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Abstract— Object-level data association and pose estimation
play a fundamental role in semantic SLAM, which remain
unsolved due to the lack of robust and accurate algorithms.
In this work, we propose an ensemble data associate strategy
for integrating the parametric and nonparametric statistic tests.
By exploiting the nature of different statistics, our method can
effectively aggregate the information of different measurements,
and thus significantly improve the robustness and accuracy
of data association. We then present an accurate object pose
estimation framework, in which an outliers-robust centroid and
scale estimation algorithm and an object pose initialization
algorithm are developed to help improve the optimality of pose
estimation results. Furthermore, we build a SLAM system that
can generate semi-dense or lightweight object-oriented maps
with a monocular camera. Extensive experiments are conducted
on three publicly available datasets and a real scenario. The
results show that our approach significantly outperforms state-
of-the-art techniques in accuracy and robustness. The source
code is available on https://github.com/yanmin-wu/
EAO-SLAM.

I. INTRODUCTION

Conventional visual SLAM systems have achieved signif-

icant success in robot localization and mapping tasks. More

efforts in recent years are evolved in making SLAM serve

for robot navigation, object manipulation, and environment

representation. Semantic SLAM is a promising technique for

enabling such applications and receives much attention from

the community [1]. In addition to the conventional functions,

semantic SLAM also focuses on a detailed expression of

the environment, e.g., labeling map elements or objects of

interests, to support different high-level applications.

Object SLAM is a typical application of semantic SLAM,

and the goal is to estimate more robust and accurate camera

poses by leveraging the semantic information of in-frame

objects [2]–[4]. In this work, we further extend the content of

object SLAM by enabling it to build lightweight and object-

oriented maps, demonstrated in Fig. 1, in which the objects
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Fig. 1: A lightweight and object-oriented semantic map.

are represented by cubes or quadrics with their locations,

orientations, and scales accurately registered.

The challenges of object SLAM mainly lie in two folds:

1) Existing data association methods [5]–[7] are not robust

or accurate for tackling complex environments that contain

multiple object instances. There are no practical solutions to

systematically address this problem. 2) Object pose estima-

tion is not accurate, especially for monocular object SLAM.

Although some improvements are achieved in recent studies

[8]–[10], they are typically dependent on strict assumptions,

which are hard to fulfill in real-world applications.

In this paper, we propose the EAO-SLAM, a monocular

object SLAM system, to address the data association and

pose estimation problems. Firstly, we integrate the parametric

and nonparametric statistic tests, and the traditional IoU-

based method, to conduct model ensembling for data associ-

ation. Compared with conventional methods, our approach

sufficiently exploits the nature of different statistics, e.g.,

Gaussian and non-Gaussian measurements, hence exhibits

significant advantages in association robustness. For object

pose estimation, we propose a centroid and scale estimation

algorithm and an object pose initialization approach based

on the isolation forest (iForest). The proposed methods are

robust to outliers and exhibit high accuracy, which signifi-

cantly facilitates the joint pose optimization process.

The contributions of this paper are summarized as follows:

• We propose an ensemble data association strategy that

can effectively aggregate different measurements of the

objects to improve association accuracy.

• We propose an object pose estimation framework based
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on iForest, which is robust to outliers and can accurately

estimate the locations, poses, and scales of objects.

• Based on the proposed method, we implement the EAO-

SALM to build lightweight and object-oriented maps.

• We conduct comprehensive experiments and verify the

effectiveness of our proposed methods on publicly avail-

able datasets and the real scenario. The source code of

this work is also released.

II. RELATED WORK

A. Data Association

Data association is an indispensable ingredient for se-

mantic SLAM, which is used to determine whether the

object observed in the current frame is an existing object

in the map. Bowman et al. [5] use a probabilistic method

to model the data association process and leverage the

EM algorithm to find correspondences between observed

landmarks. Subsequent studies [7], [11] further extend the

idea to associate dynamic objects or conduct semantic dense

reconstruction. These methods can achieve high association

accuracy, but can only process a limited number of object

instances. Their efficiency also remains to be improved due

to the expensive EM optimization process [12]. Object track-

ing is another commonly-used approach in data association.

Li et al. [13] propose to project 3D cubes to the image

plane and then leverage the Hungarian tracking algorithm to

conduct association using the projected 2D bounding boxes.

Tracking-based methods perform high runtime efficiency, but

can easily generate incorrect priors in complex environments,

yielding incorrect association results.

In recent studies, more data association approaches are

developed based on maximum shared information. Liu et

al. [14] propose random walk descriptors to represent the

topological relationships between objects, and those with the

maximum number of shared descriptors are regarded as the

same instance. Instead, Yang et al. [8] propose to directly

count the number of matched map points on the detected

objects as association criteria, yielding a much efficient

performance. Grinvald et al. [2] propose to measure the

similarity between semantic labels and Ok et al. [3] propose

to leverage the correlation of hue saturation histogram.

The major drawback of these methods is that the designed

features or descriptors are typically not general or robust

enough and can easily cause incorrect associations.

Weng et al. [15] for the first time propose nonparametric

statistical testing for semantic data association, which can

address the problems in which the statistics do not follow a

Gaussian distribution. Later on, Iqbal et al. [6] also verify

the effectiveness of nonparametric data association. However,

this method cannot address the statistics that follow Gaussian

distributions effectively, hence cannot sufficiently exploit

different measurements in SLAM. Based on this observation,

we combine the parametric and nonparametric methods to

perform model ensembling, which exhibits superior associa-

tion performance in the complex scenarios with the presence

of multiple categories of objects.

B. Object SLAM

Benefiting from deep learning techniques [16], [17], object

detection is robustly integrated into the SLAM framework

for labeling objects of interests in the map. The exploitation

of in-frame objects significantly enlarges the application

scopes of traditional SLAM. Some studies [15], [18], [19]

treat objects as landmarks to estimate camera poses or for

relocalization [13]. Some studies [20] leverage object size to

constrain the scale of monocular SLAM, or remove dynamic

objects to improve pose estimation accuracy [7], [21]. In

recent years, the combination of object SLAM and grasping

[22] has also attracted many interests, and facilitate the

research on autonomous mobile manipulation.

Object models in semantic SLAM can be broadly divided

into three categories: instance-level models, category-specific

models, and general models. The instance-level models [9],

[23] depend on a well-established database that records all

the related objects. The prior information of objects provides

important object-camera constraints for graph optimization.

Since the models need to be known in advance, the ap-

plication scenarios of such methods are limited. There are

also some studies on category-specific models, which focus

on describing category-level features. For example, Parkhiya

et al. [10] and Joshi et al. [19] use the CNN network to

estimate the viewpoint of objects and then project the 3D

line segments onto image planes to align them. The general

model adopts simple geometric elements, e.g., cubes [8],

[13], quadrics [18] and cylinders [10], to represent objects,

which are also the most commonly-used models.

In terms of the joint optimization of camera and object

poses, Frost et al. [20] simply integrate object centroids as

point clouds to the camera pose estimation process. Yang

et al. [8] propose a joint camera-object-point optimization

scheme to construct the pose and scale constraints for graph

optimization. Nicholson et al. [18] propose to project the

quadric onto the image plane and then calculates the scale

error between the projected 2D rectangular and the detected

bounding box. This work also adopts the joint optimization

strategy, but with a novel initialization method, which can

significantly improve the optimality of solutions.

III. SYSTEM OVERVIEW

The proposed object SLAM framework is demonstrated

in Fig. 2, which is developed based on ORB-SLAM2 [24],

and additionally integrates a semantic thread that adopts

YOLOv3 as the object detector. The ensemble data asso-

ciation is implemented in the tracking thread, which com-

bines the information of bounding boxes, semantic labels,

and point clouds. After that, the iForest is leveraged to

eliminate outliers for finding an accurate initialization for

the joint optimization process. The object pose and scale

are then optimized together with the camera pose to build a

lightweight and object-oriented map. In semi-dense mapping

thread, the object map is combined with a semi-dense map

generated by [25] to obtain the a semi-dense semantic map.
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Fig. 2: The architecture of EAO-SLAM system. The main contri-
butions of this work are highlighted with red colors.

IV. ENSEMBLE DATA ASSOCIATION

Throughout this section, the following notations are used:

• P ∈ R
3×|P |, Q ∈ R

3×|Q| - the point clouds of objects.

• R - the rank (position) of a data point in a sorted list.

• c ∈ R
3×1 - the currently observed object centroid.

• C = [c1, c2, . . . , c|C|] ∈ R
3×|C| - the history observa-

tions of the centroids of an object. C1, C2 are similar.

• f(·) - the probability function used for statistic test.

• m(·), σ(·) ∈ R
3×1 - the mean and variance functions.

A. Nonparametric Test

The nonparametric test is leveraged to process object point

clouds (the red and green points in Fig. 3 (a)), which follows

a non-Gaussian distribution according to our experimental

studies (Section VI-A). Theoretically, if P and Q belong to

the same object, they should follow the same distribution,

i.e., fP = fQ. We use the Wilcoxon Rank-Sum test [26] to

verify whether the null hypothesis holds.

We first concatenate the two point clouds X = [P |Q] =
[x1,x2, . . . ,x|X|] ∈ R

3×(|P |+|Q|), and then sort X in three

dimensions respectively. Define WP ∈ R
3×1 as follows,

WP =







|X|
∑

k=1

R(1{xk ∈ P})−
|P |(|P |+ 1)

2







, (1)

and WQ is with the same formula. The Mann-Whitney

statistics is W=min(WP ,WQ), which is proved to follow

a Gaussian distribution asymptoticly [26]. Herein, we essen-

tially construct a Gaussian statistics using the non-Gaussian

Current 

Object

(a) (b) (c)

C1 C2C
Q

P
c

Historical 

Current Centroids Centroids

Object1 Object2Historical Object
Points

Points

Frame

Current 
FrameFrames

Historical 
Frames

Fig. 3: Different Types of Statistics Used for data association.

point clouds. The mean and variance of W is calculated as

follows:

m(W ) = (|P ||Q|)/2, (2)

σ(W ) =
|P ||Q|∆

12
− |P ||Q|(

∑

i τ
3
i −

∑

i τi)

12(|P |+ |Q|)∆ , (3)

where ∆ = |P |+ |Q|+ 1, and τ ∈ P ∩Q.

To make the null hypothesis stand, W should meet the

following constraints:

f(W ) ≥ f (rr) = f (rl) = α/2, (4)

where α is the significance level, 1 − α is thus the confi-

dence level, and [rl, rr] ≈ [m − s
√
σ,m + s

√
σ ] defines

the confidence region. The scalar s > 0 is defined on a

normalized Gaussian distribution N (s|0, 1)=α. In summary,

if the Mann-Whitney statistics W of two point clouds P and

Q satisfies Eq. (4), they come from the same object and the

data association successes.

B. Single-sample and Double-sample T-test

The single-sample t-test is used to process object centroids

observed in different frames (the stars in Fig. 3 (b)), which

typically follow a Gaussian distribution (Section VI-A).

Suppose the null hypothesis is that C and c are from the

same object, and define t statistics as follows,

t =
m(C)− c

σ(C)/
√

|C|
∼ t(|C| − 1). (5)

To make the null hypothesis stand, t should satisfy:

f(t) ≥ f(tα/2,v) = α/2 (6)

where tα/2,v is the upper α/2 quantile of the t-distribution

of v degrees of freedom, and v =
√

|C| − 1. If t statistics

satisfies (6), c and C comes from the same object.

Due to the strict data association strategy above or the

bad angle of views, some existing objects may be recognized

as new ones. Hence, a double-sample t-test is leveraged to

determine whether to merge the two objects by testing their

historical centroids (the stars in Fig. 3 (c)).

Construct t-statistics for C1 and C2 as follows,

t =
m(C1)−m(C2)

σd
∼ t(|C1|+ |C2| − 2) (7)

σd =

√

(|C1| − 1)σ2

1
+ (|C2| − 1)σ2

2

|C1|+ |C2| − 2

(

1

|C1|
+

1

|C2|

)

(8)

where σd is the pooled standard deviation of the two objects.

Similarly, if t satisfies (6), v = |C1|+ |C2|−2, it means that

C1 and C2 belongs to the same object, then we merge them.
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Fig. 4: Object representation and demonstration of iForest.

V. OBJECT SLAM

Throughout this section, the following notations are used:

• t = [tx, ty, tz]
T - the translation (location) of object

frame in world frame.

• θ = [θr, θy, θp]
T - the rotation of object frame w.r.t.

world frame. R(θ) is matrix representation.

• T = {R(θ), t} - the transformation of object frame

w.r.t. world frame.

• s = [sl, sw, sh]
T - half of the side length of a 3D

bounding box, i.e., the scale of an object.

• Po, Pw ∈ R
3×8 - the coordinates of eight vertices of a

cube in object and world frame, respectively.

• Qo, Qw ∈ R
4×4 - the quadric parameterized by its

semiaxis in object and world frame, respectively, where

Qo = diag
{

s2l , s
2
w, s

2
h,−1

}

.

• α(·) - calculate the angle of line segments.

• K,Tc - the intrinsic and extrinsic parameters of camera.

• p ∈ R
3×1 - the coordinates of a point in world frame.

Object Representation: In this work, we leverage the

cubes and quadrics to represent objects, rather than the

complex instance-level or category-level model. For objects

with regular shapes, such as books, keyboards, and chairs,

we use cubes (encoded by its vertices Po) to represent them.

For non-regular objects without an explicit direction, such as

balls, bottles, and cups, the quadric (encoded by its semiaxis

Qo) is used for representation. Here, Po and Qo are expressed

in object frame and only depend on the scale s. To register

these elements to global map, we also need to estimate their

translation t and orientation θ w.r.t. global frame. The cubes

and quadrics in global frame are expressed as follows:

Pw = R(θ)Po + t, (9)

Qw = TQoT
T . (10)

With the assumption that the objects are placed parallel with

the ground, i.e., θr=θp=0, we only need to estimate [θy, t, s]
for a cube and [t, s] for a quadric.

Estimate t and s: Suppose there is an object point cloud

X in global frame, we follow conventions and denote its

mean by t, based on which, the scale can be calculated by

s = (max(X) − min(X))/2. The main challenge here is

that X is typically with many outliers, which can introduce

a large bias to the estimation of t and s. One of our major

contributions in this paper is the development of an outlier-

robust centroid and scale estimation algorithm based on the

iForest [27] to improve the estimation accuracy. The detailed

procedure of our algorithm is presented in Alg. 1.

Algorithm 1 Centroid and Scale Estimation Based on iForest

Input: X - The point cloud of an object, t - The number of

iTrees in iForest, ψ - The subsampling size for an iTree.

Output: F - The iForest, a set of iTrees, t - The origin of

local frame, s - The initial scale of the object.

1: procedure PARAOBJECT(X, t, ψ)

2: F ← BUILDFOREST(X, t, ψ)

3: for point x in X do

4: E(h)← averageDepth(x,F)

5: s← score(E(h), C) ⊲ Eq. (11) and (12)

6: if s > 0.6 then ⊲ an empirical value

7: remove(x) ⊲ remove x from X
8: end if

9: end for

10: t← meanValue(X)

11: s← (max(X) - min(X)) / 2

12: return F , t, s
13: end procedure

14: procedure BUILDFOREST(X, t, ψ)

15: F ← φ
16: l← ceiling(log2 ψ) ⊲ maximum times of iterations

17: for i = 1 to t do

18: X(i) ← randomSample(X,ψ)

19: F ← F ∪ BUILDTREE(X(i), 0, l)
20: end for

21: return F
22: end procedure

23: procedure BUILDTREE(X, e, l)
24: if e ≥ l or |X| ≤ 1 then

25: return exNode{|X|} ⊲ record the size of X
26: end if

27: i← randomDim(1, 3) ⊲ get one dimension

28: q ← randomSpitPoint(X[i])
29: Xl, Xr ← split(X[i], q)

30: L←BUILDTREE(Xl, e+ 1, l) ⊲ get child pointer

31: R←BUILDTREE(Xr, e+ 1, l)
32: return inNode{L,R, i, q}
33: end procedure

The key idea of the algorithm is to recursively separate

the data space into a series of isolated data points, and then

take the easily isolated ones as outliers. The philosophy is

that, normal points is typically located more closely and

thus need more steps to isolate, while the outliers usually

scatter sparsely and can be easily isolated with less steps.

As indicated by the algorithm, we first create t isolated trees

(the iForest) using the point cloud of an object (lines 2 and

14-33), and then identify the outliers by counting the path

length of each point x ∈ X (lines 3-9), in which the score

function is defined as follows:

s(x) = 2 exp
−E(h(x))

C
, (11)

C = 2H(|X| − 1)− 2(|X| − 1)

|X| , (12)
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where C is a normalization parameter, H is a weight

coefficient, and h(x) is the height of point x in isolated tree.

As demonstrated in Fig. 4(d)-(e), the yellow point is isolated

after four steps, thus its path length is 4, and the green point

has a path length of 8. Therefore, the yellow point is more

likely to be an outlier. In our implementation, points with

a score greater than 0.6 are removed, and the remainings

are used to calculate t and s (lines 10-12). Based on s, we

can initially construct the cubics and quadratics in the object

frame, as shown in Fig. 4(a)-(c). s will be further optimized

along with the object and camera poses later on.

Estimate θy: The estimation of θy is divided into two

steps, namely to find a good initial value for θy first and

then conduct numerical optimization based on the initial

value. Since pose estimation is a non-linear process, a

good initialization is very important to help improve the

optimality of the estimation result. Conventional methods

[13] usually neglect the initialization process, which typically

yields inaccurate results.

The details of pose initialization algorithm is presented in

Alg. 2. The inputs are obtained as follows: 1) LSD segments

are extracted from t consecutive image and those falling in

the bounding boxes are assigned to the corresponding objects

(see Fig. 5a); 2) The initial pose of an object is assumed to be

consistent with the global frame, i.e., θ0=0 (see Fig. 5b). In

the algorithm, we first uniformly sample thirty angles within

[−π/2, π/2] (line 2). For each sample, we then evaluate its

score by calculating the accumulated angle errors between

LSD segments Zlsd and the projected 2D edges of 3D edges

Z of the cube (lines 3-12). The error is defined as follows:

e(θ) = ||α(Ẑ(θ))− α(Ẑlsd)||2,
Ẑ(θ) = KTc (R(θ)Z + t) .

(13)

A demonstration of the calculation of e(θ) is visualized in

Fig. 5 (e)-(g). The score function is defined as follows:

Score =
Np

Na

(1 + 0.1(ξ − E(e))), (14)

where Na is the total number of line segments of the object

in the current frame, Np is the number of line segments that

satisfy e < ξ, ξ is a manually defined error threshold (five

degrees here), and E(e) is the average error of these line

segments with e < ξ. After evaluating all the samples, we

choose the one that achieves the highest score as the initial

yaw angle for the following optimization process (line 13).

Algorithm 2 Initialization for Object Pose Estimation

Input: Z1, Z2, . . . , Zt - Line segments detected by LSD in t
consecutive images, θ0 - The initial guess of yaw angel.

Output: θ - The estimation result of yaw angel, e - The

estimation errors.

1: S, E ← φ
2: Θ← sampleAngles(θ0, 30) ⊲ see Fig. 5 (b)-(d)

3: for sample θ in Θ do

4: sθ, eθ ← 0
5: for Z in {Z1, Z2, . . . , Zt} do

6: s, e← score(θ, Z) ⊲ Eq. (13) and (14)

7: sθ ← sθ + s
8: eθ ← eθ + e
9: end for

10: S ← S ∪ {sθ}
11: E ← E ∪ {eθ}
12: end for

13: θ∗ ← argmax(S)

14: return θ∗, eθ∗

Joint Optimization: After obtaining the initial S and θy ,

we then jointly optimize object and camera poses:

{O, Tc}
∗ = argmin

{θy,s}

∑

(e(θ) + e(s)) + argmin
{Tc}

∑

e(p), (15)

where the first term is the object pose error defined in Eq.

(13) and the scale error e(s) defined as the distance between

the projected edges of a cube and their nearest parallel

LSD segments. The second term e(p) is the commonly-sued

reprojection error in traditional SLAM framework.

VI. EXPERIMENTAL RESULTS

A. Distributions of Different Statistics

For data association, the adopted statistics for statistical

testing include the point clouds and their centroids of an

object. To verify our hypothesis about the distributions of

different statistics, we analyze a large amount of data and

visualize their distributions in Fig. 6.

Fig. 6 (a) shows the distributions of the point clouds of

13 objects during the data association in the fr3 long office

sequence. It is obvious that such statistics do not follow a

Gaussian distribution. We can be seen that the distributions

are related to specific characteristics of the objects, and do

not show consistent behaviors. Fig. 6 (b) shows the error

distribution of object centroids in different frames, which

typically follow the Gaussian distribution. This result verifies

the reasonability of applying the nonparametric Wilcoxon

Rank-Sum test for point clouds and t-test for object centroids.

B. Ensemble Data Association Experiments

We compare our method with the commonly-used Inter-

section over Union (IoU) method, nonparametric test (NP),

and t-test. Fig. 7 shows the association results of these

methods in TUM fr3 long office sequence. It can be seen

that some objects are not correctly associated in (a)-(c). Due

to the lack of association information, existing objects are
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often misrecognized as new ones by these methods once the

objects are occluded or disappear in some frames, resulting

in many unassociated objects in the map. In contrast, our

method is much more robust and can effectively address this

problem (see Fig. 7(d)). The results of other sequences are

shown in Table I, and we use the same evaluation metric

as [6], which measures the number of objects that finally

present in the map. The GT represents the ground-truth

object number. As we can see, our method achieves a high

success rate of association, and the number of objects in the

map goes closer to GT, which significantly demonstrates the

effectiveness of the proposed method.

We also compare our method with [6], and the results

are shown in Table II. As is indicated, our method can

significantly outperform [6]. Especially in the TUM dataset,

the number of successfully associated objects by our method

is almost twice than that by [6]. In Microsoft RGBD and

Scenes V2, the advantage is not obvious since the number of

objects is limited there. Reasons of the inaccurate association

of [6] lie in two folds: 1) The method does not exploit

different statistics and only used non-parametric statistics,

thus resulting in many unassociated objects; 2) A clustering

algorithm is leveraged to tackling the problem mentioned

above, which removes most of the candidate objects.

TABLE I: DATA ASSOCIATION RESULTS

IoU IoU+NP IoU+t-test EAO GT

Fr1 desk 62 47 41 14 16

Fr2 desk 83 64 52 22 25

Fr3 office 150 128 130 42 45

Fr3 teddy 32 17 21 6 7

C. Qualitative Assessment of Object Pose Estimation

We superimpose the cubes and quadrics of objects on

semi-dense maps for qualitative evaluation. Fig. 8 is the

3D top view of a keyboard (Fig. 5(a)) where the cube

characterizes its pose. Fig. 8(a) is the initial pose with large

scale error; Fig. 8(b) is the result after using iForest; Fig.

8(c) is the final pose after our joint pose estimation. Fig.

9 presents the pose estimation results of the objects in 14

sequences of the three datasets, in which the objects are

placed randomly and in different directions. As is shown, the

proposed method achieves promising results with a monocu-

lar camera, which demonstrate the effectiveness of our pose
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Fig. 7: Qualitative comparison of data association results. (a) IoU
method. (b) IoU and nonparametric test. (c) IoU and t-test. (d) our
ensemble method.

(a) (b) (c)

Fig. 8: Visualization of the pose estimation.

Fig. 9: Results of object pose estimation. Odd columns: original
RGB images. Even column: estimated object poses.

estimation algorithm. Since the datasets are not specially

designed for object pose estimation, there is no ground truth

for quantitatively evaluate the methods. Here, we compare θy
before initialization (BI), after initialization (AI), and after

joint optimization (JO). As shown in Table III, the original

direction of the object is parallel to the global frame, and

there is a large angle error. After pose initialization, the error

is decreased, and after the joint optimization, the error is

further reduced, which verifies the effectiveness of our pose

estimation algorithm.

4971



D. Object-Oriented Map Building

Lastly, we build the object-oriented semantic maps based

on the robust data association algorithm, the accurate object

pose estimation algorithm, and a semi-dense mapping sys-

tem. Fig. 10 shows two examples of TUM fr3 long office and

fr2 desk, where (d) and (e) show a semi-dense semantic map

and an object-oriented map, build by EAO-SLAM. Com-

pared with the sparse map of ORB-SLAM2, our maps can

express the environment much better. Moreover, the object-

oriented map shows the superior performance in environment

understanding than the semi-dense map proposed in [25].

The mapping results of other sequences in TUM, Mi-

crosoft RGB-D, and Scenes V2 datasets are shown in Fig.

11. It can be seen that EAO-SLAM can process multiple

classes of objects with different scales and orientations in

complex environments. Inevitably, there are some inaccurate

estimations. For instance, in the fire sequence, the chair is

too large to be well observed by the fast moving camera,

thus yielding an inaccurate estimation. We also conduct

experiment in a real scenario, Fig. 12. It can be seen even the

objects are occluded, they can be accurately estimated, which

further verifies the robustness and accuracy of our system.

VII. CONCLUSION

In this paper, we present the EAO-SLAM system that aims

to build semi-dense or lightweight object-oriented maps.

The system is implemented based on a robust ensemble

data association method and an accurate pose estimation

framework. Extensive experiments show that our proposed

algorithms and SLAM system can build accurate object-

oriented maps with object poses and scales accurately reg-

istered. The methodologies presented in this work further

push the limits of semantic SLAM and will facilitate related

researches on robot navigation, mobile manipulation, and

human-robot interaction.
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TABLE II: QUANTITATIVELY ANALYZED DATA ASSOCIATIONS

Seq
Tum Microsoft RGBD Scenes V2

fr1 desk fr2 desk fr3 long office fr3 teddy Chess Fire Office Pumpkin Heads 01 07 10 13 14

[6] - 11 15 2 5 4 10 4 - 5 - 6 3 4

Ours 14 22 42 6 13 6 21 6 15 7 7 7 3 5

GT 16 23 45 7 16 6 27 6 18 8 7 7 3 6

TABLE III: QUANTITATIVE ANALYSIS OF OBJECT ANGLE ERROR

Seq fr3 long office fr1 desk fr2 desk
Mean

Objects book1 book2 book3 keyboard1 keyboard2 mouse Book1 Book2 Tvmonitor1 Tvmonitor2 keyboard Book1 Book2 mouse

BI 19.2 11.4 16.2 10.3 7.4 11.3 33.5 15.2 32.7 22.5 8.9 15.5 16.9 8.7 16.4

AI 5.3 5.5 6.2 7.2 4.2 6.4 8.6 8.9 6.0 11.4 5.5 3.8 10.1 7.5 6.9

JO 3.1 4.3 5.7 2.5 2.8 4.3 5.4 7.6 8.7 10.2 3.9 5.1 6.4 7.9 5.6

Fig. 10: Different map representations. (a) the RGB images. (b) the sparse map. (c) semi-dense map. (d) our semi-dense semantic map.
(e) our lightweight and object-oriented map. (d) and (e) are build by the proposed EAO-SLAM.

Fig. 11: Results of EAO-SLAM on the three datasets. Top: raw images. Bottom: simi-dense object-oriented map.

Fig. 12: Results of EAO-SLAM in a real scenario. Left and right: raw images. Middle: semi-dense object-oriented map.
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