid.
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Theorem 2.4 A semigroup S without zero is η-simple and has a least idempotent if
and only if it is an (E-inversive) ideal extension of a group by an η-simple semi-group.

Proof The direct part follows from Proposition 2.1.
Conversely, let G be a group ideal of S (with an identity e) and a ∈ S. Then

ea ∈ G, say ea = g. It follows that g−1ea = e ∈ Sa. We may equally well show that
e ∈ aS, so e is the least idempotent of ES . Further, if ρ is a semilattice congruence on
S, then (according to the proof of Theorem 5 in [5]) ρ ∩ (G×G) = G×G. It follows
that ρG ⊂ ρ, where ρG is the Rees congruence on S modulo G. Hence there is an
epimorphism of S/ρG onto S/ρ. In fact, this morphism induced on S/ρG a semi-
lattice congruence. Since S/ρG is η-simple, then S/ρ must be trivial. Consequently,
ρ = S × S, as exactly required. �

Remark that if a semigroup S is a left [right] group (i.e. S × S = L [R]), then S is
η-simple. Indeed, let S be a left [right] group. Then S × S = L [R] ⊆ J ⊆ η.

Theorem 2.5 A semigroup S without zero is η-simple and has an idempotent e such
that ef = e [f e = e] if and only if it is an (E-inversive) ideal extension of a left
[right] group by an η-simple semigroup.

Proof (=⇒). Let ef = e for every f ∈ ES . We may equally well show like above (see
the proof of Proposition 2.1) that e belongs to every ideal of S. Hence S has a kernel,
say K . In particular, S is E-inversive. It follows that e ∈ Sa for every a ∈ S. Thus S

contains a minimum left ideal L and L = La for all a ∈ S (so L = L2). Therefore
K = Se is a left simple semigroup (by Theorem 2.35 [1]) and so K is a left group (by
the dual of Theorem 1.27 [1]). Consequently, S is an ideal extension of the left group
K by the semigroup S/K which is η-simple.

(⇐=). Let K be a left group ideal of S, e ∈ EK and a ∈ S. Then ea ∈ K , say
ea = k. It follows that ek−1ea = ek−1k = e ∈ Sa, where k−1 is some inverse of k in
K (since EK is a left zero semigroup). Hence if f ∈ ES , then e = sf for some s ∈ S.
Thus ef = e. We have just shown that ef = e for all e ∈ EK , f ∈ ES . Further, if ρ is
a semilattice congruence on S, then ρ ∩ (K ×K) = K ×K (by the preceding remark)
and so ρ = S × S (by the proof of Theorem 2.4). �

Corollary 2.6 Let S be a simple semigroup. If S has an idempotent e such that ef = e

[f e = e] for every f ∈ ES , then S is a left [right] group.

Proof Indeed, in such a case, J = S × S. It is almost evident (and also well-known)
that J ⊆ η. Hence S is η-simple, so S contains a left [right] group ideal K . Thus
S = K . �

Notice that if S is a completely simple semigroup (see [2], Sect. 3.2), then the
Green’s relation H is a band congruence on S (see Lemma III.2.4 in [2]). Further,
every left [right] group S is completely simple and ES is a left [right] zero semigroup.
It follows, from the above, that if S is a left [right] group, then S/H is a left [right]
zero semigroup.

A semigroup S is said to be congruence-free if it has exactly two congruences.
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Proposition 2.7 Let S be a congruence-free semigroup without zero. If S has an
idempotent e such that ef = e [f e = e] for every f ∈ ES , then S is a simple group.

Proof Let ef = e for every f ∈ ES . Since S is congruence-free, then either η is
the identity or the universal relation on S. In the former case, S is a semilattice, but
then e is the zero of S, a contradiction with the assumption of the proposition. It
follows that S is η-simple. By Theorem 2.5, S contains a left group ideal K . Hence
S is itself a left group. From the above remark we conclude that either H = 1S or
H = S × S. In the former case, S must be a left zero semigroup. Since |S| > 1, then
the partition {{e}, S \ {e}} of S induced a proper congruence on S, a contradiction.
Thus H = S × S, so ES = {e}, since H separates idempotents of S. Consequently, S

is a simple group. �

Next, consider a semigroup S with zero such that the set E∗
S contains a least idem-

potent, say e. Remark that fg �= 0 for all f,g ∈ E∗
S (in fact, if e ∈ E∗

S has the property
that ef = e [f e = e] for every f ∈ E∗

S , then also gh �= 0 for all g,h ∈ E∗
S ).

Since a semigroup with zero adjoined has a proper semilattice congruence, then
we shall say that a semigroup with zero is η∗-simple if S has at most two semilat-
tice congruences, namely: (i) S × S or (ii) the congruence induced by the partition
{{0}, S∗}. Clearly, the partition {{0}, S∗} of a semigroup S with zero induces a semi-
lattice congruence on S if and only if S is a semigroup with zero adjoined.

Recall that a semigroup S with zero is called a 0-group if S∗ is a group.

Theorem 2.8 A semigroup S with zero is η∗-simple and has a least non-zero idem-
potent if and only if it is an E∗-inversive semigroup with zero adjoined (and so S∗ is
an E-inversive semigroup with a least idempotent) and it is an ideal extension of a
0-group by an η-simple semigroup.

Proof (=⇒). Let e be a least non-zero idempotent of S. We can show that every non-
zero ideal of S contains e (see the proof of Proposition 2.1 and the above remark).
In particular, S is E∗-inversive (Lemma 1.1). Hence for every a ∈ S∗ there is x such
that xa is a non-zero idempotent of S. Thus e ∈ Sa. We may equally well show that
e ∈ aS. Next, if a, b ∈ S∗, then (by the above) e = xa, e = by for some x, y ∈ S.
Hence e = x(ab)y and so ab ∈ S∗. Consequently, S has no proper zero divisors.
Thus S∗ is an E-inversive semigroup with a least idempotent e and so S∗ is an ideal
extension of a group G by an η-simple semigroup (Theorem 2.4). It follows that S

is an ideal extension of a 0-group G0 by an η-simple semigroup. Indeed, S/G0 must
have a proper zero divisor (otherwise G0 is a non-zero prime ideal of S).

The opposite implication follows easily from the proof of Theorem 2.4. �

A non-zero [left [right]] ideal A of a semigroup S with zero is called 0-minimum
if it is contained in every non-zero [left [right]] ideal of S.

Further, a semigroup S with zero is called categorical if abc = 0 implies that
either ab = 0 or bc = 0 for all a, b, c ∈ S.

Finally, we have the following theorem.
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Theorem 2.9 Let S be a categorical semigroup (with zero). Then S is η∗-simple and
has a non-zero idempotent e such that ef = e [f e = e] for every f ∈ E∗

S if and only
if it is an E∗-inversive semigroup with zero adjoined (and so S∗ is an E-inversive
semigroup with a least idempotent) and it is an ideal extension of a left [right] group
with zero adjoined by an η-simple semigroup.

Proof (=⇒). Let ef = e for every f ∈ E∗
S . We may equally well show like above

that e belongs to every non-zero ideal of S. Hence S has a 0-minimum ideal K .
In particular, S is E∗-inversive. It follows that e ∈ Sa for all a ∈ S∗. Thus S con-
tains a 0-minimum left ideal L (and L = Le, so L = L2). Therefore K = Se is a
left 0-simple semigroup (by Theorem 2.35 in [1]), so K∗ is a left simple semigroup
(Theorem 2.27 in [1]). Thus K∗ is a left group (by the dual of Theorem 1.27 in [1]).
Further, suppose that ea = 0 for some a ∈ S and let b ∈ S∗. Then e = sb for some
s ∈ S. Hence sba = 0. Thus ba = 0 (since S is categorical), so {0, a} is a left ideal
of S. It follows that either {0, a} = K or a = 0. Consequently, ea �= 0 for all a ∈ S∗.
Therefore ab �= 0 for all a, b ∈ S∗. Indeed, if ab = 0 for some a, b ∈ S∗, then eb = 0,
a contradiction from the above. We conclude that S∗ is an E-inversive semigroup, so
S∗ is an ideal extension of the left group K∗ by the semigroup S/K which is η-simple
(Theorem 2.5). Hence S is an ideal extension of the left group K with zero adjoined
by the semigroup S/K which is η-simple, since K is not a prime ideal of S.

The opposite implication follows from the proof of Theorem 2.5. �
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