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Abstract

Background: The automated reconstruction of genome sequences in ancient genome analysis is a multifaceted

process.

Results: Here we introduce EAGER, a time-efficient pipeline, which greatly simplifies the analysis of large-scale

genomic data sets. EAGER provides features to preprocess, map, authenticate, and assess the quality of ancient DNA

samples. Additionally, EAGER comprises tools to genotype samples to discover, filter, and analyze variants.

Conclusions: EAGER encompasses both state-of-the-art tools for each step as well as new complementary tools

tailored for ancient DNA data within a single integrated solution in an easily accessible format.
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Background
In ancient DNA (aDNA) studies, often billions of

sequence reads are analyzed to determine the genomic

sequence of ancient organisms [1–3]. Newly developed

enrichment techniques utilizing tailored baits to cap-

ture aDNA fragments, even make samples accessible that

were previously both economically as well as technically

unsuitable to be analyzed. The crucial step is no longer

the production of genomic data from the past, but the

computational reconstruction of ancient genomes using

high-throughput sequencing (HTS) data, which is usually

done employing short read alignment methods such as

BWA [4] and standard analysis toolboxes such as SAM-

tools [5] or the Genome Analysis Toolkit (GATK) [6].

However, aDNA shows several characteristics, such as low

endogenous DNA content, short fragment lengths, and

misincorporation patterns [7], making the application of

modern alignment methods with default parameters dif-

ficult. Therefore, specialized methods tailored to address

the characteristics of aDNA need to be applied, to recon-

struct ancient genomes successfully.
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Until today, there have only been a few contributions

towards a general framework for this task, such as the

collection of tools and respective parameters proposed

by Martin Kircher [8]. However, most of these methods

have been developed for mitochondrial data in the con-

text of the Neanderthal project [1, 9], and therefore do

not scale well to larger genomes. Another contribution

towards a fully automated approach has been made with

PALEOMIX [10]. PALEOMIX offers separate toolkits for

the analysis of aDNA samples, mapping reads, and sub-

sequent genotyping combined with taxonomic as well as

metagenomic profiling. Therefore, PALEOMIX is already

a great improvement over simple scripts in a way that it

provides users with access to more advancedmethods and

keeping these utilizable in a standardized way.

Especially for ancient bacterial research projects, this

provides an improvement over former methods, which

solely consist of sets of small scripts and which were

therefore more prone to error and not very user-friendly.

In this highly interdisciplinary field, where many users

have a background in molecular biology or archaeology,

the practical applicability of available methods is of high

importance. The execution of scripts and their complex

configurations are difficult for many researchers in this

field, in particular if this requires learning programming

language syntax for execution. Further barriers include
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the necessity to compile the source code of the underlying

methods, making the installation and maintenance of

sophisticated pipelines difficult even for administrative

users with more bioinformatics expertise. User-friendly

bioinformatic tools and methods with an interactive

interface provide archaeologists and biologists with the

ability to analyze large HTS data sets. For these reasons,

a data-processing pipeline should be designed as com-

prehensively as possible, to make the underlying methods

easily accessible for a wide range of users.

To address this need, we have developed EAGER, a

fast and highly user-friendly next-generation sequencing

(NGS) analysis pipeline for the efficient reconstruction

of ancient genomes, which is designed to be used by

researchers without the requirement to apply scripting

languages or obtain further programming knowledge.

Implementation
EAGER consists of tools addressing read preprocessing,

read mapping, PCR duplicate removal, and genotyping

large-scale NGS data from NGS platforms (e.g., Illu-

mina HiSeq, MiSeq, or NextSeq), with a specific focus

on aDNA (see Fig. 1). Though the focus of EAGER lies

on aDNA analysis, also DNA from any modern sample

can be analyzed with it. When compared with PALE-

OMIX as a direct competitor, an important aspect of

EAGER’s user-friendliness is that it offers a graphical

user interface (GUI) that allows the user to configure the

pipeline (see Fig. 2).Moreover, it integratesmore tools and

methods for preprocessing, analysis, and authentication of

aDNA, too.

For the preprocessing, EAGER encompasses all steps

necessary to process HTS raw data in FastQ format, using

methods for quality assessment and prefiltering as well

as newly designed methods for efficient and fast read

merging and clipping. Furthermore, the pipeline provides

features to map reads against a reference genome using

a set of state-of-the-art mapping methods such as BWA-

aln [4], Bowtie2 [11], and BWA-mem [12]. The pipeline

can authenticate aDNA samples based on DNA damage

patterns with mapDamage [13] and includes methods that

are offered by Preseq [14] to determine the complexity

of sequencing libraries. Furthermore, contamination esti-

mation and subsequent consensus sequence generation

in FastA format can be done within the pipeline using

schmutzi [15]. In addition, EAGER has tools to perform

genotyping [6] for mid to high coverage samples, to dis-

cover, filter, and analyze variants within a single integrated

solution. For low coverage samples, the pipeline encom-

passes the ANGSD method to generate genotype likeli-

hoods [16]. Furthermore, methods specifically designed

for aDNA projects can be turned off, permitting the same

pipeline to be used for modern DNA projects as well.

Within EAGER, we have also added four new

tools, Clip&Merge, the CircularMapper, DeDup, and

VCF2Genome, replacing or complementing existing tools

for preprocessing, mapping, PCR duplicate removal, and

genome reconstruction, respectively.
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Fig. 1Workflow diagram of the EAGER pipeline. The pipeline consists of three distinct main components for processing and analysis of NGS data:

preprocessing, read mapping, and genotyping
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Fig. 2 The GUI of the EAGER pipeline. The methods that can be used

in the EAGER pipeline can be selected by the user and settings for

each method can be adapted via the advanced buttons

The Clip&Merge method performs a highly efficient

adapter clipping of sequencing reads and subsequent

merging of paired-end reads with negative insert sizes

(an overlap between two sequencing reads derived from a

single DNA fragment) into a single “collapsed” read.

The CircularMapper method performs an improved

mapping of sequencing reads to circular reference

genomes. Using the CircularMapper enables researchers

to apply, for example, mitochondrial (mtDNA) hap-

logroup assignment methods such as HaploFind [17] with

higher certainty, as many phylogenetically informative

positions can be found at the beginning and the end of the

mtDNA reference sequence.

Another contribution is the DeDup method, which

removes duplicates and is tailored specifically to merged

paired-end reads. DeDup considers specific properties of

merged reads that are not considered by already existing

methods, such as rmdup in SAMtools [5], by taking both

ends of the fragment into account (see Fig. 3).

Finally, we incorporated our new VCF2Genome tool

into the EAGER pipeline, which can take variant calls

from the genotyping step and generate a draft genome

sequence, with specific filtering criteria applied to each

call performed by the genotyping method. The generated

draft sequence can then be used by other methods, e.g.,

for performing phylogenetic analyses.

Fig. 3 Conceptual idea of the DeDup method. Paired-end forward

and reverse reads resulting from two fragments are drawn in red and

merged reads are drawn in blue. Although the two merged reads

stem from two different DNA fragments, SAMtools rmdup removes

the read with the lower overall sum of base qualities, as only the

starting position of the mapped reads is taken into account. DeDup

takes both mapping positions (start and end) into account, and in this

case would keep both reads

The pipeline also has a method that automatically pro-

duces a comprehensive report of the processed data, mak-

ing the retrieval of statistics about generated data as easy

as possible.

EAGER has been implemented in the Java programming

language and can be run on several types of operating sys-

tem, including but not limited to desktop workstations.

Setting up the pipeline has been realized using Linux

containers via Docker [18], to provide users and admin-

istrators with a portable and flexible distribution of the

pipeline, without complex configuration scripts or the

need to compile the source code themselves. Once set

up, the pipeline can be accessed via a GUI (see Fig. 2).

The GUI is applied to configure the analysis tasks, hiding

most of the complexity from the user. For advanced users,

options for more detailed parameter adjustments exist.

Previously published protocols, such as PALEOMIX [10],

partially overlap in terms of features; however, EAGER

offers an improved user experience by providing a GUI,

swift setup, and short processing time.

Results and discussion
EAGER has been implemented such that processes are

executed in parallel whenever the underlying methods

support this and it is optimized to store the generated
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output in compressed file formats, making the pipeline

both CPU and storage efficient. To evaluate the perfor-

mance of the pipeline and the fundamental tools, EAGER

has been applied to six published data sets: five ancient

Mycobacterium leprae data sets from Schuenemann

et al. [2] and a high coverage ancient human genome

data set published in Lazaridis et al. [19] (see Table 1).

We compared EAGER to PALEOMIX, currently the most

comprehensive protocol for aDNA, which provides two

distinct and independent pipelines: a mapping pipeline

and a phylogenetic pipeline to generate BAM files and

perform genotyping together with downstream phyloge-

netic analysis. EAGER features more tools and methods

than PALEOMIX, including initial raw sequencing qual-

ity assessment with FastQC, library complexity estimation

with Preseq, and several new methods such as Clip &

Merge, CircularMapper, andDeDup combined withQual-

iMap for mapping statistics. The mapping pipeline and

parts of the phylogenetic pipeline of PALEOMIX have

been applied to the test data sets to assess the run-time

performance in comparison to EAGER. Some of these fea-

tures have been turned off, as for example Preseq, as these

differ too much for direct comparison with PALEOMIX.

EAGER and PALEOMIX have been executed with default

parameters where applicable, setting mapping parame-

ters to the same values to ensure comparability. EAGER

runs on average 1.53 times faster than PALEOMIX on the

evaluated data sets (see Fig. 4 and Table 2). As both PALE-

OMIX and EAGER use similar mapping methods (e.g.,

BWA), this is mainly due to our new and improved read

trimming, merging, and de-duplication algorithms.

We then evaluated our newly developed method Clip &

Merge, for efficient adapter clipping and paired-end read

Fig. 4 Run-time comparison of EAGER and PALEOMIX. Normalized

run times are shown for six data sets: five ancient leprosy data sets [2]

and an ancient human sample [19]. EAGER (red) performs on average

1.53 times faster than the PALEOMIX (turquoise) pipeline (see Table 2

for the absolute run times and respective factors of each sample)

merging in much more detail, by comparing it to six other

similar and commonly used tools. For the comparison, we

used the same data sets as above. Clip&Merge performs

very well in terms of run time on the tested samples (see

Fig. 5), furthermore providing increased mapping rates

when compared to competitor tools (see Table 3). The

latter is an important feature as the improved merging

of aDNA reads and subsequent improved read mapping

Table 1 Sample names, corresponding SRA/ENA identifiers, number of reads, read length, number of bases, and the average fragment

length for the samples used for evaluation of the EAGER pipeline

Sample SRA ID/ENA ID # of reads Read length # of bases Avg. fragment length

3077 SRX275526 6,029,646 76 916,506,192 60.87

Refshale16 SRX276068 39,915,365 76 6,067,135,480 79.91

Jorgen625 SRX275549 15,101,591 200 6,040,636,400 164.24

SK2 SRX275535 54,243,849 100 10,848,769,800 62.84

SK8 SRX275538 9,898,159 76 1,504,520,168 81.41

LBK1 SAMEA2697125 227,266,922 101 45,907,918,244 69.71

LBK2 SAMEA2697125 222,751,961 101 44,995,896,122 69.69

LBK3 SAMEA2697125 227,779,612 101 46,011,481,624 69.72

LBK4 SAMEA2697125 207,406,901 101 41,896,194,002 69.72

LBK5 SAMEA2697125 207,983,311 101 42,012,628,822 69.67

LBK6 SAMEA2697125 208,835,520 101 42,184,775,040 69.71

LBK7 SAMEA2697125 213,784,583 101 43,184,485,766 69.68

LBK8 SAMEA2697125 228,184,096 101 46,093,187,392 69.71

For the LBK data set, we chose to evaluate a single lane of data (LBK1), as the other samples (LBK2–8) showed very similar features
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Table 2 Execution times (in seconds) of the EAGER and

PALEOMIX pipeline applied to five ancientMycobacterium

leprosy data sets and eight Homo sapiens data sets (LBK1–LBK8)

(see Table 1)

Data set EAGER PALEOMIX Factor

LBK1 57,853 90,181 1.55

LBK2 61,066 88,526 1.44

LBK3 58,252 90,032 1.54

LBK4 54,215 82,318 1.51

LBK5 53,676 82,500 1.53

LBK6 54,790 82,090 1.49

LBK7 61,859 83,544 1.35

LBK8 57,782 91,015 1.57

3077 1,066 1,310 1.22

Jorgen625 4,224 13,160 3.11

Refshale16 4,913 9,329 1.89

SK2 5,342 13,196 2.47

SK8 1,508 2,089 1.38

Average 36,657 56,099 1.53

The respective run times have been calculated using the Unix time command,

stated are the real times. Execution was performed on the same host system. The

parameters of both pipelines have been chosen to be as close to each other as

possible, e.g., the mapping parameters have been set to the same values, where this

was possible. The factor in the last column refers to the ratio of the PALEOMIX run

time versus that of EAGER

rates greatly influence further downstream analyses such

as genotyping. In addition, we also evaluated the Clip &

Merge application with respect to error tolerance on an

artificial data set, provided by the authors of FLASH [20]

for different levels of errors ranging from 0 to 5 %. The

accuracy of Clip&Merge exceeds or is similar to that of its

competitor tools on these simulated data sets, as can be

seen in Table 4. As LeeHom uses a stochastic approach

to perform adapter clipping and read merging within one

step, we excluded the method from the simulation evalu-

ation, as it only produced very low merging rates, which

are most likely because the simulated data did not con-

tain any adapter sequences and LeeHom was not able to

perform on such data sets without adapters. Not all the

methods have been evaluated on all data sets, as, for exam-

ple, MergeReadsFastQ is substantially slower than other

methods that forbid the application on a human genome

data set like the one from Lazaridis et al. [19].

A further method has been implemented for circular

genomes, where typically used mapping methods, such

as BWA or Bowtie2, are unable to obtain even cover-

ages at the ends of the circular reference genome due

to technical limitations. Most of the mapping algorithms

as of today only achieve even coverages on the interior

parts of reference genomes, whereas on circular genomes

they are unable to achieve even coverages at both ends

of the respective reference genome. For circular genomes,

the new method CircularMapper can even the coverage

obtained at the ends of the circular reference genome.

In the current version, CircularMapper can be used

only after mapping with BWA. To demonstrate how the

method evens the coverage, we have applied BWA with

and without CircularMapper to one of the ancientM. lep-

rae samples (Sample SK8, see Table 1). Visual inspection

of the overall coverage revealed that the results obtained

showed similar coverages across the reference genome,

however with much more uniform distribution of the

coverage at both ends of the circular reference genome

when applying the CircularMapper method in addition

(see Fig. 6).

The performance of DeDup in comparison to SAM-

tools rmdup applied to the five ancient leprosy samples

and one ancient human sample is shown in Fig. 7 and

Table 5. DeDup removes duplicates onmerged paired-end

data with a more sophisticated approach than previous

methods such as SAMtools rmdup. The improved DeDup

method increases the coverage on paired-end sequenc-

ing data with negative insert sizes significantly when

merging was applied. Subsequently, it improves down-

stream results such as variant detection and is almost

as fast as rmdup from SAMtools. In addition, we per-

formed a sub-sampling experiment on one of the data sets

(Jorgen625), and then compared the performance of

rmdup and DeDup both with respect to achieved genome

coverages as well as single-nucleotide polymorphism

(SNP) calling on low coverage data. The results (see

Table 6) indicate that DeDup retains more positions

than rmdup. Furthermore, the difference between using

no duplicate removal at all and DeDup is small. Espe-

cially on low coverage samples (below 5–10×), which

is rather typical for aDNA samples, the DeDup method

keeps more positions than the rmdup method. This leads

to a higher sensitivity of the downstream variant call-

ing pipeline with more resolved positions, while rmdup

would remove too many reads, which therefore, leads

to a loss of many positions. Furthermore, on high cov-

erage samples, DeDup achieves higher maximum cov-

erages, which is particularly relevant for short fragment

lengths, which also are typical characteristics of aDNA

samples [7]. For a sample with only few variants, as

is the case for the Jorgen625 sample, the differences

between the different duplicate removal methods are only

subtle, but for other samples with higher numbers of

mutations, we expect the differences to be significantly

larger.

As the sequencing of aDNA often results in low cov-

erage genomes, we used ANGSD-tools, as integrated in

EAGER, and analyzed its performance. For this we simu-

lated low coverage data with the full LBK/Stuttgart sample

from Lazaridis et al. [19]. Using SAMtools, we randomly
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Fig. 5 Run-time comparison of several read merging tools. Our own method Clip&Merge (green) was compared to MergeTrimReads (red), CutAdapt

+ FLASH (blue), SeqPrep (purple), LeeHom (light green), and AdapterRemoval (yellow). The evaluation was performed on fiveMycobacterium leprae

data sets and one exemplary human data set (LBK1). Clip&Merge outperforms the other available methods in terms of speed, except for the

combination of CutAdapt and FLASH. MergeReadsFastQ was not evaluated on the LBK1 data set, due to the run-time limitations posed by the

method, which is shown as a run time of zero for this case

extracted reads from the given sample with coverages

ranging from 0.09X to 7.51X. Then, we used ANGSD

to reconstruct the genomes from the low coverage sub-

sampled data sets. We then compared these results to

the full coverage genotyping results obtained on the pub-

lished ≈19X data set, as shown in Table 7. EAGER per-

formed well in these tests and was able to reconstruct high

numbers of variants when compared to the genotyping

performed on the full coverage data set, showing that it

could even work well on low coverage input data.

To elucidate the performance of the full EAGER

pipeline, a comparison with already published results

obtained on an ancient human individual from Lazaridis

et al. [19] has been performed (see last row of Table 1).

Already processed results were downloaded and com-

pared to the respective results obtained when processing

the raw sequencing data using the EAGER pipeline. Here,

we focused on comparing the results of the genotyping

analyses, more precisely the variants called by EAGER

compared to those published by Lazaridis et al. Note

that comparing different variant calling methods is diffi-

cult in aDNA projects, as there are no gold standards for

aDNA data sets, unlike the Genome in a Bottle (GIAB)

data sets for modern DNA for example [21]. This restricts

the comparison to qualitative measures, such as the tran-

sition to transversion ratio, the total number of called

variants, and the percentage of variants found in dbSNP

[22]. EAGER performs well in terms of the computed tran-

sition to transversion (Ti/Tv) ratio (see Table 8), achieving

a Ti/Tv ratio of 2.21 on the LBK1 (Linearbandkeramik)

data set, whereas the published data showed a respec-

tive Ti/Tv ratio of 2.4. For variants restricted to those

published in dbSNP, the Ti/Tv ratio dropped to 2.1 for

both EAGER and the published data, which is exactly

the expected value for human samples [23]. Additionally,

88.5 % of found variants could be verified as already pub-

lished variants in dbSNP, a higher percentage than the

previously published 78.8 %. The differences between the
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Table 3 Mapping rates for different adapter clipping and read

merging methods

Sample Method Number of Mapped

mapped reads reads [%]

3077 Clip&Merge 1,043,672 17.31

MergeTrimReads 1,006,194 16.7

CutAdapt + FLASH 1,036,940 17.2

SeqPrep 949,073 15.74

LeeHom 981,558 16.28

AdapterRemoval 931,529 15.45

Jorgen625 Clip&Merge 2,703,428 17.9

MergeTrimReads 2,623,243 17.37

CutAdapt + FLASH 2,599,158 17.21

SeqPrep 2,595,366 17.19

LeeHom 2,617,909 17.34

AdapterRemoval 2,524,087 16.71

Refshale16 Clip&Merge 13,368,593 33.49

MergeTrimReads 13,812,705 34.6

CutAdapt + FLASH 11,533,714 28.9

SeqPrep 11,516,472 28.85

LeeHom 8,916,759 22.34

AdapterRemoval 11,431,717 28.64

SK2 Clip&Merge 48,536,318 89.48

MergeTrimReads 48,610,983 89.62

CutAdapt + FLASH 48,402,551 89.23

SeqPrep 48,240,750 88.93

LeeHom 48,337,919 89.11

AdapterRemoval 47,095,207 86.82

SK8 Clip&Merge 1,283,126 12.96

MergeTrimReads 1,280,119 12.93

CutAdapt + FLASH 1,109,626 11.21

SeqPrep 1,107,013 11.18

LeeHom 908,549 9.18

AdapterRemoval 1,100,326 11.12

LBK1 Clip&Merge 113,843,504 50.1

CutAdapt + FLASH 52,681,090 26.8

SeqPrep 109,491,426 51.6

LeeHom 111,943,019 50.9

AdapterRemoval 107,484,735 47.2

Version 1.6 of Clip&Merge was tested. Version 1.7.1 of CutAdapt was evaluated

together with version 1.2.11 of FLASH. We used SeqPrep version 1.1, and

MergeTrimReads and LeeHom in the versions publicly available on 10 January 2015.

Version 1.5.4 of AdapterRemoval was used. For the LBK1 sample, the

MergeTrimReads method was not evaluated, as the run time of the method had

exceeded those of all other methods when tested on smaller data sets by far.

Overall, the tools Clip&Merge and MergeTrimReads performed best

Table 4 Merging accuracy on simulated test data sets with

ranging error rates from 0–5 %

Accuracy

0 % 1 % 2 % 3 % 5 %

Clip&Merge 99.96 67.30 40.70 32.69 30.03

FLASH 97.68 66.08 40.30 32.59 30.04

AdapterRemoval 98.13 66.54 40.39 32.57 30.02

SeqPrep 97.68 44.22 33.07 30.82 30.01

The data sets were downloaded from Magoc et al. [20]

published data and the results obtained with EAGER are

most likely due to updated methods within EAGER, for

example, as GATK has been updated frequently in the

meantime.

We compared the EAGER pipeline and PALEOMIX

on a modern data set from the Genome Comparison

& Analytic Testing (GCAT) platform (available from

bioplanet.com). We used the 30X exome sequencing data

set derived from the GIAB initiative to evaluate the map-

ping and subsequent variant calling of EAGER and PALE-

OMIX. The results are summarized in Table 9. It can

be seen that the result produced by EAGER outperforms

both the pipeline offered through GCAT as well as PALE-

OMIX on the level of sensitivity of the called variants at

almost the same perfect level of specificity.

In summary, we have developed EAGER, a user-friendly

and integrated pipeline for the efficient reconstruction

of ancient genomes, providing users with easy access

to a large number of state-of-the-art and complemen-

tary methods. EAGER is an actively developed pipeline

that has been designed as a modular framework. There-

fore, while keeping the usability aspect as its first and

foremost priority, it allows for the easy integration of

extended features and new tools that will contribute to

high-throughput DNA sequencing data analysis in the

future.

Methods

Preprocessing

EAGER can perform several raw read preprocessing steps,

including the initial analysis of raw sequencing reads

using FastQC (Andrews, S.; FastQC: A quality control

tool for high throughput sequence data, unpublished,

2010) to assess the basic quality of the generated NGS

data. aDNA usually suffers from post-mortem damage,

with decreasing read lengths and increasing misincor-

poration patterns, rendering the analysis of aDNA data

difficult with the currently applied NGS methods. Fur-

thermore, the fragments are typically of smaller length

than in modern data sets, making the reconstruction of a

full genome evenmore difficult. Readmerging is therefore

a necessary step to improve the overall quality of reads

https://bioplanet.com
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Fig. 6 Comparison of coverage of CircularMapper and BWA. The plot illustrates the coverage of the CircularMapper method (red) in comparison

with the coverage obtained using only the BWA method (blue) to reconstruct the SK8Mycobacterium leprae sample. The coverages have been log2

transformed. The average coverage over the whole genome is shown in green. The first 200 (left) and the last 200 bases (right) of the genome are

shown here to demonstrate the effect of the CircularMapper method. Because of the specific fragment length within the sample, the effect is

restricted to the first and last approximately 80 bases

from aDNA. Furthermore, some mapping algorithms, for

example BWA-aln, have difficulties in mapping paired-

end data with negative insert sizes.

The newly developed Clip&Merge method is capable

of clipping adapter sequences, merging clipped paired-

end reads if possible, and trimming non-merged reads

based on a user-defined quality threshold. To achieve this,

a clipping strategy that was motivated by the technique

implemented in the FASTX-Toolkit (Gordon A, Hannon

GJ: Fastx-toolkit. FastQ/A short-reads pre-processing

Fig. 7 Comparison of duplicate removal methods. Coverages obtained when applying the SAMtools rmdup method (green) and the DeDup

method (red) to five ancient leprosy samples and one ancient human sample
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Table 5 Run-time evaluation and performance evaluation of DeDup compared to SAMtools rmdup on five leprosy and eight human

data sets

Run time in seconds Total # of mapped reads Removed reads

Sample DeDup Rmdup DeDup Rmdup

3077 53 42 5,737,174 410,045 492,798

SK2 146 66 51,741,310 47,353,377 47,567,518

SK8 124 109 10,597,941 189,328 323,524

Jorgen625 347 335 16,093,580 96,393 699,310

Refshale16 479 371 43,528,407 3,802,345 8,055,585

LBK1 2845 2446 227,603,728 3,138,204 6,708,814

LBK2 2779 2544 230,911,458 2,828,977 6,060,762

LBK3 2809 2440 228,167,295 3,264,858 6,719,244

LBK4 2451 2235 207,956,568 2,762,565 5,929,959

LBK5 2531 2248 208,277,143 2,802,601 5,983,802

LBK6 2572 2255 209,806,794 2,789,629 6,005,481

LBK7 2859 2532 229,979,501 2,466,574 5,293,065

LBK8 2804 2441 228,466,493 3,177,587 6,786,388

tools, unpublished) was developed, making use of multi-

core systems by running the clipping on forward and

reverse reads in parallel. To identify adapter sequences

at the ends of the reads, a local alignment based on

the Smith–Waterman algorithm [24] between the adapter

sequence and the read is calculated. All bases between the

start position of the alignment and the end of the read

are then removed, if the alignment fulfills the require-

ments defined by the user, including an allowed number of

mismatches and a minimum length of the overlap region.

If the start position of the alignment and the adapter

are different, the start position is moved towards the 5′

end of the read by the number of unaligned bases at the

start of the adapter sequence. This ensures that there

are no adapter bases left in the read sequence, avoiding

the merging of adapter sequences in the subsequent step.

The merging step calculates the reverse complement of

the reverse read and then performs a maximal overlap

search between the ends of the forward and the reverse

complemented reverse reads, starting with a maximal

overlap and a pairwise comparison of the nucleotides in

the overlap region. If the edit distance in the overlap

region is lower than a defined threshold and the size of

the overlap region is larger than a defined minimal over-

lap size, the merging is accepted. Bases with very low

sequencing quality are treated as undefined nucleotides

and do not contribute to the edit distance in the tempo-

rary overlap region. If the criteria for an overlap cannot

be fulfilled properly, the temporary overlap is shifted by

one base and the calculations are repeated, until either a

satisfying overlap has been found or no overlap could be

identified.

Mapping

EAGER features several mapping algorithms that can be

accessed and configured easily via the integrated GUI.

Currently, BWA [4], BWA-mem [12], Bowtie [25], and

Stampy [26] are available. Many available mapping meth-

ods are optimized towards mapping NGS reads to a lin-

ear reference genome. However, the majority of bacterial

genomes as well as the human mitochondrion are cir-

cular. Methods like BWA try to map sequencing reads

completely against the reference genomes and mark reads

that cannot be mapped completely as unmapped. Even

improved methods that allow for soft-clipping, for exam-

ple BWA-mem, have not solved these issues completely.

Although this does not pose an issue for reads falling into

the interior regions of a circular genome, the first as well

as the last couple of hundred bases of circular genomes

are usually reconstructed poorly due to the inability to

map reads to the respective regions. The resulting cover-

age in such regions has been observed to be significantly

lower than the average coverage on the whole genome of

the respective organism, which poses difficulties for some

downstream analysis tasks such as haplotyping or full-

genome reconstruction, where an even coverage of the

whole genome is required [17]. To overcome these issues,

the CircularMapper method has been developed.

CircularMapper performs two independent steps: It

first creates an elongated reference genome, by adding the

first k bases of the reference genome to the end of the

genome and then mapping the sequencing reads against

that elongated reference genome. Typically, k is chosen

to be a default of 500 bases but can be set by the user.

The elongation value k should be chosen to be at least
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Table 6 Comparison of DeDup with the SAMtools rmdup

method

Percentage Method Var calls cov(fold) cov(%) refCall/�

1 NoRMDup 1 1.16 1.02 33,277

1 DeDup 1 1.16 1.01 −207

1 rmdup 1 1.16 0.98 −1,362

2 NoRMDup 11 2.33 10.17 332,395

2 DeDup 11 2.33 10.14 −1,051

2 rmdup 11 2.32 9.85 −10,563

4 NoRMDup 55 4.7 49.82 1,628,172

4 DeDup 55 4.69 49.73 −2,978

4 rmdup 55 4.64 49.10 −23,481

5 NoRMDup 80 5.89 66.85 2,184,874

5 DeDup 80 5.88 66.77 −2,889

5 rmdup 78 5.8 66.19 −21,761

6 NoRMDup 91 7.06 78.85 2,576,795

6 DeDup 91 7.05 78.78 −2,219

6 rmdup 89 6.94 78.31 −17,500

7 NoRMDup 102 8.26 86.68 2,832,796

7 DeDup 102 8.24 86.62 −1,931

7 rmdup 101 8.09 86.29 −12,650

70 NoRMDup 114 82.58 98.39 3,215,440

70 DeDup 114 80.84 98.39 0

70 rmdup 114 68.87 98.39 −52

80 NoRMDup 114 94.38 98.4 3,215,840

80 DeDup 114 92.11 98.4 −2

80 rmdup 114 76.89 98.4 −54

90 NoRMDup 114 106.23 98.42 3,216,400

90 DeDup 114 103.36 98.42 0

90 rmdup 114 84.62 98.42 −30

100 NoRMDup 114 118.03 98.43 3,216,748

100 DeDup 114 114.51 98.43 −1

100 rmdup 114 92.02 98.43 −30

The first column describes the percentage of randomly drawn reads from the

Jorgen625 leprosy data set, with a genome size of 3,268,202 base pairs. Var calls

shows the number of variant positions that were called. cov(fold) and cov(%) show

the coverage of the genome. refCall describes the number of reference calls that

were made, where � describes the difference between the non-de-duplicated

sample at the given sub-sampling degree and the duplicate removed sample. All

other positions of the genome have been filtered out. The parameters to call a

position confidently were a coverage of at least fivefold, a variant quality of at least

30, and a minimum allele frequency of 90 %. NoRMDup refers to not applying any

duplicate removal to the corresponding sample

the maximal read length observed in the preprocessed

sequencing data set used as input. After this, reads are cat-

egorized by the second CircularMapper component into

three different categories. The first category of reads is

found in the region ranging from k to the unmodified

genome length and reads in the category do not require

any changes. The second category of reads is found in

the first or in the last k bases of the modified genome.

These are remapped in a separate step. This is important,

as reads that are found to fit two or more regions on a

reference genome are usually marked ambiguous by the

mapping algorithm. As they clearly result from the mod-

ifications introduced by the CircularMapper, these reads

can be remapped safely against an unmodified reference

and then taken into the final mapping results. Lastly, reads

that have a starting position within the unmodified refer-

ence genome and simultaneously have an end position in

the modified region are considered as overlapping reads,

spanning the circular overlap region of the reference.

These reads are split according to their overlap and are

afterward placed at their correct positions by the second

component of the CircularMapper method. For human

genomes, where the mitochondrion is the only part of

the genome to be organized as a circular chromosome,

the method can perform this extension and split approach

on the whole genome, but only modifying the mitochon-

drion reference in such a case. This is required, because

the human genome has nuclear mitochondrion DNA

(NUMTs) regions [27]. Mapping DNA against only the

mitochondrion reference genome would therefore result

in an overestimation of actual coverage, as reads that

would otherwise map to NUMTs, are mapped against the

mitochondrion reference in such cases. Thus, a mitochon-

drion DNA reconstruction should always be performed

on the full human genome to take these NUMTs into

account.

To ensure that the resulting SAM and/or BAM files

of aDNA sequences are processed appropriately, we

developed an improved duplicate removal method called

DeDup, which is integrated in the pipeline, too. As aDNA

samples often show very low amounts of endogenous

DNA, enrichment and amplification methods are often

used to increase the number of DNA reads retrieved

from the given DNA fragments [2, 3]. Unfortunately, these

methods increase the number of sequencing duplicates

stemming from the same fragments. Since the coverage of

specific genomic loci is important for downstream analy-

sis, the statistics of the respective loci, such as duplicates,

can convey a false-positive trust in a specific region that

might only result from a high number of duplicate entries.

This is undesired, and therefore in silico methods are

utilized to remove duplicated sequencing reads. Several

methods to achieve this have been proposed, with the

most prominently used being rmdup in SAMtools [5].

This method works well on regular paired-end sequencing

data, where the 3′ end of the forward reads and 5′ end of

the reverse reads are known. Since rmdup only considers
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Table 7 Downsampling experiment for simulation of low coverage data

Sampling 0.005 0.01 0.02 0.05 0.10 0.20 0.30 0.40

Expected mean coverage 0.10 0.19 0.39 0.97 1.94 3.88 5.82 7.76

Achieved mean coverage 0.09 0.19 0.38 0.94 1.88 3.75 5.63 7.51

Cov % of genome ≥1 read 8.70 % 16.47 % 29.71 % 56.28 % 76.85 % 88.41 % 90.69 % 91.28 %

Cov % of genome by ANGSD 8.64 % 16.37 % 29.55 % 56.06 % 76.68 % 88.35 % 90.67 % 91.27 %

% of correctly called bases 99.72 % 99.73 % 99.74 % 99.77 % 99.82 % 99.89 % 99.92 % 99.93 %

The first row refers to the percentage of reads that were randomly sampled from the original data set (LBK/Stuttgart) from Lazaridis et al. [19] (coverage ≈19×) using

SAMtools. The expected mean coverage was derived by multiplication of the original coverage with the sampling value. The achieved mean coverage was calculated using

QualiMap after mapping. Cov % of genome≥1 read is the percentage of the genome that was covered by at least one read. This was also calculated using QualiMap. Cov % of

genome by ANGSD is the percentage of the genome that was reconstructed from the genotypes as derived with ANGSD. %of correctly called bases is the percentage of bases

that ANGSD called correctly not regarding the base “N”

the 5′ positions of the respective reads, the assumption

regarding equal 3′ ends fails for merged paired-end reads,

where the 3′ end is not known in advance. Thus, the

method may also remove reads that stem from different

fragments. To compensate for this, the DeDup method

has been implemented following a principle described by

Green et al. [9], which considers both the 5′ and the 3′

positions of the respective reads and thus, keeps merged

reads that have different lengths (see Fig. 3). When two

reads are mapped to the same start and end positions, the

read with the higher sum of base qualities is kept, whereas

the readwith the inferior sum of base qualities is discarded

accordingly. For unmerged reads, the method performs

the same duplicate removal procedure as the SAMtools

rmdup method for single-end reads. DeDup has been

optimized to work correctly on single-end data as well

as (partially) merged paired-end data with negative insert

sizes or collapsed reads. For paired-end data with posi-

tive insert sizes, as for typical modern data, the EAGER

pipeline features the MarkDuplicates method from the

Picard toolkit to enable paired-end de-duplication for

non-merged data, too. Finally, the method QualiMap [28],

which reviews the overall mapping results, has been made

accessible in the pipeline.

An important step during aDNA analysis is authentica-

tion. This can be addressed by damage pattern analysis

and fragment length calculation. In EAGER, we have,

therefore, integrated mapDamage [13] for an automated

Table 8 Evaluation of the EAGER pipeline in comparison with

already published data (ENA SAMEA2697125)

EAGER Published

Ti/Tv ratio 2.21 2.4

Ti/Tv dbSNP 2.1 2.13

Total variants predicted 4,098,642 4,340,699

Variants annotated in dbSNP 3,626,496 3,419,360

% dbSNP 88.48 78.77

For whole human genomes, a good Ti/Tv ratio is typically considered to be around

approximately 2.1 and a high percentage of >80 % of the total found variants in a

sample is expected to be found in the dbSNP database (see last row)

damage pattern analysis to authenticate ancient samples.

Furthermore, the mapping module contains the Preseq

tool [14] to determine the complexity of the sequencing

library. To enable researchers to perform contamination

estimation on aDNA data, which is a crucial step for

assessing whether data has been contaminated with DNA

from foreign sources, we also integrated the recently pub-

lished method schmutzi [15] into the EAGER pipeline.

Schmutzi estimates contamination based on a maximum

likelihood approach using deamination patterns and frag-

ment lengths typical for aDNA. In addition, schmutzi

can be used to compute an improved endogenous human

mitochondrial genome sequence by taking the estimated

contamination into account.

Genotyping

The pipeline can be used to perform a full genotyping of

a given sample using GATK [6], including both available

genotypers (the UnifiedGenotyper and the Haplotype-

Caller) in GATK along with the GATK variant filtration

method to perform downstream analysis of called vari-

ants inside the pipeline. Within EAGER, the GATK Best

Practice’s Guidelines are followed [29], including Indel-

Realignment but excluding the Base Score Recalibration

procedures. As Base Score Recalibration requires some

reference VCF file to perform the recalibration properly,

which rarely exists for the application on ancient genomes

and applications that involve species other than humans,

Table 9 Comparison of EAGER to a benchmark data set from

GIAB

Pipeline GIAB Sensitivity GIAB Specificity

GCAT 85.21 % 99.9975 %

EAGER 88.21 % 99.9963 %

PALEOMIX 82.83 % 99.9962 %

GCAT is the result of GCAT using BWA followed by the GATK Unified Genotyper.

EAGER is the result that was produced using EAGER and also BWA with standard

parameters for the Unified Genotyper of GATK. PALEOMIX is the result that was

produced using PALEOMIX using BWA and the SAMtools mpileup method to get

genotypes
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we excluded the method, as it could hinder the detec-

tion of potentially ancient variants that are not present in

modern populations when used in aDNA projects. Fur-

thermore, since modern sequencing machines produce

very reliable base quality scores, we decided to remove the

Base Score Recalibration step from the EAGER pipeline.

Furthermore, we developed the VCF2Genome method,

which reads a VCF file produced by the genotyping

method of choice. For each call, it incorporates one

nucleotide into a new draft genome sequence. By default,

if the genotyper calls a reference base and the quality of

the respective call was at least 30 with a minimal cover-

age of the respective position of at least five reads, then a

reference base is included in the draft genome sequence at

this position. If a variant was called (SNP), it is included

if the same quality threshold is fulfilled, at least five reads

covering the respective locus contain the respective SNP,

and the fraction of mapped reads containing the SNP was

at least 90 %. If not all of these requirements are fulfilled,

but the quality threshold is still reached, the reference base

is called instead, but only if it is confirmed by at least

five reads and contained in 90 % of the reads covering

the locus. The stated thresholds and filtering criteria are

the current default values set by the pipeline and can be

configured by the user. If neither the reference call nor a

variant call can bemade, the character “N” is incorporated

at the position. To keep the potential introduction of too

many “N” characters due to sequencing errors as low as

possible for low coverage genomes, the major allele is still

regarded as being confirmed by 100 % of the reads, if there

is only a single read confirming the minor allele. Addi-

tionally, the tool produces two further draft sequences.

The first contains the reference base instead of “N” in all

cases, whereas the second contains a special uncertainty

encoding. Instead of the “N” character, it contains lower-

case letters “a”, “c”, “g” and “t” at positions where a call was

rejected, for example due to low coverage but the reads

covering the respective position unambiguously indicate a

SNP call. For uncertain reference calls, an “R” is inserted.

Using this approach, users can differentiate between a

clear SNP call, a weak SNP call, a clear/weak reference

call, and no call at a certain position more effectively. As

many samples in aDNA projects only show low coverages,

EAGER also features the ANGSD method [16] to create

genotype-likelihood-based output on low coverage data,

using an already established method.

Report generation

Additionally, EAGER features a report engine that can

be used to generate summary reports with the most

important statistics including mapping and genotyping of

all processed samples (see Table 10 for an excerpt and

Additional file 1 for the full table). This offers the possibil-

ity of assessing the analysis of multiple samples in a single

step, without the requirement to collect output results

from different sources and folders manually.

Software availability and requirements

The EAGER pipeline is available in several types of

flavors. For testing, a VirtualBox-based image is avail-

able, with all the required tools that can be exe-

cuted on any platform supporting VirtualBox [30]. Note

that this has some performance drawbacks, so that

this image should be used only for testing. For more

advanced users, a manual is available from our web-

site (it.informatik.uni-tuebingen.de) with instructions on

how to set EAGER up on different kinds of Linux/Unix-

based operating systems, such as CPU clusters where a

Docker-based installation is not feasible, due to access

rights for example. We were successfully able to run

EAGER on systems with 4–8 GB of RAM and four CPUs,

ranging up to workstations with 500 GB of RAM and

64 CPUs, as well as a typical cluster grid infrastructure.

Many state-of-the-art methods are used less by end users

because of several dependencies that need to be fulfilled

before a provided software method can be used. Espe-

cially when dealing with newly designed workflows, end

users are often faced with highly complex software pack-

ages that need to be installed, used, and maintained on

their respective infrastructure of choice. Though most

of EAGER has been developed in the Java programming

language, which is portable to many different types of

operating systems, there still exist several necessary tools

in EAGER that need to be included in such an envi-

ronment. Subsequently, an end user would be forced to

install these tools by manually compiling them or find-

ing and installing appropriate executable versions of these

tools.

To overcome these dependency-related issues and hide

most of the technical dependencies of the EAGER

pipeline, a Docker-based image (docker.io) with all the

dependencies of EAGER has been set up. For end users,

this means that there is a single requirement in the form

of a working Docker installation necessary to run the

EAGER pipeline, making the installation and setup as well

as the maintenance of EAGER as easy as possible and

less prone to error. A further improvement is the central-

ized architecture of the Docker-image-based system, as

fixes for errors in the pipeline can be easily distributed

to any installation worldwide. The users can then update

their installation to any published revision of the pipeline

with a single command at any time, while Docker guar-

antees that the image pulled from the server contains

exactly the software the user wanted to pull. Furthermore,

the EAGER images are stored in a tagged archive on our

web server, enabling users to stay with older versions of

the pipeline or step back to a previously published ver-

sion of the pipeline at any given time point. This can

https://it.informatik.uni-tuebingen.de
https://docker.io
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Table 10 Excerpt of the report table automatically generated by EAGER

Sample # merged % merged # reads after C&M # mapped reads Duplicates
name reads reads prior to mapping prior to DeDup removed with DeDup

3077 5,437,812 94.78 % 5,737,174 1,023,502 410,234

Jorgen625 12,956,100 80.5 % 16,093,580 2,659,178 94,005

Refshale16 32,041,091 73.61 % 43,528,407 12,782,665 3,872,555

SK2 51,364,343 99.27 % 51,741,310 48,211,553 47,353,377

SK8 7,683,942 72.5 % 10,597,941 1,227,067 185,913

The report shows results for five leprosy samples processed with EAGER. The number of merged reads, the percentage of merged reads as well as the number of duplicates

removed can be seen for the respective samples. Note that this has been narrowed down to fit the page layout. A full report features more statistical values describing a

sample, depending on which methods have been chosen to be executed in the pipeline (see Additional file 1)

be useful, for example, when results from former publi-

cations need to be reproduced. For some end users, the

possibility of running Docker images on a cloud com-

puting infrastructure, such as Amazon EC/2 or Google

Cloud instances, might be a good alternative to buying and

installing their own hardware, especially when the analy-

sis of aDNA data is only done, e.g., on a per project basis

and the computing resources would lie idle for most of

the time. In such cases, the renting of an infrastructure

as a service (IaaS) cloud computing unit together with

the EAGER Docker image could be beneficial in terms of

overall analysis costs. To enable administrators to install

and set up the pipeline on different types of infrastruc-

ture, we also provide access to the executables used in

the pipeline as well as the main pipeline components.

These can be used to set up the pipeline, for example, on

grid computing infrastructures that do not rely on Docker

or cloud computing instances for task execution. Note

that this requires end users to download and install all

the subsequent tools used by the pipeline as well, mak-

ing most of the installation more complex than the setup

of solely a Docker container. A set of links to download

the required tools for the EAGER pipeline as well as the

Docker-based image of EAGER is available on our web-

site (it.informatik.uni-tuebingen.de). EAGER and all its

components are published under GPLv3, and the source

code is available on GitHub (https://github.com/apeltzer/

EAGER-GUI).

Data availability

All ancient genome data sets are available from SRA

and/or ENA (accession IDs in Table 1). To test our

Clip&Merge tool, we used an artificial data set pro-

vided by the authors of FLASH, which can be down-

loaded from their webpage (https://ccb.jhu.edu/software/

FLASH/). The modern data set to compare EAGER

and PALEOMIX can be downloaded from bioplanet.

com. Here, we used the illumina-100bp-pe-exome-30x

data set available from GCAT. Finally, the simulated

low coverage can be reproduced by merging BAM

files from LBK1 to LBK8 into a single BAM file after

mapping to hg19 and then sub-sampling from these

BAM files with a random seed and varying si =

(0.005, 0.01, 0.02, 0.05, 0.10, 0.20, 0.30, 0.40) using SAM-

tools (command ‘samtools view -s si input.bam > out-

put.bam’.)
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