
 Informatica 40 (2016) 447–455 447

e-Turist: An Intelligent Personalised Trip Guide

Božidara Cvetković, Hristijan Gjoreski, Vito Janko, Boštjan Kaluža, Anton Gradišek and Mitja Luštrek

Department for Intelligent Systems, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia

Igor Jurinčič, Anton Gosar, Simon Kerma and Gregor Balažič

Faculty of Tourism Studies – Turistica, University of Primorska, Obala 11a, SI-6320 Portorož, Slovenia

E-mail: boza.cvetkovic@ijs.si

Keywords: tour planning, recommender system, route optimization

Received: June 16, 2016

We present e-Turist, an intelligent system that helps tourists plan a personalised itinerary to a tourist

area, taking into account individual’s preferences and limitations. After creating the route, e-Turist also

offers real-time GPS guidance and audio description of points of interest visited. Here we focus on two

main components, the recommender system and the route planning algorithm. We also present some use

cases to highlight e-Turist functionalities in different configurations.

Povzetek: Predstavljamo inteligentni sistem e-Turist, ki turistom pomaga izdelati personaliziran načrt

poti po določeni turistični regiji. Pri tem upošteva posameznikove želje ter omejitve. Po izdelavi poti e-

Turist omogoča tudi vodenje s pomočjo sistema GPS in opis zanimivosti s pomočjo zvočnih datotek. V

članku podrobneje predstavimo dve glavni komponenti sistema, in sicer priporočilni sistem ter

algoritem za načrtovanje poti. Poleg tega predstavimo nekaj primerov uporabe, ki prikažejo delovanje

e-Turista v različnih konfiguracijah.

1 Introduction
Tourism is one of the fastest growing global industries.

Though suffering a setback during the late-2000s

recession, the tourism sector has seen a robust growth for

six consecutive years,[1] with the number of

international tourist arrivals growing by 4.4 % from 2014

to 2015 and totalling 1.2 billion worldwide. From 25

million international tourists in 1950, the number is

forecast to reach 1.8 billion by 2030.[2] Currently,

tourism generates 9 % of global GDP through direct and

indirect impact, creates 1 in 11 jobs, and represents 6 %

of world’s exports. At least 53 % of international tourists

(600 million) travelled for holidays, recreation, and other

forms of leisure. In addition, the number of domestic

tourists is estimated to be between 5 and 6 billion.[2]

Tourism represents an important part of economy in

individual countries, contributing to 9-13 % of national

GDPs in countries such as Italy, Germany, France, and

Slovenia, whereas the contribution in countries such as

Croatia, Malta, and Iceland is over 23 %.[3]

Tourists can plan their trips either individually or

using services provided by tourist agencies. Each

approach has advantages and disadvantages. By joining

an organised group, little planning is required. Such

groups typically employ a licensed tour guide who is

familiar with the pre-planned itinerary and individual

stops on the route. However, such groups typically focus

on a smaller number of prime-level tourist destinations,

suitable for large group visits. A fixed itinerary may also

conflict with the interests of group members who would

prefer spending more time at certain locations or visiting

nearby attractions that are not included in the route.

Individual tourists are more flexible in designing their

itinerary and choosing points of interest (POI) to visit.

Individual tourists may also find less-known destinations

attractive to visit, often even more so, as they are better

suited for smaller groups of people and are more diverse

in the activities they offer. However, the initial planning

is more complex. The tourists have to compile travel

information from various sources, such as tourist

guidebooks, websites, tourist information centres, etc.

Apart from scattered information sources, they have to

consider opening times, geographical distribution of

POIs (distances between locations), and the availability

of services such as accommodations and restaurants. This

makes designing a good itinerary quite difficult.

However, since each tourist has unique preferences

related to type of activities, choice of food, special

interests, and potential limitations due to physical or

other impairments, fixed itineraries from a guidebook or

similar source are not satisfactory. A platform containing

all relevant information about a certain region that would

allow simple creation of personalised itineraries could

represent a significant advantage both for tourists (by

facilitating the planning) and the local tourism sector (by

highlighting local POIs and services that would

otherwise stay overlooked).

In her extensive research, Molz is introducing the

notion of “flashpackers” (affluent interactive travellers

with a budget, higher than backpackers, spending freely

for activities at their chosen destinations), arguing that

448 Informatica 40 (2016) 447–455 B. Cvetković et al.

the rapidly evolving context of new mobile and media

technologies has made interactive travel an ever more

significant element of modern social life, especially in a

mobile world.[4] In the last decade, extensive research

has been carried out with the goal of improving tourist

experiences,[5] [6] [7] partially stimulated by the fact

that smartphones have become powerful computing tools

with access to cloud-based services, which allow

personalisation and real-time functionality. The potential

for such applications is in creating personalised tours

which, as discussed above, improve user experience over

guidebooks that offer generic visitor tours through a city

or a region.[5] Personalisation is achieved through user

specifying their preferences and constrains, such as the

available time and start and end point of the tour. While

the current existing applications use various approaches

to offer best experience, they have some common

components. Typically, a recommender system is used

[5] [6] [7] to create a list of most appropriate POIs. Some

implementations are simple, for example recommending

the nearest attractions based on location. Other are more

advanced and use artificial intelligence approaches, such

as various types of filtering (knowledge-based,

demographic, hybrid, etc.), automatic clustering

algorithms, approximate reasoning methodologies, such

as fuzzy logic, or ontologies. Often, a route planning

functionality is included. Here, the task of the application

is to present the optimal route between POIs. Different

approaches of solving the Travelling Salesman Problem

(TSP) [8] are implemented in this module.[5] An

example of such systems is a pilot study by Garcia et

al.,[9] which was developed for the city of San Sebastian

in Spain and uses a basic recommender system and route

planning. However, the main issue with such systems is

that they were mostly developed as pilot projects and/or

have not left the academic environment.

On the other hand, there are several mayor players in

the tourist industry that use various approaches.

TripAdvisor [10] contains extensive lists of attractions

with user reviews and also allows users to book flights or

hotels. Other applications are more specific. For

example, Triposo [11] includes a ranked list of

attractions by category, Roadtrippers [12] is designed for

car travellers and shows potential POIs close to the

planned route, and Route Perfect [13] includes

recommendations based on explicit user preferences and

a route planning component, but lacks day-to-day

sightseeing itineraries in individual cities.

As seen in this quick overview, several approaches

have already been developed to help tourists, but we

were unable to find a widely-used product that would

contain the complete functionality, namely a

recommender system, tour routing, and a real-time

guiding component. In this paper, we present our

solution, called e-Turist (e-Tourist),[14] [15] which is an

intelligent platform designed to help individual tourists

or small groups prepare a customised sightseeing/travel

plan and offer them an experience comparable to one

offered by a professional tourist guide. To some extent,

the platform promotes smaller tourist-oriented

businesses, which is important, since they contribute to

local economy and ensure jobs in local environment. e-

Turist was initially developed for tourist areas in

Slovenia and is now being expanded to include

destinations worldwide. The system can be accessed

either through a mobile application or a website. Tourists

Figure 1. e-Turist system overview.

e-Turist: An Intelligent Personalised Trip Guide Informatica 40 (2016) 447–455 449

enter their preferences and the system prepares a

customised itinerary which includes the most appropriate

points of interest with the shortest route connecting them.

In addition, the application guides the tourist using GPS

and offers information about attractions either in text or

audio format. We discuss the main components of e-

Turist, namely the recommender system that creates a list

of most interesting places for the tourist to visit, and the

route planner which calculates the optimal route between

these places. We also present some use cases, which

highlight the main functionalities of the system.

2 System overview
The e-Turist system is designed as a web service

(software as a service - SaaS) and is accessible either

through a web-browser or a smartphone app. The system

architecture is shown in Figure 1.

When opening the application, the user enters his

preferences regarding the trip. Those may be basic, such

as the trip duration, or more detailed, by creating a user

profile that includes information such as age, education,

or budget (these parameters were considered relevant by

tourism experts). The application then creates the

proposed itinerary, which is done in two steps. First, the

recommender system creates a list of appropriate POIs

chosen dynamically according to the user’s preferences.

In the second step, the route planning module proposes

the optimal route between a subset of chosen POIs, based

on the available time and some other parameters, such as

stops for meal during the trip. The user can then

customize the proposed route in one or more steps. The

recommender module and the route planning module will

be presented in more detail in the following sections.

When on the tour, the application uses real-time

guidance based on the GPS data. When reaching each

stop, the application offers information about the POI,

either in text or audio form. During the tour, the

application also highlights nearby POIs so that the user

can decide whether to make a detour. At the end, the user

can rate the visited POIs with 1–5 stars.

The browser application is essentially identical to the

mobile one, with the exception of the GPS guidance

being absent. Interchangeable use is possible, such as

editing and saving the route via the browser application

and opening it on the mobile device.

e-Turist employs an audio module, which offers

audio POI descriptions. To create audio descriptions in

the Slovenian language, the voice synthesizer Govorec

[16] is used. Govorec was developed in collaboration

between Jožef Stefan Institute and the company Amebis.

For other languages – currently, English, German, and

Italian are supported – Microsoft Speech API [17] is

used. The audio files are generated automatically when a

POI description is entered into the database and are

stored there for user access.

The administration module is used to edit the

database of POIs. For destinations (regions),

geographical area and approximate radius are defined.

For each POI, a description, one or more images, and

metadata are defined. The metadata includes the type of

the POI, opening hours, accessibility, expert rating,

suitability for different types of tourists, etc. The

administration module highlights missing information in

the descriptions, and allows monitoring the visits and

user ratings for individual POIs, which allows tourism

workers to improve the service.

3 Recommender system
In order to prepare the most suitable itinerary for

individual tourists, the recommender system module uses

a combination of constraints filtering, knowledge-based

recommendation and collaborative filtering, as shown in

Figure 2.

The constraints filtering module utilises “hard”

constraints that exclude the POIs that do not meet the

user’s limitations and key requirements. These

constraints are (i) the location, (ii) the purpose of the trip

– currently the options are active tourism, cultural

heritage, entertainment and gastronomy, (iii) the opening

hours of the POIs, and (iv) mobility limitations for

physically impaired users. For example, if a user is

interested in active tourism, he will not be suggested to

visit museums but venues such as adrenaline parks

instead.

The knowledge-based module computes the

distance between each POI and the user based on four

sets of expert-defined characteristics: age, education,

country of residence, and budget. There are five age

groups: age up to 26, 27 to 36, 37 to 45, 46 to 55, and 56

and higher. There are three education groups: primary,

secondary, and tertiary, and also three budget groups:

low, medium, and high. The country parameter

corresponds to countries whose tourists often visit that

POI. Each POI is assigned one or more groups for each

characteristic, except for budget, where it can only have

one value. Each group is assigned numerical value (e.g. 0

is low, 1 is medium, and 2 is high budget), respectively,

which are used to compute the Euclidian distance

between the user and POI characteristics, later

transformed into score of the individual characteristic.

The score for age, education, and country

characteristic is computed using Equation 1. The

absolute distance between the user characteristic and POI

Figure 2. Recommender system schematics.

450 Informatica 40 (2016) 447–455 B. Cvetković et al.

characteristic is divided by number of groups per

characteristic and subtracted from the perfect-fit value of

1. The score for budget is computed with the same

approach unless the 𝑢𝑠𝑒𝑟𝑏𝑢𝑑𝑔𝑒𝑡 ≥ 𝑃𝑂𝐼𝑏𝑢𝑑𝑔𝑒𝑡 , in which

case the score is always set to the perfect-fit value of 1.

In case the characteristic value is not defined for a POI or

the user, the score is set to the medium-fit value of 0.5.

𝑠𝑐𝑜𝑟𝑒𝑐ℎ𝑎𝑟 = 1 − |(
𝑢𝑠𝑒𝑟𝑐ℎ𝑎𝑟−𝑃𝑂𝐼𝑐ℎ𝑎𝑟

𝑐ℎ𝑎𝑟𝑔𝑟𝑜𝑢𝑝𝑠
)| (1)

The final score 𝑠𝑐𝑜𝑟𝑒𝐾𝐵 of the knowledge-based

module is calculated using Equation 2. The score is

afterwards normalised to interval from 1 to 5.

𝑠𝑐𝑜𝑟𝑒𝐾𝐵 =
𝑠𝑐𝑜𝑟𝑒𝑎𝑔𝑒+𝑠𝑐𝑜𝑟𝑒𝑒𝑑𝑢+𝑠𝑐𝑜𝑟𝑒𝑐𝑜𝑢𝑛𝑡𝑟𝑦+𝑠𝑐𝑜𝑟𝑒𝑏𝑢𝑑𝑔𝑒𝑡

4
 (2)

The collaborative filtering uses a memory-based

approach to assign the 𝑠𝑐𝑜𝑟𝑒𝐶𝐹 for the user. Each

instance represents one user. Its feature vector is

composed of ratings per POI given by the individual

user. In case the user did not rate a POI, that value is

defined as a missing value. We used the k-nearest

neighbour algorithm [18] to find k similar users, once a

sufficiently high number of users have been recorded in

the database. The final score for an individual POI is an

average value of scores per POI for the k-nearest

neighbours.

The final result of the hybrid recommender system is

the final score calculated with Equation 3. It is a

weighted sum of the knowledge-based rating, the

collaborative-filtering rating, and the expert rating (POI

rating provided by experts).

𝑠𝑐𝑜𝑟𝑒 = 𝑤1𝑠𝑐𝑜𝑟𝑒𝐾𝐵 + 𝑤2𝑠𝑐𝑜𝑟𝑒𝐶𝐹+ 𝑤3𝑠𝑐𝑜𝑟𝑒𝑒𝑥𝑝 (3)

We discuss the weight values in the following

subsection.

3.1 Experimental evaluation and

parameter settings for the

recommender module

The recommender system was tested on data of 24 users

with different age and background who were given a list

of 90 POIs from the Heart of Slovenia region [19] . The

users were asked to rate the POIs they are familiar with

from 1 to 5 stars. These ratings were then compared to

the recommender system modules, with the goal of

accurately predicting the rating of POI as would be given

by the current user. This helped us define the final

weights of Equation 3.

Each recommender system module was evaluated for

the performance using the mean absolute error (MAE)

over all 90 POIs, as presented in Equation 4. The lower

the MAE value, the better the prediction of the modules.

𝑀𝐴𝐸 =
∑ |(𝑠𝑐𝑜𝑟𝑒𝑡𝑟𝑢𝑒−𝑠𝑐𝑜𝑟𝑒𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑)|𝑛

𝑖=0

𝑛
 (4)

In the first step, we evaluated the baseline approach

which rates all POIs with the score 3, being the medium

score. The MAE value of the baseline approach is 1.05

rating.

In the second step, the expert rating was evaluated. It

amounted to 0.99 rating.

In the third step, the knowledge-based module was

evaluated. The users’ budget preferences and

demographic data were used to compute the 𝑠𝑐𝑜𝑟𝑒𝐾𝐵.

The evaluation of the score estimates per user yielded

MAE of 0.98.

Next, we evaluated the collaborative filtering

module. Before evaluation we had to define the number

of neighbours that would be used by the k-nearest

neighbours algorithm. We tested the algorithm for k=1 to

k=5 and settled for k=4 as it returned the best results. The

MAE of the collaborative filtering module using 4-

nearest neighbours algorithm was 0.87 score.

Before setting the weights of the three modules, we

decided that the weight of the expert rating should be

smaller than the weights for other ratings, otherwise the

recommendations would not be personalised. We decided

to assign it to 0.2. Since the difference between the

knowledge-based and collaborative filtering module was

not large, we gave them equal weights of 0.4 as shown in

Equation 5. In case the expert score is missing, the

recommender modules are assigned weights of 0.5

(Equation 6), and in case the knowledge-based or the

collaborative filtering rating is missing, the 0.8 weight is

assigned to the remaining one (Equation 7 and 8). If there

is only one score, it is assigned the full weight.

𝑠𝑐𝑜𝑟𝑒 = 0.4(𝑠𝑐𝑜𝑟𝑒𝐾𝐵 + 𝑠𝑐𝑜𝑟𝑒𝐶𝐹) + 0. 𝑠𝑐𝑜𝑟𝑒𝑒𝑥𝑝 (5)

𝑠𝑐𝑜𝑟𝑒 = 0.5𝑠𝑐𝑜𝑟𝑒𝐾𝐵 + 0.5𝑠𝑐𝑜𝑟𝑒𝐶𝐹 (6)

𝑠𝑐𝑜𝑟𝑒 = 0.8𝑠𝑐𝑜𝑟𝑒𝐾𝐵 + 0. 𝑠𝑐𝑜𝑟𝑒𝑒𝑥𝑝 (7)

𝑠𝑐𝑜𝑟𝑒 = 0.8𝑠𝑐𝑜𝑟𝑒𝐶𝐹 + 0. 𝑠𝑐𝑜𝑟𝑒𝑒𝑥𝑝 (8)

The results of the above equations were compared to

individual modules. The results are presented in Table 1.

The MAE value of the baseline approach is 1.05 score

and the MAE of the final rating is 0.86 score, which is

better than the MAE of the knowledge-based,

collaborative-filtering rating, and expert rating alone.

Approach MAE (rating)

Baseline 1.05

Expert score 0.99

Knowledge-based module 0.98

Collaborative filtering module 0.87

e-Turist final rating 0.86

Table 1. Results of the baseline rating, individual

modules ratings, and the e-Turist recommender system

final rating.

4 Route planning algorithm
The task for the route planning module is to prepare the

best route for the tourist from the list of POIs generated

e-Turist: An Intelligent Personalised Trip Guide Informatica 40 (2016) 447–455 451

by the recommender system, taking into account the

attractiveness of individual POIs and the time limitations

of the tourist. This task is reminiscent of the well-known

knapsack problem,[20] where the best set of items (in

our case POIs) with weights Wi (the time needed to visit

the POI) and values Vi (POI attractiveness) have to be

chosen so that the overall weight does not exceed the

limit and that the total value is maximal. Such problem

can be solved in a pseudo-polynomial time with dynamic

programming.[21] However, in our practical

implementation, the algorithm needs additionally to take

into account the time needed to visit the chosen items

(POIs) – which is an estimation problem by itself. The

path duration estimation problem opens a new sub-

problem inside the knapsack problem, i.e., how to find

the route with minimal duration, given the POIs. This

sub-problem is also a known problem in the theory of

computation, called the TSP.[8] Therefore, in our case

we have a “modified knapsack problem” where the total

value of the chosen items changes dynamically (with

each algorithm iteration). Additionally, the path

estimation is computationally expensive process, because

it requires solving an NP-hard problem, i.e., TSP.

Moreover, the final algorithm execution time should be

in the range of seconds, because it will be used in a real-

time POI recommender application, where the user needs

instant feedback from the system. Because of these

reasons, two simplifications were proposed: a greedy

approach for knapsack problem (POIs ordered by value)

and an adapted TSP for path duration estimation (finds

near optimal solution).

The first step in our algorithm is the estimation of

the importance of an individual POI (how attractive a

POI is ‒ POI value). We defined the POI value

considering three factors:

 POI's rating (provided by the recommender

system)

 POI's visit duration

 POI's local reachability duration

The first factor is a value that is provided by the

recommender system (𝑠𝑐𝑜𝑟𝑒) which varies from 1 to 5

(attractiveness of the POI). The next factor, the POI's

visit duration, represents the average time that a tourist

needs in order to see the POI, which is defined by an

expert in the POI database. The final factor, the POI's

reachability duration, is a variable that represents how far

a POI is from its nearest neighbours. In other words, if a

POI is far from the rest of the POIs, the value for this

variable would be greater compared to the reachability

duration of the other POIs. Using this information, the

POIs that are "outliers" (far from the rest of the POIs) are

"punished" because the tourist needs more time to reach

them. For the estimation of this variable we used a partial

implementation of the Local Outlier Detection (LOF)

algorithm. In particular, we used the local reachability

distance (lrd) metric in order to estimate how far a POI is

from its neighbours. The LOF algorithm and its

mathematical definitions are described by Breunig et al

[22] .

The mathematical definition of the POI importance,

which includes all the three factors, is presented in

Equation 7.

𝑉 = 𝛼 ∗ 𝑠𝑐𝑜𝑟𝑒 + (1 − 𝛼) ∗ (1 − 𝑃𝑛𝑜𝑟𝑚) ∗ 𝑟𝑎𝑡𝑒 (7)

The variable 𝑠𝑐𝑜𝑟𝑒 is the POI's rating, which varies

from 1 to 5. The variable Pnorm represents the normalised

value (from 0 to 1) of the P, which is a sum of the POI's

visit duration (Vd) and the POI's local reachability

distance (lrd) – note that Vd and lrd take values in hours:

𝑃 = 𝑉𝑑 + 𝑙𝑟𝑑 (8)

Because the idea is to "punish" the POIs that require

longer time to visit and the ones that are far away, the

normalised P is subtracted from 1 (the bigger the value

of Pnorm, the less important the POI). α is a parameter

regulating the importance of the evaluation value (V) on

one side, and the POI's visit duration and POI's local

reachability distance (P) on the other side. The empirical

analysis of the data showed that 0.5 is a reasonable trade-

off value for α. This way, both sides of the equation are

equally weighted in the final importance value V. To

summarize, the first term in Equation 8 is considered as it

is, while the second term is reduced by the factor

corresponding to the time needed for the visit (1 – Pnorm).

In the next step of the algorithm, all the POIs are

ordered by the importance value V. Using a greedy

strategy, the algorithm then adds items (POIs) in the

knapsack until the limit is reached. With each POI added,

the weight of the knapsack is checked ‒ if the weight

(time duration) of the chosen POI combination is below

the maximum weight (total available time of the tourist).

In addition, with each added POI, a TSP algorithm

estimates the path duration, which is also checked with

the time limit of the tourist. This way, a near optimal

combination of POIs is found.

Additionally, the algorithm checks for nested POIs,

since there may be more than one POI at the same

location. For example, the Ljubljana castle additionally

has a museum and a tower. Therefore, if the algorithm

has chosen some of the nested POIs in the optimal route,

it additionally adds all the other nested POIs at that

location, and by doing so it also updates the time for the

visit and checks the constraints of the knapsack.

After the combination of POIs is found, the

algorithm checks whether the user prefers to start from

the nearest POI. If this is the case, the order of the POIs

is recalculated with a modified version of the original

TSP which creates a path using a fixed start POI.

In the final step of the algorithm, it is checked

whether the tourist has chosen multiple days for

sightseeing. In the case of a multiple-days visit, the POIs

are segmented into groups, each group corresponding to

one day of the trip. Additionally, it is checked if the user

plans a meal at a particular hour of the day. If this is the

case and there are restaurant-POIs in the list of POIs, the

best (according to the evaluation value and the location)

restaurant is chosen. That day's route is modified in such

a way that the tourist is near the restaurant during the

452 Informatica 40 (2016) 447–455 B. Cvetković et al.

previously chosen meal time. This is done by dividing

the problem in two segments (before and after the meal)

and calling the TSP solver for each. First, for before the

meal, the end location is fixed to the restaurant, and next,

for after the meal, the start location is fixed to the

restaurant.

The pseudo code of the route planning algorithm is

given with Algorithm 1.

Since the TSP solves a sub-problem in the general

knapsack problem, its execution time needs to be in the

range of milliseconds. Therefore, for its implementation,

we considered an open-source algorithm [23] that finds a

near-optimal solution. It is a greedy approach with

additional optimization mechanisms. The empirical tests

showed that for our scenario (up to 200 POIs) it almost

always finds the optimal solution, and also the execution

time is acceptable i.e., several milliseconds. Additionally,

we modified the original algorithm so that it can use start

and end POI. This option is required when the users

wants to start from the closest location to them (e.g. by

using the GPS signal of the tourist's smartphone). Also,

when the user selects meal-time, the path is divided into

two parts: before and after lunch.

In order to decrease the execution time, we call the

TSP algorithm only when the time needed to visit all the

POIs reaches a predefined threshold of 80% of the total

available time. In other words, when the time required to

visit the POIs reaches 80% of the total available time, the

TSP is called to estimate the exact path duration.

Otherwise, every time a POI is added, the path is

estimated simply by adding the path duration to the

nearest POI. A detailed evaluation of the routing

algorithm is a problem on its own and will not be

addressed in this paper.

5 Use cases
In this section, we show different aspects of e-Turist

functionality. Let us consider three different tourists,

Ada, Bob, and Ted. The details about these users are

presented in Table 2.

User

Ada Bob Ted

Profile

Age / 60 /

Country / Germany /

Budget / high /

Education / tertiary /

Mobility lim. / yes /

Interest

Active tourist

Gastronomy

Entertainment

Cultural heritage

Include lunch

Transport
Car

Walking

Location
Slovenian Istria

The Hague

Table 2. Users and their interests. Note that Bob creates

his profile only in the second step of the use case.

Algorithm 1: Route planning algorithm

Input:
 allPOIs //POIs from the recomm. system

 transport //the means of transport

 numDays //number of days for the visit

Result:
 FinalPOIs //The near-optimal list of POIs

 AlternativePOIs //Alternative POIs

duration = 0

//order by value V

orderedPOIs = OrderPOIsByValue (allPOIs)

//start adding POIs ordered by the value, add the rest

to the alternative list

For POI in orderedPOIs

If duration + POI.duration < totalDuration

tempPOIs.add(POI)

pathDuration = TSP(tempPOIs, transport)

duration =

updateDuration(POI.duration, pathDuration)

If POI is child at location

tempPOIs.add (POI.parent)

duration =

updateDuration(POI.parent.duration)

If POI is grandchild at location

tempPOIs.add (POI.grandParent)

duration = updateDuration

(POI.grandParent.duration)

Else

AlternativePOIs.add(POI)

End

//Find the near-optimal path and time to visit all

chosen POIs

Solution = TSP(tempPOIs, transport)

//Take care of the parent-child relation

FinalPOIs= OrderByParentChildRelation (Solution)

//If the user is less than 1 km away from some of the

chosen POIs, start from the nearest POI

If StartLocation.DistanceToNearestPOI < 1km

 FinalPOIs= Reorder(FinalPOIs)

//if there are multiple days, segment the solution to

multiple lists of POIs, for each day

If numDays > 1

 FinalPOIs= SegmentByDays (FinalPOIs)

Return FinalPOIs, AlternativePOIs

e-Turist: An Intelligent Personalised Trip Guide Informatica 40 (2016) 447–455 453

Ada and Bob would like to spend a day in the

Slovenian Istria region on Thursday, 1 September 2016.

Both start the trip at 10 am and plan to spend 8 hours

sightseeing. Both of them have a car available as a means

of transport and Ada chooses to have lunch around 1 pm.

Neither of them has yet created a user profile, which is

likely for first-time users. The recommender system will

therefore only consider the information from the

constraints filtering module and the expert rating. Ada is

interested in active tourism, gastronomy, and

entertainment while Bob is interested in cultural and

natural heritage.

The initial route proposed for Ada can be observed

on the left side of Figure 3. After it is created, Ada

decides to modify the proposed itinerary by clicking the

“Edit” button which allows to remove the suggested and

add other nearby/alternative POIs using drag and drop.

When clicking “Update”, Ada can choose whether to use

the POIs in sequence as manually selected or to

automatically reorder the sequence into an optimal route.

Figure 3, right, presents the new proposed trip after

choosing the automatic reordering. This new route

requires longer than 8 hours to complete. If Ada decides

that this is too long, she can edit the itinerary again,

perhaps removing some of the POIs.

On the other hand, Bob has different preferences

than Ada, which will reflect in different proposed

itinerary (Figure 4, left). It is, however, possible for some

POIs to overlap since they may be listed in more than

one category, e.g. active tourism and cultural and natural

heritage.

In the next step, Bob, who is a 60-year old German

with tertiary education, high budget, and mobility

limitations, creates his user profile. This allows the

knowledge-based module and the collaborative filtering

module to modify the list of POIs to better match Bob’s

profile. The new proposed route for Bob looks rather

different (Figure 4, right). The constraints filtering

module has first removed POIs that are less appropriate

for people with mobility limitations, such as Strunjan

trail (Strunjanska pešpot) and Smokvica educational trail

(Zelena učna pot: Smokvica). In addition, the

knowledge-based module has added the picturesque old

villages Glem and Padna to the itinerary, since these are

destinations that are likely to appeal to Bob’s

demographics, and also added the Second World War

memorial (Spomenik NOB) - although it only has a 3-

star expert rating. Additional alternative POIs appear on

the map as well. Since Bob has not rated any POIs yet,

the collaborative filtering has no specific ratings (for

Figure 3. Left: Initial route, proposed for Ada. The sidebar on the left shows the list of the recommended POIs (red

balloons), while the right side shows the route on the map (blue line) and other nearby POIs (yellow balloons).

Expert ratings are marked with stars. Right: The new route, proposed for Ada, after she manually edits the POI list.

Figure 4. Left: Initial route, proposed for Bob, who is interested in cultural and natural heritage sites. Right: The

new route, following Bob’s creation of user profile.

454 Informatica 40 (2016) 447–455 B. Cvetković et al.

Bob) to use for finding similar users and it therefore does

not contribute to the POI selection in this use case. Once

Bob starts rating visited POIs, the collaborative filtering

will contribute to the final rating of the POIs in future

trip planning.

One may observe that most POIs in routes for Ada

and Bob have 4 or 5-star rating. They both travel by car,

therefore they can cover larger distances during the trip,

so the algorithm can include several POIs with high

ratings.

Figure 5. Proposed route for Ted, who explores The

Hague on foot.

e-Turist also works on a city level. Let us consider

Ted, also a first-time user, who is interested in cultural

and natural heritage sites in the city of Hague in the

Netherlands. Ted will explore the city on foot and use the

same time window as Ada and Bob. The proposed route

for Ted is shown in Figure 5. Here, we can also see an

example of a nested POI, since Prince William V Gallery

is located within the Mauritshuis complex which is a POI

on its own.

6 Conclusion
We present a personalised trip planner that aims to

improve tourist experience by facilitating the preparation

of the trip and offering real-time guiding. e-Turist can be

accessed either via browser or mobile application.

The platform is built on a POI database, which is

easy to manage and expand. Based on the user profile

and interests, the recommender system first creates a list

of POIs which the user would find appealing. In order to

create the list, the system uses a combination of

constraints filtering, expert knowledge and collaborative

filtering. In the next step, the route planning algorithm

creates the optimal route between a subset of POIs. The

algorithm uses the concepts from the TSP problem and

the modified knapsack problem. The guiding component

contains real-time GPS guidance and audio descriptions

of the POIs, created using a speech synthesizer. It also

allows the users to rate POIs, which serves for the

collaborative filtering and as feedback available to

tourism workers in the administration module.

Initial tests of the recommender system turned

reasonably accurate (Section 3.1), however, since the

current set of registered users is rather small, we expect

the collaborative module to perform better in future. The

advantage of e-Turist is that is easy to adapt to different

regions. Initially, it was developed as a pilot project on

two regions in Slovenia but is now being expanded to

include regions worldwide. In the future, we also plan to

integrate existing POI databases.

Acknowledgement
The e-Turist project was funded by Slovenian ministry of

education, science and sport: call for proposals for co-

funding of projects developing e-services and mobile

applications for public and private non-profit

organizations. We would like to thank the Faculty of

Tourism Studies – Turistica and Municipality of Litija

who provided the data and expert knowledge.

References
[1] UNWTO 2016, http://media.unwto.org/press-

release/2016-01-18/international-tourist-arrivals-4-

reach-record-12-billion-2015

[2] UNWTO Tourism Highlights, 2015 Edition

[3] Knoema, https://knoema.com/atlas/topics/Tourism

[4] Jennie Germann Molz, (2012). Travel connections:

tourism, technology and togetherness in a mobile

world. Routledge, New York.

[5] Wouter Souffriau, Pieter Vansteenwegen, Tourist

Trip Planning Functionalities: State–of–the–Art and

Future, Current Trends in Web Engineering,

volume 6385 of Lecture Notes in Computer Science

(2010) 474-485

[6] Damianos Gavalas, Charalampo sKonstantopoulos,

Konstantinos Mastakas, Grammati Pantziou,

Mobile recommender systems in tourism, Journal of

Network and Computer Applications 39 (2014)

319–333

[7] Joan Borràs, Antonio Moreno, Aida Valls,

Intelligent tourism recommender systems: A

survey, Expert Systems with Applications 41

(2014) 7370–7389

[8] Gerhard Reinelt, The Traveling Salesman:

Computational Solutions for TSP Applications,

Springer Berlin Heidelberg (1994)

[9] Ander Garcia, Olatz Arbelaitz, Maria Teresa

Linaza, Pieter Vansteenwegen, and Wouter

Souffriau, Personalized Tourist Route Generation,

ICWE 2010 Workshops, LNCS 6385, pp. 486–497,

2010. Springer-Verlag Berlin Heidelberg 2010s

[10] TripAdvisor https://www.tripadvisor.com/

[11] Triposo, https://www.triposo.com/

[12] Roadtrippers, https://roadtrippers.com/

[13] Route Perfect, https://www.routeperfect.com/

[14] e-Turist, https://www.e-turist.si/

[15] Igor Jurinčič, Anton Gosar, Mitja Luštrek, Boštjan

Kaluža, Simon Kerma, Gregor Balažič, E-tourist:

electronic mobile tourist guide. V: Peace, culture

and tourism: collection of papers. Novi Sad:

Faculty of Sciences, Department of Geography,

Tourism and Hotel Management, 2013, str. 182-

191.

https://knoema.com/atlas/topics/Tourism
http://link.springer.com/book/10.1007/978-3-642-16985-4
http://link.springer.com/bookseries/558
https://www.tripadvisor.com/
https://www.triposo.com/
https://roadtrippers.com/
https://www.routeperfect.com/
https://www.e-turist.si/

e-Turist: An Intelligent Personalised Trip Guide Informatica 40 (2016) 447–455 455

[16] Amebis Govorec. http://govorec.amebis.si/

[17] Microsoft Speech API, http://www.microsoft.com/

[18] D. T. Larose. k-Nearest Neighbor Algorithm,

Discovering Knowledge in Data, pp. 90-106, John

Wiley & Sons, Inc, 2005.

[19] Srce Slovenije, http://www.srce-slovenije.si/

[20] Hans Keller, Ulrich Pferschy, David Pisinger,

Knapsack Problems. Springer Berlin Heidelberg

(2004)

[21] Dynamic Programming Knapsack 0-1 Problem.

http://www.geeksforgeeks.org/dynamic-

programmingset-10-0-1-knapsack-problem/

[22] Breunig, M. M.; Kriegel, H.-P.; Ng, R. T.; Sander,

J. (2000). "LOF: Identifying Density-based Local

Outliers". Proceedings of the 2000 ACM SIGMOD

international conference on Management of data.

SIGMOD '00: 93–104.

[23] Travelling salesman problem, Python

implementation: https://github.com/dmishin/tsp-

solver

http://govorec.amebis.si/
http://www.srce-slovenije.si/
http://www.geeksforgeeks.org/dynamic-programmingset-10-0-1-knapsack-problem/
http://www.geeksforgeeks.org/dynamic-programmingset-10-0-1-knapsack-problem/

456 Informatica 40 (2016) 447–455 B. Cvetković et al.

