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We present e-Turist, an intelligent system that helps tourists plan a personalised itinerary to a tourist 

area, taking into account individual’s preferences and limitations. After creating the route, e-Turist also 

offers real-time GPS guidance and audio description of points of interest visited. Here we focus on two 

main components, the recommender system and the route planning algorithm. We also present some use 

cases to highlight e-Turist functionalities in different configurations.  

Povzetek: Predstavljamo inteligentni sistem e-Turist, ki turistom pomaga izdelati personaliziran načrt 

poti po določeni turistični regiji. Pri tem upošteva posameznikove želje ter omejitve. Po izdelavi poti e-

Turist omogoča tudi vodenje s pomočjo sistema GPS in opis zanimivosti s pomočjo zvočnih datotek. V 

članku podrobneje predstavimo dve glavni komponenti sistema, in sicer priporočilni sistem ter 

algoritem za načrtovanje poti. Poleg tega predstavimo nekaj primerov uporabe, ki prikažejo delovanje 

e-Turista v različnih konfiguracijah.  

 

1 Introduction 
Tourism is one of the fastest growing global industries. 

Though suffering a setback during the late-2000s 

recession, the tourism sector has seen a robust growth for 

six consecutive years,[1] with the number of 

international tourist arrivals growing by 4.4 % from 2014 

to 2015 and totalling 1.2 billion worldwide. From 25 

million international tourists in 1950, the number is 

forecast to reach 1.8 billion by 2030.[2] Currently, 

tourism generates 9 % of global GDP through direct and 

indirect impact, creates 1 in 11 jobs, and represents 6 % 

of world’s exports. At least 53 % of international tourists 

(600 million) travelled for holidays, recreation, and other 

forms of leisure. In addition, the number of domestic 

tourists is estimated to be between 5 and 6 billion.[2]   

Tourism represents an important part of economy in 

individual countries, contributing to 9-13 % of national 

GDPs in countries such as Italy, Germany, France, and 

Slovenia, whereas the contribution in countries such as 

Croatia, Malta, and Iceland is over 23 %.[3]    

Tourists can plan their trips either individually or 

using services provided by tourist agencies. Each 

approach has advantages and disadvantages. By joining 

an organised group, little planning is required. Such 

groups typically employ a licensed tour guide who is 

familiar with the pre-planned itinerary and individual 

stops on the route. However, such groups typically focus 

on a smaller number of prime-level tourist destinations, 

suitable for large group visits. A fixed itinerary may also 

conflict with the interests of group members who would 

prefer spending more time at certain locations or visiting 

nearby attractions that are not included in the route. 

Individual tourists are more flexible in designing their 

itinerary and choosing points of interest (POI) to visit. 

Individual tourists may also find less-known destinations 

attractive to visit, often even more so, as they are better 

suited for smaller groups of people and are more diverse 

in the activities they offer. However, the initial planning 

is more complex. The tourists have to compile travel 

information from various sources, such as tourist 

guidebooks, websites, tourist information centres, etc. 

Apart from scattered information sources, they have to 

consider opening times, geographical distribution of 

POIs (distances between locations), and the availability 

of services such as accommodations and restaurants. This 

makes designing a good itinerary quite difficult. 

However, since each tourist has unique preferences 

related to type of activities, choice of food, special 

interests, and potential limitations due to physical or 

other impairments, fixed itineraries from a guidebook or 

similar source are not satisfactory. A platform containing 

all relevant information about a certain region that would 

allow simple creation of personalised itineraries could 

represent a significant advantage both for tourists (by 

facilitating the planning) and the local tourism sector (by 

highlighting local POIs and services that would 

otherwise stay overlooked).  

In her extensive research, Molz is introducing the 

notion of “flashpackers” (affluent interactive travellers 

with a budget, higher than backpackers, spending freely 

for activities at their chosen destinations), arguing that 



448 Informatica 40 (2016) 447–455 B. Cvetković et al.  

 

the rapidly evolving context of new mobile and media 

technologies has made interactive travel an ever more 

significant element of modern social life, especially in a 

mobile world.[4] In the last decade, extensive research 

has been carried out with the goal of improving tourist 

experiences,[5] [6] [7]  partially stimulated by the fact 

that smartphones have become powerful computing tools 

with access to cloud-based services, which allow 

personalisation and real-time functionality. The potential 

for such applications is in creating personalised tours 

which, as discussed above, improve user experience over 

guidebooks that offer generic visitor tours through a city 

or a region.[5] Personalisation is achieved through user 

specifying their preferences and constrains, such as the 

available time and start and end point of the tour. While 

the current existing applications use various approaches 

to offer best experience, they have some common 

components. Typically, a recommender system is used 

[5] [6] [7] to create a list of most appropriate POIs. Some 

implementations are simple, for example recommending 

the nearest attractions based on location. Other are more 

advanced and use artificial intelligence approaches, such 

as various types of filtering (knowledge-based, 

demographic, hybrid, etc.), automatic clustering 

algorithms, approximate reasoning methodologies, such 

as fuzzy logic, or ontologies. Often, a route planning 

functionality is included. Here, the task of the application 

is to present the optimal route between POIs. Different 

approaches of solving the Travelling Salesman Problem 

(TSP) [8] are implemented in this module.[5] An 

example of such systems is a pilot study by Garcia et 

al.,[9]  which was developed for the city of San Sebastian 

in Spain and uses a basic recommender system and  route 

planning. However, the main issue with such systems is 

that they were mostly developed as pilot projects and/or 

have not left the academic environment.  

On the other hand, there are several mayor players in 

the tourist industry that use various approaches. 

TripAdvisor [10]  contains extensive lists of attractions 

with user reviews and also allows users to book flights or 

hotels. Other applications are more specific. For 

example, Triposo [11] includes a ranked list of 

attractions by category, Roadtrippers [12] is designed for 

car travellers and shows potential POIs close to the 

planned route, and Route Perfect [13]  includes 

recommendations based on explicit user preferences and 

a route planning component, but lacks day-to-day 

sightseeing itineraries in individual cities.  

As seen in this quick overview, several approaches 

have already been developed to help tourists, but we 

were unable to find a widely-used product that would 

contain the complete functionality, namely a 

recommender system, tour routing, and a real-time 

guiding component. In this paper, we present our 

solution, called e-Turist (e-Tourist),[14] [15]  which is an 

intelligent platform designed to help individual tourists 

or small groups prepare a customised sightseeing/travel 

plan and offer them an experience comparable to one 

offered by a professional tourist guide. To some extent, 

the platform promotes smaller tourist-oriented 

businesses, which is important, since they contribute to 

local economy and ensure jobs in local environment. e-

Turist was initially developed for tourist areas in 

Slovenia and is now being expanded to include 

destinations worldwide. The system can be accessed 

either through a mobile application or a website. Tourists 

Figure 1. e-Turist system overview. 
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enter their preferences and the system prepares a 

customised itinerary which includes the most appropriate 

points of interest with the shortest route connecting them. 

In addition, the application guides the tourist using GPS 

and offers information about attractions either in text or 

audio format. We discuss the main components of e-

Turist, namely the recommender system that creates a list 

of most interesting places for the tourist to visit, and the 

route planner which calculates the optimal route between 

these places. We also present some use cases, which 

highlight the main functionalities of the system.  

2 System overview 
The e-Turist system is designed as a web service 

(software as a service - SaaS) and is accessible either 

through a web-browser or a smartphone app. The system 

architecture is shown in Figure 1. 

When opening the application, the user enters his 

preferences regarding the trip. Those may be basic, such 

as the trip duration, or more detailed, by creating a user 

profile that includes information such as age, education, 

or budget (these parameters were considered relevant by 

tourism experts). The application then creates the 

proposed itinerary, which is done in two steps. First, the 

recommender system creates a list of appropriate POIs 

chosen dynamically according to the user’s preferences. 

In the second step, the route planning module proposes 

the optimal route between a subset of chosen POIs, based 

on the available time and some other parameters, such as 

stops for meal during the trip. The user can then 

customize the proposed route in one or more steps. The 

recommender module and the route planning module will 

be presented in more detail in the following sections.  

When on the tour, the application uses real-time 

guidance based on the GPS data. When reaching each 

stop, the application offers information about the POI, 

either in text or audio form. During the tour, the 

application also highlights nearby POIs so that the user 

can decide whether to make a detour. At the end, the user 

can rate the visited POIs with 1–5 stars.  

The browser application is essentially identical to the 

mobile one, with the exception of the GPS guidance 

being absent. Interchangeable use is possible, such as 

editing and saving the route via the browser application 

and opening it on the mobile device.  

e-Turist employs an audio module, which offers 

audio POI descriptions. To create audio descriptions in 

the Slovenian language, the voice synthesizer Govorec 

[16]  is used. Govorec was developed in collaboration 

between Jožef Stefan Institute and the company Amebis.  

For other languages – currently, English, German, and 

Italian are supported – Microsoft Speech API [17] is 

used. The audio files are generated automatically when a 

POI description is entered into the database and are 

stored there for user access.  

The administration module is used to edit the 

database of POIs. For destinations (regions), 

geographical area and approximate radius are defined. 

For each POI, a description, one or more images, and 

metadata are defined. The metadata includes the type of 

the POI, opening hours, accessibility, expert rating, 

suitability for different types of tourists, etc. The 

administration module highlights missing information in 

the descriptions, and allows monitoring the visits and 

user ratings for individual POIs, which allows tourism 

workers to improve the service.   

3 Recommender system 
In order to prepare the most suitable itinerary for 

individual tourists, the recommender system module uses 

a combination of constraints filtering, knowledge-based 

recommendation and collaborative filtering, as shown in 

Figure 2.  

The constraints filtering module utilises “hard” 

constraints that exclude the POIs that do not meet the 

user’s limitations and key requirements. These 

constraints are (i) the location, (ii) the purpose of the trip 

– currently the options are active tourism, cultural 

heritage, entertainment and gastronomy, (iii) the opening 

hours of the POIs, and (iv) mobility limitations for 

physically impaired users. For example, if a user is 

interested in active tourism, he will not be suggested to 

visit museums but venues such as adrenaline parks 

instead.  

The knowledge-based module computes the 

distance between each POI and the user based on four 

sets of expert-defined characteristics: age, education, 

country of residence, and budget. There are five age 

groups: age up to 26, 27 to 36, 37 to 45, 46 to 55, and 56 

and higher. There are three education groups: primary, 

secondary, and tertiary, and also three budget groups: 

low, medium, and high. The country parameter 

corresponds to countries whose tourists often visit that 

POI. Each POI is assigned one or more groups for each 

characteristic, except for budget, where it can only have 

one value. Each group is assigned numerical value (e.g. 0 

is low, 1 is medium, and 2 is high budget), respectively, 

which are used to compute the Euclidian distance 

between the user and POI characteristics, later 

transformed into score of the individual characteristic. 

The score for age, education, and country 

characteristic is computed using Equation 1. The 

absolute distance between the user characteristic and POI 

Figure 2. Recommender system schematics. 
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characteristic is divided by number of groups per 

characteristic and subtracted from the perfect-fit value of 

1. The score for budget is computed with the same 

approach unless the 𝑢𝑠𝑒𝑟𝑏𝑢𝑑𝑔𝑒𝑡  ≥ 𝑃𝑂𝐼𝑏𝑢𝑑𝑔𝑒𝑡 , in which 

case the score is always set to the perfect-fit value of 1. 

In case the characteristic value is not defined for a POI or 

the user, the score is set to the medium-fit value of 0.5.  

𝑠𝑐𝑜𝑟𝑒𝑐ℎ𝑎𝑟 = 1 − |(
𝑢𝑠𝑒𝑟𝑐ℎ𝑎𝑟−𝑃𝑂𝐼𝑐ℎ𝑎𝑟

𝑐ℎ𝑎𝑟𝑔𝑟𝑜𝑢𝑝𝑠
)|  (1) 

The final score 𝑠𝑐𝑜𝑟𝑒𝐾𝐵 of the knowledge-based 

module is calculated using Equation 2. The score is 

afterwards normalised to interval from 1 to 5.  

𝑠𝑐𝑜𝑟𝑒𝐾𝐵 =
𝑠𝑐𝑜𝑟𝑒𝑎𝑔𝑒+𝑠𝑐𝑜𝑟𝑒𝑒𝑑𝑢+𝑠𝑐𝑜𝑟𝑒𝑐𝑜𝑢𝑛𝑡𝑟𝑦+𝑠𝑐𝑜𝑟𝑒𝑏𝑢𝑑𝑔𝑒𝑡

4
  (2) 

The collaborative filtering uses a memory-based 

approach to assign the 𝑠𝑐𝑜𝑟𝑒𝐶𝐹  for the user. Each 

instance represents one user. Its feature vector is 

composed of ratings per POI given by the individual 

user. In case the user did not rate a POI, that value is 

defined as a missing value. We used the k-nearest 

neighbour algorithm [18]  to find k similar users, once a 

sufficiently high number of users have been recorded in 

the database. The final score for an individual POI is an 

average value of scores per POI for the k-nearest 

neighbours.  

The final result of the hybrid recommender system is 

the final score calculated with Equation 3. It is a 

weighted sum of the knowledge-based rating, the 

collaborative-filtering rating, and the expert rating (POI 

rating provided by experts).  

 

𝑠𝑐𝑜𝑟𝑒 =  𝑤1𝑠𝑐𝑜𝑟𝑒𝐾𝐵 + 𝑤2𝑠𝑐𝑜𝑟𝑒𝐶𝐹+ 𝑤3𝑠𝑐𝑜𝑟𝑒𝑒𝑥𝑝    (3) 

   

We discuss the weight values in the following 

subsection. 

3.1 Experimental evaluation and 

parameter settings for the 

recommender module 

The recommender system was tested on data of 24 users 

with different age and background who were given a list 

of 90 POIs from the Heart of Slovenia region [19] . The 

users were asked to rate the POIs they are familiar with 

from 1 to 5 stars. These ratings were then compared to 

the recommender system modules, with the goal of 

accurately predicting the rating of POI as would be given 

by the current user. This helped us define the final 

weights of Equation 3.  

Each recommender system module was evaluated for 

the performance using the mean absolute error (MAE) 

over all 90 POIs, as presented in Equation 4. The lower 

the MAE value, the better the prediction of the modules. 

𝑀𝐴𝐸 =  
∑ |(𝑠𝑐𝑜𝑟𝑒𝑡𝑟𝑢𝑒−𝑠𝑐𝑜𝑟𝑒𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)|𝑛

𝑖=0

𝑛
                (4) 

In the first step, we evaluated the baseline approach 

which rates all POIs with the score 3, being the medium 

score. The MAE value of the baseline approach is 1.05 

rating.  

In the second step, the expert rating was evaluated. It 

amounted to 0.99 rating. 

In the third step, the knowledge-based module was 

evaluated. The users’ budget preferences and 

demographic data were used to compute the 𝑠𝑐𝑜𝑟𝑒𝐾𝐵. 

The evaluation of the score estimates per user yielded 

MAE of 0.98. 

Next, we evaluated the collaborative filtering 

module. Before evaluation we had to define the number 

of neighbours that would be used by the k-nearest 

neighbours algorithm. We tested the algorithm for k=1 to 

k=5 and settled for k=4 as it returned the best results. The 

MAE of the collaborative filtering module using 4-

nearest neighbours algorithm was 0.87 score.   

Before setting the weights of the three modules, we 

decided that the weight of the expert rating should be 

smaller than the weights for other ratings, otherwise the 

recommendations would not be personalised. We decided 

to assign it to 0.2. Since the difference between the 

knowledge-based and collaborative filtering module was 

not large, we gave them equal weights of 0.4 as shown in 

Equation 5. In case the expert score is missing, the 

recommender modules are assigned weights of 0.5 

(Equation 6), and in case the knowledge-based or the 

collaborative filtering rating is missing, the 0.8 weight is 

assigned to the remaining one (Equation 7 and 8). If there 

is only one score, it is assigned the full weight. 

 

𝑠𝑐𝑜𝑟𝑒 =  0.4(𝑠𝑐𝑜𝑟𝑒𝐾𝐵 + 𝑠𝑐𝑜𝑟𝑒𝐶𝐹) +  0. 𝑠𝑐𝑜𝑟𝑒𝑒𝑥𝑝  (5) 

 

𝑠𝑐𝑜𝑟𝑒 =  0.5𝑠𝑐𝑜𝑟𝑒𝐾𝐵 + 0.5𝑠𝑐𝑜𝑟𝑒𝐶𝐹    (6) 

 

𝑠𝑐𝑜𝑟𝑒 =  0.8𝑠𝑐𝑜𝑟𝑒𝐾𝐵 + 0. 𝑠𝑐𝑜𝑟𝑒𝑒𝑥𝑝   (7) 

 

𝑠𝑐𝑜𝑟𝑒 =  0.8𝑠𝑐𝑜𝑟𝑒𝐶𝐹 +  0. 𝑠𝑐𝑜𝑟𝑒𝑒𝑥𝑝   (8) 

 

The results of the above equations were compared to 

individual modules. The results are presented in Table 1. 

The MAE value of the baseline approach is 1.05 score 

and the MAE of the final rating is 0.86 score, which is 

better than the MAE of the knowledge-based, 

collaborative-filtering rating, and expert rating alone.   

Approach MAE (rating) 

Baseline  1.05 

Expert score 0.99 

Knowledge-based module 0.98 

Collaborative filtering module 0.87 

e-Turist final rating 0.86 

Table 1. Results of the baseline rating, individual 

modules ratings, and the e-Turist recommender system 

final rating. 

4 Route planning algorithm 
The task for the route planning module is to prepare the 

best route for the tourist from the list of POIs generated 
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by the recommender system, taking into account the 

attractiveness of individual POIs and the time limitations 

of the tourist. This task is reminiscent of the well-known 

knapsack problem,[20]  where the best set of items (in 

our case POIs) with weights Wi (the time needed to visit 

the POI) and values Vi (POI attractiveness) have to be 

chosen so that the overall weight does not exceed the 

limit and that the total value is maximal. Such problem 

can be solved in a pseudo-polynomial time with dynamic 

programming.[21] However, in our practical 

implementation, the algorithm needs additionally to take 

into account the time needed to visit the chosen items 

(POIs) – which is an estimation problem by itself. The 

path duration estimation problem opens a new sub-

problem inside the knapsack problem, i.e., how to find 

the route with minimal duration, given the POIs. This 

sub-problem is also a known problem in the theory of 

computation, called the TSP.[8] Therefore, in our case 

we have a “modified knapsack problem” where the total 

value of the chosen items changes dynamically (with 

each algorithm iteration). Additionally, the path 

estimation is computationally expensive process, because 

it requires solving an NP-hard problem, i.e., TSP. 

Moreover, the final algorithm execution time should be 

in the range of seconds, because it will be used in a real-

time POI recommender application, where the user needs 

instant feedback from the system. Because of these 

reasons, two simplifications were proposed: a greedy 

approach for knapsack problem (POIs ordered by value) 

and an adapted TSP for path duration estimation (finds 

near optimal solution).  

The first step in our algorithm is the estimation of 

the importance of an individual POI (how attractive a 

POI is ‒ POI value). We defined the POI value 

considering three factors:  

 POI's rating (provided by the recommender 

system) 

 POI's visit duration 

 POI's local reachability duration 

The first factor is a value that is provided by the 

recommender system (𝑠𝑐𝑜𝑟𝑒) which varies from 1 to 5 

(attractiveness of the POI). The next factor, the POI's 

visit duration, represents the average time that a tourist 

needs in order to see the POI, which is defined by an 

expert in the POI database. The final factor, the POI's 

reachability duration, is a variable that represents how far 

a POI is from its nearest neighbours. In other words, if a 

POI is far from the rest of the POIs, the value for this 

variable would be greater compared to the reachability 

duration of the other POIs. Using this information, the 

POIs that are "outliers" (far from the rest of the POIs) are 

"punished" because the tourist needs more time to reach 

them. For the estimation of this variable we used a partial 

implementation of the Local Outlier Detection (LOF) 

algorithm. In particular, we used the local reachability 

distance (lrd) metric in order to estimate how far a POI is 

from its neighbours. The LOF algorithm and its 

mathematical definitions are described by Breunig et al 

[22] .  

The mathematical definition of the POI importance, 

which includes all the three factors, is presented in 

Equation 7.  

 

𝑉 =  𝛼 ∗ 𝑠𝑐𝑜𝑟𝑒 + (1 − 𝛼) ∗ (1 − 𝑃𝑛𝑜𝑟𝑚) ∗ 𝑟𝑎𝑡𝑒 (7) 

 

The variable 𝑠𝑐𝑜𝑟𝑒 is the POI's rating, which varies 

from 1 to 5. The variable Pnorm represents the normalised 

value (from 0 to 1) of the P, which is a sum of the POI's 

visit duration (Vd) and the POI's local reachability 

distance (lrd) – note that Vd and lrd take values in hours: 

 

𝑃 =  𝑉𝑑 +  𝑙𝑟𝑑    (8) 

 

Because the idea is to "punish" the POIs that require 

longer time to visit and the ones that are far away, the 

normalised P is subtracted from 1 (the bigger the value 

of Pnorm, the less important the POI). α is a parameter 

regulating the importance of the evaluation value (V) on 

one side, and the POI's visit duration and POI's local 

reachability distance (P) on the other side. The empirical 

analysis of the data showed that 0.5 is a reasonable trade-

off value for α. This way, both sides of the equation are 

equally weighted in the final importance value V. To 

summarize, the first term in Equation 8 is considered as it 

is, while the second term is reduced by the factor 

corresponding to the time needed for the visit (1 – Pnorm). 

In the next step of the algorithm, all the POIs are 

ordered by the importance value V. Using a greedy 

strategy, the algorithm then adds items (POIs) in the 

knapsack until the limit is reached. With each POI added, 

the weight of the knapsack is checked ‒ if the weight 

(time duration) of the chosen POI combination is below 

the maximum weight (total available time of the tourist). 

In addition, with each added POI, a TSP algorithm 

estimates the path duration, which is also checked with 

the time limit of the tourist. This way, a near optimal 

combination of POIs is found. 

Additionally, the algorithm checks for nested POIs, 

since there may be more than one POI at the same 

location. For example, the Ljubljana castle additionally 

has a museum and a tower. Therefore, if the algorithm 

has chosen some of the nested POIs in the optimal route, 

it additionally adds all the other nested POIs at that 

location, and by doing so it also updates the time for the 

visit and checks the constraints of the knapsack. 

After the combination of POIs is found, the 

algorithm checks whether the user prefers to start from 

the nearest POI. If this is the case, the order of the POIs 

is recalculated with a modified version of the original 

TSP which creates a path using a fixed start POI. 

In the final step of the algorithm, it is checked 

whether the tourist has chosen multiple days for 

sightseeing. In the case of a multiple-days visit, the POIs 

are segmented into groups, each group corresponding to 

one day of the trip. Additionally, it is checked if the user 

plans a meal at a particular hour of the day. If this is the 

case and there are restaurant-POIs in the list of POIs, the 

best (according to the evaluation value and the location) 

restaurant is chosen. That day's route is modified in such 

a way that the tourist is near the restaurant during the 
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previously chosen meal time. This is done by dividing 

the problem in two segments (before and after the meal) 

and calling the TSP solver for each. First, for before the 

meal, the end location is fixed to the restaurant, and next, 

for after the meal, the start location is fixed to the 

restaurant.  

The pseudo code of the route planning algorithm is 

given with Algorithm 1. 

Since the TSP solves a sub-problem in the general 

knapsack problem, its execution time needs to be in the 

range of milliseconds. Therefore, for its implementation, 

we considered an open-source algorithm [23]  that finds a 

near-optimal solution. It is a greedy approach with 

additional optimization mechanisms. The empirical tests 

showed that for our scenario (up to 200 POIs) it almost 

always finds the optimal solution, and also the execution 

time is acceptable i.e., several milliseconds. Additionally, 

we modified the original algorithm so that it can use start 

and end POI. This option is required when the users 

wants to start from the closest location to them (e.g. by 

using the GPS signal of the tourist's smartphone). Also, 

when the user selects meal-time, the path is divided into 

two parts: before and after lunch.  

In order to decrease the execution time, we call the 

TSP algorithm only when the time needed to visit all the 

POIs reaches a predefined threshold of 80% of the total 

available time. In other words, when the time required to 

visit the POIs reaches 80% of the total available time, the 

TSP is called to estimate the exact path duration. 

Otherwise, every time a POI is added, the path is 

estimated simply by adding the path duration to the 

nearest POI. A detailed evaluation of the routing 

algorithm is a problem on its own and will not be 

addressed in this paper.  

5 Use cases 
In this section, we show different aspects of e-Turist 

functionality. Let us consider three different tourists, 

Ada, Bob, and Ted. The details about these users are 

presented in Table 2. 

 
User 

Ada Bob Ted 

Profile 

Age / 60 / 

Country / Germany / 

Budget / high / 

Education / tertiary / 

Mobility lim. / yes / 

Interest 

Active tourist    

Gastronomy    

Entertainment    

Cultural heritage    

Include lunch     

Transport 
Car    

Walking    

Location 
Slovenian Istria    

The  Hague    

Table 2. Users and their interests. Note that Bob creates 

his profile only in the second step of the use case. 

Algorithm 1: Route planning algorithm 

 

Input:   
        allPOIs //POIs from the recomm. system 

        transport //the means of transport  

        numDays //number of days for the visit 

Result:  
         FinalPOIs //The near-optimal list of POIs  

         AlternativePOIs //Alternative POIs  

 

duration = 0 

//order by value V 

orderedPOIs = OrderPOIsByValue (allPOIs)  

 

//start adding POIs ordered by the value, add the rest 

to the alternative list 

For POI in orderedPOIs 

If  duration + POI.duration < totalDuration  

tempPOIs.add(POI) 

pathDuration = TSP(tempPOIs, transport)  

duration = 

updateDuration(POI.duration, pathDuration)  

If POI is child at location  

tempPOIs.add (POI.parent) 

duration = 

updateDuration(POI.parent.duration) 

If POI is grandchild at location 

tempPOIs.add (POI.grandParent) 

duration = updateDuration 

(POI.grandParent.duration) 
 

Else 

AlternativePOIs.add(POI) 

End 

 

//Find the near-optimal path and time to visit all 

chosen POIs 

Solution = TSP(tempPOIs, transport)  

 

//Take care of the parent-child relation 

FinalPOIs= OrderByParentChildRelation (Solution) 

 

//If the user is less than 1 km away from some of the 

chosen POIs, start from the nearest POI 

If  StartLocation.DistanceToNearestPOI < 1km 

    FinalPOIs= Reorder(FinalPOIs) 

 

//if there are multiple days, segment the solution to 

multiple lists of POIs, for each day 

If  numDays > 1 

    FinalPOIs= SegmentByDays (FinalPOIs) 

 

Return FinalPOIs, AlternativePOIs 
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Ada and Bob would like to spend a day in the 

Slovenian Istria region on Thursday, 1 September 2016. 

Both start the trip at 10 am and plan to spend 8 hours 

sightseeing. Both of them have a car available as a means 

of transport and Ada chooses to have lunch around 1 pm. 

Neither of them has yet created a user profile, which is 

likely for first-time users. The recommender system will 

therefore only consider the information from the 

constraints filtering module and the expert rating. Ada is 

interested in active tourism, gastronomy, and 

entertainment while Bob is interested in cultural and 

natural heritage.  

The initial route proposed for Ada can be observed 

on the left side of Figure 3. After it is created, Ada 

decides to modify the proposed itinerary by clicking the 

“Edit” button which allows to remove the suggested and 

add other nearby/alternative POIs using drag and drop. 

When clicking “Update”, Ada can choose whether to use 

the POIs in sequence as manually selected or to 

automatically reorder the sequence into an optimal route. 

Figure 3, right, presents the new proposed trip after 

choosing the automatic reordering. This new route 

requires longer than 8 hours to complete. If Ada decides 

that this is too long, she can edit the itinerary again, 

perhaps removing some of the POIs.  

On the other hand, Bob has different preferences 

than Ada, which will reflect in different proposed 

itinerary (Figure 4, left). It is, however, possible for some 

POIs to overlap since they may be listed in more than 

one category, e.g. active tourism and cultural and natural 

heritage.  

In the next step, Bob, who is a 60-year old German 

with tertiary education, high budget, and mobility 

limitations, creates his user profile. This allows the 

knowledge-based module and the collaborative filtering 

module to modify the list of POIs to better match Bob’s 

profile. The new proposed route for Bob looks rather 

different (Figure 4, right). The constraints filtering 

module has first removed POIs that are less appropriate 

for people with mobility limitations, such as Strunjan 

trail (Strunjanska pešpot) and Smokvica educational trail 

(Zelena učna pot: Smokvica). In addition, the 

knowledge-based module has added the picturesque old 

villages Glem and Padna to the itinerary, since these are 

destinations that are likely to appeal to Bob’s 

demographics, and also added the Second World War 

memorial (Spomenik NOB) - although it only has a 3-

star expert rating. Additional alternative POIs appear on 

the map as well. Since Bob has not rated any POIs yet, 

the collaborative filtering has no specific ratings (for 

 

Figure 3. Left: Initial route, proposed for Ada. The sidebar on the left shows the list of the recommended POIs (red 

balloons), while the right side shows the route on the map (blue line) and other nearby POIs (yellow balloons). 

Expert ratings are marked with stars. Right: The new route, proposed for Ada, after she manually edits the POI list. 

 

Figure 4. Left: Initial route, proposed for Bob, who is interested in cultural and natural heritage sites. Right: The 

new route, following Bob’s creation of user profile.  
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Bob) to use for finding similar users and it therefore does 

not contribute to the POI selection in this use case. Once 

Bob starts rating visited POIs, the collaborative filtering 

will contribute to the final rating of the POIs in future 

trip planning.   

One may observe that most POIs in routes for Ada 

and Bob have 4 or 5-star rating. They both travel by car, 

therefore they can cover larger distances during the trip, 

so the algorithm can include several POIs with high 

ratings.  

 

 

Figure 5. Proposed route for Ted, who explores The 

Hague on foot. 

e-Turist also works on a city level. Let us consider 

Ted, also a first-time user, who is interested in cultural 

and natural heritage sites in the city of Hague in the 

Netherlands. Ted will explore the city on foot and use the 

same time window as Ada and Bob. The proposed route 

for Ted is shown in Figure 5. Here, we can also see an 

example of a nested POI, since Prince William V Gallery 

is located within the Mauritshuis complex which is a POI 

on its own.  

6 Conclusion 
We present a personalised trip planner that aims to 

improve tourist experience by facilitating the preparation 

of the trip and offering real-time guiding. e-Turist can be 

accessed either via browser or mobile application.  

The platform is built on a POI database, which is 

easy to manage and expand. Based on the user profile 

and interests, the recommender system first creates a list 

of POIs which the user would find appealing. In order to 

create the list, the system uses a combination of 

constraints filtering, expert knowledge and collaborative 

filtering. In the next step, the route planning algorithm 

creates the optimal route between a subset of POIs. The 

algorithm uses the concepts from the TSP problem and 

the modified knapsack problem. The guiding component 

contains real-time GPS guidance and audio descriptions 

of the POIs, created using a speech synthesizer. It also 

allows the users to rate POIs, which serves for the 

collaborative filtering and as feedback available to 

tourism workers in the administration module.  

Initial tests of the recommender system turned 

reasonably accurate (Section 3.1), however, since the 

current set of registered users is rather small, we expect 

the collaborative module to perform better in future. The 

advantage of e-Turist is that is easy to adapt to different 

regions. Initially, it was developed as a pilot project on 

two regions in Slovenia but is now being expanded to 

include regions worldwide. In the future, we also plan to 

integrate existing POI databases. 
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