
 EA NLU: Practical Language Understanding for Cognitive Modeling 

Emmett Tomai and Kenneth D. Forbus 
 

Qualitative Reasoning Group, Northwestern University 

2133 Sheridan Road, Evanston, IL, 60208, USA 

{etomai, forbus}@northwestern.edu 

 

 

Abstract 

This paper presents an approach to creating flexible general-logic 

representations from language for use in high-level reasoning 

tasks in cognitive modeling.  These representations are grounded 

in a large-scale ontology and emphasize the need for semantic 

breadth at the cost of syntactic breadth.  The task-independent 

interpretation process allows task-specific pragmatics to guide the 

interpretation process. In the context of a particular cognitive 

model, we discuss our use of limited abduction for interpretation 

and show results of its performance. 

Introduction 

This paper describes our practical language 

understanding approach to facilitate natural language input 

to cognitive modeling experiments.  These simulation 

experiments typically use materials that are adapted from 

prior experiments with human subjects, and many of the 

stimuli are natural language texts.  They are very broad in 

terms of the topics that they use and the kinds of reasoning 

tasks that participants are asked to carry out.  Thus they 

require large-scale knowledge and the ability to reason 

with knowledge that was originally provided in textual 

form.  Typically the representations used as input for the 

simulations are created by hand from the original texts, a 

process that is both labor-intensive and error prone.  It also 

leads to the problem of tailorability, since the simulation 

authors (or people working closely with them) do the 

encoding of the formal representations.  By automating the 

process of converting natural language to formal 

representation, or even semi-automating it, tailorability is 

reduced, and the plausibility of the simulation results is 

increased. 
1
We have implemented this approach in the Explanation 

Agent (EA) NLU system.  EA NLU has been used in 

several cognitive modeling experiments including moral 

decision making (Dehghani et al, 2008), conceptual change 

(Friedman & Forbus, 2008) and blame attribution (Tomai 

& Forbus, 2008).  Extra-linguistic cognitive modeling 

experiments provide a novel venue for natural language 

work.  The models provide a precise and detailed definition 
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of understanding in terms of inferential capability.  The 

intersection of natural language phenomena and 

cognitively relevant understanding allows us to study 

computational language understanding in a rich context. 

We start by introducing our practical language 

understanding approach to the challenges raised by 

cognitive simulations.  We then present a specific 

cognitive model, MoralDM, to clarify the problem scope.  

We describe in detail the EA NLU semantic interpretation 

process, including the use of limited evidential abduction.  

Finally, we present experimental results on the 

performance of this abductive system showing evidence 

that it effectively controls complexity. 

Practical Language Understanding 

Our practical language understanding approach consists 

of three parts.  First, a large knowledge base with an 

expressive representation language in necessary to support 

the depth and breadth of reasoning involved in cognitive 

modeling simulations.  Second, a wide breadth of semantic 

forms must be supported from language, thus simplified 

syntax is used to make the challenge tractable.  Third, the 

semantic interpretation process uses task-independent 

algorithms to provide a query-driven interface.  This 

allows different models to assume different pragmatic 

contexts that drive the same semantic interpretation 

process. 

For our knowledge base, we use the contents of 

ResearchCyc plus our own extensions, together around 2 

million facts at present.  This knowledge includes 

numerous denotations and subcategorization frames that 

link lexical terms to concepts in the Cyc ontology using 

frame semantics (Fillmore, 1982). These frames provide 

knowledge-rich semantics for words and common phrases. 

CycL is a very expressive predicate calculus representation 

language, including modals for handling belief and 

quotation, and microtheories to provide a logical 

environment for organizing and using knowledge.  It 

supports higher-order expressions and makes no particular 

algorithmic commitments as to how they are handled. 

For syntax, we use a simplified English grammar.  

Natural language understanding is about converting surface 

forms into some internal form and breadth can be 

considered along two dimensions.  Syntactic breadth 



concerns the range of surface forms that can be processed.  

Most explorations of syntactic parsing have focused on 

maximizing syntactic breadth, but at the expense of 

impoverished internal forms.  Semantic breadth concerns 

the range of ideas that can be expressed in the internal 

form, starting from natural language.  For practical 

language understanding, we focus on semantic breadth 

instead of syntactic breadth.  Having multiple ways to say 

the same thing makes an NL system easier to use (i.e. 

increase habitability, cf. Haas & Hendrix, 1980), but our 

goal is to maximize the number of things that can be said 

in terms of the underlying representations, not the surface 

forms.  In earlier work (Kuehne & Forbus, 2004) we 

developed a simplified English grammar, QRGCE, that we 

extend as necessary to handle new tasks.  Like other 

simplified languages, (e.g., Clark’s CPL (Clark et al 

2005)), it restricts grammar but does not a priori restrict 

the vocabulary, as controlled languages do. This enables 

most extensions to be made by adding vocabulary rather 

than changing the grammar. 

For task-independent semantic interpretation, we use 

compositional frame semantics at the sentence-level and 

abductive back-chaining at the discourse-level.  For each 

new sentence in a discourse, compositional semantics 

provide a fast, efficient way to build complex semantic 

representations from the Cyc subcategorization frames.  

Because it factors out context in the composition of each 

syntactic constituent, it is able to handle nested constructs 

without becoming computationally intractable.  

Ambiguities are generated but maintained in packed 

representations for later disambiguation.  This context 

independent sentence-level representation is then 

interpreted in the context of the ongoing discourse with 

abductive back-chaining.  Abductive reasoning has a 

higher complexity cost, but allows pragmatic context and 

world knowledge to guide and constrain disambiguation 

and reference resolution. 

Moral Decision Making 

EA NLU was used in recent work with MoralDM 

(Dehghani et al, 2008), a cognitive model which captures 

aspects of moral decision-making.  An important 

phenomenon in moral decision making is the impact of so-

called sacred values which can override utilitarian 

strategies.  Consider the following scenario (from Ritov & 

Baron 1999):  

As a result of a dam on a river, 20 species of fish are 
threatened with extinction. By opening the dam for a 
month each year, you can save these species, but 2 
species downstream will become extinct because of 
the changing water level. 

 

Utilitarian reasoning argues for opening the dam, since it 

will save 20 species and only kill 2.  But studies have 

found that US participants choose to not open it, even 

though more species would be saved.  These results 

support the hypothesis that when a decision scenario 

involves values sacred to the decision-maker, the 

acceptability of actions becomes a more significant 

determining factor than the outcomes of those actions. 

MoralDM accepts decision scenarios represented in 

predicate calculus and uses both first-principles and 

analogical reasoning to reach a decision.  It was evaluated 

against psychological studies by Ritov and Baron (1999) 

and Waldmann and Dieterich (2007).  Four scenarios from 

each study were tested.  EA NLU was used to semi-

automatically encode the scenarios into formal 

representation suitable for input to MoralDM.  In all eight 

cases, MoralDM was able to make the decision that 

matched the human data.  For more details on this 

experiment, see Dehghani et al. (2008). 

Semantic Interpretation 

EA NLU provides a query-driven, task-independent 

semantic interpretation process.  A cognitive model (or 

other inferential task model) provides the pragmatic 

constraint necessary to guide this process by querying for 

task-specific facts.  Here we will describe this process in 

the context of MoralDM.  Consider the decision-making 

task for the dam scenario given above.  It requires 

identifying entities, events and the role relations between 

them.  It also requires resolving anaphoric references.  The 

scenario describes causality and a set of hypothetical 

futures, one default and one contingent.  The abstraction of 

choice between these futures is not explicitly mentioned 

but is key to the task of making a decision.  The numeric 

quantification of the outcomes of action and inaction are 

important to evaluating a utilitarian decision, while world 

knowledge about environmental harm is necessary to 

appreciate the sacred aspect.  These phenomena are 

expressed in the text of the scenario, and the EA NLU 

semantic interpretation process is able to construct 

appropriate representations for them.  The pragmatic 

constraint of the cognitive model is necessary to 

disambiguate the numerous possible representations. 

We now turn to the details of this process using the 

simplified English version of the dam scenario: 

Because of a dam on a river, 20 species of fish will be 
extinct. You can save them by opening the dam. The 
opening would cause 2 species of fish to be extinct. 

 
The translation to simplified English is primarily 

conformation to the set of supported syntactic patterns.  In 

addition, several details that do not directly impact 

MoralDM’s understanding of the situation were omitted. 



Compositional Frame Semantics 

EA NLU uses Allen’s bottom-up chart parser (Allen, 

1994) with the COMLEX lexicon (Macleod et al. 1998) to 

produce a set of standard, hierarchical parse tree 

representations for a given sentence.  Each constituent in 

the tree has a slot which holds a predicate calculus form 

representing the compositional semantics of that span of 

the input.  At the leaf nodes of the tree, subcategorization 

frames from ResearchCyc are retrieved for word and 

common phrase semantics.  These frames form the basis of 

grounding in the world knowledge of ResearchCyc.  

Because a given word is likely to have multiple possible 

interpretation frames, an explicit choice set is created from 

the set of frames.  Figure 1 shows the (abbreviated) 

semantic form for the word “save” in the second sentence 

of our example scenario (the correct interpretation is the 

RescuingSomeone event).  The capitalized colon-

prefixed terms represent syntactic roles in the frames. 

 

 

 

 

 

 

 

 
 

Figure 1: Predicate calculus semantics for the verb “save”. 
 

The parser uses a compositional lambda-calculus to 

merge constituent semantics and assign roles.  Figure 2 

shows the (abbreviated) semantic form for the constituent 

spanning the words “save them” in the second sentence of 

our example scenario.  Based on the syntactic composition 

of a verb (save) and a pronoun (them), the :ACTION and 

:OBJECT roles have been assigned and the variables 

involved have been quantified. 

 

 

 

 

 

 

 

 
 

 

Figure 2: Predicate calculus semantics for the verb phrase 

“save them”. 
 

Following (Asher and Lascarides, 2003), we combine 

this compositional approach with a transformation process 

using dynamic logic principles from Discourse 

Representation Theory (DRT) (Kamp and Reyle, 1993).  

This process constructs a model-theoretic description of 

sentence content.  Explicit quantifiers, negation and 

implication are handled according to DRT by constructing 

nested discourse representation structures (DRS).  These 

DRS are represented in our logical environment using Cyc-

style microtheories, with additional assertions for the 

universe of discourse variables.  The universe reflects 

variable scoping while the particular embedding (implies, 

not, exactly, atLeast, etc) reflects the logical or numerical 

quantification of those variables.  Figure 3 shows 

numerical quantification for the phrase “20 species of 

fish”. 

 

 

 

 

 

 

 

 

 

 
Figure 3: Partial DRS for the phrase “20 species of fish”. 

 

The system uses this same representation for possible 

worlds indicated by modal statements with possible 

and willBe operators.  Returning to our example, the 

second sentence involves a possible eventuality, saving the 

20 species of fish by opening the dam.  Figure 4 shows part 

of a DRS for the second sentence.  Allowing for nested 

quantification and modal embedding in the model 

description gives the system considerable expressive 

power. 

 

 

 

 

 

 

 

 

 
 

Figure 4: Partial DRS for the sentence “You can save them 

by opening the dam.” 

Explicit Ambiguity 

The DRS shown in figure 3 is only one of several 

possible representations of the second sentence in our 

example scenario.  Ambiguities, such as the choice of 

frames shown in Figure 1, create multiple possibilities.  

Each ambiguity raised by the compositional semantics 

results in an explicit choice set.  These reified sets are 

either open or closed with regard to additional choices.  

Parse tree choice sets are closed sets of the complete parse 

trees generated for a sentence.  Frame semantics choice 

sets are closed sets of the available semantic frames 

retrieved from the knowledge base for a given term or span 

(thereExists (TheList them29267 save29243) 

 (choiceSet <identifier> 

  (and (isa save29243 SavingAFile) 

       (informationOrigin save29243 them29267) 

       (doneBy save29243 :SUBJECT)) 

  (and (isa save29243 RescuingSomeone) 

       (beneficiary save29243 them29267) 

       (performedBy save29243 :SUBJECT)) 

  (and (isa save29243 KeepingSomething) 

       (performedBy save29243 :SUBJECT) 

       (objectActedOn save29243 them29267)) 

   …)) 

(choiceSet <identifier> 

  (and (isa :ACTION SavingAFile) 

       (informationOrigin :ACTION :OBJECT) 

       (doneBy :ACTION :SUBJECT)) 

  (and (isa :ACTION RescuingSomeone) 

       (beneficiary :ACTION :OBJECT) 

       (performedBy :ACTION :SUBJECT)) 

  (and (isa :ACTION KeepingSomething) 

       (performedBy :ACTION :SUBJECT) 

       (objectActedOn :ACTION :OBJECT)) 

   …) 

Universe: you29198  

 

(possible (DrsCaseFn DRS-3443637928-29494)) 

 

DRS-3443637928-29494: 

Universe: open29299 save29243 them29267 … 

 

(isa save29243 RescuingSomeone) 

(performedBy save29243 you29198) 

(beneficiary save29243 them29267) 

 … 

Universe: species29103  

 

(isa species29103 Set-Mathematical) 

(cardinality species29103 20) 

(exactly 20 (DrsCaseFn DRS-3443637081-29216)) 

 

DRS-3443637081-29216: 

Universe: member-species29103 … 

 

(elementOf member-species29103 species29103) 

(isa member-species29103 BiologicalSpecies) 

 … 



of terms in a sentence.  Quantifier scope choice sets are 

closed sets of possible scoping configurations between two 

quantifiers or modal operators that are composed in the 

syntactic tree.  Reference choice sets are open sets of 

possible referents for a referring term in a sentence.  The 

set is open because the set of possible referents is not 

available to the sentence-level composition.  At this time 

EA NLU supports pronominal and definite NP (including 

gerunds) anaphora. 

Understanding by Abduction 

Discourse understanding across multiple sentences is 

built by back-chaining from task-specific queries down to 

the sentence-level compositions.  In this case the first-

principles reasoning module in MoralDM issues queries 

about particular facts and abstractions salient to 

recognizing and making decisions.  Figure 5 contains 

partial predicate calculus (variablized) for the abstraction 

of an action/inaction choice and its causal consequences. 

 

 

 

 

 

 

 

 

 

 
Figure 5: Predicate calculus query for a choice and its 

consequences. 
 

Each of these queried facts is true if the facts in the 

sentence-level compositions provide the necessary 

antecedents to entail them given the domain theory axioms 

available.  However, the truth of those antecedent facts and 

their (potentially nested) structure are dependent on the 

resolution of the choice sets.  For any query, EA NLU 

must be able to identify whether there is a valid set of 

choices that entail the queried fact.  To do this efficiently it 

uses abduction. 

Several lines of research have explored understanding 

via abductive inference (Charniak & Goldman 1989, Ng & 

Mooney 1990, Hobbs 2004).  Abductive proof is a very 

elegant and flexible framework, but it is under-constrained, 

and none of those efforts have tried to scale up to large 

knowledge bases.  To make the problem tractable, we use 

limited evidential abduction.  General abductive proof 

systems begin with the assumption that any fact in a proof 

may be assumed.  To guide and control the search they use 

a cost-based heuristic such as path cost with weighted 

axioms, preference for consequents with partial antecedent 

support and graph interconnectedness within the proof.   

By contrast, our system begins by limiting abduction to 

only those cases where some manner of evidence outside 

the proof itself can be found to support the assumption.  

This is not mutually exclusive with internal heuristics, but 

at this point they have not been necessary.  Instead, we use 

the explicit ambiguities created by the sentence 

compositions as a priori evidence.  Each choice set is 

treated as a set of mutually exclusive reasonable 

assumptions.  For example, consider the choice set for the 

word “save” shown in Figure 1.  Given that ambiguity, in 

the nested DRS in Figure 4 (the possible eventuality) it 

may be freely assumed that there is one of: a 

SavingAFile event, a RescuingSomeone event or a 

KeepingSomething event together with their 

associated role relations (e.g. the informationOrigin 

fact for the SavingAFile event).  In Figure 4, the truth 

of the RescuingSomeone fact is dependent on the 

choices that entail the possible nesting as well. 

The compositional semantics of each sentence are 

expressed as a set of axioms that encode the dependencies 

between facts, choice sets and choices.  These are 

combined with microtheories containing axioms and facts 

for the task and domain.  When an abductive query is made 

for a set of facts such as those shown in Figure 5, an 

abductive proof is returned.  This consists of bindings for 

the variables in the query and one or more sets of 

assumptions that entail those bindings. 

Importantly, abduction uses the axiomization of the task 

to guide the search, eliminating the need to encode an 

additional set of heuristics for resolving particular 

ambiguities. 

Evaluation 

The evaluation of MoralDM described in (Dehghani et 

al. 2008) demonstrated the capability of EA NLU to meet 

the understanding requirements of the reasoning model.  

Each scenario from the source experiments was rendered in 

our simplified English and input to EA NLU.  The system 

generated explicit ambiguities which were presented to the 

experimenter for manual disambiguation.  Given this 

intervention, the system was able to produce logical 

representations sufficient for MoralDM to model human 

decision-making outcomes. 

Here we present an evaluation of our limited evidential 

abduction for automatic disambiguation within these 

established constraints.  The four scenarios from Ritov and 

Baron used in the prior experiment are used.  The 

Waldmann and Dieterich scenarios were not rerun due to 

time constraints.  Each scenario is taken in its simplified 

form and processed by EA NLU.  The system then queries 

for the same set of facts that MoralDM queries for use in 

its first-principles reasoning module.  The query is handled 

as an abductive proof which disambiguates the choice sets 

from the compositional semantics. 

Table 1 shows the number of ambiguous choice sets 

(parse trees, frame semantics, quantifier scope and 

references) in each scenario.  For the three closed sets, the 

(isa ?selecting SelectingSomething) 

 

(choices ?selecting ?action) 

(choices ?selecting ?inaction) 

 

(isa ?inaction (InactionFn ?action)) 

 

(causes-PropSit  

 (chosenItem ?selecting ?action) ?outcome)) 

 

(causes-PropSit 

 (chosenItem ?selecting ?inaction) ?outcome2)) 



average number of choices is given in parenthesis.  Table 2 

contains the same figures for unresolved choice sets after 

EA NLU builds the abductive proof.  These are the choice 

sets that the system did not need to resolve in order to 

prove the necessary facts – they are considered spurious in 

the context of this task.  Because there are constraints 

between choices, often the system reduced the available 

choices even when the set itself containing them was not 

resolved. 

 Parse Sem. Scope Ref. 

Scenario1 3 (1.7) 13 (4.5) 5 (2) 4 

Scenario2 2 (1) 15 (4) 5 (2) 5 

Scenario3 3 (1) 6 (5.2) 3 (3) 4 

Scenario4 3 (1) 13 (3.5) 3 (2) 5 

Table 1: Explicit ambiguities (average number of choices per 

set given in parenthesis). 

 

 Parse Sem. Scope Ref. 

Scenario1 0 5 (2.8) 1 (2) 1 

Scenario2 0 6 (3.5) 2 (2) 2 

Scenario3 0 1 (2) 0 1 

Scenario4 0 2 (3.5) 0 2 

Table 2: Unresolved ambiguities (average number of choices 

per set given in parenthesis). 

 

In Table 3 we present the complexity space for each 

scenario.  The worst-case number of random choices to 

satisfy the query is compared with the number of 

assumptions made by the abductive proof.  The latter 

includes every time in the proof that the system checks to 

see if a fact can be or is already assumed.  The space of 

unresolved choices is also provided.  Figure 6 shows a 

graph of the total choices vs. the abductive assumptions. 

 Total 

Choices 

Abductive 

Assumptions 

Unresolved 

Space 

Scenario3 6.27x104 6.21x103 2 

Scenario4 7.17x106 1.05x105 10 

Scenario1 7.63x107 1.01x104 288 

Scenario2 6.94x108 8.33x104 768 

Table 3: Number of assumptions to prove the task-specific 

knowledge request. 

 

In all four scenarios the abductive proof is able to 

provide the facts requested.  The number of choice actions 

taken by the solver is between one to four orders of 

magnitude smaller than the space of possible choices.  

What is most notable though is that as the space increases, 

the number of unresolved (task-irrelevant) choices 

increases while the number of assumptions does not.  This 

demonstrates that this approach is able to make the 

necessary choices without suffering as the number of 

unnecessary choices increases.  In discourse processing 

this is particularly important as each additional sentence 

increases complexity regardless of whether the added 

ambiguities are task-relevant.  

The types of ambiguities that the system did not resolve 

were largely surface distinctions in entity types.  There 

were, for example, several ways of representing “species of 

fish” that did not impact this decision making task.  Almost 

all scoping ambiguities were resolved by the system.  Since 

hypothetical futures were a central part of understanding 

the decision, this is not unexpected. 

 
Figure 6: Complexity trends for abduction. 

Related Work 

Early work in deep semantic understanding (cf. 

Wilensky, 1981) demonstrated the necessity and power of 

rich knowledge in understanding, particularly the use of 

expectations.  However, those early systems were brittle 

and not easily scalable, due in part to researchers having to 

generate all of the representations themselves.  Subsequent 

work on robust, statistical methods focused on scalability 

and breadth, at the expense of depth.  Common evaluation 

metrics (cf. ACE, TREC, MUC) capture only a few aspects 

of understanding.  Recent web-scale knowledge extraction 

efforts (cf. Zamir & Etzioni, 1998) demonstrate scalability, 

but at the cost of limiting consideration to a small set of 

patterns for types of facts.  These facts are clusters of word 

triples rather than formally expressed knowledge suitable 

for inference. 

Recent investigations of deep understanding have either 

focused on formal arguments involving hand-generated 

examples, or focused on a single specific task.  For 

example, most spoken-language dialogue systems (cf. 

Allen et al. 2007) are tuned for a specific type of task.  

Project Moebius (Friedland et al, 2006) focuses on 

knowledge capture in AP science domains using textbook-

style assertions regarding facts and implications. 

The Boxer (Bos et al, 2004) system, with the C&C Tools 

parser (Curran et al 2007), also creates DRT-style 

representations with concern for quantification and 

semantic role filling.  However, it does not support 

future/hypothetical modalities nor does it ground its 

predicates in an ontology (or otherwise axiomize them) for 

general reasoning.  We see this as a complementary effort,  



aiming to provide robust, large-scale processing working 

from the bottom up. 

Conclusion 

We have presented our practical language understanding 

approach to rich semantic understanding of natural 

language for cognitive modeling experiments.  We use 

semantics grounded in a large-scale knowledge base and 

support complex quantification and modal operators.  The 

semantic interpretation process combines the efficiency of 

compositional, context independent processing with 

pragmatically driven abductive back-chaining.  We have 

discussed this in the context of MoralDM, a cognitive 

model of moral decision-making.  In a key part of the 

semantic interpretation process, our EA NLU system 

explicitly creates choice sets which define the space of 

disambiguation for a given sentence.  We have presented 

the results of experiments on the empirical performance of 

limited evidential abduction in disambiguating these choice 

sets for automatic encoding of moral decision making 

scenarios.  These results give evidence that evidential 

abduction is an effective framework for automated 

interpretation. 

Future Work 

We intend to move forward with evidential abduction by 

integrating sources of evidence beyond EA NLU’s explicit 

choice sets.  We are looking at additional ways to leverage 

world knowledge in Cyc to provide evidence for 

assumptions based on domain-specific axioms.  We are 

also exploring the use of narrative pragmatics as a 

constraint for story understanding.  Part of that work will 

address how pragmatic expectations contribute evidence to 

abductive reasoning over linguistic ambiguity. 

Ongoing projects are using EA NLU with cognitive 

models of conceptual change, story understanding, tutoring 

dialogue about commonsense knowledge and multimodal 

learning from science textbooks. 
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