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Let A(KI") denote the Fr6chet space of all entire functions on II;". It is a classical 
theorem of Ehrenpreis [5] and Malgrange [9] that each non-zero convolution 
operator T on A(IE") is surjective. As one of the main results of the present 
article, we prove that each of these operators T admits a continuous linear 
right inverse, which is equivalent to ker T being complemented in A (lI;"). This 
extends a theorem of Treves [16] for partial differential operators with constant 
coefficients to convolution operators. We obtain this as a special case of a 
result on the complementation of certain closed ideals in weighted algebras 
Ap(~;"). 

To introduce these algebras, let p be a nonnegative plurisubharmonic func- 
tion on II;" which satisfies some mild technical conditions. Then Ap(ll2") consists 
of all f ~ A ( C " )  which satisfy an estimate [ f l < A e  Bp for suitable constants A 
and B depending on f For  l<_k<n  and F = ( F  1 . . . . .  Fk)e(Ap(qY)) k we denote 
by I(F) the ideal in Ap(IEn) which is algebraically generated by F1, ..., Fk. If 
F = (F1, ..., F,) is slowly decreasing in the sense of Berenstein and Taylor [2], 
then I(F) is closed in Ap(llT"), where Ap(ll;") is endowed with its natural inductive 
limit topology. We prove that for each slowly decreasing ideal I(F) the strong 
dual (Ap(C")/I(F))'b of Av(I~")/I(F ) is a nuclear Fr6chet space with the property 
(f2). This property is a linear topological invariant, introduced by Vogt and 
Wagner [19], to characterize the quotient spaces of s, the space of rapidly 
decreasing sequences. Our proof  of (Ap((12")/I(F))'b having the property (f2) is 
based on the work of Berenstein and Taylor [2], some elementary functional 
analysis and an appropriate description of Ap(II2")/I(F) in terms of Cech coho- 
mology with bounds. 

Knowing that (Ap(IIT")/I(F))' b has (f2) for all slowly decreasing ideals I(F), 
we can use the splitting theorem of Vogt and Wagner [19] together with the 
main result of our article [13] to prove the following: For  each k with 1 < k < n ,  
each slowly decreasing ideal I (F  1 . . . . .  Fk) in Av(II2" ) is complemented if and only 
if Ap(II?")~ has the property (DN). The property (DN) was introduced by Vogt 
[17], to characterize the linear topological subspaces of s. Various characteriza- 
tions for Ap(C"); having (DN) were given in [13]. In particular, it was shown 
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that for radial weight functions p on C" the property (DN) of Ap(IE"); can be 
characterized in terms of the behaviour of p -  1. 

For  radial weights p on ~;" with p(2z)=O(p(z)) Berenstein and Taylor  [2] 
have shown that each non-zero principal ideal in Ap(~") is slowly decreasing. 
If we assume that for such a weight Ap(C"); has (DN), then it follows that 
each principal ideal I(F) in Ap(ll2") is complemented. Since Ap(tE")/I(F) can be 
identified with a space Ap (V) of holomorphic functions on the multiplicity variety 
V of the ideal I(F), we get in this situation the existence of a continuous linear 
extension operator E: Ap(V)~Ap(C") for each principal variety V. Moreover, 
(Ap(C")/I(F))'b can be identified with kerM~,  where M~, where M~ denotes the 
adjoint of the operator of multiplication by F. In many cases M)  can be identified 
with a convolution operator  on a certain Fr6chet space. Hence our results imply 
in particular the existence of a continuous linear right inverse for each non-zero 
convolution operator T on A (~") or on the spaces E ~ s > 1, which were investi- 
gated by Martineau [10], where 

E~ If(z)[ exp(- -e  [z[~)< oe for all ~>0}. 
z~Cn 

Throughout  this article, we shall use the standard notation from complex analy- 
sis and functional analysis. Besides this, we introduce the following notion which 
will be used later on. 

1. Definition. A function p : C " - ~ [ 0 ,  oo[ is called a weight function if it has 
the following properties: 

(i) p is continuous and plurisubharmonic. 

(2) log (1 + [z[ 2) = O(p(z)). 
(3) There exists C > 1 such that for all w ~ (lY we have 

sup p(z)<C(l + inf p(z)). 
I z - w l < l  Iz-wl_<_l 

A weight function p is called radial if p(z)=p([zD for all zctE", where Iz[ 

--  Izjl 2 . 

2. Examples. The following functions p are typical examples of weight functions 
o n  I~ n' 

(1) p(z),=lz] ~ 
(2) p ( z ) : = ( l o g ( 1  +lz12))  s, s >  1. 

(3) p (z) :=log (1 + l z l 2 ) + l I m z l .  

(4) p(z):=lzr +lImzf,  O<c~<fi and fi> l. 

For further examples we refer to Berenstein and Taylor [2, 3] and Meise [ l l l .  
For  an open set O in II;" we denote by A(~) the algebra of all holomorphic 

functions on ~2. For  each weight functions p on ti2" we define a subalgebra 
Ap(~") of A(II2") in the following way: 
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3. Definition. For a weight function p on 112" we put 

Ap (IIY) ..= { fE  A ((12") r there exists k ~ N:  sup [f  (z) l exp ( -  kp (z)) < oe }, 
Z ~ ~n 

and endow Ap(~ n) with its natural inductive limit topology. Then Ap(C ~) is 
a locally convex algebra and a (DFN)-space, i.e. Ap(C ~) is the strong dual of 
a nuclear Fr6chet space (see e.g. Meise [11], 2.4). 

The algebras of type Ap((E") arise at various places in complex analysis 
and functional analysis. We are particularly interested in certain closed ideals 
in Ap (C"). Therefore we recall some notation from Kelleher and Taylor [7]. 

4. Definition. a) For an ideal I in Ap(C") we define its localization by 

I loo:={feAp(C")[[ f]aeI ,  for all aeC"}, 

where I ,  denotes the ideal in the local ring Ca which is generated by the germs 
[g]a of all g el .  If I--I,o c then I is called a localized ideal. 

b) Let F=(F1, ..., Fm)e(Ap(~n)) " be given. Then we denote by 
(~) I(F) the ideal in Ap(~") which is algebraically generated by the functions 

F,  . . . .  ,Fro.  
(fl) I,oc(F) the localization of I (F). 

Note that I,o c is a closed ideal in Ap(~") which contains I (see Kelleher and 
Taylor [7]). 

From Berenstein and Taylor [2], Def. 5.1, we recall: 

5. Definition. Let F = (F1, ..., F,,)e (Ap(~"))", 1 <_ m <_ n, be given and let ~ denote 
a family of m-dimensional affine subspaces of C" with 

V(F):={zEC"IF:(z)=O, l<j<m}c U L. 

(a) F is called slowly decreasing for ~ if there exist constants e, C, K > 0 
such that 

(i) for each LeSt ,  all components of the set 

S (F, L, e, C):= {z e L I ]Fj(z)[ < e exp (-- Cp (z)), 1 < j__< m} 

are bounded and 
(ii) for each L e Y  and each component S of S(F, L, e, C) we have 

sup p(z) < K(1 + inf p(z)). 
z~S  z~S  

b) Let F be slowly decreasing for 5:, let e and C be as in (a) and denote 
by NL, Le&~ all the componnts of S(F, L, e, C). Then for q, D > 0  and Geffc ,  
LeS~, sets of the form 

(2(r, L, e, C, t/, D, G)= ~ { z e ~ ' [ l z - - w l < r l  exp(--Dp(w))}  
we:G 

are called good open sets. For fixed e, q, C and D 
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~(F,  ~ ,  e, C, t/, D):=(s L, e, C, t/, D, G))G~L ' L ~  

is called a good family. 

Remark. Assume that F =(1:1, ..., Fro) is slowly decreasing for ~q and let e and 
C be as in 5 (a). Then we have for each L e A a 

' ' ~ C) S ( F , L , e , C )  S(F,L,e ,  

whenever 0 < e ' < e  and C '>  C. This implies that for each L e A  v and each G'e~q~ 
there exists a unique Ge~L with G'~G. Hence there exists a map PL: (~'L~fqL 
satisfying G'~pL(G'), L e ~ .  Now let 0<~/ '<t /  and D ' > D > 0  be given. Then 
Definition 5 (b) implies that for each G'6 ~qL we have 

f2(F, L, e', C', t/', D', G ' )c  F2(F, L, g, C, 1"1, D, pL(G')). 

Hence the maps (PL)L~W induces a natural refinement map 

p : Cg(F, 2P, ~', C', rf, D')--+ C(F, ~ ,  e, C, rhD) 

by p(f2(F, L, e', C', t/', D', G'))= Y2(F, L, ~, C, t h D, PL(G')). 

6. Definition. Let F=(F~ . . . .  , F,,)e(Av(ll2")) m, 1 <re<n, be slowly decreasing for 
5r 

(a) The family ~ is called almost parallel if for every good family 
Cg(F, ~ ,  e, C, q, D) there exists a refinement Cg(F, 5~, e', C', ~', D') such that for 
each f2o, Y21eCg(F,S,~',C',tl',D ') with ~2oC~(214=0 we have ~ o ~ O 1 ~  
p((2o) c~ p(~21), where p is the refinement map defined above. 

(b) F will be called slowly decreasing if there exists an almost parallel family 
L~ ~ of m-dimensional affine subspaces of II7, such that F is slowly decreasing 
for s 

Remark. For  a comprehensive discussion of the slowly decreasing condition, 
we refer to the Sects. 6, 7 and 8 of Berenstein and Taylor [2]. In [2], 6.4, 
they show that slowly decreasing maps F: cg, ___, cgm are "generic" for m > n. In 
[2], Sect. 8, they explain that it is difficult to find examples of slowly decreasing 
m-tuples in Av(tE" ) for 2 _< m _< n - 1 .  

We are interested in the following linear topological invariant for Fr6chet 
spaces, which was introduced by Vogt and Wagner [19]. 

7. The Property (I2). Let E be a Fr6chet space and let (11 [Ik)k~g be a fundamental 
system of semi-norms for E. For  k e n  put 

ge,={xeglllxllk < 1}. 

E has the property (~2) if the following holds: 
For  each p e n  there exists qelN such that for each k e n  there exist d > 0  

and C > 0 such that for all r > 0 
a 1 

v~=Cr c~+ 7 v~. 
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8. Remark. a) It is easy to check that (~) is a linear topological invariant which 
is inherited by quotient spaces. By Vogt and Wagner [19], 1.8, a nuclear Fr6chet 
space E has (f2) iff E is isomorphic to a quotient space of s, the space of all 
rapidly decreasing sequences. 

b) B y  Meise and Taylor [13], 1.15, Ap((E")'b, the strong dual of Ap(l~.n), has 
(g2) for each weight function p. 

9. The Spaces k~(lE, e). Let I be an infinite index set, let IE=(E~, II II~)~ be 
a family of Banach spaces and let ~ = (~)i~ be a family of positive real numbers 
which is unbounded. Then we define for j e N  

Kj=={xelq E,I IIIxllla.'--sup Hxi]li exp (--jcq) < oo} 
i ~ I  i e I  

and put 
k~ (IE, cQ=ind Kj. 

j~ 

10. Proposition. Let 1E, and ~ be as in 9. Then the following holds: 

(a) A subset B of k~176 ~) is bounded iff there exists m e n  with 

sup II[xlll~=sup sup IlxiHi exp (-mc~,) < oe. 
x ~ B  x E B  i ~ I  

(b) k~176 a)'b, the strong dual of k~(lE, ~), is a Frdchet space which has the 
property (f2). 

Proof. (a) It is easy to see that k ~176 (N, ~) is an (LB)-space. Hence it suffices to 
show that each bounded set B in k~(1E, c~) satisfies the condition stated in (a). 
To do this, let B be given. Since each (LB)-space is a (DF)-space, it follows 
from K6the [8], w 5 (4), that there exist m e n  and M > 0  such that B is 
contained in the closure of the set 

C(m, M):= {xek~(lE, cQlsu p tlxi]ll exp(--mai) <= M}, 
i ~ I  

where the closure is taken with respect to the inductive limit topology. Since 
the map q~i: k~( IE, c~)~lR, ~e(x)==llx~ll~, is continuous for each ieI, it follows 
easily that C(m, M) is in fact closed in k ~176 (~E, c~). Hence B is contained in C(m, M), 
which implies the desired estimate. 

(b) Since k~ e) is an (LB)-space, k~ c~); is a Fr6chet space. In order 
to see that k ~ (IE, c~); has (~) we first give a different representation of k ~ (1E, ~). 
For n e N  we put 

I, :={ie l l~ie[n - 1, n[} 

and 
f ,  :={r 1~ E, I Ir~ll,:=sup I1~,[I,< c~}, 

i ~ I  n i f f ln  

Then we define IF:=(F,, If If,),~N and fl:=(n),~N. It is easy to check, that the 
map 

~: kOO (E, ~ ) ~  k ~ OF,/~), ~((x&r) :=((x~).~.).~N, 

is a linear topological isomorphism. 
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Now we define 

A~OF',/3)== y~  b I IlYllk := I[y.ll. e x p ( k / 3 . ) <  
n ~ ] q  n = 1 

Go for each k e N } ,  

which is a Fr6chet space if we endow it with the 1.c. topology induced by the 
norms (ll IIk)~N. By part (a) and standard arguments, it follows that the 
map gJ: Ao~ OF', fl)--, k ~~ OF,/3); defined by 

n = l  

is a linear topological isomorphism. Since the proof of Vogt and Wagner [,19,], 
1.3, extends to A~ OF',/3), it follows that A~o OF',/3) and hence k ~176 (IE, ~); has the 
property (f2). 

11. Corollary. Let IF. and c~ be as in 9 and let X be a closed linear topological 
subspace of k~176 ~) for which X'b is a Fr&het space. Then X'b has property 
(~). 

Proof. Let d: X-*k~(IE,  ~) denote the inclusion map. Then Y" k~(E, e ) ; ~ X ;  
is continuous and surjective by the Hahn-Banach theorem. Hence the open 
mapping theorem implies that X; is a quotient space of k ~ (IE, e);. Thus the 
result follows from Proposition 10 and the inheritance properties of (O). 

12. Theorem. For l < m < n  let F=(F1, ..., Fm)~(Av(C~)) m be slowly decreasing. 
Then Ilo~(F) coincides with I (F) and (Av(IE")/I (F))'b has the property ((2). 

Proof By Berenstein and Taylor [2-], 5.4(ii), applied with r=0 ,  we know that 
Ilo~(F)=I(F). Since F is slowly decreasing for some family ~ ,  we can choose 
e, C > 0  as in 5(a) as well as q, D > 0  such that (g.'=Cg(F, ~ ,  e, C, q, D) is a 
good family. For f2~cg we denote by Re the map 

Re: A o~ ((2) ~ H (g j i .  
a ~ e  c~ V (F) 

defined by 
Re ( f ) :=  ([-f], + I,)~ ~ e ~ v (f)- 

We remark that I~ is closed in (~a for the locally convex topology of simple 
convergence on (?a (see H6rmander [-6-], 6.3.5). Hence there exists a locally convex 
topology zn on 1-] C,/I~ for which Re is continuous. We put 

a ~ e  c~ V (F) 

(1) E e = i m R e  endowed with the quotient norm II I/e, i.e. 

]1 Re (g) L[ := inf {[1 f ll A ~ ca)[ Re (f) = Re (g)}. 

Then (Ee, [1 []a) is a Banach space. Next we put 

(2) c~e,=sup {p(z) lz~O}, f2e~g 

and we define E.'=(Ee, II I l e ) ~  and c~.'=(ee)e~e. 
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Now we define 

(3) /~: Ap((E') --* k ~ (E, c O, R (f).'=(Re( f ] f2))o~. 

It is easy to check that /~ is a continuous linear map. 
Obviously we have 

(4) ker/~ = I,or 

Hence/~ induces an injective continuous linear map 

(5) R :  A v ( e n ) / I l o c ( F )  --> k ~176 (IF., o O. 

Next put 
%.'={(~o, o l ) ~  x ~1 aonO~ n V(F),sa} 

and define for (f2 o, f21)ecgo the map 

,t'~o, ,~, : k ~~ (~,  cO ~ H COa/L 
ae.Qo c~ f2i n V (F) 

by 

~f20 ,  ~21 ((.X'Q)~Qa cs  a - -  (Xf21)a)aE(20 c~ .Q1 n V(F)" 

If we use the same topology as above on y[ (-ga/Ia, then ~Oo, al is 
aef2o n ~1 nV(F)  

continuous, hence ker ~S~o, ~1 is closed in k ~ (IE, c 0. Now we define 

(6) X :=  ~ {ker ~ao, ~, 1(Oo, O l ) ~ ( b g 0 } "  

Then X is a closed linear subspace of k~(lE, c~) and it is obvious that im R 
is contained in X. 

We claim that the following holds: 

(7) For  each k e n  and each A > 0  there exist B, B ' > 0  such that for each x E X  
with lllxlllk<z there exists f~Av((E") with suplf(z)[ e-~P(~)<B ' such that 
R ( f ) = x .  z~e- 

From (7) we get that the range of R equals X. Moreover, (7) and Proposition 
10(a) imply that R-I (B)  is bounded for each bounded set B in k~176 ~). Since 
Ap(ll;")/I~o~(F) is a (DFN)-space, this implies by the Baernstein-Lemma [1], that 
R is a topological homomorphism. Hence Ap(IE")/I~o~(F) is isomorphic to X. 
Since (Ap(C")/I~o~(F))'b is a nuclear Fr6chet space, it follows from Corollary 11 
that (Ap(C")/Ilo~(F)) ~ has (f2). Since Ilo~(F)=I(F), as we remarked above, the 
proof of the theorem is complete, if we show that (7) holds. 

To prove (7), let x e X  with IIIxlllk<A be given. Then note that by Definition 
5 and 1(3) there exists L__> 1 such that 

supp(z)<L(1 + infp(z)) for each f2ecg. 
z~g2 z~12 

Hence the definition of the spaces (Ea, 11 1[~), f2~cg, imply that for each fa~cg 
there exists f a e A  ~~ (g2) with R~(fe)= xo and 

(8) ]f~(z)[<2A exp(kL+kLp(z) )  for all zEs 
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Moreover, for (~2o, f21)e~ o we have that fr~oleo~a,-fa~lao~a, is in the ideal 
generated by F1 . . . .  , F,, in A(~? 0 ~ ~21), since x is in X. Now we are in the situa- 
tion, where we can apply the arguments out of the last part of the proof of 
Berenstein and Taylor [21, Theorem 5.6. Using their notation, we put ~ ==(fa)e~e. 
Then 7 ~ d o  ~ (cg) and we have that co..=3 y e.40 ~ (cg) has the same properties which 
are explained on p. 224 of [2]. Since 3co=0, there exists a good refinement 
cg, of cg and ~/~dl(c~ ') with P(t/)=p(co) and 61/=0 by Berenstein and Taylor  
[21, Theorem 5.4. Then there exists a good refinement cg,, of cg, and 0esJ~ '') 
with 3 0 = p (q). 

Now we define 
~:=p(~)-e(o). 

Then 6(~=p(co)-3P(O)=O. Hence ~ defines an analytic function on U f2=.. W. 
(2~ cg,, 

Since there exist d, C ' > 0  such that W~S(F; d, C') it follows from Berenstein 
and Taylor [2], Theorem 2.2, that there exist feAp(IE") w i t h / ~ ( f ) = x .  

Now observe that the changes in the bounds for t / and  0 which are caused 
by the application of Berenstein and Taylor [21, Theorem 5.4, depend only 
on the previous bounds and c~, resp. cg,, and not on the individual functions 
and that the same applies to Berenstein and Taylor [21, Theorem 2.2. Hence 
we have shown that (7) holds, which completes the proof. 

The dependences of the bounds which we have quoted above, are not all 
stated explicitly in Berenstein and Taylor [21. Therefore we include a more 
detailed proof  of (7) in the case of a principal ideal, which is the most relevant 
case for applications. 

Proof of (7) in the Case F=F 1. Let x~X with II]xlllk<A be given. Then we 
proved already that we can find faeA~(f2), f~ecg, which satisfy (8). Now, for 
each (~2o, ~?l)ecg0 we can find heo" m ~A~~ (f~o ~ f2~) satisfying 

(9) feo(Z)-fm(z)=heo, as(z)F(z) for all z ~ ? 0 ~ f 2 a .  

Moreover, (9) implies that the family (hao" ~)(eo, ~ ) ~ o  is a cocycle. To get esti- 
mates for this cocycle out of the estimates (8) we use Definition 5 (b) and 1 (3) 
together with Berenstein and Taylor [2], 3.1, to find a good refinement cg, 
of cg such that there exist positive constants A s and B~, depending only on 
A, k, L, F, cg and cg, but not on ( f ~ ) ~ ,  such that the cocycle (He;, ~i)(~;, al)~%, 

satisfies the estimates 

(11) IHxro.~,(z)l~A~ exp(B~p(z)) for all z~?~n~2  i,  (~ ; ,  f2'~)~cg;. 

Next we choose a good refinement ~"  of cg, and numbers 32>0  and E a > 0  
so that for each ~ 2 ~ "  and each z~g2 we have 

{w~C"llw-zl <3 ,  exp(-E1 p(z))} c p'(~), 

where p': c~,, __, cg, denotes the refinement map. Then choose a good refinement 
cg,,, of cg,, and 0 < 3 2 < 3 2  and E z > E  1 s o  that for each f2~cg ''' and each z~f2 



Convolution Operator on the Entire Functions 147 

we have 
{wslE"[[w-z] < 6 a exp ( -Ez  p(z))} ~ p"(f2). 

Then note that by Berenstein and Taylor [2], p. 217, there exist positive numbers 
ea and Ca with 

U {hi oE~'"} =S(f,  ~,, G). 

By the proof of Berenstein and Taylor [2], 2.2, there exist 0 < ~2 < ~1 and C2 > C~ 
as well as 0<63 <c52 and E 3 > E  2 such that for each z~S(F, e2, C2) we have 

{w~Ir."l]w-z[ < 63" exp ( -  E3 p(z))} c S(F, el, CO. 

Now we put Y2,,=IE"\S(F, ~2, C2) and define the coverings cg, cg,, cg,, and c~,,, 
of 112" by adding f2, to the families cg, cg,, off,, and cg,,,. Then the corresponding 
refinement maps have obvious extensions, again denoted by p, p', p". 

Next we define fm~A~(f2.) by f e . - 0 .  If we define the cocycle H as before, 
but with cg, replaced by c~,, then H satisfies the estimates (11) with other constants 
A1 and Ba. 

Now observe that the choices above imply the existence of positive numbers 
0 < 3 < 1 and E > 0 such that we can find a globally finite cover of I12" by open 
cubes ( Q j ) ~  for which diam Qj is approximately 6.exp (-Epj) for p j=  supp(z), 

z~Qr 

and such that for each j ~ N  we can choose f2(j)Ec~ '' such that Qj=p'(f2(j)). 

Moreover, we can choose ~pjE~(Qi) with ~, qgj= 1 on ~n and 
j = l  

(12) I~-~oAz)l < A2 exp (B 2 p(z)) for all z ~ "  and all j ~ N ,  

where A2 and Be are suitable positive constants, depending on 3, E and n. 
Next we define for each f2~c~ '' 

he.'= ~ (pjHp,~), p'(eu))[ f2. 
j = l  

Then it is easy to see that he is in C~~ and that the cocycle property of 
H implies for each (f21, f22)~cd~ 

(13) 

and 

(14) 

he, [Q1 n K22--hozl f2a n~22----Hp,tm),p,(e2)101 ( ' - )0  2 

~-he, 101 c~ f22 = Jhe2101 n f22 . 

From (14) we see that there exists ueC~,a)(IE") with ulg2:Uhe for each 
f2~cg ''. Since the partition of unity (q)j)j~N is globally finite, (11) and (12) (for 
c~;) imply the existence of positive numbers A3, Ba, depending only on A, 
k, L, F, ~, cg, n, 6 and E such that 

(15) ]u(z)[ < A3 exp(B3 p(z)) for all zOE n. 
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Since ffulg2=ffffhe=O, we get from H6rmander [6], 4.4.2, the existence of 
He  C ~ (112") with JH  = u and 

(16) S l H ( z ) 1 2 e x p ( - 2 ( B 3 p ( z ) + ( n + l ) l o g ( l + l z ] 2 ) ) ) d R < A 3  . 

Then b e , = h e - H l e  is in A(O) for each f2 ~c~'i By (13) we have for all (~21, O 2 ) E ~  

(17) b~, 1~21 c~ g2z-- b~2l O1 c~ 02 ~ Hp,(~l), p,(~2) [ ~1 ~ Q2" 

Next we define a~o:=bp,,~,~)[co and fo~,=fpop,o,,,(o~) for co~c~ '''. By (17), (10) and 
(9) we get for all (cot, o~2)~cg~ ' 

ao),lCOlnCo2_ao~2lcolcao)2 fo~,--fo~ c~ - F c ~ e ) 2 '  

and consequently 

This implies the existence of gEA(II2 ~) satisfying 

(18) glco=fo~--ao)F for all co~c~ '''. 

Next we observe that our choices imply by (16) and standard arguments, that 
there exist positive constants A 4 and B,  depending on A3, B3, p, n and ~ '"  
such that 

(19) [a~o(z)l<=A4 exp(B4p(z)) for all z~co, all coEc~ '''. 

From (19) and (8) we finally get A s and B5 depending only on A, k, L, F, 
p, n, 6, E, cg,, c~,, and cg,,, but not on x such that 

(20) [g(z)[<A5 exp(Bs p(z)) for all zEtl;". 

Hence g is in Ap(~" ). By (18) we have /~(g)=x, which completes the proof 
of (7) in the particular case. 

In order to show that Theorem 12 implies that in certain algebras Av(IE ") 
all slowly decreasing ideals are complemented, we recall the definition of the 
linear topological invariant (DN) which has been introduced by Vogt [17]. 

13. The Property (DN). Let E be a metrizable locally convex space with a funda- 
mental system ([1 ][k)k~ of semi-norms. E has the property (DN) if the following 
holds" 

(DN) There exists m ~ N  such that for each k e n  there exists nEN and C > 0  
with I[ [I~=<C[I 1[~ l] [J,. 

It is easy to check that [[ Jim is in fact a norm on E and that (DN) is a linear 
topological invariant which is inherited by linear topological subspaces. The 
significance of the property (DN) was first observed in Vogt [17], 1.3. 

14. Theorem. Let p be a weight function on IE ~ which satisfies log( l+lz[  2) 
= o (p (z)). Then the following assertions are equivalent: 

(1) Av(IE"); has (ON). 
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(2) For each k ~ N with 1 < k <-n and each slowly decreasing k-tuple 
F = (Fa . . . . .  Fk) E(Ap(([Y)) k the ideal I (F) is complemented in Ap(q~"). 

I f  in addition, p is radial, i.e. p(z)--p(Iz[), then (1) and (2) are also equivalent 
to 

(3) For each C > 1 there exist Ro > 0 and 0 < ~ < 1 such that for each R >= Ro 
we have p-  t (CR) p-  1 (SR) <= (p- a (R))Z. 

Proof (1)~(2): Fix k e n  with 1 <k<_n and let F=(F~, ..., Fk)~(Ap(II2")) k be slow- 
ly decreasing. Then we have noted in Theorem 12 that I(F) is closed in Ap((12"). 
Hence the continuous linear map 

k 

M: (Ap((12n))k--+ Ap(~"), M(g I . . . .  , gk):= '~, gjFj, 
j - 1  

has closed range I(F). Since Ap(d2") is a (DFN)-space, this implies that I(F) 
is a quotient space of (Ap(ll2n)) k. Consequently, I(F)'b is isomorphic to a subspace 
of (Ap((En)k)'b~--(Ap((12");)k. Since Ap((E')'b has (DN) by (1), this implies that I(F); 
has (DN). 

Now we look at the exact sequence 

(4) 0 -+ I (F) -+ Ap ((12") ~ Ap ((12")/1(F) -+ O, 

where R denotes the quotient map. Dualizing (4) we get the exact sequence 
of nuclear Fr6chet spaces 

(5) 0 -+ (Ap (II2")/I (F))'b -+ Ap (IC")'b --* I (F)'b -+ O. 

We proved already that I(F)'b has (DN). By Theorem 12, (Ap(ll;')/I(F))'b has 
(f2). Hence we can apply the splitting theorem of Vogt and Wagner [19], 1.4 
(see also Vogt [18J, 2.2), to get the splitting of the sequence (5). Obviously, 
this implies that the exact sequence (4) splits. Hence I(F) is complemented in 
Ap((l;'). 

(2)~(1): This is an immediate consequence of [13], Theorem 2.17. 
(1)<=>(3): For  radial weight functions p, this follows from [13J, Theorem 

2.17 and Proposition 3.1. A more direct proof is given in Meise, Momm and 
Taylor [12J, 2.11, 2.12. This proof uses a sequence space representation of 
Ap(tE')'b to evaluate Vogt [17], 2.3. 

Remark. We remark that in [13], Theorem 2.17, we have proved various proper- 
ties related with a weight function p on 112" to be equivalent to Ap((17")'b having 
(DN). 

15. Corollary. Let p be a radial weight function on 112" with p(2z)=O(p(z)) and 
log (1 +lzl 2) = o (p (z)) which satisfies condition (3) of Theorem 14. Then every princi- 
pal ideal I in Ap(tl2") is complemented. 

Proof Theorem 7.1 of Berenstein and Taylor [2] implies that each non-zero 
principal ideal I in Ap(~ n) is slowly decreasing. Hence the corollary follows 
from Theorem 14. 
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Remark. Corollary 15 extends a result of Djakov and Mityagin [4] to principal 
ideals which are not necessarily generated by a polynomial. Moreover, it extends 
Meisc [11], Theorem 4.7, and Taylor [15], Theorem 5.1, to several variables. 

16. Examples. (a) It is easy to check that the following radial weight functions 
on 112 n satisfy condition (3) of Theorem 14. 

(1) p(z)=lzF(log(l+lzl2))L p>0 ,  0<o-<oo.  

(2) p(z)=exp(lzp),  0<c~< 1. 

(3) p(z)=exp((log(1 +[z[2))~), 0<c~< 1. 

(4) Any radial weight function p with p(2z)~-O(p(z)) for which there exists 
A >  1 with 2p(z)<__p(Az)+A for all z6(E n. 

(b) For the weight functions p (z)= (log (1 + Iz12)) s, s > 1 the space Ap (C"); does 
not have (DN). In fact, each infinite codimensional slowly decreasing ideal 
I(F1, ..., F,) in Ap(tl2") is not complemented (see Meise [11], 2.13(2) and 4.9). 

From Corollary i5 we can easily get results on the existence of a continuous 
linear right inverse for all non-zero convolution operators on certain weighted 
Frhchet spaces of entire functions. To state these results, we recall that for 
an increasing convex function q: [0, oo[-~[-0, oo[, its Young conjugate q*: 
[0, o o [ ~  [0, oo] is defined by 

q* (x) = sup { x y -  q(y)] y __> 0}. 

17. Theorem. Let p: [0, o o [ ~  [0, oo[ be an increasing convex function for which 
p: z~p( l z ] )  is a weight function on fly which satisfies the hypotheses of Corollary 
15. Put q=p* and define 

A~ f~A((12~)lsup[f(z)[z~c, e x p ( - e q ( ~ ) ) <  oo for all e > 0 } .  

Then every non-zero convolution operator T on A~ ") admits a continuous linear 
right inverse. 

Proof. By Taylor [14], the Fourier-Borel transform W gives a linear topological 
isomorphism between 0 , ,  Aq (1~)b and Ap(IE"). Moreover, it is well-known that for 
each non-zero convolution operator T on A ~ (t12") the exact sequence 

0 n T 0 n 0 ~ ker T ~  Aq (112) ----*Aq (112) --~ 0 

splits if and only if the principal ideal ~ ( T )  Ap(tl2") is complemented in A~((IY). 
Hence the result follows from Corollary 15. 

As a particular case of Theorem 17 we note the following corollary which 
covers all convolution operators on some classical spaces which have been inves- 
tigated by Ehrenpreis [5], Malgrange [9] and Martineau [10]. 

E ~ (C~ 18. Corollary. Every non-zero convolution operator T on A(II2 n) or on ~, ,, 
s > 1, admits a continuous linear right inverse, where 

E ~ ((12") = {f~ A (flY) ] sup I f  (z)] exp (-- ~ I z V) < oo for all s > 0}. 
z ~ n  
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Remark. a) C o r o l l a r y  18 impl ies  in  p a r t i c u l a r  t ha t  every  n o n - z e r o  l inea r  pa r t i a l  
di f ferent ia l  o p e r a t o r  P(D) wi th  c o n s t a n t  coefficients  o n  A(IE") a d m i t s  a c o n t i n u -  
ous  l i nea r  r ight  inverse.  Th i s  however ,  was  s h o w n  a l r e a d y  by  Treves  [16] ,  T h e o -  
r em  9.7 a n d  its coro l la ry .  

b) C o r o l l a r y  18 ex tends  T a y l o r  [15] ,  T h e o r e m  5.1, a n d  Mei se  [11],  5.7 to 

the  case n > 1. 
I n  o rde r  to s ta te  a fu r the r  co ro l l a ry  of  T h e o r e m  14, let p be  a weight  f u n c t i o n  

o n  IE", let I be  a c losed  ideal  in  Ap(IE") a n d  let V(I) d e n o t e  the  mu l t i p l i c i t y  
va r ie ty  of  I (see Be rens t e in  a n d  T a y l o r  [2] ,  Sect. 3). T h e n  o n e  w a n t s  to ident i fy  
Ap(IE")/I wi th  a ce r t a in  space  Av(V(I)) of  h o l o m o r p h i c  f u n c t i o n s  o n  V(I). I f  
V(I) is a s t r ong ly  i n t e r p o l a t i n g  c o m p l e x  s u b m a n i f o l d  of  IE" (see [-13], 2.16 a n d  
Berens t e in  a n d  T a y l o r  [3] ,  T h e o r e m  1), t h e n  

Av(V(I)) = {f~A(V(I))[  sup  If(z)[ exp (--Ap(z)) < oo for s o m e  A > 0}. 
z~V(l) 

Howeve r ,  in  the  genera l  case, the  de f in i t i on  of  Ap(V(I)) is m o r e  invo lved ,  as 
Be rens t e in  a n d  T a y l o r  [2] ,  3.5 a n d  3.6 show. U s i n g  this  de f in i t i on  of  Ap(V(I)), 
we get i m m e d i a t e l y  f rom T h e o r e m  14. 

19. Coro l l a ry .  Let p be a weight function on fly for which Ap(C")'b has (DN) 
and let F = (F1 . . . .  , Fk)~ (Ap (IEn)) k be slowly decreasing, Then there exists a continu- 
ous linear extension operator 

E: Ap(V(I(F))) --+ Av(r ). 
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