
E-SmallTalker: A Distributed Mobile System for
Social Networking in Physical Proximity

Zhimin Yang∗, Boying Zhang∗, Jiangpeng Dai∗, Adam C. Champion∗, Dong Xuan∗ and Du Li†
∗Dept. of Computer Science and Engineering †Nokia Research Center

The Ohio State University 955 Page Mill Road
Columbus, OH 43210 USA Palo Alto, CA 94304 USA

{yangz,zhangboy,jpdai,champion,xuan}@cse.ohio-state.edu lidu008@gmail.com

Abstract—Small talk is an important social lubricant that
helps people, especially strangers, initiate conversations and make
friends with each other in physical proximity. However, due to
difficulties in quickly identifying significant topics of common
interest, real-world small talk tends to be superficial. The mass
popularity of mobile phones can help improve the effectiveness of
small talk. In this paper, we present E-SmallTalker, a distributed
mobile communications system that facilitates social networking in
physical proximity. It automatically discovers and suggests topics
such as common interests for more significant conversations. We
build on Bluetooth Service Discovery Protocol (SDP) to exchange
potential topics by customizing service attributes to publish non-
service-related information without establishing a connection. We
propose a novel iterative Bloom filter (IBF) protocol that encodes
topics to fit in SDP attributes and achieves a low false positive
rate. We have implemented the system in Java ME for ease of
deployment. Our experiments on real-world phones show that
it is efficient enough at the system level to facilitate social
interactions among strangers in physical proximity. To the best
of our knowledge, E-SmallTalker is the first distributed mobile
system to achieve the same purpose.

I. INTRODUCTION

A. Motivation

Face-to-face interaction plays an irreplaceable role in our
daily lives, especially for social networking purposes. Com-
pared to other forms of social interaction that are separated by
time and space boundaries, face-to-face interaction in physical
proximity facilitates non-verbal communication. In a face-to-
face meeting, for example, people can easily make eye contact
and discern others’ moods, personalities, and surroundings.
These non-verbal cues provide immediate and valuable feed-
back that helps people adjust their topics of conversation, body
language, and communication manners accordingly.

Apparently, not all people are equally skillful in harnessing
what physical proximity can offer to its fullest extent. A
well-known barrier is the so-called social gap. When people
interact with strangers or unfamiliar parties, they tend to feel
self-conscious and reluctant to communicate. Small talk is a

This work was supported in part by the US National Science Foundation
(NSF) under grants No. CNS-0916584, CAREER Award CCF-0546668, and
the Army Research Office (ARO) under grant No. AMSRD-ACC-R 50521-CI.
Any opinions, findings, conclusions, and recommendations in this paper are
those of the authors and do not necessarily reflect the views of the funding
agencies.

widely-used everyday technique for shortening the social gap
by initiating conversations about readily observable topics such
as the weather. However, the effectiveness of small talk is
limited if it only covers superficial weather-like topics. Indeed,
without assistance, it is generally difficult for ordinary people
to identify more significant common topics with strangers in
face-to-face social settings.

The mass popularity of mobile phones could potentially help
improve the practice of small talk. Today, the number of mobile
phone subscriptions has reached nearly five billion worldwide.
These phones always go with their owners and are exposed to
much information that could be leveraged for more meaningful
social interactions, such as mutual friends, common interests,
the same schools attended or places visited, and even the fact
that two users have already met. We could leverage these
mobile phones to enhance the effectiveness of small talk for
social networking in physical proximity among strangers.

B. The Key Challenge

The key challenge for such a mobile social networking
system is that it must reach a critical mass of users to be useful.
That is, the system would provide little value to a user unless
a large percentage of other people with whom he would like
to interact were also using it.

Clearly, the system should be able to automatically suggest
common topics between users who intend to initiate small
talk. One straightforward approach is to use a server-based
infrastructure, in which a central server stores all users’ infor-
mation and provides common topics based on matching results.
A user’s client application on his mobile phone needs to report
his geo-location to or send IDs of nearby phones to the server
via data services (e.g., Internet or SMS) so that the server can
discover commonalities among users. Then the matching results
are retrieved by or pushed to the client application.

The centralized approach is problematic for two reasons:
(1) Not all mobile phones have data services everywhere.
For example, mobile data services may be unavailable or too
expensive in many developing regions. (2) Not all users are
willing to report their sensitive personal information such as
geo-location to a central server. Even though one may be
willing to report his own information, he may not have others’



permission to report their information, i.e., their phone IDs.
Moreover, a central server can be a performance bottleneck and
a single point of failure and has the risk of being compromised.
Consequently, a centralized system for small talk would be less
likely to reach a critical mass of users than systems without the
above roadblocks.

C. Our Contributions

This paper presents E-SmallTalker, a novel distributed mobile
communication system that aims to facilitate more effective
social networking among strangers in physical proximity. Our
system makes no assumptions about data services such as
Internet access. It exchanges user information between two
phones and performs matching locally. It uses Bluetooth for
communication and is implemented using Java ME. Hence it
can be deployed on most commercial off-the-shelf (COTS)
mobile phones that are shipped with Bluetooth and Java. These
features make it in a better position to be used by more users.

Beyond addressing the key challenge of reaching a critical
mass of users, this work makes novel intellectual contributions
mainly in the following two areas:

– We build on the Bluetooth Service Discovery Protocol
(SDP) to search for nearby E-SmallTalker users. We
extend the SDP service attribute values for a new purpose,
i.e., to publish encoded user data for discovering potential
small talk topics. Our approach does not require user
interference to establish a Bluetooth connection.

– We propose a novel iterative Bloom filter (IBF) protocol
to encode user information. Data is encoded in a bit string
to address the size limit of Bluetooth SDP attributes. The
initial Bloom filters are refined in a few rounds until the
desired low false positive rate is achieved.

In the following, we explain the rationales behind our ap-
proach and contributions:

First, Bluetooth is the most suitable communication technol-
ogy for our purposes. There are mainly four types of com-
munication technologies available on mobile phones: cellular
networks, IrDA, Wi-Fi, and Bluetooth. Communicating data
via cellular networks is costly and often unreliable in typical
social settings, e.g., inside a building. Infrared Data Association
(IrDA) is limited to line-of-sight communication within a
very short distance (e.g., 1 meter), which may be considered
intrusive among strangers. Wi-Fi is only available on relatively
high-end mobile phones. In contrast, Bluetooth is available on
nearly all mobile phones and its communication range is 10
meters on class II devices. Hence we choose Bluetooth as our
communication technology.

However, in order to develop a Bluetooth application on
mobile phones, we need to overcome several obstacles. For
security reasons, a mobile phone will ask for user permission to
initiate or accept a Bluetooth connection as well as a passcode
for pairing. Hence, an application that relies on Bluetooth
connections to transmit data requires explicit user interactions.
This requirement not only requires users to “babysit” the system
but is also too intrusive for strangers. Therefore, we need to

find a way for two phones to exchange information without
establishing a Bluetooth connection.

We achieve this by using Bluetooth Service Discovery Pro-
tocol (SDP) to publish/exchange information. In SDP, each
service is represented by a service record that is identified by a
128-bit Universally Unique Identifier. All information about a
service that an SDP server maintains (on a phone) is contained
within a single service record, which consists of a list of service
attributes. Each service attribute describes a single characteristic
of a service (e.g., its name, type, parameters, protocols used)
and consists of an attribute ID and the corresponding attribute
value. The attribute value is a variable length field, which our
system utilizes to publish encoded user information. To our
knowledge, this is the first work that utilizes Bluetooth SDP by
customizing service attributes to exchange non-service-related
information.

However, SDP can only publish limited information, the
size of which varies depending on brands and models of
mobile phones. For example, in our experiments, one phone
can publish up to 10 attributes, each of which has a maximum
of 128 bytes of data. We use Bloom filters to encode and “com-
press” user information in order to fit it into SDP’s attribute
values. To further reduce the size of exchanged information,
we propose a novel Bloom filter technique that iteratively
refines Bloom filters in several rounds to achieve a desired
low false positive rate given SDP’s constraint. The Bloom
filters are published via SDP to discover common topics. A
device determines common topics by testing if its topics are
in another device’s Bloom filter. As a result, the system incurs
limited transmission and computation. As a one-way hashing
technique, Bloom filters also provide a reasonable level of
privacy against eavesdroppers. It is generally difficult, if not
impossible, to reconstruct the information in a Bloom filter
without performing an exhaustive search of the input space.

We implemented the proposed system using Java ME, which
is supported on a wide range of mobile phones including
smartphones as well as low-end phones. In addition, we build
our system on the Bluetooth protocol but we do not modify
the protocol stack. As a result, the system easily runs on
most Bluetooth-enabled COTS mobile phones. We performed
experiments on real-world mobile phones. The results show that
E-SmallTalker achieves our design goals.

D. A Typical Usage Scenario

Suppose that two strangers, Alice and Bob, encounter each
other at an airport. They are both interested in several movies.
As they are strangers, they only make small talk about the
weather, which is clearly superficial. If they run E-SmallTalker
on their mobile phones, the system encodes their movie inter-
ests into Bloom filters, which are published as service attribute
values in SDP’s service record. The system automatically
exchanges Bloom filters, performs information matching locally
on the phones, and then informs them of their common interest
in movies. They can then easily initiate a meaningful conver-
sation about movies. The entire procedure requires neither a



central server nor Internet access and it is transparent to both
users until each of their phones finds their common interests.

To the best of our knowledge, E-SmallTalker is the first dis-
tributed mobile system for social networking between strangers,
with two supporting techniques: a new way of utilizing Blue-
tooth SDP and a novel iterative Bloom filter protocol.

The remainder of this paper is organized as follows. Section
II discusses related work on social networking applications.
Section III presents our system design. Section IV presents
our implementation and performance evaluation. Section V
discusses further issues and Section VI concludes.

II. RELATED WORK

In this section, we review related work focusing on social
networking applications (SNAs) on mobile phones. A consider-
able body of work has contributed to this area. Some SNAs are
centralized, whereas other SNAs are distributed. We will review
background material and related work for Bluetooth SDP and
Bloom filters in Section III when discussing system design.

– Centralized Social Networking Applications: The SNAs in
this category are primarily Internet-based. They store user data
including social networks on a (conceptually) central server
and allow users to find friends and share data via SNA clients
running on mobile phones.

Social Serendipity [1] is a typical example of the centralized
SNA. Specifically, It maps Bluetooth MAC addresses to user
profiles on other social networking websites. To facilitate face-
to-face interactions between nearby strangers, it retrieves their
mobile devices’ Bluetooth MAC addresses and uses them to
retrieve the strangers’ profiles on the server for similarity
matching. It uses SMS for device-server communication.

A number of other centralized SNAs aim to enhance aware-
ness and interaction between friends when they are in physical
proximity. In general, these SNAs obtain a user’s current
geographical location and notify his nearby friends. This gives
friends knowledge of each other’s whereabouts, which facili-
tates opportunistic interactions. Representative applications in
this category include PeopleTones [4], Hummingbird [9], Just-
for-Us [5], MobiLuck [8], Micro-Blog [10], and Loopt [3].

In general, centralized SNAs have the following limitations:
(1) the server may not always be reachable; (2) communications
between the server and devices (via SMS, Wi-Fi, or 2G/3G)
may be costly, unreliable and even unavailable; and (3) user
privacy may be compromised, e.g., by saving location and
other personal data on a third-party server. By comparison,
our system uses short-range communication technologies such
as Bluetooth to provide reliable service operation without
suffering from these limitations.

– Distributed Social Networking Applications: The SNAs in
this category enable mobile devices to directly communicate
with each other without requiring a third party. For example,
Social Net [6] logs nearby users’ Bluetooth addresses to infer
users’ interaction patterns over time. Nokia Sensor [2] allows
users to detect others in the vicinity via Bluetooth; once a con-
nection is established, two devices can exchange information.
PeopleNet [11] focuses on multicasting messages or queries to a

E-SmallTalker System 1

UI

Context
Data Store

Context Encoding 
and Matching

Content 
Exchange

Bluetooth 
Server

Bluetooth 
Client

E-SmallTalker System 2

UI

Context
Data Store

Context Encoding 
and Matching

Content 
Exchange

Bluetooth 
Server

Bluetooth 
Client

Fig. 1: E-SmallTalker System Architecture.

selected group of devices connected by a mobile ad hoc network
based on Bluetooth or Wi-Fi. Nokia Sensor and PeopleNet
require establishment of a Bluetooth connection, which requires
user intervention and only occurs between trusted parties. These
applications focus on providing users service when they are
already connected via Bluetooth.

Point&Connect [12] facilitates device pairing between two
users in physical proximity by having one user point his
device to another user’s device. When multiple devices are
nearby, acoustic cues are used by all devices to determine
the device towards which the initiating device is pointing. Our
work focuses on initiating meaningful small talk by identifying
common topics between two strangers. While Point&Connect
has a entirely different focus, its results can be leveraged in our
work, e.g., when one person intends to initiate small talk with
another person in a crowd.

III. SYSTEM DESIGN

In this section, we present the system design of E-
SmallTalker. We first overview the system architecture. Then
we discuss two key components in this architecture, namely,
Context Encoding and Matching, and Context Exchange.

A. System Architecture

Figure 1 shows the E-SmallTalker system architecture, which
includes the following four software components:

– Context Data Store: This component stores user data that
contributes to small talk and metadata that controls system
operation. Small talk between two people is often highly
situated: topics may cover mutual friends and hobbies, schools
both attended, places both visited, and historical facts such as



their meeting last year in the same conference. System metadata
includes the Bloom filter parameters and user preferences such
as what data may and may not be published (in Bloom filters to
strangers). For the scope of this paper, we simplify this part and
assume that friends’ information is imported from the phone
contact database and that the user’s interests are represented in
a limited vocabulary of keywords.

– Context Encoding and Matching: This component encodes
the context data to be published by the Context Exchange
component. The data is encoded using Bloom filters with user-
configured parameters. To save computation, the Bloom filters
are computed and cached in the Context Data Store when the
parameters are changed or the encoded data are updated. The
Bloom filters are retrieved by the Context Exchange to find
matching elements when a query is received.

– Context Exchange: This component includes a Bluetooth
server (BTS) and a Bluetooth client (BTC). The BTS creates
the service record with Bloom filters as service attribute values
and publishes the service record via the Bluetooth SDP server.
The BTC first performs an inquiry over the Bluetooth radio
to retrieve the MAC address of any device in the physical
proximity at the time of inquiry; then it discovers whether or
not the device is running E-SmallTalker. If this is the case, it
retrieves the Bloom filters that the device publishes.

– User Interface (UI): This component provides interfaces
for a user to configure small talk policies and rules. For
example, the user can specify which contacts to encode in
his Bloom filter; what personal profile data to publish, e.g.,
name, age, phone number, gender, and interests; Bloom filter
parameters to encode his own information; and conditions by
which a received Bloom filter will be ignored. The user can also
specify how he is notified of matching information: text display,
ringtone, vibration, or speech. For the scope of this paper, we
also simplify this part and assume that the contact Bloom filter
encodes all friends’ names plus mobile phone numbers and that
the interest Bloom filter encodes all listed personal interests.

The four components work together to help users initiate
small talk. The corresponding workflow is as follows: First,
our E-SmallTalker system uses the Context Data Store to
record user-customized profile information. Then, the Context
Encoding and Matching component compresses and encodes
information from the Context Data Store into Bloom filters.
When two users are in Bluetooth communication range, their
Context Exchange components automatically exchange their
Bloom filters to find their similarities via Bluetooth SDP. In dif-
ferent social scenarios, users can easily configure corresponding
settings via the User Interface component. This paper focuses
on the two most critical components: Context Encoding and
Matching, and Context Exchange.

B. Context Encoding and Matching

To discover possible matches based on Bluetooth SDP, we
first formulate the problem and then present a new multi-round,
iterative discovery protocol for context encoding and matching
based on Bloom filters. The goal is to minimize system over-

head and error rate under the constraint that Bluetooth SDP can
only exchange limited information.

1) Problem Formulation: Small talk topics can include any
commonalities, such as common friends, shared interests. Here
we abstract all of those as topics. The problem can be formu-
lated as follows. Consider a dynamic set U = {u1, u2, ..., uN}
of N potential communication partners in which each user ui

has a set SetUi = {ai,1, ai,2, . . . , ai,ni} of ni data items. Each
ai,j (1 ≤ i ≤ N , 1 ≤ j ≤ ni) is a topic of interest. Each user ui

wants to discover two things: (1) the identical items in SetUi

and SetUk (1 ≤ i, k ≤ N, i 6= k); and (2) the corresponding
user uk if there are identical items between SetUi and SetUk.

A naı̈ve way is to establish a Bluetooth connection between
two devices ui and uk and transfer the two data sets together
to compute their intersection, SetUi ∩ SetUk. However, this
requires user interaction to set up Bluetooth connection and
transfer a large message.

Alternatively, we encode the data sets in Bloom filters and
use the Bluetooth SDP to transmit the Bloom filters. Then we
compute their intersection. This approach is non-intrusive and
more efficient.

2) Basic Bloom Filter: The Bloom filter [7] is a time- and
space-efficient probabilistic data structure for testing whether
an element is a member of a set. A Bloom filter is a vector
of m bits, each of which is initially set to ‘0’. When adding a
new element to the Bloom filter, we compute the element over
k independent hash functions to generate k hash values as the
indices to the vector. The corresponding k entries are set to
‘1’. To insert a set of n elements, this procedure is repeated
n times until all the elements are encoded in the Bloom filter.
During the procedure, if a bit is already set, we leave it as ‘1’.
To query an element against a given Bloom filter, the k hashing
indices are computed: The element is a member of the set only
if all the k corresponding bits are ‘1’ in the vector.

As a probabilistic data structure, Bloom filters are subject to
false positives, i.e. they may mistakenly confirm the member-
ship of a given element in lookup. The false positive rate f
is defined by the probability that all the corresponding k bits
for any given element are ‘1’ in the Bloom filter although it
is not really a member of the represented set. Assuming that a
hash function selects each position in a Bloom filter with equal
probability, then the quantitative measurement of false positive
rate is defined by the following formula:

f = (1− (1− 1/m)kn)k ≈ (1− e−kn/m)k

There are two challenges that must be addressed: First, the
size of a Bloom filter m grows linearly with the size of a data
set n if we want to guarantee a given false positive rate f .
Second, the size of a Bloom filter is effectively bounded by
the maximum size of custom information that a SDP service
record can publish, which varies on different mobile phones.

Several other extensions to the basic Bloom filter exist in
the literature [13]–[18] that are orthogonal to ours. However,
the results of these works cannot be readily applied to mobile
phones because Bluetooth SDP can only exchange limited



information; thus a preferred false positive rate cannot be
guaranteed when the data set is large. A suitable compromise
must be sought. We discuss our solution in the next subsection,
which addresses this problem by a novel iterative protocol.

3) An Iterative Discovery Protocol: We aim to achieve the
desired false positive rate f with a minimum total amount of
transmission given the constraints imposed by the implement-
ation of Bluetooth SDP. We devised a multi-round protocol:
in each round, a Bloom filter with some false positive rate is
published and a subset of common data items is computed; this
smaller subset is then encoded in another new Bloom filter with
much lower false positive rate; eventually, the commonalities
are reported with the desired rate f .

We specify the protocol as follows. For simplicity, it assumes
that there are only two parties, A and B. Let the interesting
data sets of A and B be SetUA and SetUB , respectively. It
is not difficult to extend the protocol specification to allow for
multiple parties.

Step (1). Initially (round 0), both devices encode their own
data sets, SetU0

A = SetUA and SetU0
B = SetUB , in two static

Bloom filters, BF 0
A and BF 0

B , respectively, and publish them
using a special static attribute ID in the SDP service record.

Step (2). In the (r + 1)-th round, A first retrieves BF r
B

via Bluetooth SDP and then checks the membership of each
data item in SetUr

A against BF r
B to obtain a matching set

SetUr+1
A ⊆ SetUr

A. Next, A encodes SetUr+1
A into a new

dynamic Bloom filter BF r+1
A . Finally, A publishes BF r+1

A

and the current step number r using a new dynamic attribute
ID calculated from B’s Bluetooth ID, (e.g. the last 4 bytes
of SHA1 hash of B’s Bluetooth ID) making it specific to B.
Symmetrically B takes the same action.

Step (3). In the following (r + 2)-th round, A first retrieves
BF r+1

B that is specially generated for A. Step (2) is repeated
similarly to generate a new matching set SetUr+2

A and a new
Bloom filter BF r+2

A specially for B published with the same
attribute ID as in step (2). This process is repeated until the new
matching set is empty or the same as that of the last round or
the desired false positive rate is reached. A dynamic attribute is
removed from SDP service record when a predefined lifetime
is reached after the end of the above process.

In each round, we replace an old hash function with a new
independent hash function generated by the technique described
in [13]. In this way, we can iteratively eliminate the case in
which two items have the same set of hash values. Thus, for
any two honest parties A and B, the resulting set SetUr

A in
round r (r ≥ 1) between A and B converges to SetUA ∩
SetUB as r →∞.

Between two strangers A and B, it is reasonable to assume
that the intersection of their data sets is a proper subset of either
original set and the intersection is much smaller. As the data
set size n decreases, so does the Bloom filter size m when
the false positive rate f and number of hash functions k are
fixed. In each round, when a new Bloom filter is constructed,
we can either dynamically decrease the filter size m according
to the current n and resulting f , or decrease f dramatically by
keeping the filter size m.

Algorithm 1 The 2-Round Discovery Protocol for User u0

1: [Round 1:]
2: Initialize Bloom filter BF0;
3: for each item a0,j in SetU0

4: calculate k hash indices of item a0,j ;
5: set the corresponding bit of BF0 to 1;
6: end for
7: publish BF0 with a static attribute ID;
8:
9: [Round 2:]

10: acquire the dynamic device(user) set U ;
11: for each user i in set U \ {u0}
12: retrieve the Bloom filter BFi from ui;
13: for each item a0,j in SetU0

14: if BFi.contains(a0,j) then
15: add a0,j to common set CSi;
16: end if
17: end for
18: if CSi.size > 0 then
19: initiate a new Bloom filter BF ′

0;
20: encode CSi into BF ′

0 with different set of k hash indices;
21: publish BF ′

0 with a dynamic attribute IDi;
22: end if
23: end for
24: for each user i with CSi.size > 0
25: retrieve the new Bloom filter BF ′

i from ui;
26: for each item a0,j in CSi

27: if BF ′
i .contains(a0,j) then

28: add a0,j to common set CS′
i;

29: end if
30: report common set CS′

i associated with user ui to u0;
31: end for

In our implementation, the length of a Bloom filter in each
round should be less than or equal to 128 bytes, which is the
maximum effective size of any attribute value in the Bluetooth
SDP service record, and the number of rounds should be less
than 10, which is the maximum number of attribute IDs that
can be used to publish Bloom filters. We found that the size
of the initial data set (e.g., contacts) SetU0

A for any user A
is a few hundred, the protocol converges after a few rounds,
and two rounds are normally enough for strangers. Hence it is
effectively a 2-round protocol.

Algorithm 1 specifies our 2-round protocol for publishing
user data and discovering matches. The same algorithm is
executed on every device in question. In the first round, we
initiate Bloom filter BF0, insert all the user data items into
BF0, and then publish the resulting BF0. In the second round,
Bloom filters are retrieved from all nearby devices. If matches
are found with the Bloom filter BFi from any user ui, we
store the matches in the corresponding set CSi. We build a new
Bloom filter BF ′

0 out of CSi and then publish BF ′
0. Finally, in

steps 25–30, we collect the set of common interests CS′
i with

target user ui and report it to the local user.
The above multi-round scheme is essentially an iterative

Bloom filter (IBF) protocol that can significantly reduce the
size requirements of Bloom filters and hence improve system
efficiency without sacrificing precision of the false positive rate.
We show the performance benefits in the next subsection.



TABLE I: Precomputed Bloom filter size (in bytes) with regard
to the number of items (N) and desired false positive rate (F)
with the number of hash functions fixed at 7.

N / F 5% 2% 1.50% 1% 0.10% 0.01% 0.001% 0.0001%

5 5 6 6 7 10 15 21 30
10 9 11 12 13 19 29 41 59
25 21 26 28 31 47 71 103 147
50 42 52 56 61 94 141 205 293

100 83 104 110 120 188 281 408 585
150 125 155 165 180 282 421 612 878
200 166 207 220 240 376 561 816 1170
250 208 258 275 300 470 701 1020 1463
300 249 310 330 360 563 841 1224 1755
350 291 362 385 420 657 981 1428 2048
400 332 413 440 480 751 1121 1632 2340
450 374 465 495 540 845 1261 1836 2633
500 415 516 550 600 939 1401 2040 2925
550 457 568 605 660 1032 1541 2244 3217
600 498 619 660 720 1126 1681 2448 3510
650 540 671 715 780 1220 1821 2652 3802
700 581 723 770 840 1314 1962 2856 4095
750 623 774 825 900 1408 2102 3060 4387
800 664 826 880 960 1501 2242 3264 4680
850 705 877 935 1020 1595 2382 3468 4972
900 747 929 990 1080 1689 2522 3672 5265
950 788 980 1045 1140 1783 2662 3876 5557
1000 830 1032 1100 1200 1877 2802 4079 5849

Table for Calculating Bloom Filter Size

4) The Benefits of Iterative Bloom Filters: Now we illustrate
the performance benefits of our IBF protocol with the following
example. Suppose that a user has 150 contacts, a phone number
is expressed as 10 digits, and the average length of names is 10
characters. (The actual length of names may be much longer.) In
a naı̈ve approach in which we publish a list of phone numbers
and names, we need 150 · (10 + 10) = 3000 bytes. Table I is
for calculating the Bloom filter size with different numbers of
contacts and false positive rates. To guarantee a 0.001% false
positive rate, we need a Bloom filter with 612 bytes, which
saves about 80% space over the naı̈ve approach.

Using our 2-round IBF protocol, we can achieve the same
false positive rate with much less bytes. Given the same
contact list and the 128 bytes length constraint, we can use
125 bytes for the first Bloom filter in the first round. This
allows us to achieve a false positive rate of 5%. We obtain
an initial common set with 150 · 5% = 8 false positives.
In the second round, we need only build a Bloom filter to
address this reduced set while keeping the false positive rate at
0.001%/5% = 0.02%. Regardless of whether there are true
common elements, the second Bloom filter’s overhead that
accounts for the 8 false positives is less than 29 bytes. Therefore
the worst-case overhead is about 154 bytes to achieve the same
false position rate of 0.001%, which is almost 75% savings
compared to the 612 bytes required by the basic Bloom filter.
More savings are expected when the number of contacts or
number of rounds grows larger. This example speaks up for
the merits of our approach over the basic Bloom filter.

C. Context Exchange

A common way of using Bluetooth to exchange information
involves several steps: (1) search for nearby devices; (2) dis-
cover the services they provide; and (3) pair two devices and
establish a connection to use a discovered service. In step (3), a
mobile phone will ask for user permission to accept a Bluetooth
connection as well as a passcode for pairing. For target users of
our system who are strangers, this is too intrusive and irritating.

E-SmallTalker System 1

Bluetooth 
Client

SDP 
Server

Bluetooth 
Server

E-SmallTalker System 2

Bluetooth 
Client

SDP 
Server

Bluetooth 
Server

Exchange
Bloom Filters

Fig. 2: Information Exchange without Bluetooth Connection.

We need to find a way for two phones to communicate with
each other without establishing a Bluetooth connection. We
achieve this by using Bluetooth’s Service Discovery Protocol
(SDP) to exchange encoded user information.

The trick is to exploit Bluetooth service attribute values to
publish Bloom filters. SDP provides a means for applications
to discover which services are available and to determine the
attributes of those services. In SDP, each service is represented
by a service record that is identified by a 128-bit Universally
Unique Identifier (UUID). All information about a service that
an SDP server maintains is contained within a single service
record, which consists of a list of service attributes. Each
service attribute describes a single characteristic of a service
(e.g., its name, type, parameters, protocols used) and consists
of an attribute ID and the corresponding attribute value. The
attribute value is a variable length field, which is explored by
our system to publish custom data. A client may issue an SDP
request to retrieve information from a service record maintained
by the SDP server on another device.

Our system takes advantage of this structure. We create a
service record by starting a virtual service with a known UUID
and a list of attributes. We use attribute values to publish
information encoded in Bloom filters. We call it a “virtual
service” because it provides no service in the traditional sense
that a client can consume or to which a client can connect.
It exists only to publish attributes. By updating the service
record to the SDP servers, two Bluetooth devices can exchange
information without setting up a Bluetooth connection.

Unlike Wi-Fi, there is no broadcast channel or beacon signals
in Bluetooth due to the fact that it uses a frequency-hopping
spread spectrum radio technology. In order to perform com-
munications, a Bluetooth slave device must follow the master’s
hop pattern which cannot be generated without knowing the
master’s address/clock values. Therefore, our system adopts a
pull model, not a push model. A device is not broadcasting its
service; rather, it is publishing its service, waiting for another
device to discover it and retrieve the information.

An alternative approach to exchange information without
setting up a Bluetooth connection is to use the Bluetooth device



name, which consists of a maximum of 248 bytes of text data.
We instead use Bluetooth SDP because it can publish more
information than a single device name. The size of custom
data (the number of attributes times the length of attribute
values) in a service record varies on different mobile devices.
For example, in our experiment a successful communication
between a Sony-Ericsson W810i phone and a Nokia N82 can
exchange up to 10 attributes, each of which has a maximum
of 128 bytes of data. Two Nokia N82s can exchange more
attributes and more bytes of data in each attribute. In addition,
SDP provides more flexible and fine-grained control as we are
able to change an attribute value individually.

The Context Exchange component in Figure 2 shows an
overview of Bluetooth SDP-based communication in our sys-
tem. The Bluetooth server publishes Bloom filters through the
phone’s SDP server. The Bluetooth client acquires the other
phone’s Bloom filters by sending a SDP request to the SDP
server on the target phone.

IV. IMPLEMENTATION AND EVALUATION

We will first overview the E-SmallTalker system implement-
ation and then present the performance evaluation results.

A. System Implementation
We choose Java ME as our prototype development environ-

ment because it is supported on most mobile phones on the
market. We implement the E-SmallTalker system and test it
on several brands of mobile phones, including Sony Ericsson
(W810i) and Nokia (5610xm, 6650, N70, N75, N82). It is
important for a social networking system like E-SmallTalker
to run across a wide variety of phones: it is useful in practice
only when a critical mass of users are using it.

We implement the system with the Eclipse SDK and the
Sun Java Wireless Toolkit for Connected Limited Device
Configuration (CLDC) based on the Mobile Information De-
vice Profile (MIDP) specification. We use the Java APIs for
Bluetooth described in the JSR-82 interface for developing
service discovery applications. We import some Java code
from the XSiena (eXtended Scalable Internet Event Notification
Architecture) project for the hash functions used in our Bloom
filters. The size of the deployed executable is about 127KB.
When a user starts the application for the first time, it asks
him to configure his personal profile (e.g., name, telephone
number, interests, past experience) and the system settings
(e.g. automatic or manual discovery, time period between each
discovery). The system imports the contacts from the address
book and lets the user choose which ones will be published
in the Bloom filter. Then the system performs the following
major operations: (1) generating and publishing Bloom filters
through Bluetooth SDP according to the user’s configurations,
(2) retrieving Bloom filters from nearby mobile phones, (3)
matching common interests or contacts, and (4) prompting the
user when there are matches.
B. Performance Evaluation

1) Experimental Setup: There are two classes of metrics
to evaluate E-SmallTalker’s performance: system performance

and social performance. System performance includes dis-
covery performance and power consumption. Social perfor-
mance mainly includes the likelihood that strangers in physical
proximity share common interests. In order to evaluate social
performance, we need to run a massive field test, which is
very costly. As a first step of performance evaluation, we focus
on system performance. System performance has a critical
impact on whether people accept our system, which is the key
challenge of our design. We plan to run a massive field test to
measure social performance in our future work.

One key system performance is discovery performance. To
evaluate the discovery performance in E-SmallTalker, we focus
on two detailed evaluation metrics: (1) Successful discovery
rate. This is defined as the percentage of successful discoveries
among all attempts to search among nearby users. Given an E-
SmallTalker user A, assuming that he shares common interests
with n nearby users, a successful discovery is one that reports
all the matches among user A and the n nearby users. (2)
Commonality discovery time. This is the period from the time of
starting a search to the time of finding someone with common
interests. This can be considered as an end-to-end delay. Power
consumption is key to system performance. Since Bluetooth
communication dominates E-SmallTalker’s power consump-
tion, we measure power consumption in the two major parts of
communication: Bluetooth device discovery and Bloom filter
retrieval (i.e., Bluetooth service discovery). We also measure
power consumption when E-SmallTalker is always on.

In our experiments, we use 6 mobile phones (a Sony Ericsson
W810i, a Nokia 5610xm, a Nokia 6650, and 3 Nokia N82s).
Each experiment is repeated 10 times to average the results.
We conduct a survey of 35 college students that reveals that
they have, on average, 143 contacts in their mobile phones.
From this result, we set the number of contacts per phone to
n = 150 in the experiments. In addition, we use seven hash
functions (k = 7) for all Bloom filter insertion and lookup
operations. Since Bluetooth’s technical details influence our
experiments, we conduct experiments considering the following
three factors: (1) the Bluetooth search interval, i.e., the time
between two consecutive searches for Bluetooth devices and
services in the application, (2) the number of nearby devices,
and (3) the distance between two devices, which is 4 meters by
default.

2) Successful Discovery Rate and Discovery Time: We first
conduct experiments to measure how the Bluetooth search
interval and the number of users (devices) impact discovery
performance.

Intuitively, if the Bluetooth search interval is too long, the
user may miss potential opportunities for social interactions.
On the other hand, if the interval is too short, the chance
of encountering collisions increases significantly and causes
discovery failures, especially when multiple mobile phones are
in physical proximity. This is caused by current limitations of
the Bluetooth protocol as will be discussed later. For similar
reasons, the more devices in physical proximity, the higher the
chance of encountering collisions and discovery failures.

In this group of experiments, we put the phones in close



Fig. 3: Discovery Time with 60 s Bluetooth Search Interval.

Fig. 4: Discovery Time with 120 s Bluetooth Search Interval.

Fig. 5: Successful Discovery Rates with 60 s/120 s Bluetooth
Search Intervals.

proximity (about 4 meters apart if possible). The Bluetooth
search intervals were set to 60 or 120 seconds and the number
of phones was iteratively increased from 2 to 6.

Regarding the number of phones with different search in-
tervals, Figures 3 and 4 show the minimum, average and
maximum discovery time and Figure 5 shows the successful
discovery rate. From the experimental data, by fixing the
number of devices, the Bluetooth search interval does not show
any significant impact on discovery time. The average discovery
time when the interval is 60 s is only slightly longer than
the case of 120 s. This can be explained by the fact that the
discovery time is actually dominated by the Bluetooth device
discovery time, which is on the order of magnitude of 10
s [21]. On the other hand, it is clear from the data that as
the number of devices increases, the discovery performance
decreases. Furthermore, both the number of devices and the
search intervals show a clear impact on the successful discovery
rate. The success rate drops as the interval decreases and the
number of devices increases.

In the next group of experiments, we seek to understand
how the distance between devices affects the common interest
discovery performance. We place two Nokia N82 phones on the
floor 1 meter apart, run the experiment 10 times, and measure
the average discovery time and successful discovery rate. Then
we repeat the experiments by increasing the distance 1 meter
at a time until the two phones are 10 meters apart.

Fig. 6: Discovery Time vs. Distance.

Fig. 7: Successful Discovery Rate vs. Distance.

Figure 6 shows the minimum, average and maximum dis-
covery times versus distance between two phones. Figure 7
presents the success rate versus distance. In summary, the
minimum, average and maximum discovery times in our exper-
iments are 13.39 s, 20.04 s, and 58.11 s, respectively, among
all the E-SmallTalker data we collected. The overall success
rate is 90%. From the data, there is no clear trend of how the
distance affects the average discovery time or the success rate,
although the maximum discovery time becomes flicky when
the distance increases from 2 meters to 5 meters. This result
demonstrates that E-SmallTalker’s performance is quite stable
within 10 meters. However, when two phones are placed more
than 10 meters apart, which is the nominal communication
range for a standard Bluetooth device, they cannot find each
other.

According to the Bluetooth specification [21], “the inquiry
substate may have to last for 10.24 seconds unless the inquirer
collects enough responses and determines to abort the inquiry
substate earlier.” In a noisy environment, there is no guarantee
of successful inquiry. In such situations, the inquiry time may
far exceed the default time of 10.24 seconds. In the inquiry
substate, a Bluetooth device will not respond to another device.
As a consequence, if two mobile phones start searching for
devices at approximately the same time, there is a collision and
they cannot obtain each other’s service information in a timely
manner. With an increased number of devices or a reduced
Bluetooth search interval, the probability of collision increases,
which leads to a lower successful discovery rate and a longer
discovery time.

3) Power Consumption: To study trends regarding power
consumption, we place two Nokia N82 phones 4 meters apart,
both fully charged. A Symbian application, the Nokia Energy
Profiler (called NEP or Juice), is used to read the battery
voltages, currents, and energy consumptions once per second.

First, we measure one N82’s energy cost for Bluetooth device
discovery and service discovery (for the purpose of Bloom



Fig. 8: Energy Cost in Device Discovery and Service Discovery.

filter retrieval), respectively. Figure 8 shows the accumulated
energy consumption for 1000 rounds/times of device discovery
and service discovery. From the data we can see that device
discovery consumes significantly more energy than service
discovery. Hence, the service discovery part in our 2-round
protocol has little impact on the overall power consumption
of the application, which is dominated by the device discovery
part. Considering the fact that the device discovery procedure is
needed by all Bluetooth applications, even a multi-round itera-
tive Bloom filter protocol contributes little power consumption
overhead.

Then we monitor the power consumption in device discovery
with nonstop (i.e., continuous) and 60 s Bluetooth search
intervals. Figure 9 shows the results of a fully charged Nokia
N82 for 8 hours. It shows a clear trend where the energy
consumption decreases when the Bluetooth search interval
increases.

Finally, we record the run time of E-SmallTalker on a fully
charged N82 phone (1050 mAh) until the battery is exhausted.
In our experiment, we let the phone run in standby mode
while turning on the cellular and Bluetooth radios. When the
search interval is set at 60 s, the phone runs slightly longer
than 29 hours. Using the same settings on the cellular and
Bluetooth radios, we redo the experiment without running E-
SmallTalker. In this case, the phone runs 32 hours until the
battery is depleted. This result is encouraging since a user will
likely only need to run E-SmallTalker when necessary, e.g., in
specific social settings.

V. DISCUSSIONS

A. Security and Privacy Considerations

Our design assumes that users are willing to share per-
sonal information at some level with strangers without their
awareness. Although security and privacy is not the focus of
this work, we can still provide privacy against eavesdroppers
(passive attacks) due to the fact that Bloom filters use one-way
hashing to encode the topics (contacts, interests, etc.), making
it very difficult to reconstruct the original list of topics in a
filter without performing an exhaustive search of the topic-
value space. To provide privacy against active attackers, we can
utilize research results in the area of privacy-preserving set in-
tersection, such as the cryptography protocols in [22]. However,
their protocols incur extensive computation and communication
costs, which do not fit in our situation.

Fig. 9: Energy Cost in Device Discovery with Different Blue-
tooth Search Intervals.

In general, our design is a trade-off between privacy and
performance given the constraints imposed by Bluetooth and
mobile phones. We also assume that the communicating parties
are in physical proximity, i.e., within 10 meters, which is the
nominal communication range for class II Bluetooth devices.
Within such a close physical distance, there is only so much
attackers can do without being spotted.

Several possible attacks may compromise the users’ privacy:
– An attacker can publish a Bloom filter consisting of a high

percentage of random 1’s such that everyone in the vicinity
would recognize him as having common friends. Although this
attack leads our system to provide false topics for the honest
user, it does help the user start a conversation. To defend against
this attack, we can modify E-SmallTalker to check that the
percentage of 1’s in any Bloom filter circulated in our system
is below a certain threshold.

– An attacker may launch a man-in-the-middle attack by
intercepting and forwarding other people’s Bloom filters. On
one hand, since the purpose of our system is just to provide
topics for facilitating a conversation among strangers, the
information being transferred is unlikely very sensitive. On
the other hand, the middleman has no context information to
decode the bits in an intercepted Bloom filter and it is very
difficult to infer any useful information.

– An attacker may also copy contact information from a
telephone directory and store it in bulk to his mobile phone.
As a result, many users might recognize him as having common
friends. However, this kind of attack is not very effective given
the large number of contacts imported from the phone book.
For example, suppose that the false positive rate is 0.1% and
the number of contacts in the phone book is 300,000. Then
the number of matches is 300, 000 · 0.1% = 300, which
is very high considering that a person normally has only a
few hundred contacts. Furthermore, this type of attack can be
detected because of its unusually high percentage of 1’s caused
by the size limit of Bloom filters imposed by Bluetooth SDP.
As in the first case, we can modify E-SmallTalker to ignore
such Bloom filters.

B. User Experience and Future Work

Our current implementation works best when there are only
two users in physical proximity. At the system level, the dis-
covery protocol can identify all devices with matching interests.
However, partly due to Bluetooth limitations, our system cannot



yet tell who owns which devices. To identify this, one possible
solution is to exchange users’ pictures or descriptions (such as
shirt color) after common topics are found and some privacy
policies are met. Other complementary techniques such as
Point&Connect [12] can be leveraged for one to point his
device to the device of an interesting person. We plan to extend
the system such that the user can tell specifically with which
persons in a crowd he can talk about certain topics.

E-SmallTalker can also be extended to collect a rich variety
of context information such as the time and location at which
two users meet, who else is around when they meet, and the
topics about which they conversed. It is also possible to retrieve
public information about the users, e.g., from their personal web
sites or other social networking services. Such information can
make small talk topics more interesting.

Furthermore, it is important to reduce the total discovery time
for a better user experience. By our experiments, the Bluetooth
device discovery time accounts for over 90% of the time cost of
our application. We plan to extend the system by reducing the
Bluetooth device discovery time. We point to recent results that
aim to accelerate Bluetooth device discovery, such as Scott et
al. [19] and Woodings et al. [20]. These results can be leveraged
to further improve performance of our system.

VI. CONCLUSION

We presented E-SmallTalker, a mobile phone-based dis-
tributed system for social networking in physical proximity
among strangers. Our system suggested common topics for
users to initiate significant conversations. Our system leveraged
Bluetooth SDP to exchange these topics without establishing a
connection. We customized service attributes to publish non-
service-related information. We proposed a novel, iterative
Bloom filter protocol that encodes topics to fit in SDP attributes
to achieve a low false positive rate. Our approach was efficient
in computation and communication. We have implemented the
system and evaluated its performance on real-world phones.
Our experiments and analyses illustrated our approach was
promising for easing social interactions in physical proximity.

REFERENCES

[1] N. Eagle and A. Pentland. “Social Serendipity: Mobilizing Social Soft-
ware.” In IEEE Pervasive Computing, Special Issue: The Smartphone, pp.
28–34, April 2005.

[2] Nokia Sensor. [Online]. Available: http://www.nokia-asia.com/A4416020

[3] Loopt. [Online]. Available: http://www.loopt.com
[4] K. Li, T. Sohn, S. Huang, W. Griswold. “PeopleTones: A System for the

Detection and Notification of Buddy Proximity on Mobile Phones.” In
Proc. 6th Int’l. Conf. on Mobile Systems (MobiSys), Breckenridge, CO,
Jun. 2008.

[5] J. Kjeldskov and J. Paay. “Just-for-Us: A Context-Aware Mobile Infor-
mation System Facilitating Sociality.” In Proc. 7th Int’l. Conf. on Human
Computer Interaction with Mobile Devices & Services, Salzburg, Austria,
Sep. 2005.

[6] M. Terry, E. D. Mynatt, K. Ryall and D. Leigh. “Social Net: Using
Patterns of Physical Proximity over Time to Infer Shared Interests.” In
Proc. Human Factors in Computing Systems (CHI), ACM Press, pp. 816–
817, 2002.

[7] B. Bloom, “Space/time tradeoffs in hash coding with allowable errors,”
In Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[8] MobiLuck. [Online]. Available: http://www.mobiluck.com
[9] L. E. Holmquist, J. Falk and J. Wigström. “Supporting Group Collab-

oration with Interpersonal Awareness Devices.” In Journal of Personal
Technologies, vol. 3, nos.1–2, pp. 105–124, 1999.

[10] S. Gaonkar, J. Li, R. R. Choudhury, L. Cox and A. Shmidt. “Micro-
Blog: Sharing and Querying Content Through Mobile Phones and Social
Participation.” In Proc. 6th Int’l. Conf. on Mobile Systems (MobiSys),
Breckenridge, CO, Jun. 2008.

[11] M. Motani, V. Srinivasan, and P. S. Nuggehalli. “PeopleNet: Engineering
A Wireless Virtual Social Network.” In Proc. of the 11th Annual Int’l.
Conf. on Mobile Computing and Networking (MobiCom), pp. 243–257,
2005.

[12] C. Peng, G. Shen, Y. Zhang and S. Lu. “Point&Connect: Intention-based
Device Pairing for Mobile Phone Users” In Proc. of the 7th Int’l. Conf.
on Mobile Systems (MobiSys), Jun. 2009

[13] A. Kirsch and M. Mitzenmacher, “Less hashing, same performance:
Building a better Bloom filter,” In Proc. of 14th Annual European
Symposium on Algorithms (ESA), pp. 456–467, Sept. 2006.

[14] L. Fan, P. Cao, J. Almeida, A. Broder, “Summary Cache: A Scalable
Wide-area Web Cache Sharing Protocol”. In Proc. SIGCOMM, pp. 1361,
1998.

[15] M. Mitzenmacher. “Compressed Bloom filters”. In IEEE/ACM Transac-
tions on Networking, 10(5):604–612, 2002.

[16] D. Guo, J. Wu, H. Chen, and X. Luo, “Theory and Network Applications
of Dynamic Bloom Filters”, In Proc. of the 25th IEEE Int’l. Conf. on
Computer Communications (INFOCOM), Barcelona, Catalunya, Spain,
April 2006.

[17] J. Bruck, J. Gao, and A. Jiang,“Adaptive Bloom Filter”. Technical Reports
of California Institute of Technology, No. 72, 2006.

[18] Y. Matsumoto, H. Hzeyama and Y. Kadobayashi,“Adaptive Bloom Filter:
A Space-Efficient Counting Algorithm for Unpredictable Network Traf-
fic”. In IEICE - Trans. on Information and Systems, v.E91-D n.5, pp.
1292–1299, May 2008.

[19] D. Scott, R. Sharp, A. Madhavapeddy, and E. Upton, “Using Visual Tags
to Bypass Bluetooth Device Discovery”, In ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 9, no. 1, pp. 41–53, 2005.

[20] R. Woodings, D. Joos, T. Clifton, and C. D. Knutson, “Rapid Heteroge-
neous Connection Establishment: Accelerating Bluetooth Inquiry Using
IrDA.” In IEEE Wireless Communications and Networking Conf., pp.
342–349, vol. 1, 2002.

[21] Bluetooth Specification Version 2.0 + EDR [Online]. Available: http://
bluetooth.com/Bluetooth/Technology/Building/Specifications/

[22] M. Freedman, K. Nissim and B. Pinkas, “Efficient Private Matching and
Set Intersection”, in Proc. of Eurocrypt, LNCS, Springer, vol. 3027, pp.
1–19, 2004.


