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ABSTRACT

In this paper, we present EAGr, a system for supporting large num-
bers of continuous neighborhood-based (“ego-centric”) aggregate
queries over large, highly dynamic, rapidly evolving graphs. Exam-
ples of such queries include computation of personalized, tailored

trends in social networks, anomaly or event detection in commu-
nication or financial transaction networks, local search and alerts

in spatio-temporal networks, to name a few. Key challenges in
supporting such continuous queries include very high update rates
typically seen in these situations, large numbers of queries that
need to be executed simultaneously, and stringent low latency re-
quirements. We propose a flexible, general, extensible in-memory
framework for executing different types of ego-centric aggregate
queries over large dynamic graphs with low latencies. Our frame-
work is built around the notion of an aggregation overlay graph,
a pre-compiled data structure that encodes the computations to be
performed when an update or a query is received. The overlay
graph enables sharing of partial aggregates across different ego-
centric queries (corresponding to different nodes in the graph), and
also allows partial pre-computation of the aggregates to minimize
the query latencies. We present several highly scalable techniques
for constructing an overlay graph given an aggregation function,
and also design incremental algorithms for handling changes to the
structure of the underlying graph itself. We also present an optimal,
polynomial-time algorithm for making the pre-computation deci-
sions given an overlay graph. Although our approach is naturally
parallelizable, we focus on a single-machine deployment and show
that our techniques can easily handle graphs of size up to 320 mil-
lion nodes and edges, and achieve update and query throughputs of
over 500,000/s using a single, powerful machine.

Categories and Subject Descriptors

H.2.4 [Database Management]: Systems—Query Processing
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1. INTRODUCTION
Graph-structured data arises naturally in a variety of applica-

tion domains, including social networks, communication networks,
phone call networks, email networks, financial transaction networks,
to name a few. There is an increasing need to support graph structure-
aware queries and analysis tasks over such graphs, leading to much
work in this area over the last few years. In many of these domains,
the datasets are not only large in terms of the sheer number of nodes
and edges in the graph, but they also produce a large amount of data
at a very high rate, generating a data stream that must be ingested
and queried in real time. The graph data can be seen as comprising
of two major components: (a) a graph (network) component that
captures the underlying interconnection structure among the nodes
in the graph, and (b) content data associated with the nodes and the
edges. The graph data stream contains updates to both these compo-
nents. The structure of the graph may itself change rapidly in many
cases, especially when things like webpages, user tags (e.g., Twitter
hashtags), financial trades, etc., are treated as nodes of the graph.
However, most of the data stream consists of updates to the content
data associated with the nodes and edges, e.g., status updates or
photos uploaded by social network users, phone calls or messages
among users, transactions in a financial network, etc. Real-time,
continuous query processing over such dynamic graph-structured
data has become a critical need in the recent years.

In this paper, we focus on a prevalent class of queries over dy-
namic graphs, called neighborhood-based or ego-centric aggregate

queries. In an ego-centric aggregate query, the querier (called user

henceforth) corresponds to a node in the graph, and is interested in
an aggregate over the current state or the recent history of a local
neighborhood of the node in the graph; such local neighborhoods
are often called ego networks of the nodes [25, 15]. An example of
such a query is ego-centric trend analysis in social networks where
the goal is to find, for each user, the trends (e.g., popular topics of
discussion, news items) in his or her local neighborhood [1, 17].
The neighborhood here could be 1-hop neighborhood, or could ex-
tend beyond that. Similarly, in a phone-call network or an analo-
gous communication network, we may be interested in identifying
interesting events or anomalies (e.g., higher than normal communi-
cation activity among a group of nodes); that often boils down to
continuously computing ego-centric aggregates over recent activity
in a large number of local neighborhoods simultaneously (with an
anomaly defined by a predicate on the aggregate) [2, 29]. In spatio-
temporal social networks, users are often interested in events hap-
pening in their social networks, but also physically close to them.

We make a distinction between between continuous queries and
what we call quasi-continuous queries (somewhat surprisingly, we
have not seen this distinction made in prior work). In the latter
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case, the query result only needs to produced or updated when the
user requests it (we call such user requests reads); whereas in the
former case, the query result must be kept up-to-date whenever the
inputs change. The first query above (trend analysis) is an example
of a quasi-continuous query since there is no need to produce the
result unless the user asks for it (for reducing latency, full or partial
pre-computation may be performed). However, anomaly detection
queries must be executed continuously as new updates arrive.

The high update rates typically seen in these application domains
make it a challenge to execute a large number of such queries with
sufficiently low latencies. A naive on-demand approach, where the
neighborhood is traversed in response to a read, is unlikely to scale
to the large graph sizes, and further, would have unacceptably high
query latencies. On the other hand, a pre-computation-based ap-

proach, where the required query answers are always pre-computed
and kept up-to-date will likely lead to much wasted computation
effort for most queries. Furthermore, both these approaches ignore
many potential optimization opportunities, in particular, the possi-
bility of sharing the aggregate computation across different queries
(corresponding to different ego networks).

In this paper, we propose an approach that maintains a special
directed graph (called an aggregation overlay graph or simply an
overlay) that is constructed given an ego-centric aggregate query
and a subset of nodes in the data graph for which it needs to be
evaluated continuously (or quasi-continuously). The overlay graph
exposes sharing opportunities by explicitly utilizing partial aggre-

gation nodes, whose outputs can be shared across queries. The
nodes in the overlay are labeled with dataflow decisions that en-
code whether data should be pushed to that node in response to
an update, or it should be pulled when a query result needs to
be computed. During execution, the overlay simply reacts to the
events (i.e., reads and writes) based on the encoded decisions, and
is thus able to avoid unnecessary computation, leading to very high
throughputs across a spectrum of workloads. Constructing the op-
timal overlay graph is NP-Hard for arbitrary graph topologies. Fur-
ther, given the large network sizes that are typically seen in prac-
tice, it is infeasible to use some of the natural heuristics for solv-
ing this problem. We present a series of highly efficient overlay
construction algorithms and show how they can be scaled to very
large graphs. Surprisingly, the problem of making the dataflow de-
cisions for a given overlay is solvable in polynomial time, and we
present a max-flow-based algorithm for that purpose. Our frame-
work can support different neighborhood functions (i.e., 1-hop, 2-
hop neighborhoods), and also allows filtering neighborhoods (i.e.,
only aggregating over subsets of neighborhoods). The framework
also supports a variety of aggregation functions (e.g., sum, count,

min, max, top-k, etc.), exposes an aggregation API for specifying
and executing arbitrary user-defined aggregates. We conduct a com-
prehensive experimental evaluation over a collection of real-world
networks, our results show that overlay-based execution of aggrega-
tion queries saves redundant computation and significantly boosts
the end-to-end throughput of the system.

Outline: We begin with a brief overview of the problem by dis-
cussing the data and the query model (Section 2). Then we present
the details of our proposed aggregation framework. Next we an-
alyze the optimization problem of constructing an overlay graph

(Section 3), and propose several scalable heuristics. Following that,
we discuss how we make the dataflow (push/pull) decisions to min-
imize data movement in the overlay (Section 4). Then we describe
our experimental setup and present a comprehensive experimental
evaluation (Section 5), and discuss some of the most related work
(Section 6).

Notation Description

G(V,E) Underlying data graph

N () Neighborhood selection function
F() Aggregate function
write on v An update to node v’s content
read on v A read to query result at v, i.e., F(N (v))
AG(V ′, E′) Bipartite directed writer/reader graph: for each node v ∈

G(V,E), it contains two nodes vw (writer) and vr (reader),
with edges going from writers to readers

OG(V ′′, E′′) Overlay Graph
I(ovl) Set of writers aggregated by overlay node ovl
w(v) write frequency of node v
r(v) read (query) frequency of node v
fh(v) push frequency of node v in an overlay
fl(v) pull frequency of node v in an overlay

Table 1: Notation

2. OVERVIEW
We start with describing the underlying data and query model,

followed by an overview of our proposed aggregation framework.

2.1 Data and Query Model
Data Model: Let G(V,E) denote the underlying connection graph,
with V and E denoting the sets of nodes and edges respectively. In
general, G is a heterogeneous, multi-relational graph that may con-
tain many different types of nodes and may contain both directed
and undirected edges. For example, for a social network, we may
have nodes representing the users of the network as well as nodes
representing communities, groups, user tags, webpages, and so on.
Similarly, E may include not only symmetric friendship (or analo-
gous) edges but also asymmetric follows edges, membership edges,
and other types of semi-permanent edges that are usually in exis-
tence from the time they are formed till the time they are deleted
(or till the current time). The content associated with the nodes and
edges is captured through a set of attribute-value pairs.

We capture the structure updates (i.e., node or edge additions or
deletions) as a time-stamped data stream SG (called structure data

stream). For simplicity, we assume that all the content is associated
with nodes, and for a node v, we capture the content updates associ-
ated with it as a time-stamped data stream, Sv (called content data

streams). We further assume that all the content streams are homo-
geneous, i.e., all updates are of the same type or refer to the same
attribute. It is straightforward to relax both these assumptions. A
content update on node v is also called a write on v.

Unlike most prior work in data streams or publish-subscriber net-
works where the producers of data (i.e., writers) and the consumers
of data (i.e., readers) are distinct from each other, in our case, a node
acts both as a writer and a reader. Hence, for clarity of description,
when referring to a node v in the rest of the paper, we often denote
its role in the context using a subscript – vw (similarly, vr) denoting
the node as a writer (reader).

Query Model: An ego-centric aggregate query is specified by four
parameters: 〈F , w,N , pred〉, where F denotes the aggregate func-
tion to be computed, w denotes a sliding window over the content
data streams, N denotes the neighborhood selection function (i.e.,
N (v) forms the input list to be aggregated for each v), and pred se-
lects a subset of V for which the aggregate must be computed (i.e.,
F would be computed for all nodes for which pred(v) is true). Fol-
lowing the data streams literature, w may be a time-based sliding
window or a tuple-based sliding window; in the former case, we
are given a time interval T , and the updates that arrive within the
last T time are of interest, whereas in the latter case, we are given
a number c, and the last c updates are of interest. The query may
be specified to be a continuous query or a quasi-continuous query.
For a continuous query, the query results must be kept up-to-date as
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Figure 1: (a) An example data graph, (b) N (v) and SUM aggregates for each v, (c) Bipartite representation of the graph, i.e, AG (note,

g does not form input to any reader), (d) An overlay graph (shaded nodes indicate pull decisions, unshaded ones indicate push).

new updates arrive, whereas for a quasi-continuous query, the query
result for a node v is only needed when a user requests it (we call
this a read on v); in the latter case, pre-computation may be done
to reduce not only user latencies but also total computational effort.

Since our approach is based on pre-computation and mainte-
nance of partial aggregates, we assume that the aggregate function
(and N ) are pre-specified. In some cases, it is possible to share the
intermediate data structures and partial aggregates for simultaneous
evaluation of different aggregates; we do not consider that option
further in this paper. Our system supports a set of built-in aggregate
functions like sum, max, min, top-k, etc., and we allow the user to
define arbitrary aggregation functions (Section 2.2.3). Our system
treats F as a blackbox, but the user may optionally specify whether
the aggregation function is duplicate-insensitive or supports effi-
cient subtraction (Section 3.1), and that information will be used to
further optimize the computation.

Example: Figure 1 shows an example instance of this problem.
Figure 1(a) depicts the data graph. N (x) is defined to be {y|y →
x} (note that, all edges are not bidirectional). The numbers in the
square brackets denote individual content streams. For example,
there have been two recent writes on node a with values 1 and 4.
The query is 〈SUM, c = 1,N , v ∈ V 〉, which states that for each
node v ∈ V , the most recent values written by nodes in N (v)
need to be aggregated using SUM. Figure 1(b) enumerates N (v)
for each v. The last column of Figure 1(b) shows the results of
the read queries on each node. For example, here N (a) evaluates
to {c, d, e, f}, and a read query on a returns: (9) + (3) + (1) +
(6) = 19. Figure 1(c) represents the corresponding directed bi-
partite graph AG where nodes are duplicated and divided based on
their roles; a node might or might not play both the roles.

Scope of the Approach: Here, we briefly summarize the key as-
sumptions that we make and the limitations of our approach. Our
compilation-based approach requires upfront knowledge of the query
to be executed, including the specific aggregate function, the neigh-
borhood to aggregate over, and the sliding window parameters (the
last of which only impacts dataflow decisions). Further, given the
high overlay construction cost, the query needs to be evaluated con-
tinuously for a period of time to justify the cost. Thus our approach
would not be suitable for ad hoc ego-centric aggregate queries over
graphs. We also note that, although our framework can handle arbi-
trary aggregation functions, the benefits of our approach, especially
of sharing partial aggregates, are higher for distributive and alge-

braic aggregates than for holistic aggregates like median, mode,
or quantile (however, approximate versions of holistic aggregates
can still benefit from our optimizations). Our approach to mak-
ing dataflow decisions based on expected read/write frequencies
also requires the ability to estimate or predict those frequencies.
As with most workload-aware approaches, our approach will likely
not work well in face of highly unpredictable and volatile work-

loads. Finally, we also assume that the data graph itself changes rel-
atively slowly; although we have developed incremental techniques
to modify the overlay in such cases, our approach is not intended
for scenarios where the structure of the data graph changes rapidly.

2.2 Proposed Aggregation Framework
In this section, we describe our proposed framework to support

different types of ego-centric aggregate queries. We begin with ex-
plaining the notion of an aggregation overlay graph and key ratio-
nale behind it. We then discuss the execution model and some of
the key implementation issues.

2.2.1 Aggregation Overlay Graph

Aggregation overlay graph is a pre-compiled data structure built
for a given ego-centric aggregate query, that enables sharing of par-
tial aggregates, selective pre-computation, partial pre-computation,
and low-overhead query execution. Given a data graph G(V,E) and
a query 〈F , w,N , pred〉, we denote an aggregation overlay graph
for them by OG(V

′′, E′′).
There are three types of nodes in an overlay graph: (1) the writer

nodes, denoted by subscript _w, one for each node in the underly-
ing graph that is generating data, (2) the reader nodes, denoted by
subscript _r , one for each node in V that satisfies pred, and (3) the
partial aggregation nodes (also called intermediate nodes). We use
the term aggregation node to refer to either a reader node or a partial
aggregation node, since both of those may perform aggregation. In
Figure 1(d), PA1 and PA2 are two partial aggregation nodes that
are introduced after analyzing the structure of the network and the
query. PA1 corresponds to a partial aggregator that aggregates the
inputs aw, bw, cw, and serves er , gr , fr , cr , dr .

For correctness, there can only be one (directed) path from a
writer to a reader in an overlay graph (to avoid duplicate contri-
butions from that writer to the aggregate computed for that reader).
However, there are two exceptions to this. First, this is not an issue
with the so-called duplicate-insensitive aggregates like MAX, MIN,
UNIQUE. We exploit this by constructing overlays that allow such
multiple paths for those aggregates, if it leads to smaller overlays
(in most cases, we observed that to be the case).

Second, we allow an overlay to contain what we call negative

edges to “subtract” such duplicate contributions. A negative edge
from a node u to an aggregation node v indicates that the input
from u should be “subtracted” (i.e., its contribution removed) from
the aggregate result computed by v. Such edges should only be
used when the “subtraction” operation is efficiently computable.
Although negative edges may appear to lead to wasted work, in
practice, adding negative edges (where permissible) can actually
lead to significant improvements in the total throughput. We dis-
cuss this issue further in Section 3.1.

The overlay graph also encodes pre-computation decisions (also
called dataflow decisions). Each node in the overlay graph is an-
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notated either pull or push. If a node is annotated push, the partial
aggregate that it computes is always kept up-to-date as new updates
arrive. The writer nodes are always annotated push. For an ag-
gregation node to be annotated push, all its input nodes must also
be annotated push. Analogously, if a node is annotated pull, all
the nodes downstream of it must also be annotated pull. In Fig-
ure 1(d), the push and pull decisions are shown with unshaded and
shaded nodes respectively. This overlay graph fully pre-computes
the query results for nodes er and fr (thus leading to low latencies
for those queries); on the other hand, a read on node gr will incur a
high latency since the computation will be done fully on demand.

Note that, we require that the decisions be made for each node
in the overlay graph, rather than for each edge. Thus, all the inputs
to an aggregation node are either pushed to it, or all the inputs are
pulled by it. This simplifies the bookkeeping significantly, with-
out limiting the choices of partial pre-computation. If we desire to
pre-compute a partial aggregate over a subset of a node’s inputs, a
separate partial aggregation node can be created instead. We dis-
cuss more details about this in Section 4.

Finally, we note that the aggregation overlay graph can be seen
as a pre-compiled query plan where no unnecessary computation or
reasoning is performed when an update arrives or a read query is
posed. This enables us to handle much higher data rates than would
be possible otherwise. We discuss the resulting execution model
and related architectural decisions in the following sections.

2.2.2 Execution Model

We begin with describing how new updates and queries are pro-
cessed using the overlay graph, and briefly discuss some of the im-
plementation issues surrounding multi-threaded execution.

Execution Flow: We describe the basic execution flow in terms of
the partial aggregate objects (PAOs) that are maintained at various
nodes in the overlay graph. A PAO corresponds to a partial ag-
gregate that has been computed after aggregating over a subset of
the inputs. The PAO corresponding to a node labeled push is al-
ways kept up-to-date as new updates arrive in any of the streams
it is defined over, or if the sliding windows shift and values drop
out of the window. Specifically, the updates originate at the writer
nodes, and propagate through the overlay graph as far as indicated
by the dataflow decisions on the nodes. The nodes labeled push

maintain partial state and perform incremental computation to keep
their corresponding PAOs up-to-date. On the other hand, no partial
state is maintained at the nodes labeled pull. When an overlay node
u makes a read request from another node v upstream of it, if v is
labeled push, the partial aggregate is returned immediately without
delay. On the other hand, if v is labeled pull, it issues read requests
on all its upstream overlay nodes, merges all the PAOs it receives,
and returns the result PAO to the requesting node.

Single-threaded vs Multi-threaded Execution: A naive implemen-
tation of the above execution model is using a single thread, that
processes the writes and reads in the order in which they are re-
ceived, finishing each one fully (i.e., pushing the writes as far as
required, and computing the results for reads) before handling the
next one. Although it leads to well-defined and consistent execu-
tion, this approach cannot exploit parallelism in the system, and is
unlikely to scale. On the other hand, a multi-threaded version re-
quires careful implementation to guarantee correctness. First, the
computations on the overlay graph must be made thread-safe to
avoid potential state corruption due to race conditions. We can do
this either by using thread-safe data structures to store the PAOs
or through explicit synchronization. We use the latter approach in

our implementation of the aggregates; however, user-defined aggre-
gates may choose either of the two options. A more subtle issue is
that of consistency. Consider a read on node ar in Figure 1(d). It is
possible that the result generated contains a more recent update on
node fw, but does not see a relatively older update on node cw (as
fw is read later than cw). We ignore the potential for such inconsis-
tencies in this work and plan to address this in future.

We use two thread pools, one for servicing the read requests and
one for servicing the write requests. The relative sizes of the two
thread pools can be set based on the expected number of reads vs
writes; assigning more threads to processing reads may reduce la-
tency, but increases the possibility of stale results.

Further, there are two ways to process a read or a write using mul-
tiple threads: (1) a uni-thread model, where a thread that picks up a
request (read or write) executes it fully before processing a new re-
quest, or (2) a queueing model, where the tasks are subdivided into
micro-tasks at the granularity of the overlay nodes, each of which is
responsible for a single PAO operation at an overlay node (update
for writes, and computation for reads). Queueing model is likely to
be more scalable and result in better throughputs, but the latencies
for reads are substantially higher. We follow a hybrid approach, and
use uni-thread model for reads and queueing for writes.

2.2.3 User-defined Aggregate API

One of the key features of our system is the ability for the users
to define their own aggregate functions. We build upon the standard
API for user-defined aggregates for this purpose [19, 36, 24], and
briefly describe it here for completeness. The user must implement
the following functions.
• INITIALIZE(PAO): Initialize the requisite data structures to main-

tain the partial aggregate state (i.e., PAOs).
• UPDATE(PAO, PAO_old, PAO_new): This is the key function

that updates the partial aggregate at an overlay node (PAO) given
that one of its inputs was updated from PAO_old to PAO_new.

• FINALIZE(PAO): Compute the final answer from the PAO.
Note that, we require the ability to merge two PAOs in order to
fully exploit the potential for sharing through overlay graphs – this
functionality is typically optional in user-defined aggregate APIs.

3. CONSTRUCTING THE OVERLAY
Our overall optimization goal is to construct an overlay graph an-

notated with pre-computation (dataflow) decisions that maximize
the overall throughput, given a data graph and an ego-centric ag-
gregate query. To make the dataflow decisions optimally, we also
need information about the expected read (query) and write (up-
date) frequencies for the nodes in the graph. However, these two
sets of inputs have inherently different dynamics – the data graph
is expected to change relatively slowly, whereas the read/write fre-
quencies are expected to show high variability over time. Hence,
we decouple the overall problem into two phases: (1) we construct
a compact overlay that maximizes the sharing opportunities given a
data graph and a query, and (2) then make the dataflow decisions for
the overlay nodes (as we discuss in the next section, we allow the
second phase to make restricted local modifications to the overlay).
The overlay construction is a computationally expensive process,
and we expect that an overlay, once constructed, will be used for a
long period of time (with incremental local changes to handle new
nodes or edges). On the other hand, we envision re-evaluating the
dataflow decisions on a more frequent basis by continuously moni-
toring the read/write frequencies to identify significant variations.

In this section, we focus on the overlay construction problem.
We begin with defining the optimization goal, and present several
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Figure 2: (a) A duplicate-insensitive overlay; (b) An overlay

with two negative edges; (c) A multi-level overlay.

scalable algorithms to construct an overlay. We then briefly discuss
our approach to handling structural changes to the data graph.

3.1 Preliminaries
As a first step, we convert the given data graph G(V,E) into

an equivalent bipartite graph AG(V
′, E′), by identifying the query

nodes, and the input nodes for each of the query nodes, given the
user-provided query (as discussed in Section 2.1). We use the total
number of edges in the overlay as our optimization metric, the intu-
ition being that, each edge in the overlay corresponds to a distinct
data movement and computation. We justify the use of this some-
what abstract metric by noting that the runtime cost of an overlay
is highly dependent on the distribution of the read/write frequen-
cies; for the same query and data graph, the optimal overlays could
be wildly different for different distributions of read/write frequen-
cies (which are not available at the overlay construction phase). We
believe that the use of an abstract metric that rewards sharing is
likely to prove more robust in highly dynamic environments. In fu-
ture work, we plan to further validate our choice by comparing it
against other optimization metrics.

More formally, we define the sharing index of an overlay to be:

1−
# of edges in the overlay

# of edges in AG

Figure 2 shows three overlays for our running example, and their
sharing indexes. Figure 2(a) shows an overlay where there are mul-
tiple paths between some reader-writer pairs. As we discussed ear-
lier, such an overlay cannot be used for a duplicate-sensitive aggre-
gate function (like SUM, COUNT, etc.), but for duplicate-insensitive
aggregate functions like MAX, it typically leads to better sharing
index as well as better overall throughput. The second overlay
uses negative edges to bring down sharing index. This should only
be done for aggregate functions where the subtraction operation is
incrementally computable (e.g., SUM, or COUNT). Finally, third
overlay is an example of a multi-level overlay, and has the low-
est sharing index for our running example (without use of negative
edges or duplicate paths). In most cases, such multi-level overlays
exhibit the best sharing index. Note that multi-level overlays can
also be duplicate insensitive or contain negative edges.

The problem of maximizing the sharing index is closely related
to the minimum order bi-clique partition problem [16], where the
goal is to cover all the edges in a bipartite graph using fewest edge-
disjoint bicliques. In essence, a biclique in the bipartite graph AG

corresponds to a set of readers that all share a common set of writ-
ers. Such a biclique can thus be replaced by a partial aggregation
node that aggregates the values from the common set of writers,
and feeds them to the readers. In Figure 1(d), node PA1 corre-
sponds to such a biclique (between writers aw, bw, cw and readers
cr, dr, er, fr, gr). Finding bicliques is known to be NP-Hard. Shar-
ing index (SI) is also closely related to the compression ratio (CR)
metric used in many of the works in representational graph com-

pression [10] ; specifically, CR = 1/(1 − SI). However, given

the context of aggregation and the possibility of having negative

and duplicate-insensitive edges in the overlay, we differentiate it
from compression ratio. The problem of finding a good overlay is
also closely related to the problem of frequent pattern mining [20,
18] as we discuss in the next section.

3.2 Overlay Construction Algorithms
In this section, we present our algorithms for constructing differ-

ent types of overlays as outlined in the previous section. Given the
NP-Hardness of the basic problem, and further the requirement to
scale the algorithms to graphs containing tens of millions of nodes,
we develop a set of efficient heuristics to achieve our goal. Our first
set of proposed algorithms (called VNMA, VNMN , and VNMD)
builds upon a prior algorithm (called VNM) for bipartite graph com-
pression by Buehrer et al. [10], which itself is a adaptation of the
well-known FP-Tree algorithm for frequent pattern mining [20, 18].
In our exploratory evaluation, we found that algorithm to offer the
best blend of scalability and adaptability for our purposes. Our sec-
ond algorithm (called IOB) is an incremental algorithm that builds
the overlay one reader at a time.

3.2.1 Background: FP-Tree and VNM Algorithms

We begin with a brief recap of the FP-Tree algorithm for frequent
pattern mining, considered to be one of the most efficient and scal-
able algorithms for finding frequent patterns. We briefly outline the
algorithm using the terminology of readers and writers rather than
transactions and items. First, the writers are sorted in the increasing
order by their overall frequency of occurrence in the reader input
sets, i.e., their out-degree in AG . In our running example, the sort
order (breaking ties arbitrarily) would be {dw, cw, ew, fw, aw, bw}.
Then all the reader input lists are rewritten according to that sort or-
der; e.g., we would write the input list of ar as {dw, cw, ew, fw}.
Next, the FP-Tree is built incrementally by adding one reader at a
time, starting with an empty tree. For the reader under considera-
tion, the goal is to find its longest prefix that matches with a path
from the root in the FP-Tree constructed so far. As an example, Fig-
ure 3 shows the FP-Tree built after addition of readers ar , br , and
er . A node in the FP-Tree is represented by: xw{S(xw)} where
xw is a writer and S(xw) is a list of readers that contain xw in
their input lists (called support set). Now, for reader cr , the longest
prefix of it that matches a path from root is dw, cw, ew, fw. That
reader would then be added to the tree nodes in that path (i.e., to the
support sets along that path). If the reader input list contains any
additional writers, then a new branch is created in the tree (for er a
new branch will be created with nodes aw{er} and bw{er}).

Once the tree is built, in the mining phase, the tree is searched
to find bicliques. A path P in the tree from the root to the node
xw{S(xw)} corresponds to a biclique between the writers corre-
sponding to the nodes in P and the readers in S(xw). Since our
goal is to maximize the number of edges removed from the overlay
graph, we search for the biclique that maximizes:

benefit(P ) = L(P ) ∗ |S(P )| − L(P )− |S(P )|,

where L(P ) denotes the length of the path P and S(P ) denotes the
support for the last node in the path. Such a biclique can be found
in time linear to the size of the FP-Tree. After finding each such
biclique, ideally we should remove the corresponding edges (called
the mined edges) and reconstruct the FP-Tree to find the next bi-
clique with best benefit. Mining the same FP-Tree would still find
bicliques but with lower benefit (since the next biclique we find
cannot use any of the edges in the previously-output biclique).

We now briefly describe the VNM algorithm [10], which is a
highly scalable adaptation of the basic FP-Tree mining approach
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Figure 3: An example of FP-Tree construction for VNM and

VNMN : (a) Basic version, (b) FP-Tree with negative edges.

described above; VNM was developed for compressing very large
(web-scale) graphs, and in essence, replaces each biclique with a
virtual node to reduce the total number of edges. The main opti-
mization of VNM relies on limiting the search space by creating
small groups of readers, and looking for bicliques that only involve
the readers in one of the groups. This approach is much more scal-
able than building an FP-Tree on the entire data graph. VNM uses a
heuristic based on shingles [13, 14] to group the readers. Shingle of
a reader is effectively a signature of its input writers. If two readers

have very similar adjacency lists, then with high probability, their
shingle values will also be the same. In a sense, grouping readers by
shingles increases the chance of finding big bicliques (with higher
benefit) within the groups. The algorithm starts by computing mul-
tiple shingles for each reader, and then doing a lexicographical sort
of the readers based on the shingles. The sorted list is then chunked
into equal-sized groups of readers, each of which is passed to the
FP-Tree algorithm separately. Mining all the reader groups once
completes one iteration of the algorithm. The process is then re-
peated with the modified bipartite graph (where each biclique is re-
placed with a virtual node) to further compress the graph. Since the
virtual nodes are treated as normal nodes in such subsequent itera-
tions, a biclique containing virtual nodes may be replaced with an-
other virtual node, resulting in connections between virtual nodes;
in our context, this gives rise to multi-level overlays where partial
aggregation nodes feed into other partial aggregators.

3.2.2 V NMA: VNM Adaptive

Our first adaptation of the basic VNM algorithm is aimed at ad-
dressing a major deficiency of that algorithm, namely lack of a sys-
tematic way to choose the chunk size. Our initial experiments with
VNM suggested that the effect of the chunk size on the final com-
pression achieved is highly non-uniform across various graphs like
web graphs and social graphs. We noticed that a bigger chunk size
typically finds bigger bicliques, but it can’t find all big bicliques, es-
pecially when there is big overlap in the reader sets of two potential
bicliques. This is because the reader sets of two subsequent min-
ing phases in VNM are mutually exclusive. Second, a bigger chunk
size makes it harder to find small bicliques, which is especially a
problem with later iterations; since many of the original edges have
been deleted in the first few iterations, only small bicliques remain
in the graph. On the other hand, using a small chunk size from the
beginning ignores large bicliques that can deliver huge savings.

To address this problem, we develop an adaptive variation of
VNM that uses different chunk sizes for different iterations. For
the first iteration, we use a large chunk size (100 in our exper-
iments) and dynamically reduce it for future iterations. For the
ith iteration, let ci denote the chunk size, and let Bs

i denote the
sum total of the benefits (defined in Section 3.2.1) for all the bi-
cliques found in that iteration with reader set size = s (note that,
s ≤ ci). We choose ci+1 ≤ ci to be the smallest c such that:∑

s≤c
Bs

i > 0.9
∑

s≤ci
Bs

i . Although our algorithm also requires

setting two parameter values, our extensive experimental evaluation
on many real-world graphs showed that the algorithm is not sensi-
tive to the initial chunk size to within an order of magnitude, and to
the second parameter between 0.8 and 1.

3.2.3 V NMN : VNM with Negative Edges

Next, we present our adaptation to VNM that considers adding
negative edges to reduce the overlay size. In essence, we look for
quasi-bicliques that may be a few edges short of being complete
bicliques (this problem is also known to be NP-Hard [23]). For
scalability, our algorithm employs the same basic structure as the
VNMA algorithm discussed above (with grouping of readers using
shingles); however, we modify the FP-Tree construction and mining
algorithms to support negative edges.

Recall that a node in an FP-Tree is represented by xw{S(xw)}
where xw is a writer and S(xw) contains the readers that contain
xw in their input lists. To accommodate negative edges, we now
represent a node by xw{S(xw)}{S

′(xw)}, where S′(xw) contains
readers that do not contain xw in their input list, but may contain
the writers corresponding to the nodes below this node in the FP-
Tree. Benefit of a path P in the FP-Tree is now given by:

benefit(P ) = L(P ) ∗ |S(P )| − L(P )− |S(P )| −
∑

P
|S′(xw)|,

where the last term captures the number of negative edges along P .
In our proposed algorithm, when an FP-Tree is augmented to

include a new reader r, we add r along up to k1 paths in the FP-
Tree that maximize the benefit given the FP-Tree constructed so
far. More specifically, we exhaustively explore the FP-Tree in a
breadth-first manner, and for each node visited, we compute the
benefit of adding r along the path. We then choose up to k1 paths
with the highest benefit and add the reader along those paths. As
with the original FP-Tree algorithm, additional branches may have
to be created for the remaining writer nodes in r. Figure 3(b) shows
an example where both br and er create two paths in the overlay,
one of which uses a negative edge.

Although our algorithm finds the best paths to add the reader
along, it runs in time linear to the size of the FP-Tree constructed
so far. However, since the FP-Tree, in essence, now encodes infor-
mation about k1 times as many readers as it did before, the size of
the FP-Tree itself is expected to be larger by about the same factor.
To improve efficiency, we stop the breadth-first exploration down a
path if more than k2 negative edges are needed to add r along that
path (we set k2 = 5 in our experiments). This optimization has
little impact on performance since it is unlikely that quasi-bicliques
requiring a large number of negative edges will be beneficial.

3.2.4 V NMD: Duplicate-insensitive VNM

Next, we discuss our proposed algorithm for finding overlays that
exploit the duplicate-insensitive nature of some aggregates and al-
low for multiple paths between a writer and a reader. There are
two natural ways to extend the VNM algorithm for reusing edges
in this fashion. First, we can keep the basic structure of the VNM

algorithm and modify the FP-Tree algorithm itself to find multiple
bicliques in each mining phase, while ignoring the overlap between
bicliques. However, by construction, the bicliques mined from a
single FP-Tree tend to have very high overlap, and the benefits for
additional bicliques found can be very low. It is also not clear how
many aggregate nodes to add in a single mining phase; adding all
bicliques for which the benefit is non-zero is likely to lead to many
partial aggregate nodes, each providing low benefit.

Instead, in our proposed algorithm VNMD , we modify the reader
grouping phase itself. In VNM, in each iteration, the readers are
grouped into disjoint groups before passing to the FP-Tree con-
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struction and mining phase. Instead, we allow the groups of readers
to overlap. Specifically, given an overlap percentage p (an algo-
rithm parameter), we allow two consecutive groups of readers to
have p% readers in common. The FP-Tree construction and mining
phases themselves are unchanged with the following exceptions.
First, instead of representing an FP-Tree node as xw{S(xw)}, we
represent it as xw{S

notmined(xw)}{S
mined(xw)}, where Smined

(xw) contains the readers r such that the edge from xw to r was
present in a previously used biclique. Second, we modify the for-
mula for computing the benefit of a path as follows:

benefit(P ) = L(P ) ∗ |S(P )| −L(P )− |S(P )| −
∑

P
|Smined(xw)|;

the last term captures the number of reused edges in the biclique.

3.2.5 IOB: Incremental Overlay Building

The overlay constructions algorithms that we have developed so
far are all based on identifying sharing opportunities by looking
for bicliques in AG . However, to make those algorithms scalable,
two heuristics have to be used: one to partition the readers into
small groups, and one to mine the bicliques themselves. In essence,
both of these focus the search for sharing opportunities to small
groups of readers and writers, and never consider the entire AG at
once. Next, we present an incremental algorithm for building the
overlay that starts with an empty overlay, and adds one reader at a
time to the overlay. For each reader, we examine the entire over-
lay constructed till that point which, as our experimental evaluation
demonstrates, leads to more compact overlays.

We begin with ordering the readers using the shingle order as
before, and add the readers one at a time in that order. In the be-
ginning, the overlay graph simply contains the (singleton) writer
nodes. Let 〈r,N (r)〉 denote the next reader to be added. Let
〈ovln, I(ovln)〉 denote a node in the overlay constructed so far,
where I(ovln) is the set of writers whose partial aggregate ovln
is computing. For reader r, our goal is to reuse as much of the
partial aggregation as possible in the overlay constructed so far. In
other words, we would like to find the smallest set of overlay nodes
whose aggregates can be used to compute the aggregate for r. This
problem is essentially the minimum exact set cover problem, which
is known to be NP-Complete.

We use a standard greedy heuristic commonly used for solving
the set cover problem. We start by finding the overlay node that has
maximum overlap with N (r), and restructure the overlay to make
use of that overlap. We keep on repeating the same process until all
nodes in N (r) are covered (since the singleton writer nodes are also
considered part of the overlay, we can always cover all the nodes in
N (r)). Let 〈v1, B〉 denote the overlay node that was found to have
the highest overlap with the uncovered part, denoted A, of N (r). If
B ⊆ A, then we add an edge from v1 to r, and repeat the process
with A − B. Otherwise, we restructure the overlay to add a new
node 〈v′1, A ∩B〉, reroute the appropriate incoming edges (i.e., the
incoming edges corresponding to the writers in A ∩ B) from v1 to
v′1, and add a directed edge from v′1 to v1. We then also add an edge
from v′1 to r. If A−A∩B is non-empty, then we repeat the process
to cover the remaining inputs to r.

As with the VNM-based algorithms, we use multiple iterations to
improve the overlay. In each iteration (except the 1st iteration),
we revisit the decisions made for each of the partial aggregator
nodes, and do local restructuring of the overlay if better decisions
are found for any of the partial aggregator nodes (using the same
set cover-based algorithm as above).

For efficient execution of the algorithm we maintain both a re-

verse index and a forward index. For a writer node w, the reverse
index tells us which overlay nodes are aggregating w. For example,

aw’s reverse index entry will have both v1 and v2. Note that even
though there is no direct edge from aw to v2, aw’s reverse index
entry has v2 because v2 is effectively aggregating aw. This index
helps us to find the overlay node that provides maximum cover to a
set of input nodes using one single scan of the input list. Similarly,
for any node n in the overlay, the forward index tells us the input
list of n; e.g., v2’s forward index entry will have v1 and v3 in it.

Although the above algorithm could be extended to allow for
negative edges and/or duplicate paths, we do not discuss those ex-
tensions here. This is because, although IOB finds significantly
smaller overlays, the overlays tend to be deep (with many levels)
and in our experimental evaluation, the end-to-end throughput for
the overlays was lower than for the overlays found with the VNMA

algorithm. Thus, although the IOB algorithm is a better algorithm
for finding compact overlays and for compressing bipartite graphs,
VNM-based algorithms are better suited for our purpose.

3.3 Handling Dynamic Changes
We adapt the basic ideas underlying the IOB algorithm to incre-

mentally update the overlay in response to structural changes (i.e.,
addition/deletion of nodes/edges) to the data graph. More details
can be found in the extended version of the paper [26].

4. MAKING DATAFLOW DECISIONS
Next, we discuss how to make the dataflow (i.e., precomputation)

decisions to maximize the total throughput given an overlay net-
work, and the expected read/write frequencies for the nodes. Sur-
prisingly, the problem can be solved optimally in polynomial time.
We begin with the preliminaries related to the cost of a dataflow de-
cisions and then provide the formal problem definition and present
the analysis along with the algorithms that we propose.

Preliminaries: For each node v ∈ V in the data graph, let r(v)
denote its read frequency (i.e., the number of times a query is issued
at node v), let w(v) denote its write frequency (i.e., the number
of times v is updated)1. Given these, with each node u ∈ V ′′ in
the overlay graph OG(V

′′, E′′), we associate two numbers, fl(u)
and fh(u), called pull frequency and push frequency, respectively.
fh(u) captures the number of times data values would be pushed to
u if all nodes in the overlay are assigned push decisions. Similarly,
fl(u) indicates the number of times data values would be pulled

from u if all nodes in the overlay are assigned pull decisions.
The push and pull frequencies are computed as follows. For com-

puting push frequencies, we start by assigning fh(aw) = w(aw)
for all writer nodes aw, and then propagate the push frequencies
from left to right (downstream). For an aggregation node or a reader
node u, fh(u) is computed by summing up the push frequencies
for all nodes that are immediately upstream of u. Similarly, the pull
frequencies are computed by starting with the reader nodes, then
recursively computing the pull frequencies for the rest of the nodes.
Figure 4(i)-(iii) illustrates this with an example that we also use to
show how our algorithm makes the dataflow decisions.

Push and Pull Costs: As discussed before, a push decision on a
node implies that the aggregate corresponding to that node will be
(incrementally) precomputed and will be available for immediate
consumption. On the other hand, a pull decision on a node implies
that the aggregate will be computed on demand when the node is
read. To reason about the tradeoff between push and pull, we need
to be able to compute the cost of a push or a pull. This cost typically
depends on the nature of the aggregate, and the type and the size of
the sliding window [6]. We capture these costs as two functions:

1
See Table 1 for a summary of notation.
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Figure 4: (i) An example overlay annotated with read/write frequencies; (ii) Computing (pull, push) frequencies; (iii) Construction of

the s-t augmented graph (with the annotations denoting the edge weights); (iv-v) Splitting a node based on push-pull frequencies.

H(k) denotes the average cost of one push for an aggregation node
with k inputs, and L(k) denotes the average cost of one pull for that
node. For example, for a SUM aggregate node, we expect H(k) ∝
1 and L(k) ∝ k, whereas for a MAX aggregate node, if we use
a priority queue for handling incremental updates, then H(k) ∝
log2(k) and L(k) ∝ k. To handle sliding windows, we implicitly
assign w inputs to each writer where w is the average number of
values in the sliding window at a writer – thus if the sliding window
is of size 10, then PUSH and PULL costs of the writer node
will be H(10) and L(10) respectively. We assume H() and L()
are either provided, or are computed through a calibration process
where we invoke the aggregation function for a range of different
inputs and learn the H() and L() functions.

Problem Definition: The dataflow decisions made by a solution in-
duce a node partition, denoted (X,Y ), X ∩ Y = φ, on the overlay
graph, where X contains nodes that are designated push, Y con-
tains nodes designated pull (Figure 4(ii)). Since all nodes upstream
of a push node must also be designated push (and similarly all nodes
downstream of a pull node must also be pull), the partition induced
by any consistent set of dataflow decisions must satisfy the con-
straint that there is no edge from a node in Y to a node in X .

For an overlay node v, let PUSH(v) = fh(v) ∗H(deg(v)) de-
note the cost incurred if it is designated a push node, let PULL(v)
= fl(v) ∗ L(deg(v)) denote the cost if it is a pull node. Al-
though the push/pull decisions cannot be made for the nodes in-
dependently (because of the aforementioned constraint), PUSH()
and PULL() costs can be computed independently; this is because
the computations that happen at a node when it is invoked, do not
depend on the dataflow decisions at its input or output nodes. Thus,
to minimize the total computational cost, our goal reduces to find-
ing an (X , Y ) partition of the overlay (with no edges going from Y
to X) that minimizes:

∑
v∈X

PUSH(v) +
∑

v∈Y
PULL(v).

Query Latencies: Another consideration in making dataflow deci-
sion is the impact on query latencies. Throughput maximization
may lead to higher use of pull decisions, especially if reads are less
frequent than writes, that may result in high query latencies. As we
show in Section 5, because our system is entirely in-memory and
does not need to do distributed network traversals, the query laten-
cies are quite low even in the worst-case. In future work, we plan to
investigate latency-constrained optimization as well as understand
the interplay between throughput and latency better.

Algorithm: We design an algorithm for a slightly more general
problem, that we describe first. We are given a directed acyclic
graph H(HV , HE), where each vertex v ∈ HV is associated with
a weight w(v); w(v) may be negative. For ease of exposition, we
assume that ∀v, w(v) 6= 0. We are asked to find a graph parti-
tion (X,Y ), such that there are no edges from Y to X , that maxi-
mizes:

∑
v∈X

w(v)−
∑

v∈Y
w(v). Note that, the solution is triv-

ially (X = HV , Y = φ) if all node weights are positive. We also

note that, the metric has the maximum possible value if all nodes
with w(v) < 0 are assigned to Y , all nodes with w(v) > 0 to X .
However, that particular assignment may not guarantee that there
are no edges from Y to X .
To reduce our problem to this problem, we set:

w(v) = fl(v)L(deg(v))−fh(v)H(deg(v)) = PULL(v)−PUSH(v)

That is, the weight of node v is the “benefit” of assigning it a push

decision (which is negative if PULL(v) < PUSH(v)). Then:
∑

v∈X

w(v) −
∑

v∈Y

w(v)

=
∑

v∈X

(PULL(V ) − PUSH(v)) −
∑

v∈Y

(PULL(V ) − PUSH(v))

=
∑

v∈HV

(PULL(v) + PUSH(v)) − 2(
∑

v∈X

PUSH(v) +
∑

v∈Y

PULL(v))

Since the underlined term is a constant, maximizing this is equiva-
lent to minimizing

∑
v∈X

PUSH(v) +
∑

v∈Y
PULL(v).

To solve this more general problem, we construct an edge-weighted
graph H ′(H ′

V , H ′
E) from H(HV , HE) (in practice, we do not make

a copy but rather augment H in place). H ′
V contains all the ver-

tices in HV and in addition, it contains a source node s and a
sink node t (nodes in H ′ are unweighted). Similarly, H ′

E con-
tains all the edges in HE , with edge weights set to ∞. Further,
for each v ∈ HV such that w(v) < 0, we add a directed edge
in H ′ from s to v with weight w′(s, v) = −w(v). Similarly for
v ∈ HV , s.t. w(v) > 0, we add a directed edge in H ′ from v to t
with weight w′(v, t) = w(v) (see Figure 4(iii) for an example).

We note that, this construction may seem highly counter-intuitive,
since a lot of nodes in H ′ have either no outgoing or no incoming
edges and there are few, if any, directed paths from s to t. In fact,
the best case scenario for the algorithm is that: there is no directed

path from s to t. This is because, a path from s to t indicates a
conflict between two or more nodes. The highlighted path form s to
t in Figure 4(iii) provides an example. The best decision for node
i3 in isolation would be pull (PULL(i3) = 6, PUSH(i3) = 10),
but that for sr is push because of its high in-degree and because
L(k) = k (PULL(sr) = 2 ∗ 60 = 120, PUSH(sr) = 70).
However, a pull on i3 would force a pull on sr , hence both of them
cannot be assigned the optimal decision in isolation.

After constructing H ′, we find an s-t directed min-cut in this
directed graph, i.e., a set of edges C ∈ H ′

E with minimum to-
tal edge-weight, such that removing those edges leaves no directed
path from s to t. Let Y denote the set of nodes in H ′ reachable
from s after removing the edges in C (excluding s), let X denote
the set of remaining nodes in H ′ (excluding t).

THEOREM 4.1. (X,Y ) is a node partition of H s.t. there are

no edges from Y to X ,
∑

v∈X
w(v)−

∑
v∈Y

w(v) is maximized.2

We use the Ford-Fulkerson algorithm to construct an s-t max-
flow in H ′, and use it to find the optimal (X,Y ) partition of H .

2
Proofs can be found in the extended version of the paper [26].
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Pre-processing: Although the above algorithm runs in polynomial
time, it is not feasible to run max-flow computations on the graphs
we expect to see in practice. However, a simple pre-processing
pruning step, run on H before augmenting it, typically results in
massive reduction in the size of the graph on which the max-flow
computation must be run.

Consider node aw in the example graph in Figure 4(ii). The best
decision for that node by itself is a push decision (since PUSH(aw)
= 3 < PULL(aw) = 10). Since there is no node upstream of aw

(which is a writer node), we can assign this node a push decision
without affecting decisions at any other node (any node downstream
of aw can still be assigned either decision), and remove it from the
graph. Similarly we can assign push decision to node bw and re-
move it from H . After that, we can see that node i1 can also now
be assigned a push decision (optimal for it in isolation) without af-
fecting any other node. Similarly, we can assign pull decisions to
nodes mr, nr, pr , qr and remove them by an analogous reasoning.

We now state the pruning rules, which are applied directly to H
(i.e., before constructing the augmented graph): (P1) recursively
remove all nodes v such that w(v) > 0 and v has no incoming
edges, and assign them push decisions, (P2) recursively remove all
nodes v such that w(v) < 0 and v has no outgoing edges, and
assign them pull decisions. This pruning step can be applied in
linear time over the overlay graph. We apply the above max-flow-
based algorithm to each of the connected components separately.

THEOREM 4.2. Use of pruning rules P1 and P2 does not com-

promise optimality.

Greedy Alternative to the Max-flow-based Algorithm: We also
sketch a simpler greedy algorithm for making dataflow decisions
(we did not encounter a need for this algorithm in our extensive ex-
perimental evaluation). We traverse the overlay graph starting from
the writers in a breadth-first manner, assigning each node v the opti-
mal decision (i.e., a push decision if PUSH(v) < PULL(v), and
pull otherwise), with one exception: if a node should be assigned
a push decision, but some of its input nodes are assigned pull deci-
sions, we make a greedy cost-based decision among the two choices
(this is only done if no nodes further upstream from v are assigned
a pull decision). A detailed exposition can be found in [26]. This
greedy algorithm runs in time linear in the number of edges (each
edge is processed at most twice), and is thus highly efficient.

Partial Precomputations by Splitting Nodes: Making decisions on
a per-node basis can lose out on a significant optimization opportu-
nity – based on the push and pull frequencies, it may be beneficial
to partially aggregate a subset of the inputs to an aggregate node.
Figure 4(iv)-(v) shows an example. Here, because of the low write
frequencies for inputs aw, bw, cw, and dw for aggregator node i, it
is better to compute a partial aggregate over them, but compute the
full aggregate (including ew) only when needed (i.e., on a read).

One option is to make pre-computation decisions on a per-edge
basis. However, that optimization problem is much more challeng-
ing because the cost of an incremental update for an aggregate node
depends on how many of the inputs are being incrementally aggre-
gated and how many on demand; thus the decisions for different
edges are not independent of each other. Next we sketch an algo-
rithm that achieves the same goal, but in a more scalable manner.

For every node v in the overlay graph, we consider splitting its
inputs into two groups. Let f denote the pull frequency for v, and
let f1, ..., fk denote the push frequencies of its input nodes, sorted
in the increasing order. For every prefix f1, ..., fl, of this sequence,
we compute:

∑
i≤l

fiH(l) + f × L(l). We find the value of l that

minimizes this cost; if l 6= 0 and l 6= k, we construct a new node v′

that aggregates the inputs corresponding to frequencies f1, ..., fl,
remove all those inputs from v, add v′ as an input to v. As we
show in our experimental evaluation, this optimization results in
significant savings in practice.

Adapting the Dataflow Decisions: Most real-world data streams,
including graph data streams, show significant variations in read/write
frequencies over time. We propose and empirically evaluate, a sim-
ple adaptive scheme to handle such variations. For a subset of the
overlay nodes (specified below), we monitor the observed push/pull
frequencies over recent past (the window size being a system pa-
rameter). If the observed push/pull frequencies at a node are signif-
icantly different than the estimated frequencies, then we reconsider
the dataflow decision just for that node and change it if deemed
beneficial. Dataflow decisions can be unilaterally changed in such
a manner only for: pull nodes all of whose upstream nodes are des-
ignated push, and push nodes all of whose downstream nodes are
designated pull (we call this the push/pull frontier). Hence, these
are the only nodes for which we monitor push/pull frequencies (it
is also easier to maintain the push/pull frequencies at these nodes
compared to other nodes). Techniques for more sophisticated adap-
tive schemes is a rich area which we plan to pursue in future.

5. EVALUATION
In this section, we present a extensive experimental evaluation

using several real-world information networks. Our results show
that our approach results in orders of magnitude improvements in
the end-to-end throughputs over baselines, and that our overlay con-
struction algorithms are effective at finding compact overlays.

5.1 Experimental Setup
We ran our experiments on a 2.2GHz, 24-core Intel Xeon server

with 64GB of memory, running 64-bit Linux. Our prototype system
is implemented in Java. We use a set of dedicated threads to play
back the write and read traces (i.e., to send updates and queries to
the system), and a thread pool to serve the read and write queries.

Datasets and Query Workload: We evaluated our approach on sev-
eral real-world information networks, and here we report results for
4 of them3: (1) LiveJournal (soc-LiveJournal1: 4.8M nodes/69M
edges), (2) Google+ social circles (ego-Gplus:107k/13M), (3) EU2005

Web Graph (862k /19M), and (4) UK2002 Web Graph (18.5M /298M).
We report results for three ego-centric aggregate queries: SUM,

MAX, and TOP-K, all specified over 1-hop neighborhoods. SUM

and MAX queries ask us to compute the total sum and the max over
the input values respectively. TOP-K asks for the k most frequent

values among the input values, and is a holistic aggregate [24].4

Since the user activity patterns (i.e., read/write frequencies) are
not available for any real-world network that we are aware of, we
generate those synthetically using a Zipfian distribution; event rates
in many applications like tweets in Twitter, page views in Yahoo!’s
social platform have been shown to follow a Zipfian distribution [30,
9]. Further, we assume that the read frequency of a node is linearly
related to its write frequency; we vary the write-to-read ratio itself
to understand its impact on the overall performance. For some of
the experiments, we used real network packet traces to simulate
user activity 5: (1) EPA-HTTP, and (2) UCB Home IP Web Traces.

3
First two are available at http://snap.stanford.edu/data/index.html, and the latter two

at http://law.di.unimi.it/.
4
In other words, TOP-K is a generalization of mode, not max.

5
Available at http://ita.ee.lbl.gov/html/traces.html.
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Figure 5: (a) Comparing overlay construction algorithms on real networks; (IOB should not be directly compared against VNMN or

VNMD since it doesn’t use negative edges or duplicate paths); (b) Running time comparison of the overlay construction algorithms.

Evaluation Metric: Our main evaluation metric is the end-to-end

throughput of the system, i.e., the total number of read and write
queries served per second. This metric accounts for the side effects
of all potentially unknown system parameters whose impact might
not show up for a specifically designed metric, and thereby reveals
the overall efficacy of the system. When comparing the overlay
construction algorithms, we also use the following metrics: sharing
index (SI), memory consumption, and running time.

Comparison Systems or Algorithms: For overlay construction, we
compare five algorithms: VNM, VNMA, VNMN , VNMD , and IOB.
For overall throughput comparison, we compare three approaches:
(1) all-pull, where all queries are evaluated on demand (i.e., no shar-
ing of aggregates and no pre-computation), (2) all-push, where all
aggregates are pre-computed, but there is no sharing of partial ag-
gregates, and (3) dataflow-based overlay, i.e., our approach with
sharing of aggregates and selective pre-computation. We chose the
baselines based on industry standards: all pull is typically seen in
social networks, whereas all push is more prevalent in data streams
and complex event processing (CEP) systems.

5.2 Overlay Construction

Sharing Index: First we compare the overlay construction algo-
rithms with respect to the average sharing index achieved per itera-
tion, over 5 runs (Figure 5(a)). As we can see, IOB finds more com-
pact overlays (we observed this consistently for all graphs that we
tried). The key reason is that: IOB considers the entire graph when
looking for sharing opportunities, whereas the VNM variations con-
sider small groups of readers and writers based on heuristical order-
ing of readers and writers. Note that, IOB should only be compared
against VNMA, and not VNMN or VNMD , since it doesn’t use nega-
tive edges or duplicate paths. We also note that, for IOB, most of the
benefit is obtained in first few iterations, whereas the VNM-based
algorithms require many iterations before converging. Further, the
overlays found by VNMN and VNMD are significantly better than
those found by VNMA. This validates our hypothesis that using
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ing before running maxflow.

negative edges and reusing mined edges, if possible, results in bet-
ter overlays. Another important trend that we see here is that the
sharing indexes for web graphs are typically much higher those for
the social graphs. Kumar et al. also notice similar difficulties in
achieving good structural compression in social networks [13].

Comparing VNM and VNMA: Figure 6(a) shows SI achieved by
our adaptive VNMA algorithm and by VNMA as the chunk size is
varied. As we can see, VNM is highly sensitive to this parameter,
whose optimal value is quite different for different data graphs. On
the other hand, VNMA is able to achieve as compact an overlay (in
some cases, slightly better) as the best obtained by VNM.

Running time and Memory Consumption: Figure 5(b) shows the
running time for the different construction algorithms with the in-
creasing number of iterations for the LiveJournal graph. As we
can see IOB takes more time for first few iterations, but is overall
faster than the VNMA and its variations since it converges faster.
As expected, both VNMN and VNMD take more time per itera-
tion than VNMA. We also compared the total memory consumption
of the overlay construction algorithms (not plotted). For LiveJour-
nal, VNMA and its variations used approximated 4GB of memory,
whereas IOB used 8GB at its peak; this is not surprising considering
that IOB needs to maintain additional global data structures.

Additional experiments [26]: We found that IOB creates a deeper
overlay with average depth of 4.66 (vs 3.44 for VNMA), where
overlay depth for a reader is defined to be the length of the longest
path from one of its inputs to itself. We also found that for VNMN

the number of negative edges has a significant impact on the sharing
index, however the benefit diminishes beyond 3-4 negative edges.

5.3 Dataflow Decisions

Effectiveness of Pruning: Figure 6(b) shows the effectiveness of
our pruning strategy to reduce the input to the max-flow algorithm.
We have plotted the result for a read/write ratio of 1:1, as intu-
itively pruning is expected to be least effective in this case. Results
for other read/write ratios show similar trend and can be found in
the extended version [26]. Each vertical bar in the figure has been
divided to show the composition of intermediate overlay nodes and
original graph nodes, before and after pruning the overlays that we
got using VNMA. We get similar results for other overlay construc-
tion algorithms as well. The pruning step not only reduces the size
of the graphs (to below 14% in all cases), but the resulting graphs
are also highly disconnected with many small connected compo-
nents, leading to low running times for the max-flow computations.

Baseline for Dataflow Decisions: Figure 8(b) shows the effective-
ness of the dataflow decisions on the overlay. In this experiment
we kept the number of threads (12) and read/write ratio (1:1) of the
queries fixed and computed the average throughput for: (a) overlay
with all push, (b) overlay with dataflow decisions, and (c) overlay
with all pull. As we can see, for all aggregate functions, overlay
with optimal dataflow performs much better than overlay with all
pull and all push thereby justifying our hypothesis. We observed
similar results for other read/write ratios as well.

Adaptive Dataflow Decisions on a Real Trace: Figure 8(a) shows
the ability of our proposed adaptive scheme to adapt to varying
read/write frequencies. We used the EPA-HTTP network packet

1344



0

5

10

15

20×105

All Push
VNMN

VNMA

IOB
All Pull
VNMD

T
h

ro
u

g
h

o
u

t 
(Q

u
er

ie
s/

se
co

n
d

)

SUM

Top-K

MAX

(a)

0

5

10

15

20×105

Write:Read Ratio

0.05 0.1 0.2 0.5 1 2 5 10 20

Write:Read Ratio

0.05 0.1 0.2 0.5 1 2 5 10 20

Write:Read Ratio

0.05 0.1 0.2 0.5 1 2 5 10 20

SUM
MAX
Top-K

T
h

ro
u

g
h

p
u

t 
b

en
efi

t 
b

y
 p

ar
ti

al
 p

re
-c

o
m

p
u

ta
ti

o
n

(b)

1

2

Write:Read ratio (Log Scale)

0.01 0.1 1 10

Graph All Push
Overlay dataflow

Graph All Pull

T
h

ro
u

g
h

p
u

t

(c)

0

5

10×105

SUM MAX TOP-K

Figure 7: (a) End-to-end throughput comparison for different aggregate functions for the LiveJournal graph, with 24 threads; (b)

Benefits of partial pre-computation through node splitting; (c) Throughput comparison for 2-hop aggregates.

T
im

e 
in

 m
il

i 
se

co
n

d
s 

p
er

 2
50

00
 q

u
er

ie
s

Number of read/write queries

All Pull
All Push

Static Dataflow
Adaptive Dataflow

(a)

0

2000

4000

6000

0 1 2 3 4 5×10
6

Overlay all push
Overlay dataflow

Overlay all pull

(b)

T
h

ro
u

g
h

p
u

t

0

2

4

6×105

SUM MAX TOP-K

L
at

en
cy

 (
m

s)

Worst case latency
95th percentile latency
Average latency

(c)

0

5

10

15

AllPull 1:1 1:2 1:5 1:10 1:20 1:30 AllPush

T
h

ro
u

g
h

o
u

t 
(Q

u
er

ie
s/

Se
co

n
d

)

VNMA-topK-Ideal
All Pull-topK
All Push-topK
VNMA-topK

(d)

104

105

106

Number of threads

0 10 20 30 40 50

Figure 8: (a) Effect of workload variations on different approaches; (b) Baseline to motivate dataflow decisions; (c) Read latency for

different push:pull cost; (d) Effect of increasing parallelism on throughput.

trace to simulate read/write activity for nodes. We used average
read/write frequencies of the nodes to make static dataflow deci-
sions. At a half-way point, we modified the read/write frequencies
by increasing the read frequencies of a set of nodes with the high-
est read latencies till that point. As we can see, the static dataflow
decisions turn out to be significantly suboptimal once this change
is introduced. However, our simple adaptive approach is able to
quickly adapt to the new set of read/write frequencies.

5.4 Throughput Comparison

Varying Read-Write Ratio: Figure 7(a) shows the results of our
main end-to-end throughput comparison experiments for the three
ego-centric aggregate queries. We plot the throughputs for the two
baselines as well as for the overlays constructed by the different al-
gorithms, as the write/read ratio changes from 0.05 (i.e., the work-
load contains mostly reads) to 20. As we can see, the overlay-based
approaches consistently outperform the baselines in all scenarios.
For the more realistic write/read ratios (i.e., around 1), the through-
put improvement over the best of the two baselines is about a factor
of 5 or 6. For read-heavy workloads, the overlay-based approach is
multiple orders of magnitude better than the all-pull approach, and
about a factor of 2 better than the all-push approach, whereas the
reverse is true for the write-heavy workloads.

Comparing different aggregate functions, the performance im-
provements are much higher for the computationally expensive TOP-
K aggregate. In some sense, simple aggregates like SUM and MAX

represent a worst case for our approach; the total time spent in ag-
gregate computation (which our approach aims to reduce through
sharing) forms a smaller fraction of the overall running time.

Comparing the different overlay construction algorithms, we note
that VNMN shows significant performance improvements over the
rest of the overlay construction algorithms, whereas IOB is typically
the worst; the higher depth of the overlay increases the total amount
of work that needs to be done for both writes and reads.

Effect of Splitting Aggregate Nodes: Figure 7(b) shows the effect
of our optimization of splitting an overlay aggregate node based on
the push frequencies of its inputs (Section 4) on the LiveJournal
graph. As we can see, for all the aggregate functions, this opti-
mization increases the throughput by more than a factor of 2 when
write-to-read ratio is around 1. In the two extreme cases (i.e., very

low or very high write-to-read ratios) where the decisions are either
all push or all pull, this optimization has less impact.

Latency: Figure 8(c) shows the worst case, 95th percentile, and
average latency for the read queries for TOP-K as the push cost
to pull cost ratio is varied. Here we used the network packet trace
EPA-HTTP to simulate read/write activity. Since the number of dis-
tinct IP addresses in the trace is much smaller than the number of
nodes in the (LiveJournal) graph, we randomly split the trace for
each IP address among a set of nodes in the graph. We eliminated
contention by ensuring that each query or update runs in isolation.
As we can see, increasing the pull cost bring down the read laten-
cies, as pushes get favored while making dataflow decision. We
also note that the worst-case latencies in our system are quite low.

Two-hop Aggregates: Figure 7(c) shows the throughput compar-
ison for different aggregates specified over 2-hop neighborhoods
for VNMA overlay compared to all pull and all push; we used the
write-to-read ratio of 1 over the LiveJournal graph. The relative
performance of the overlay approach compared to all push or all
pull is better for 2-hop aggregates than 1-hop aggregate, which can
be attributed to better sharing opportunities in such queries.

Parallelism: Figure 8(d) shows how the throughput varies as we in-
crease the number of threads serving the read and write requests for
the three approaches; we use the TOP-K query over the LiveJournal
graph, with write-to-read ratio of 1. Because of the synchroniza-
tion overheads, we don’t see perfect scaleup (note that the y-axis
is in log-scale); for all three approaches, the throughput increases
steadily till about 24 threads, and then plateaus out (our machine
has 24 cores with hyperthreading enabled).

6. RELATED WORK
Of the prior work on data stream management, the work on eval-

uating continuous aggregate queries over data streams is most closely
related to our work [5, 3, 22, 7]. However, the sharing opportuni-
ties in ego-centric aggregate computation over graphs are funda-
mentally different and have not been studied in that prior work.
Further, most of the prior work on evaluating continuous aggre-
gates has only considered the all-push model of query evaluation.
There has also been much work on aggregate computation in sen-
sor networks and distributed databases, some of which has consid-
ered sharing of partial aggregates (e.g., [32, 31, 24]). However the
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primary optimization goal in that work has been minimizing com-
munication cost during distributed execution, and hence the tech-
niques developed are quite different. Several lines of work have
considered the problems in deciding when to push vs pull based on
monitoring read/write frequencies, in the context of replication in
distributed data management systems (e.g., [34, 27]), and publish-
subscribe systems (e.g., [30]). That work has typically focused
on minimizing communication cost in distributed settings rather
that the CPU cost of computation. Recently, several researchers
have looked at the problem of executing subgraph pattern match-
ing queries over streaming graph data (e.g., [33]). Two extensions
to SPARQL have also been proposed in recent work for specify-
ing continuous queries over streaming RDF data [8, 4]. There is
also much work on streaming algorithms for specific problems like
counting triangles, PageRank computation, sketching, etc. Two
very recent works, Kineograph [12] and GraphInc [11], also address
continuous analytics over graphs. Ego-centric analysis of informa-
tion networks has been getting increasing attention in recent years
in network science community; here the main focus is on structural
analysis of a node’s neighborhood [21] as well as on answering
specialized pattern matching queries [28]. In a recent work, Yan et
al. [35] investigate neighborhood aggregation queries aimed at find-
ing top-k nodes (w.r.t. aggregates over their h-hop neighborhood)
in the entire graph. They develop pruning techniques by noting that
the aggregate values of two adjacent nodes are similar. However,
none of that prior work considers execution of a large number of
ego-centric aggregate queries, or exploit many of the optimization
opportunities (e.g., aggressive sharing, pre-computations, adaptiv-
ity, etc.) that are crucial to handle very high data-rate streams.

7. CONCLUSIONS
In this paper, we presented the design of a continuous query pro-

cessing system to efficiently process large numbers of ego-centric
aggregation queries over highly dynamic, large-scale graphs. Our
definition of an ego-centric aggregation query is very general, and
captures a range of querying and analytics tasks including person-
alized trend detection, anomaly or event detection, even complex
real-time analytics over neighborhoods in the graph. We proposed a
general framework that supports user-defined aggregate queries and
enables efficient evaluation of such queries over highly dynamic
graphs; we also developed novel scalable algorithms for exploit-
ing sharing opportunities and for making dataflow decisions based
on expected activity patterns. Our system is able to handle graphs
containing 320M nodes and edges on a single machine with 64GB
of memory, achieving update and query throughputs over 500k/s.
With the large-memory, many-core machines that are available to-
day, we expect such a centralized approach to be sufficient in most
application domains. However, our approach is also naturally par-
allelizable through use of standard graph partitioning-based tech-
niques. The readers can be partitioned in a disjoint fashion over
a set of machines, and for each machine, an overlay can be con-
structed for the readers assigned to that machine; the writes for each
writer would be sent to all the machines where they are needed.
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