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The possibility of identifying people by the shape of their outer ear was first
discovered by the French criminologist Bertillon, and refined by the American
police officer Iannarelli, who proposed a first ear recognition system based
on only seven features.
The detailed structure of the ear is not only unique, but also permanent,

as the appearance of the ear does not change over the course of a human
life. Additionally, the acquisition of ear images does not necessarily require
a person’s cooperation but is nevertheless considered to be non-intrusive by
most people.
Because of these qualities, the interest in ear recognition systems has grown

significantly in recent years. In this survey, we categorize and summarize ap-
proaches to ear detection and recognition in 2D and 3D images. Then, we
provide an outlook over possible future research in the field of ear recogni-
tion, in the context of smart surveillance and forensic image analysis, which
we consider to be the most important application of ear recognition charac-
teristic in the near future.

1 Introduction

As there is an ever-growing need to automatically authenticate individuals, biometrics
has been an active field of research over the course of the last decade. Traditional means
of automatic recognition, such as passwords or ID cards, can be stolen, faked, or forgot-
ten. Biometric characteristics, on the other hand, are universal, unique, permanent, and
measurable.
The characteristic appearance of the human outer ear (or pinna) is formed by the outer

helix, the antihelix, the lobe, the tragus, the antitragus, and the concha (see Figure 1).
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The numerous ridges and valleys on the outer ear’s surface serve as acoustic resonators.
For low frequencies the pinna reflects the acoustic signal towards the ear canal. For
high frequencies it reflects the sound waves and causes neighbouring frequencies to be
dropped. Furthermore the outer ear enables humans to perceive the origin od a sound.
The shape of the outer ear evolves during the embryonic state from six growth nodules.

Its structure, therefore, is not completely random, but still subject to cell segmentation.
The influence of random factors on the ear’s appearance can best be observed by com-
paring the left and the right ear of the same person. Even though the left and the right
ear show some similarities, they are not symmetric [1].

Figure 1: Characteristics of the human ear the German criminal police uses for personal
identification of suspects

The shape of the outer ear has long been recognized as a valuable means for personal
identification by criminal investigators. The French criminologist Alphonse Bertillon was
the first to become aware of the potential use for human identification through ears, more
than a century ago [2]. In his studies regarding personal recognition using the outer ear in
1906, Richard Imhofer needed only four different characteristics to distinguish between
500 different ears [3]. Starting in 1949, the American police officer Alfred Iannarelli
conducted the first large scale study on the discriminative potential of the outer ear.
He collected more than 10 000 ear images and determined 12 characteristics needed to
unambiguously identify a person [4]. Iannarelli also conducted studies on twins and
triplets, discovering that ears are even unique among genetically identical persons. Even
though Iannarelli’s work lacks a complex theoretical basis, it is commonly believed that
the shape of the outer ear is unique. The studies in [5] and [6] show that all ears
of the investigated databases posses individual characteristics, which can be used for
distinguishing between them. Because of the lack of a sufficiently large ear database,
these studies can only be seen as hints,not evidence, for the outer ear’s uniqueness.
Research about the time-related changes in the appearance of the outer ear has shown,

that the ear changes slightly in size when a person ages [7] [8]. This is explained by
the fact that with ageing the microscopic structure of the ear cartilage changes, which
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reduces the skin elasticity. A first study on the effect of short periods of time on ear
recognition [9] shows that the recognition rate is not affected by ageing. It must, however,
be mentioned that the largest time elapsing difference in this experiment was only 10
months, and it therefore is still subject to further research whether time has a critical
effect on biometric ear recognition systems or not.
The ear can easily be captured from a distance, even if the subject is not fully cooper-

ative. This makes ear recognition especially interesting for smart surveillance tasks and
for forensic image analysis. Nowadays the observation of characteristics is a standard
technique in forensic investigation and has been used as evidence in hundreds of cases.
The strength of this evidence has, however, also been called into question by courts in
the Netherlands [10]. In order to study the strength of ear prints as evidence, the Foren-
sic Ear identification Project (FearID) was initiated by nine institutes from Italy, the
UK, and the Netherlands in 2006. In their test system, they measured an Equal Error
Rate (EER) of 4% and came to the conclusion that ear prints can be used as evidence in
a semi-automated system [11]. The German criminal police use the physical properties
of the ear in connection with other appearance-based properties to collect evidence for
the identity of suspects from surveillance camera images. Figure 1 illustrates the most
important elements and landmarks of the outer ear, which are used by the German BKA
for manual identification of suspects.
In this work we extend existing surveys on ear biometrics, such as [12], [13], [14], [15]

or [16]. Abaza et al. [17] contributed an excellent survey on ear recognition in March
2010. Their work covers the history of ear biometrics, a selection of available databases
and a review of 2D and 3D ear recognition systems. This work amends the survey by
Abaza et al. with the following:

• A survey of free and publicly available databases.

• More than 30 publications on ear detection and recognition from 2010 to 2012 that
were not discussed in one of the previous surveys.

• An outlook over future challenges for ear recognition systems with respect to con-
crete applications.

In the upcoming Section we give an overview of image databases suitable for studying
ear detection and recognition approaches for 2D and 3D images. Thereafter, we discuss
existing ear detection approaches on 2D and 3D images. In Section 4 we go on to give
an overview of ear recognition approaches for 2D images, and in Section 5 we do the
same for 3D images. We will conclude our work by providing an outlook over future
challenges and applications for ear recognition systems.

2 Available Databases for Ear Detection and Recognition

In order to test and compare the detection or recognition performance of a computer
vision system, in general, and a biometric system in particular, image databases of
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sufficient size must be publicly available. In this section, we want to give an overview
of suitable databases for evaluating the performance of ear detection and recognition
systems, which can either be downloaded freely or can be licensed with reasonable effort.

2.1 USTB Databases

The University of Science and technology in Beijing offers four collections (http://www1.
ustb.edu.cn/resb/en/doc/Imagedb\_123\_intro\_en.pdf) (http://www1.ustb.edu.
cn/resb/en/doc/Imagedb\_4\_intro\_en.pdf) of 2D ear and face profile images to the
research community. All USTB databases are available under license.

• Database I: The dataset contains 180 images in total, which were taken from 60
subjects in 3 sessions between July and August 2002. The database only contains
images of the right ear from each subject. During each session, the images were
taken under different lighting conditions and with a different rotation. The subjects
were students and teachers from USTB.

• Database II: Similarly to database I, this collection contains right ear images from
students and teachers from USTB. This time, the number of subjects is 77 and
there were 4 different sessions between November 2003 and January 2004. Hence
the database contains 308 images in total, which were taken under different lighting
conditions.

• Database III: In this dataset 79, students and teachers from USTB were pho-
tographed in different poses between November 2004 and December 2004. Some of
the ears are occluded by hair. Each subject rotated his or her head from 0 degrees
to 60 degrees to the right and from 0 degrees to 45 degrees to the left. This was
repeated on two different days for each subject, which resulted in 1600 images in
total.

• Database IV: Consisting of 25500 images from 500 subjects taken between June
2007 and December 2008, this is the largest dataset at USTB. The capturing
system consists of 17 cameras and, is capable of taking 17 pictures of the subject
simultaneously. These cameras are distributed in a circle around the subject, who
is placed in the center. The interval between the cameras is 15 degrees. Each
volunteer was asked to look upwards, downwards and eyelevel, which means that
this database contains images at different yaw and pitch poses. Please note that
this database only contains one session for each subject.

2.2 UND Databases

The University of Notre Dame (UND) offers a large variety of different image databases,
which can be used for biometric performance evaluation. Among them are five databases
containing 2D images and depth images, which are suitable for evaluation ear recognition
systems. All databases from UND can be made available under license (http://cse.
nd.edu/~cvrl/CVRL/Data\_Sets.html).
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• Collection E: 464 right profile images from 114 human subjects, captured in 2002.
For each user, between 3 and 9 images were taken on different days and under
varying pose and lighting conditions.

• Collection F: 942 3D (depth images) and corresponding 2D profile images from
302 human subjects, captured in 2003 and 2004.

• Collection G: 738 3D (depth images) and corresponding 2D profile images from
235 human subjects, captured between 2003 and 2005

• Collection J2: 1800 3D (depth images) and corresponding 2D profile images from
415 human subjects, captured between 2003 and 2005 [18].

• Collection NDOff-2007: 7398 3D and corresponding 2D images of 396 human sub-
ject faces. The database contains different yaw and pitch poses, which are encoded
in the file names [19].

2.3 WPUT-DB

(a) Good quality (b) Occlusion by
hair

(c) Sparse lighting (d) Occlusion by
jewelery

Figure 2: Example images from the WPUT ear database [20]. The database contains ear
photographs of varying quality and taken under different lighting conditions.
Furthermore the database contains images, where the ear is occluded by hair
or by earrings.

The West Pommeranian University of Technology has collected an ear database with
the goal of providing more representative data than comparable collections (http://
ksm.wi.zut.edu.pl/wputedb/) [20]. The database contains 501 subjects of all ages
and 2071 images in total. For each subject, the database contains between 4 and 8
images, which were taken on different days and under different lighting conditions. The
subjects are also wearing headdresses, earrings and hearing aids, and in addition to this,
some ears are occluded by hair. In Figure 2, some example images from the database
are shown. The presence of each of these disruptive factors is encoded in the file names
of the images. The database can be freely downloaded from the given URL.
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2.4 IIT Delhi

(a) Example 1 (b) Example 2 (c) Example 3

Figure 3: Example images fron IIT Delhi ear database [21].

The IIT Delhi Database is provided by the Hong Kong Polytechnic University (http:
//www4.comp.polyu.edu.hk/~csajaykr/IITD/Database\_Ear.htm) [21]. It contains
ear images that were collected between October 2006 and June 2007 at the Indian
Institute of Technology Delhi in New Delhi (see Figure 3). The database contains 121
subjects, and at least 3 images were taken per subject in an indoor environment, which
means that the database consists of 421 images in total.

2.5 IIT Kanpur

The IITK database was contributed by the Indian Institute of Technology in Kan-
pur (http://www.cse.iitk.ac.in/users/biometrics/) [22]. This database consists
of two subsets.

• Subset I: This dataset contains 801 side face images collected from 190 subjects.
Number of images acquired from an individual varies from 2 to 10.

• Subset II: The images in this subset were taken from 89 individuals. For each
subject 9 images were taken with three different poses. Each pose was captured
at three different scales. Most likely, all images were taken on the same day. It is
not stated whether subset II contains the same subjects as subset I.

2.6 ScFace

The SCface database is provided by the Technical University of Zagreb (http://www.
scface.org/) [23] and contains 4160 images from 130 subjects. The aim of the database
is to provide a database, which is suitable for testing algorithms under surveillance
scenarios. Unfortunately, all surveillance camera images were taken at a frontal angle,
such that the ears are not visible on these images. However the database also contains a
set of high resolution photographs from each subject, which show the subject at different
poses. These poses include views of the right and left profile, as shown in Figure 4. Even
though the surveillance camera images are likely to be unsuitable for ear recognition
studies, the high resolution photographs could be used for examining resistance to pose
variations of an algorithm.
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(a) Half left profile (b) Full left profile (c) Full right profile

Figure 4: SCface example images [23]. These images show examples for the pho-
tographed pictures, not for the pictures collected with the surveillance camera
system.

2.7 Sheffield Face Database

This database was formerly known as the UMIST (http://www.sheffield.ac.uk/eee/
research/iel/research/face) database and consists of 564 images of 20 subjects of
mixed race and gender. Each subject is photographed in a range of different yaw poses,
including a frontal view and profile views.

2.8 YSU

The Youngston State University collected a new kind of biometric database for evaluation
forensic identification systems [24]. For each of the 259 subjects, 10 images are provided.
The images are grabbed from a video stream and show the subject in poses between zero
and 90 degrees. This means that the database contains right profile images and a frontal
view image for each subject. It also contains hand drawn sketches from 50 randomly
selected subjects from a frontal angle. However this part of the database is not of interest
for ear recognition systems.

2.9 NCKU

The National Cheng Kung University in Taiwan has collected an image database, which
consists of 37 images for each of the 90 subjects. It can be downloaded from the univer-
sity’s website (http://robotics.csie.ncku.edu.tw/Databases/FaceDetect_PoseEstimate.
htm#Our_Database_). Each subject is photographed in different angles between -90 de-
grees (left profile) and 90 degrees (right profile) in 5 degree steps. Figure 5 some examples
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(a) 40 degrees rotation (b) 65 degrees rotation (c) 90 degrees rotation

Figure 5: Some example images from the NKCU face database, showing the same subject
at different angles.

for this are displayed. Such a series of images is collected at two different days for each
of the subjects. All images were taken under the same lighting conditions and with the
same distance between the subject and the camera.
As this data was originally collected for face recognition, some of the ears are partly

or fully occluded by hair, which make this data challenging for ear detection approaches.
Consequently, only a subset of this database is suitable for ear recognition.

2.10 UBEAR dataset

The dataset presented in [25] contains images from the left and the right ear of 126
subjects. The images were taken under varying lighting conditions and the subjects
were not asked to remove hair, jewelry or headdresses before taking the pictures. The
images are cropped from video stream, which shows the subject in different poses, such
as looking towards the camera, upwards or downwards.
Additionally, the ground truth for the ear’s position is provided together with the

database, which makes it particularly convenient for researches to study the accuracy of
ear detection and to study the ear recognition performance independently from any ear
detection.

3 Ear Detection

This section summarizes the state of the art in automatic ear detection in 2D and
3D images respectively. Basically all ear detection approaches are relying on mutual
properties of the ears morphology, like the occurrence of certain characteristic edges or
frequency patterns. Table 1 gives a short overview of the ear detection methods outlined
below. The upper part of the table contains algorithms for 3D ear localization, whereas
the lower part lists algorithms designed for ear detection in 2D images.
Chen and Bhanu propose three different approaches for ear detection. In the approach

from [26] Chen and Bhanu train a classifier, which recognizes a specific distribution of
shape indices, which are characteristic for the ear’s surface. However this approach only
works on profile images and is sensitive to any kind of rotation, scale and pose variation.
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Table 1: Summary of Automatic ear detection methods for 2D and 3D images

Publication Detection Method Database Perf.

#Img Type

Chen & Bhanu [28] Shape model and ICP 700 3D 87.71%

Chen & Bhanu [27] Helix Shape Model 213 3D 92.6%

Zhou et al. [37] Histograms of Categorized Shapes 942 3D 100%

Prakash & Gupta [32] connectivity graph 1604 3D 99.38%

Abaza et al. [33] Cascaded adaboost 940 2D 88.72%

Ansari and Gupta [30] Edge detection and curvature estima-

tion

700 2D 93.34%

Alastair et al. [39] Ray transform 252 2D 98.4%

Alvarez et a.l [36] Ovoid model NA 2D NA

Arbab-Zavar & Nixon

[38]

Hough Transform 942 2D 91%

Arbab-Zavar & Nixon

[45]

Log-Gabor filters and wavelet transform 252 2D 88.4%

Attarchi et al. [29] Edge detection and line tracing 308 2D 98.05%

Chen & Bhanu [26] Template Matching with Shape index

histograms

60 2D 91.5%

Islam et al. [85] Adaboost 942 2D 99.89%

Jeges & Mate [62] Edge orientation pattern 330 2D 100%

Kumar et al. [40] Edge clustering and active contours 700 2D 94.29%

Liu & Liu [86] Adaboost and skin colour filtering 50 2D 96%

Prakash & Gupta [31] Skin Colour and graph matching 1780 2D 96.63%

Shih et al. [87] Arc-Masking and AdaBoost 376 2D 100%

Yan & Bowyer [18] Concha Detection and active contours 415 2D >97.6

Yuan & Mu [35] CAMSHIFT and aontour fitting Video 2D NA
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(a) Original image, edge image and Hough transform [38]

(b) Original image and ray transform [39]

(c) Original image, edge enhanced image and corresponding
edge orientation model [62]

Figure 6: Examples for different ear detection techniques

In their later ear detection approaches Chen and Bhanu detected image regions with
a large local curvature with a technique they called step edge magnitude [27]. Then a
template, which contains the typical shape of the outer helix and the anti-helix, is fitted
to clusters of lines. In [28] where Chen and Bhanu narrowed the number of possible
ear candidates by detecting the skin region first before the helix template matching is
applied on the curvature lines. By fusing color and curvature information, the detection
rate could be raised to 99.3% on the UCR dataset and 87.71% on UND collection F and
a subset of collection G. The UCR dataset is not publicly available and is hence not
covered in Section 2. For a description of this dataset see [17].
Another example for ear detection using contour lines of the ear is described by At-

trachi et al. [29]. They locate the outer contour of the ear by searching for the longest
connected edge in the edge image. By selecting the top, bottom, and left points of the
detected boundary, they form a triangle with the selected points. Further the barycenter
of the triangle is calculated and selected as reference point for image alignment. Ansari
et al. also use an edge detector in the first step of their ear localization approach [30].
The edges are separated into two categories, namely convex and concave. Convex edges
are chosen as candidates for representing the outer contour. Finally the algorithm con-
nects the curve segments and selects the figure enclosing the largest area for being the
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outer ear contour. It should be noted that the IITK database and USTB II already
contain cut-out ear images. Hence it can be put into question, whether the detection
rates of 93.34% and 98.05% can be reproduced under realistic conditions.
A recent approach on 2D ear detection using edges is described by Prakash and Gupta

in [31]. They combine skin segmentation and categorization of edges into convex and
concave edges. Afterwards the edges in the skin region are decomposed into edge seg-
ments. These segments are composed to form an edge connectivity graph. Based on this
graph the convex hull of all edges, which are believed to belong to the ear, is computed.
The enclosed region is then labeled as the ear region. In contrast to [29], Prakash and
Gupta prove the feasibility of edge-based ear detection on full profile images, where they
achieved a detection rate of 96.63% on a subset of the UND-J2 collection. In [32] propose
the same edge connectivity for ear recognition on 3D images. Instead of edges, they use
discontinuities in the depth map for extracting the initial edge image and then extract
the connectivity graph. In their experiments, they use the 3D representations of the
same subset as in [31] and report a detection rate of 99.38%. Moreover they show that
the detection rate of their graph-based approach is not influence by rotation and scale.
Jedges and Mate propose another edge-based ear detection approach, which is likely to

be inspired by fingerprint recognition techniques. They train a classifier with orientation
pattern, which were previously computed from ear images. Like other naive classifiers,
their method is not robust against rotation and scale. Additionally the classifier is
likely to fail under large pose variations, because this will affect the appearance of the
orientation pattern.
Abaza et al. [33] and Islam et al. [34] use weak classifiers based on Haar-wavelets in

connection with AdaBoost for ear localization. According to Islam et al., the training of
the classifier takes several days, however once the classifier is set up, ear detection is fast
and effective. Abaza et al. use a modified version of AdaBoost and report a significantly
shorter training phase. The effectiveness of their approach is proved in evaluations on
five different databases. They also include some examples of successful detections on
images from the internet. As long as the subject’s pose does not change, weak classifiers
are suitable for images which contain more than one subject. Depending on the test set
Abaza et al. achieved a detection rate between 84% and 98.7% on the Sheffield Face
database. On average, their approach successfully detected 95% of all ears.
Yan and Browyer developed an ear detection method which fuses range images and

corresponding 2D color images [18]. Their algorithm starts by locating the concha and
then uses active contours for determining the ear’s outer boundary. The concha serves
as the reference point for placing the starting shape of the active contour model. Even
though the concha is easy to localize in profile images, it may be occluded if the head
pose changes or if a subject is wearing a hearing aid or ear phones. In their experiments
Yan and Browyer only use ear images with minor occlusions where the concha is visible;
hence it could neither be proved nor disproved whether their approach is capable of
reliably detecting ears if the concha is occluded.
Yuan and Mu developed a method for real-time ear tracking in video sequences by

applying Continuously Adaptive Mean Shift (CAMSHIFT) to video sequences [35]. The
CAMSHIFT algorithm is frequently used in face tracking applications and is based on
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region matching and a skin color model. For precise ear segmentation, the contour fitting
method based on modified active shape models, which have been proposed by Alvarez
et al. is applied [36]. Yuan and Mu report a detection rate of 100%, however the test
database only consisted of two subjects. Nevertheless their approach appears to be very
promising for surveillance applications but needs to be further evaluated in more realistic
test scenarios.
Shih et al. determine ear candidates by localizing arc-shaped edges in an edge image.

Subsequently the arc-shaped ear candidates are verified by using an Adaboost classifier.
They report a detection rate 100% on a dataset, which consists of 376 images from 94
subjects.
Zhou et al. train a 3D shape model in order to recognize the histogram of shape

indexes of the typical ear [37]. Similarly to the approaches of Abaza et al. and Islam
et al., a sliding window of different sizes is moved over the image. The ear descriptor
proposed by Zhou et al. is built from concatenated shape index histograms, which
are extracted from sub-blocks inside the detection window. For the actual detection, a
Support Vector Machine (SVM) classifier is trained to decide whether an image region is
the ear region or not. As far as we know, this is the first ear detection approach, which
does not require having corresponding texture images in addition to the range image.
Zhou et al. evaluated their approach on images from the UND collections and report
a detection rate of 100%. It should be noted that this approach was not tested under
rotation, pose variations and major occlusions, but under the impression of the good
performance, we think this is an interesting task for future research.
Ear detection methods based on image transformations have the advantage of being

robust against out-of-plane rotations. They are designed to highlight specific properties
of the outer ear, which occur in each image where the ear is visible no matter in which
pose the ear has been photographed. In [38] the Hough transform is used for enhancing
regions with a high density of edges. In head profile images, a high density of edges
especially occurs in the ear region (see Figure 6(a)). In [38] it is reported that the
Hough transform based ear detection gets trapped when people wear glasses since the
frame introduces additional edges to the image. This especially occurs in the eye and
nose region. The ear detection approach based on Hough transform was evaluated on the
images in the XM2VTS database (see [17] for a detailed database description), where a
detection rate of 91% was achieved.
The ray transform approach proposed in [39] is designed to detect the ear in different

poses and to ignore straight edges in the image, which can be introduced by glasses
or hair. Ray transform uses a light ray analogy to scan the image for tubular and
curved structures like the outer helix. The simulated ray is reflected in bright tubular
regions and hence these regions are highlighted in the transformed image. Since glass
frames have straight edges, they are not highlighted by the ray transform (see Figure
6(b)). Using this method Alastair et al. achieved am impressive recognition rate of
98.4% on the XM2VTS database. Hence, the ray transform approach by Alastair et al.
outperforms Hough transform, most likely because it is more robust against disruptive
factors such as glasses or hair.
A recent approach for 2D ear detection is described in [40]. Kumar et al. propose to
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extract ears from 2D images by using edge images and active contours. They evaluate
their approach on a database, which consists of 100 subjects with 7 images per subject.
A special imaging device was used for collecting the data. This device makes sure that
the distance to the camera is constant and that the lighting conditions are the same for
all images. Within this setting a detection rate of 94.29% is reported.

4 2D Ear Recognition

Each ear recognition system consists of a feature extraction and a feature vector com-
parison step. In this survey we divide ear recognition approaches into four different
subclasses namely holistic approaches, local approaches, hybrid approaches and statisti-
cal approaches.
In the Tables 2 and 3 all 2D ear recognition approaches mentioned in this paper are

summarized in chronological order.

4.1 Holistic Descriptors

(a) Concentric Circles
[57]

(b) SIFT features [53] (c) Active Contour [62] (d) Force Field [41]

Figure 7: Examples for feature extraction for 2D ear images.

Another approach, which has gained some popularity is the Force Field Transform
by Hurley [41]. The Force Field transformation approach assumes that pixels have a
mutual attraction proportional to their intensities and inversely to the square of the
distance between them rather like Newton’s universal law of gravitation. The associated
energy field takes the form of a smooth surface with a number of peaks joined by ridges
(see Figure 7(d)). Using this method, Hurley et al. achieved a rank-1 performance
of more than 99% on the XM2VTS database (252 images). Building on these results,
Abdel-Mottaleb and Zhou use a 3D representation of the force field for extracting points
lying on the peak of the 3D force field [42]. Because the force field converged at the
outline of the ear, the peaks in the 3D representation basically represent the ear contour.
Nonetheless, the force field method is more robust against noise than other edge detector,
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Table 2: Summary of approaches for 2D ear recognition approaches, part 1. Unless

stated differently, performance always refers to rank-1 performance.

Publication Summary Database Perf.

#Subj # Img

Burge and Burger

[88]

Vornoi Distance Graphs NA NA NA

Yuan and Mu [66] Full Space LDA with Outer Helix

Feature Points

79 1501 86.76%

Hurley [41] Force Field Transform 63 252 99%

Moreno et al. [89] Geometric features with Compres-

sion Network

28 268 93%

Yuizono et al. [73] Genetic Local Search 110 660 99%

Victor et al. [67] PCA 294 808 40%

Chang et al. [68] PCA 114 464 72.7%

Abdel-Mottaleb

and Zhou [42]

Modified Force Field Transform 29 58 87.9%

Mu et al. [58] Geometrical measures on edge im-

ages

77 308 85%

Abate et al. [46] General Fourier Descriptor 70 210 88%

Lu et al. [65] Active Shape Model and PCA 56 560 93.3%

Yuan et al. [90] Non-Negative Matrix Factoriza-

tion

77 308 91%

Arbab-Zavar et al.

[53]

SIFT points from ear model 63 252 91.5%

Jedges and Mate

[62]

Distorted Ear Model with feature

points

28 4060 5.6% EER

Liu et al. [63] Edge-based features from different

views

60 600 97.6%

Nanni and Lumini

[72]

Gabor Filters and SFFS 114 464 80%

Rahman et al. [59] Geometric Features 100 350 87%

Sana et al. [47] Haar Wavelets and Hamming Dis-

tance

600 1800 98.4%

Arbab-Zavar and

Nixon [45]

Log-Gabor Filters 63 252 85.7 %

Choras [57] Geometry of ear outline 188 376 86.2%
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Table 3: Summary of approaches for 2D ear recognition approaches, part 2. Unless

stated differently, performance always refers to rank-1 performance.

Publication Summary Database Perf.

#Subj # Img

Dong and Mu [43] Force Field Transform

and NKFDA

29 711 75.3%

Guo and Xu [60] Local Binary Pattern

and CNN

77 308 93.3%

Nasseem et al. [76] Sparse representation 32 192 96.88%

Wang et al. [91] Haar Wavelets and Lo-

cal Binary Patterns

79 395 92.41%

Xie and Mu [71] Locally Linear Embed-

ding

79 1501 80%

Yaqubi et al. [74] HMAX and SVM 60 180 96.5%

Zhang and Mu [70] Geometrical Features,

ICA and PCA with

SVM

77 308 92.21

Badrinath and

Gupta [54]

SIFT landmarks from

ear model

106 1060 95.32%

Kisku et al. [55] SIFT from different

Color Segments

400 800 96.93%

Wang and Yuan

[50]

Low-Order Moment

Invariants

77 308 100%

Alaraj et al.. [69] PCA with MLFFNNs 17 85 96%

Bustard et al. [52] SIFT Point Matches 63 252 96%

De Marisco et al.

[48]

Partitioned Iterated

Function System

(PIFS)

114 228 61%

Gutierrez et al. [75] MNN with Sugeno

Measures and SCG

77 308 97%

Wang et al. [49] Moment Invariants

and BP Neural Net-

work

NA 60 91.8%

Wang and Yuan

[44]

Gabor Wavelets and

GDA

77 308 99.1%

Fooprateepsiri and

Kurutach [92]

Trace and Fourier

Transform

68 68 97%

Prakash and Gupta

[22]

SURF and NN classi-

fier

300 2066 2.25% EER

Kumar et al. [40] SIFT 100 700 95% GAR, 0.1% FAR

Wang and Yan [61] Local Binary Pattern

and Wavelet Trans-

form

77 308 100%

Kumar and Wu [21] Phase encoding with

Log Gabor filters

221 753 95.93%
15



such as Sobel or Canny. Using this approach, Abdel-Mottaleb and Zhou achieved a rank-
1 performance of 87.93% on a dataset with consists of 103 ear images from 29 subjects.
Dong and Mu [43] add pose invariance to the edges, which are extracted by using

the force field method. This is achieved with null space kernel fishier discriminant
analysis (NKFDA), which has the property of representing non-linear relations between
two datasets. Dong and Mu conducted experiments on the USTB IV dataset. Before
feature extraction, the ear region was cropped out manually from the images and the
pose is normalized. For pose variation of 30 they report a rank-1 recondition rate of
72.2%. For pose variations of 45 the rank-1 performance dropped to 48.1%.
In a recent publication of Kumar andWu [21] they present an ear recognition approach,

which uses the phase information of Log-Gabor filters for encoding the local structure
of the ear. The encoded phase information is stored in normalized grey level images.
In the experiments, the Log-Gabor approach outperformed force field features and a
landmark-based feature extraction approach. Moreover, different combinations of Log-
Gabor filters were compared with each other. The rank-e performance for the Log-Gabor
approaches ranges between 92.06% and 95.93% on a database which contains 753 images
from 221 subjects.
The rich structure of the outer ear results in specific texture information, which can

be measured using Gabor filters. Wang and Yuan [44] extract local frequency features
by using a battery of Gabor filters and then select the most distinctive features by using
general discriminant analysis. In their experiments on the USTB II database, they
compared the performance impact of different settings for the Gabor filters. Different
combinations of orientation and scales in the filter sets are compared with each other
and it was found that neither the number of scales nor the number of orientations has
a major impact on the rank-1 performance. The total rank-1 performance of Wang
and Yuan’s approach is 99.1%. In a similar approach Arbab-Zavar and Nixon [45]
measured the performance of Gabor filters in the XM2VTS database where they report
a rank-1 performance of 91.5%. A closer look at the Gabor filter responded showed
that the feature vectors are corrupted by occlusion or other disruptive factors. In order
to overcome this, more robust comparison method is proposed, which resulted in an
improved recognition rate of 97.4%.
Abate et al. [46] use a generic Fourier descriptor for rotation and scale invariant

feature representation. The image is transformed into a polar coordinate system and
then transformed into frequency space. In order to make sure, that the centroid of
the polar coordinate system is always at the same position, the ear images have to be
aligned before they can be transformed into the polar coordinate system. The concha
serves as a reference point for the alignment step, such that the center point of the polar
coordinate system is always located in the concha region. The approach was tested on a
proprietary dataset, which contains 282 ear images in total. The images were taken on
two different days and in different roll and yaw poses. The rank-1 performance of the
Fourier descriptor varies depending on the pose angle. For 0 pose variation the rank-1
performance is 96%, but if different poses are included in the experiments, it drops to
44% for 15 and 19% for 30.
In the work of Fooprateepsiri and Kurutach exploit the concepts of multi-resolution
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Trace transform and Fourier transform. The input images from the CMU PIE database
are serialized by using the trace transform and stored in a feature vector. The advantage
of the trace transform is that the resulting feature vector is invariant to rotations and
scale. Furthermore Fooprateepsiri and Kurutach show that their descriptor is also robust
against pose variations. In total they report a rank-1 performance of 97%.
Sana et al. use selected wavelet coefficients extracted during Haar-Wavelet compres-

sion for feature representation [47]. While applying the four level wavelet transform
several times on the ear image, for each iteration they store one of the derived coef-
ficients in a feature vector. The reported accuracy of their algorithm is 96% and was
achieved on the basis of the IITK database and on the Saugor database (350 subjects).
A feature extraction system called PIFS is proposed by De Marisco et al. [48]. PIFS

measures the self-similarity in an image by calculating affine translations between similar
sub regions of an image. In order to make their system robust to occlusion, De Marisco
et al. divided the ear image into equally large tiles. If one tile is occluded, the other
tiles still contain a sufficiently distinctive set of features. De Marisco et al. could show
that their approach is superior to other feature extraction methods under the presence
of occlusion. The experiments of De Marisco et al. have been conducted in order
to assess the system performance in different occlusion scenarios. The basis for these
tests was the UND collection E and the first 100 subjects of the FERET database. If
occlusion occurs on the reference image, a rank-1 performance of 61% (compared to 40%
on average with other feature extraction methods) is reported. Without occlusion, the
rank-1 performance is 93%.
Moment invariants are a statistical measure for describing specific properties of a

shape. Wang et al. [49] compose six different feature vectors by using seven moment
invariants. They also show that each of the moment invariants is robust against changes
in scale and rotation. The feature vectors are used as the input for a back propagation
neural network which is trained to classify the moment invariant feature sets. Based on a
proprietary database of 60 ear images, they report a rank-1 performance of 91.8%. In [50]
Wang and Yuan compare the distinctiveness of different feature extraction methods on
the USTB I database. They compare the rank-1 performance of Fourier descriptors,
Gabor-Transform, Moment Invariants and statistical features and come to the conclu-
sion that the highest recognition rate can be achieved by using moment invariants and
Gabor transform. For both feature extraction methods Wang and Yuan report a rank-1
performance or 100%.

4.2 Local Descriptors

Scale invariant Feature Transform (SIFT) is known to be a robust way for landmark
extraction even in images with small pose variations and varying brightness conditions
[51]. SIFT landmarks contain a measure for local orientation; they can also be used for
estimating the rotation and translation between two normalized ear images. Bustard et

al. showed that SIFT can handle pose variations up to 20 degrees [52]. However it is not
a trivial to assign a SIFT landmark with its exact counterpart, especially in the presence
of pose variations. In highly structured image regions, the density and redundancy of
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SIFT landmarks is so high, that exact assignment is not possible. Hence the landmarks
have to be filtered before the actual comparison can start. Arbab-Zavar et al. [53] as
well as Badrinath and Gupta [54] therefore train a reference landmark model, which only
contains a small number of non-redundant landmarks. This landmark model is used for
filtering the SIFT landmarks, which were initially detected in the probe and reference
ear. Having the filtered landmarks it is possible to assign each of the landmarks with
its matching counterpart. Figure 7(b) shows an example for SIFT landmarks extracted
from an ear images, which were used as training data for the reference landmark model
in the work of Arbab-Zavar et al.. Because Arbab-Zavar et al. also used the XM2VTS
database for evaluation, their results can be directly compared to the rank-1 performance
reported by Bustard and Nixon. Arbab-Zavar et al. achieved a rank-1 performance of
91.5%. With the more recent approach by Bustard and Nixon the performance could
be improved to 96%. Using the IIT Delhi database Kumar et al. report a GAR of 95%
and a FAR of 0.1% when using SIFT feature points.
Kisku et al. address the problem of correct landmark assignment by decomposing

the ear image into different color segments [55]. SIFT landmarks are extracted from
each segment separately, which reduces the chance of assigning SIFT landmarks that
are not representing the same features. Using this approach, Kisku et al. achieve a
rank-1 performance of 96.93%.
A recent approach by Prakash and Gupta [22] fuses Speeded Up Robust Features

(SURF) [56] feature points from different images of the same subject. They propose
to use several input images for enrolment and to store all SURF feature points in the
fused feature vector, which could be found in the input images. These feature sets are
then used for training a nearest neighbor classifier for assigning two correlated feature
points. If the distance between two SURF feature points is less than a trained threshold,
they are considered to be correlated. The evaluation of this approach was carried out
on the UND collection E and the two subsets of the IIT Kanpur database. Prakash and
Gupta tested the influence of different parameters for SURF features and for the nearest
neighbor classifier. Depending on the composition of the parameters the EER varies
between 6.72% and 2.25%.
Choras proposes a set of geometric feature extraction methods inspired by the work of

Iannarelli [57]. He proposes four different ways of feature location in edge images. The
concentric circles method uses the concha as reference points for a number of concentric
circles with predefined radii. The intersection points of the circles and the ear contours
are used as feature points (see Figure 7(a).). An extension of this is the contour tracing
methods, which uses bifurcations, endpoints and intersecting points between the ear
contours as additional features. In the angle representation approach, Choras draws
concentric circles around each center point of an edge and uses the angles between the
center point and the concentric circles intersecting points for feature representation.
Finally the triangle ratio method determines the normalized distances between reference
points and uses them for ear description. Choras conducted studies on different databases
where he reported recognition rates between 86.2% and 100% on a small database off 12
subjects and a false reject rate between 0% and 9.6% on a larger database with 102 ear
images.
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Similar approaches which are using the aspect ratio between reference points on the
ear contours are proposed by Mu et al. with a rank-1 performance of 85% on the
USTB II database [58] and Rahman et al. [59]. Rahman et al. evaluated their approach
on a database, which consists of 350 images from 100 subjects. They report a rank-
1 performance of 90%. For images, which were taken on different days the rank-1
performance dropped to 88%.
Local binary patterns (LBP) are a technique for feature extraction on the pixel level.

LBP encode the local neighborhood of a pixel by storing the difference between the
examined pixel and its neighbors. Guo et al. [60] extract LBP from the raw ear images
and create histograms describing the distribution of the local LBP. Then a cellular neural
network of trained to distinguish between the LBP of different subjects in the USTB II
database.
In the by Wang and Yan [61] the dimensionality of the feature vector is reduced with

linear discriminant analysis before a Euclidean distance measure quantifies the similarity
of two feature vectors. Wang and Yan evaluated their approach on the USTB II dataset
and report a rank-1 performance of 100%.

4.3 Hybrid Approaches

The approach of Jedges and Mate is twofold [62]. In a first feature extraction step they
generate an average edge model from a set of training images. These edges represent the
outer helix contour as well as the contours of the antihelix, the fossa triangularis and
the concha. Subsequently each image is enrolled by deforming the ear model until it fits
the actual edges displayed in the probe ear image. The deformation parameters, which
were necessary for the transformation, are the rst part of the feature vector. The feature
vector is completed by adding additional feature points lying of intersections between a
predefined set of axes and the transformed main edges. The axes describe the unique
outline of ear. Figure 7(c) shows the edge enhanced images with fitted contours together
with the additional axes for reference point extraction. They report an EER of 5.6%
using a database with cropped images and without pose variations.
Liu et al. combine front and backside view of the ear by extracting features using

the triangle ratio method and Tchebichef moment descriptors [63]. Tchebichef moments
are a set of orthogonal moment functions based on discrete Tchebichef polynomials and
have been introduced as a method for feature representation in 2001 [64]. The backside
of the ear is described by a number of lines that are perpendicular to the longest axis
in the ear contour. These lines measure the local diameter of the auricle at predefined
points. The rank-1 performance of this combined approach is reported to be 97.5%. If
only the front view is used, the rank-1 performance is 95% and for the backside images,
Liu et al. report 86.3% rank-1 performance.
Lu et al. [65] as well as Yuan and Mu [66] use the active shape model for extracting

the outline of the ear. Lu et al. are using manually cropped ear images from 56 sub-
jects in different poses. A feature extractor stores selected points on the outline of the
ear together with their distance to the tragus. Before applying a linear classifier, the
dimensionality of the feature vectors is reduced by principal component analysis (PCA).
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Lu et al. compare the rank-1 performance of pipelines where only the left or the right
ear was used for identification and also show that using both ears increases the rank-1
performance from 93.3% to 95.1%. In the USTB III database Yuan and Mu report a
rank-1 performance of 90% is the head rotation is lower than 15. For rotation angles
between 20 and 60 the rank-1 performance drops to 80%.

4.4 Classifiers and Statistical Approaches

Victor et al. were the first research group to transfer the idea of using the eigenspace
from face recognition to ear recognition [67]. They reported that the performance of
the ear as a feature is inferior to the face. This may be due to the fact that in their
experiments Victor et al. considered the left and the right ear to be symmetric. They
used the one ear for training and the other ear for testing, which could have lowered
the performance of PCA in this case. The reported rank-1 performance is 40%. With
a rank-1 performance of 72.2% in the UND collection E, Chang et al. [68] report a
significantly better performance than Victor et al.. Alaraj et al. [69] published another
study, where PCA is used for feature representation in ear recognition. In their approach
a multilayer feed forward neural network was trained for classification of the PCA based
feature components. The observed a rank-1 performance of 96%, and hence improved
the previous results by Victor et al. and Chang et al.. However it should be noticed
that this result is only based on a subset of one of the UND collections, which consists
of 85 ear images from 17 subjects.
Zhang and Mu conducted studies on the effectiveness of statistical methods in com-

bination with classifiers. In [70] they show that independent component analysis (ICA)
is more effective on the USTB I database than PCA. They first used PCA and ICA for
reducing the dimensionality of the input images and then trained an SVM for classifying
the extracted feature vectors. Furthermore the influence of different training set sizes
on the performance was measured. Depending on the site of the training set the rank-1
performance for PCA varies between 85% and 94.12%, whereas the rank-1 performance
for ICA varies between 91.67% and 100%.
Xie and Mu [71] propose an improved locally linear embedding (LLE) algorithm for

reducing the dimensionality of ear features. LLE is a technique for projecting high-
dimensional data points into a lower dimensional coordinate system while preserving the
relationship between the single data points. This requires the data points to be labeled
in some way, so that their relationship is fixed. The improved version om LLE by Xie
and Mu eliminated the problem by using a different distance function. Further Xie and
Mu show, that LLE is superior to PCA and Kernel PCA, if the input data contains pose
variations. Their studies were conducted on the USTB III database showed that the
rank-1 performance of regular LLE ( 43%) is improved significantly by their method to
60.75%. If the pose variation is only 10, the improved LLE approach achieved a rank-1
performance of 90%.
In their approach Nanni and Lumini [72] propose to use Sequential Forward Floating

Selection (SFFS), which is a statistical iterative method for feature selection in pattern
recognition tasks. SFFS tries to find the best set of classifiers by creating a set of rules,

20



which best fits the current feature set. The sets are created by adding one classifier at
a time and evaluating its discriminative power with a predefined fitness function. If the
new set of rules outperforms the previous version, the new rule is added to the final
set of rules. The experiments were carried out on the UND collection E and the single
classifiers are fused by using the weighted sum rule. SFFS selects the most discriminative
sub-windows which correspond to the fittest set of rules. Nanni and Lumini report a
rank-1 recognition rate of 80% and a rank-5 recognition rate of 93%. The EER varies
between 6.07% and 4.05% depending on the number of sub-windows used for recognition.
Yiuzono et al. consider the problem of finding corresponding features in ear images

as an optimization problem and apply genetic local search for solving it iteratively [73].
They select local sub windows with varying size as the basis for the genetic selection.
In [73] Yiuzono et al. present elaborated results, which describe the behavior of genetic
local search under different parameters, such as different selection methods and different
numbers of chromosomes. On a database of 110 subjects they report a recognition rate
of 100%.
Yaqubi et al. use features obtained by a combination of position and scale-tolerant

edge detectors over multiple positions and orientations of the image [74]. This feature
extraction method is called HMAX model and is inspired by the visual cortex of primates
and combines simple features to more complex semantic entities. The extracted features
are classified with an SVN and a kNN. The rank-1 performance on a small dataset of
180 cropped ear images from 6 subjects varies between 62% and 100% depending on the
kind of basis features.
Moreno et al. implement a feature extractor, which locates seven landmarks on the

ear image, which correspond to the salient points from the work of Iannarelli. Addi-
tionally they obtain a morphology vector, which describes the ear as a whole. These
two features are used as the input for different neural network classifiers. They compare
the performance of each of the single feature extraction techniques with different fusion
methods. The proprietary test database is composed of manually cropped ears from
168 from 28 subjects. The best result of 93% rank-1 performance was measures using a
compression network. Other configurations yielded error rates between 16% and 57%.
Gutierrez et al. [75] divide the cropped ear images into three equally sized parts. The

upper part shows the helix, the middle part shows the concha and the lower part shows
the lobule. Each of these sub images is decomposed by wavelet transform and then fed
into a modular neural network. In each module of the network a different integrators and
learning functions was used. The results of each of the modules are fused in the last step
for obtaining the final decision. Depending on the combination between integrator and
learning function, the results vary between 88.4% and 97.47% rank-1 performance on
the USTB I database. The highest rank-1 performance is achieved with Sugeno measure
and conjugate gradient.
In [76] Nasseem et al. propose a general classification algorithm based on the theory

of compressive sensing. They assume that most signals are compressible in nature and
that any compression function results in a sparse representation of this signal. In their
experiments in the UND database and the FEUD database, Nasseem et al. show that
their sparse representation method is robust against pose variations and varying lighting

21



Table 4: Summary of approaches for 3D ear recognition. Performance (Perf.) always

refers to rank-1 performance.

Publication Comparison Method Database Perf.

#Subj #Img

Cadavid et al. [84] ICP and Shape from shad-

ing

462 NA 95%

Chen and Bannu

[28]

Local Surface Patch 302 604 96.36%

Chen and Bhanu

[27]

ICP Contour Matching 52 213 93.3%

Liu et al. [63] Mesh PCA with neural net-

work

60 600 NA

Liu and Zhang [81] Slice Curve Matching 50 200 94.5%

Islam et al. [82] ICP with reduced meshes 415 830 93.98%

Islam et al. [93] Local Surface Features with

ICP-Matching

415 830 93.5%

Passalis et al. [80] Reference ear model with

morphing

525 1031 94.4%

Yan and Bowyer

[77]

ICP using voxels 369 738 97.3%

Yan and Bowyer

[18]

ICP using Model Points 415 1386 97.8%

Zheng et al. [83] Local Binary Patters 415 830 96.39%

Zhou et. al. [79] Surface Patch Histogram

and voxelization

415 830 98.6%, 1.6% EER

conditions. The rank-1 performance varied between 89.13% and 97.83%, depending on
the dataset used in the experiment.

5 3D Ear Recognition

In 2D ear recognition pose variation and variation in camera position, so-called out-
of-plane-rotations, are still unsolved challenges. A possible solution is using 3D models
instead of photos as references, because a 3D representation of the subject can be adapted
to any rotation, scale and translation. In addition to that, the depth information con-
tained in 3D models can be used for enhancing the accuracy of an ear recognition system.
However, most 3D ear recognition systems tend to be computationally expensive. In Ta-
ble 4 all 3D ear recognition systems described in this section are summarized.
Although ICP is originally designed to be an approach for image registration, the
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Figure 8: Examples for surface features in 3D ear images. The upper image shows an
example for ICP-based comparison as proposed in [27], whereas the lower figure
illustrates feature extraction from voxels as described in [77].

registration error can also be used as a measure for the dissimilarity of two 3D images.
Because ICP is designed to be a registration algorithm, it is robust against all kinds of
translation or rotations. However ICP tends to stop too early, because it gets stuck in
local minima. Therefore ICP requires the two models to be coarsely pre-aligned before
fine alignment using ICP can be performed. Chen and Bhanu extract point clouds from
the contour of the outer helix and the register these points with the reference model by
using ICP [27]. In a later approach Chen and Bhanu use local surface patches (LSP)
instead of points lying on the outer helix [28]. As the LSP consist or less points than the
outer helix, this reduces the processing time while enhancing the rank-1 performance
from 93.3% with the outer helix points to 96.63 % with LSP.
Yan and Browyer decompose the ear model into voxels and extract surface features

from each of these voxels. For speeding up the alignment process, each voxel is assigned
an index in such a way that ICP only needs to align voxel pairs with the same index [77]
(see Figure 8). In [18] Yan and Browyer propose the usage of point clouds for 3D ear
recognition. In contrast to [27] all points of the segmented ear model are used. The
reported performance measures of 97.3% in [77] and 97.8% in [18] is similar but not
directly comparable, because different datasets were used for evaluation.
Cadavid et al. propose a real-time ear recognition system, which reconstructs 3D

models from 2D CCTV images using the shape from shading technique [78]. Thereafter
the 3D model in compared to the reference 3D images, which are stored in the gallery.
Model alignment as well as the computation of the dissimilarity measure is done by ICP.
Cadavid et al. report a recognition rate of 95% on a database of 402 subjects. It is
stated in [78] that the approach has difficulties with pose variations. In [79] Zhou et.

al. use a combination of local histogram features voxel-models. Zhou et. al. report
that their approach is faster and with an EER of 1.6% it is also more accurate than the
ICP-based comparison algorithms proposed by Chen and Bhanu and Yan and Browyer.

Simlarly to Cadavid et al., Liu et al. reconstruct 3D ear models from 2D views [63].
Based on the two images of a stereo vision camera, a 3D representation of the ear is
derived. Subsequently the resulting 3D meshes serve as the input for PCA. However Liu
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et al. do not provide any results concerning the accuracy of their system but since they
did not publish any further results on their PCA mesh approach, it seems that it is no
longer pursued.
Passalis et al. go a different way for comparing 3D ear models in order to make com-

parison suitable for a real-time system [80]. They compute a reference ear model which
is representative for the average human ear. During enrolment, all reference models
are deformed until they fit the reference ear model. All translations and deformations,
which were necessary to fit the ear to the reference model are then stored as features.
If a probe for authentication is given to the system, the model is also adapted to the
annotated ear model in order to get the deformation data. Subsequently the deforma-
tion data is used to search for an associated reference model in the gallery. In contrast
to the previously described systems, only one deformation has to be computed per au-
thentication attempt. All other deformation models can be computed before the actual
identification process is started. This approach is reported to be suitable for real-time
recognition systems, because it takes less than 1 msec for comparing two ear templates.
The increased computing speed is achieved by lowering the complexity class from O(n)2

for ICP-based approaches to O(n) for their approach. The rank-1 recognition rate is
reported to be 94.4%. The evaluation is based on non-public data, which was collected
using different sensors.
Heng and Zhang propose a feature extraction algorithm based on slice curve compari-

son, which is inspired by the principles of computer tomography [81]. In their approach
the 3D ear model is decomposed into slices along the orthogonal axis of the longest
distance between the lobule and the uppermost part of the helix. The curvature infor-
mation extracted from each slice is stored in a feature vector together with an index
value indicating the slice’s former position in the 3D model. For comparison the longest
common sequence between two slice curves with similar indexes is determined. Their
approach is only evaluated on a non-public dataset, which consists of 200 images from
50 subjects. No information about pose variations or occlusion during the capturing
experiment is given. Heng and Zhang report a rank-1 performance is 94.5% for the
identification experiment and 4.6%EER for the verification experiment.
Islam et al. reconnect point clouds describing 3D ear models to meshes and iteratively

reduce the number of faces in the mesh [82]. These simplified meshes are then aligned
with each other using ICP and the alignment error is used as the similarity measure for
the two simplified meshes. In a later approach Islam et al. extract local surface patches
as shown in Figure 9 and use them as features [34]. For extracting those LSP, a number
of points is selected randomly from the 3D model. Then the data points which are closer
to the seed point than a defined radius are selected. PCA is then applied to find the
most descriptive features in the LSP. The feature extractor repeats selecting LSP until
the desired number of features has been found. Both approaches were evaluated using
images from UND. The recognition rate reported for [82] is 93.98% and the recognition
rate reported for [34] is 93.5%. However, none of the approaches has been tested with
pose variation and different scaling.
Zheng et al. extract the shape index at each point in the 3D model and use it for

projecting the 3D model to 2D space [83]. The 3D shape index at each pixel is represented
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by a grey value at the corresponding position in the 2D image. Then SIFT features are
extracted from the shape index map. For each of the SIFT points a local coordinate
system is calculated where the z-axis correspondents to the feature point’s normal. Hence
the z-values of the input image are normalized according to the normal of the SIFT
feature point they were assigned to. As soon as the z values have been normalized,
they are transformed into a grey level image. As a result, Zheng et al. get a local grey
level image for each of the selected SIFT features. Next LBP are extracted for feature
representation in each of these local grey level images. Comparison is first performed by
coarsely comparing the shape indexes of key pints and then using Earth mover’s distance
for comparing LBP histograms from the corresponding normalized grey images. Zheng
et al. evaluated their approach on a subset of the UND-J2 Collected and achieved a
rank-1 performance of 96.39%.

Figure 9: Example for local surface (LSP) patch features as proposed in [34]

6 Open challenges and future applications

As the most recent publications on 2D and 3D ear recognition show, the main application
of this technique is personal identification in unconstrained environments. This includes
applications for smart surveillance, such as in [84] but also the forensic identification
of perpetrators on CCTV images or for border control systems. Traditionally these
application fields are part of face recognition systems but as the ear is located next to
the face, it can provide valuable additional information to supplement the facial images.
Multi modal ear and face recognition systems can serve as a means of achieving pose

invariance and more robustness against occlusion in unconstrained environments. In
most public venues surveillance cameras are located overhead in order to capture as
many persons as possible and to protect them from vandalism. In addition, most of the
persons will not look straight into the camera, so in most cases no frontal images of the
persons will be available. This fact poses serious problems to biometric systems, using
facial features for identification. If the face is not visible from a frontal angle, the ear
can serve as a valuable additional characteristic in these scenarios.
Because of the physical proximity of the face and the ear, there are also many possibil-

ities for the biometric fusion of these two modalities. Face and ear images can be fused
on the feature level, on the template level and on the score level. Against the background
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of this application, there are some unsolved challenges, which should be addressed by
future research in this field.

6.1 Automatic Ear Localization

The fact that many systems presented in literature use pre-segmented ear images shows,
that the automatic detection of ears especially in real-life images is still an unsolved
problem. If ear recognition systems should be implemented in automatic identification
systems, fast and reliable approaches for automatic ear detection are of importance.
As a first step towards this goal, some research groups have published data collections,
which simulate typical variations in uncontrolled environments such as varying lighting
conditions, poses and occlusion. Based on these datasets, existing and future approaches
to ear recognition should be tested under realistic conditions in order to improve their
reliability.
Moreover, 3D imaging systems become increasingly cheap in the last years. Conse-

quently 3D ear recognition becomes important and with it the need of locating ears in
depth images or 3D models. Currently, only one approach for ear detection in depth has
been published, which is a first step towards ear detection in 3D images.

6.2 Occlusion and Pose Variations

In contrast to the face, the ear can be partially or fully covered by hair or by other items
such as headdresses, hearing aids, jewelry or headphones. Because of the convex surface
of the outer ear, parts of it may also be occluded if the subject’s pose changes. In some
publications, robustness against occlusion is explicitly addressed, but there are no studies
on the effect of the effect of certain types of occlusion like hair or earrings on the recog-
nition rate of an ear recognition system. Once more, the availability of public databases
which contain occluded ear images is likely to foster the development of solutions for
pose invariant and robust algorithms for ear detection and feature extraction.
Moreover to our best knowledge there are no studies about the visibility of the outer

ear in different public environments. In order to develop algorithms for ear detection and
recognition, further information about commonly occluded party of the ear is needed.
Occlusion due to pose variations is another unmet challenge in ear recognition system.

Similarly to face recognition, parts of the ear can become occluded if the pose changes.
Recently, some feature extraction methods have been proposed, which are robust against
pose variations to some degree. However, this issue is not fully solved yet. Another
possibility for compensating pose variations could be the usage of 3D models instead of
depth images of photographs.

6.3 Scalability

Currently available databases only consist of less than 10 000 ear images. The only
exception is the USTB IV collection, which has not been released for the public yet. In
realistic environments the size of the database will be significantly larger, which makes
exhaustive search in identification scenarios infeasible. Therefore, not only the accuracy
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but also the comparison speed of ear recognition systems will be interesting for future
research.
In order to make ear recognition applicable for large scale systems, exhaustive searches

should be replaced by appropriate data structures allowing logarithmic time complexity
during the search. This could for example be achieved by exploring the possibilities of
organizing ear templates in search trees.

6.4 Understanding Symmetry and Ageing

Because ear recognition is one of the newer fields of biometric research, the symmetry
of the left and the right ear has not been fully understood yet. The studies of Iannarelli
indicate that some characteristics of the outer ear can be inherited and ageing slightly
affects the appearance of the outer ear. Both assumptions could be confirmed in more
recent studies, but because of a lack of sufficient data, the effect of inheritance and ageing
on the outer ear’s appearance is not fully understood yet. Furthermore, there are no
large scale studies of the symmetry relation between the left and the right ear yet.
Therefore another interesting field for future research could be, to gain a deeper un-

derstanding of the effect of inheritance any symmetry on the distinctiveness of biometric
template. Moreover, long term studies on the effect of time on ear templates are needed
in order to get a better understanding of the permanence of this characteristic.

7 Summary

We have presented a survey on the state of the art in 2D and 3D ar biometrics, covering
ear detection and ear recognition systems. We categorized the large number of 2D ear
recognition approaches into holistic, local, hybrid and statistical methods, discussed their
characteristics and reported their performance.
Ear recognition is still a new field of research. Although there is a number of promising

approaches, none of them has been evaluated under realistic scenarios which include
disruptive factors like pose variations, occlusion and varying lighting conditions. In
recent approaches, these factors are taken under account, but more research on this is
required until ear recognition systems can be used in practice. The availability of suitable
test databases, which were collected under realistic scenarios, will further contribute to
the maturation of the ear as a biometric characteristic.
We have collected a structured survey of available databases, existing ear detection

and recognition approaches and unsolved problems for ear recognition in the context of
smart surveillance system, which we consider to be the most important application for
ear biometrics. We think that this new characteristic is a valuable extension for face
recognition systems on the way to pose invariant automatic identification.

27



References

[1] Abaza A, Ross A. ’Towards understanding the symmetry of human ears: A biomet-
ric perspective’. In: Fourth IEEE International Conference on Biometrics: Theory
Applications and Systems (BTAS); 2010. .

[2] Bertillon A. ’La Photographie Judiciaire: Avec Un Appendice Sur La Classification
Et L’Identification Anthropometriques’. Gauthier-Villars, Paris; 1890.

[3] Imhofer R. ’Die Bedeutung der Ohrmuschel für die Feststellung der Identität’.
Archiv für die Kriminologie. 1906;26:150–163.

[4] Iannarelli AV. ’Ear identification’. Paramont Publishing Company; 1989.

[5] Meijerman L, Sholl S, Conti FD, Giacon M, van der Lugt C, Drusini A, et al.
’Exploratory study on classification and individualisation of earprints’. Forensic
Science International. 2004;140(1):91 – 99.

[6] Singh P, Purkait R. ’Observations of external earAn Indian study’. HOMO -
Journal of Comparative Human Biology. 2009;60(5):461 – 472. Available from:
http://www.sciencedirect.com/science/article/pii/S0018442X09001164.

[7] Sforza C, Grandi G, Binelli M, Tommasi DG, Rosati R, Ferrario VF. ’Age- and
sex-related changes in the normal human ear’. Forensic Science International.
2009;187(1-3):110.e1 – 110.e7. Available from: http://www.sciencedirect.com/

science/article/pii/S0379073809000966.

[8] Meijerman L, Van Der Lugt C, Maat GJR. ’Cross-Sectional Anthropometric Study
of the External Ear’. Journal of Forensic Sciences. 2007;52(2):286–293.

[9] Ibrahim MIS, Nixon MS, Mahmoodi S. ’The effect of time on ear biometrics’. In:
International Joint Conference on Biometrics (IJCB); 2011. p. 1 –6.

[10] Hoogstrate AJ, Heuvel HVD, Huyben E. ’Ear identification based on surveillance
camera images’. Science & Justice. 2001;41(3):167 – 172.

[11] Alberink I, Ruifrok A. ’Performance of the FearID earprint identification system’.
Forensic Science International. 2007;166(2-3):145 – 154.

[12] Islam SMS, Bennamoun M, Owens R, Davies R. ’Biometric Approaches of 2D-
3D Ear and Face: A Survey’. In: Sobh T, editor. Advances in Computer and
Information Sciences and Engineering. Springer Netherlands; 2008. p. 509–514.

[13] Choras M. ’Image Feature Extraction Methods for Ear Biometrics–A Survey’. In:
Computer Information Systems and Industrial Management Applications, 2007.
CISIM ’07. 6th International Conference on; 2007. p. 261 –265.

28



[14] Pun KH, Moon YS. ’Recent Advances in Ear Biometrics’. In: Automatic Face and
Gesture Recognition, 2004. Proceedings. Sixth IEEE International Conference on;
2004. p. 164 – 169.

[15] Lammi HK. ’Ear Biometics’. Lappeenranta University of Technology, Department
of Information Technology; 2004.

[16] Ramesh KP, Rao KN. ’Pattern extraction methods for ear biometrics - A survey’.
In: Nature Biologically Inspired Computing, 2009. NaBIC 2009. World Congress
on; 2009. p. 1657 –1660.

[17] Abaza A, Ross A, Herbert C, Harrison MAF, Nixon M. A Survey on Ear Biometrics;
2011. Accepted at ACM Computing Surveys. Available from: http://eprints.

ecs.soton.ac.uk/22951/.

[18] Yan P, Bowyer KW. ’Biometric Recognition Using 3D Ear Shape’. Pattern Analysis
and Machine Intelligence. 2007 August;29:1297 – 1308.

[19] Faltemier TC, Bowyer KW, Flynn PJ. ’Rotated Profile Signatures for robust 3D
feature detection’. In: 8th IEEE International Conference on Automatic Face and
Gesture Recognition; 2008. .

[20] Frejlichowski D, Tyszkiewicz N. ’The West Pomeranian University of Technology
Ear Database A Tool for Testing Biometric Algorithms’. In: Campilho A, Kamel
M, editors. Image Analysis and Recognition. vol. 6112 of Lecture Notes in Computer
Science. Springer Berlin / Heidelberg; 2010. p. 227–234.

[21] Kumar A, Wu C. ’Automated human identification using ear imaging’. Pat-
tern Recogn. 2012 March;45(3):956–968. Available from: http://dx.doi.org/10.
1016/j.patcog.2011.06.005.

[22] Prakash S, Gupta P. ’An Efficient Ear Recognition Technique Invariant to Illu-
mination and Pose’. Telecommunication Systems Journal, special issue on Signal
Processing Applications in Human Computer Interaction. 2011;30:38–50.

[23] Grgic M, Delac K, Grgic S. ’SCface – surveillance cameras face database’. Multi-
media Tools Appl. 2011 February;51(3):863–879. Available from: http://dx.doi.
org/10.1007/s11042-009-0417-2.

[24] Al Nizami HA, Adkins-Hill JP, Zhang Y, Sullins JR, McCullough C, Canavan
S, et al. ’A biometric database with rotating head videos and hand- drawn face
sketches’. In: Proceedings of the 3rd IEEE international conference on Biometrics:
Theory, applications and systems. BTAS’09. Piscataway, NJ, USA: IEEE Press;
2009. p. 38–43. Available from: http://dl.acm.org/citation.cfm?id=1736406.
1736412.

[25] Raposo R, Hoyle E, Peixinho A, Proenca H. ’UBEAR: A dataset of ear images
captured on-the-move in uncontrolled conditions’. In: Computational Intelligence

29



in Biometrics and Identity Management (CIBIM), 2011 IEEE Workshop on; 2011.
p. 84 –90.

[26] Chen H, Bhanu B. ’Shape Model-Based 3D Ear Detection from Side Face Range
Images’. In: IEEE Computer Society Conference on Computer Vision and Pattern
Recognition - Workshops (CVPR); 2005. p. 122.

[27] Chen H, Bhanu B. ’Contour Matching for 3D Ear Recognition’. In: Pro-
ceedings of the Seventh IEEE Workshop on Applications of Computer Vision
(WACV/MOTION); 2005. .

[28] Chen H, Bhanu B. ’Human Ear Recognition in 3D’. IEEE Transactions on Pattern
Analysis and Machine Intelligence. 2007 April;29(4):718 –737.

[29] Attarchi S, Faez K, Rafiei A. ’A New Segmentation Approach for Ear Recognition’.
In: Blanc-Talon J, Bourennane S, Philips W, Popescu D, Scheunders P, editors.
Advanced Concepts for Intelligent Vision Systems. vol. 5259 of Lecture Notes in
Computer Science. Springer Berlin / Heidelberg; 2008. p. 1030–1037.

[30] Ansari S, Gupta P. ’Localization of Ear Using Outer Helix Curve of the Ear’. In:
International Conference on Computing: Theory and Applications; 2007. p. 688
–692.

[31] Prakash S, Gupta P. An Effient Ear Localization Technique. Image and Vision
Computing. 2012;30:38–50.

[32] Prakash S, Gupta P. ’An Efficient Technique for Ear Detection in 3D: Invariant
to Rotation and Scale’. In: The 5th IAPR International Conference on Biometrics
(ICB); 2012. .

[33] Abaza A, Hebert C, Harrison MAF. ’Fast Learning Ear Detection for Real-time
Surveillance’. In: Fourth IEEE International Conference on Biometrics: Theory
Applications and Systems (BTAS 2010); 2010. p. 1 –6.

[34] Islam S, Davies R, Bennamoun M, Mian A. ’Efficient Detection and Recognition of
3D Ears’. International Journal of Computer Vision. 2011;95:52–73.

[35] Yuan L, Mu ZC. ’Ear Detection Based on Skin-Color and Contour Information’.
In: International Conference on Machine Learning and Cybernetics. vol. 4; 2007. p.
2213 –2217.

[36] Alvarez L, Gonzalez E, Mazorra L. ’Fitting ear contour using an ovoid model’.
In: 39th Annual 2005 International Carnahan Conference on Security Technology
(CCST ’05); 2005. .

[37] Zhou J, Cadavid S, Abdel-Mottaleb M. ’Histograms of Categorized Shapes for 3D
ear detection’. In: International Conference on Biometrics: Theory Applications
and Systems; 2010. .

30



[38] Arbab-Zavar B, Nixon M. ’On Shape-Mediated Enrolment in Ear Biometrics’. In:
Bebis G, Boyle R, Parvin B, Koracin D, Paragios N, Tanveer SM, et al., editors.
Advances in Visual Computing. vol. 4842 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg; 2007. p. 549–558.

[39] Alastair H, Cummings AH, Nixon MS, Carter JN. ’A Novel Ray Analogy for Enrol-
ment of Ear Biometrics’. In: Fourth IEEE International Conference on Biometrics:
Theory Applications and Systems (BTAS); 2010. .

[40] Kumar A, Hanmandlu M, Kuldeep M, Gupta HM. ’Automatic Ear Detection for
Online Biometric Applications’. In: Third National Conference on Computer Vision,
Pattern Recognition, Image Processing and Graphics (NCVPRIPG); 2011. p. 146
–149.

[41] Hurley DJ, Nixon MS, Carter JN. ’Force Field Energy Functionals for Image Feature
Extraction’. Image and Vision Computing. 2002;20(5-6):311 – 317.

[42] Abdel-Mottaleb M, Zhou J. ’Human Ear Recognition from Face Profile Images’.
In: Zhang D, Jain A, editors. Advances in Biometrics. vol. 3832 of Lecture Notes
in Computer Science. Springer Berlin / Heidelberg; 2005. p. 786–792.

[43] Dong J, Mu Z. ’Multi-Pose Ear Recognition Based on Force Field Transforma-
tion’. In: Second International Symposium on Intelligent Information Technology
Application (IITA). vol. 3; 2008. p. 771 –775.

[44] Wang X, Yuan W. ’Gabor Wavelets and General Discriminant Analysis for Ear
Recogniton’. In: 8th World Congress on Intelligent Control and Automation
(WCICA); 2010. p. 6305.

[45] Arbab-Zavar B, Nixon M. ’Robust Log-Gabor Filter for Ear Biometrics’. In: Inter-
national Conference on Pattern Recognition (ICPR); 2008. .

[46] Abate AF, Nappi M, Riccio D, Ricciardi S. ’Ear Recognition by means of a Rotation
Invariant Descriptor’. In: 18th International Conference on Pattern Recognition,
ICPR 2006.. vol. 4; 2006. p. 437 –440.

[47] Sana PPR Anupam; Gupta. ’Ear Biometrics: A New Approach’. In: Advances in
Pattern Recognition; 2007. .

[48] De Marsico M, Michele N, Riccio D. ’HERO: Human Ear Recognition against
Occlusions’. In: IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW); 2010. p. 178.

[49] Wang Xq, Xia Hy, Wang Zl. ’The Research of Ear Identification Based On Im-
proved Algorithm of Moment Invariants’. In: Third International Conference on
Information and Computing (ICIC); 2010. p. 58.

31



[50] Wang X, Yuan W. ’Human Ear recognition Based on Block Segmentation’. In:
International Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC); 2009. p. 262 –266.

[51] Lowe GD. ’Object recognition from local scale-invariant features’. In: IEEE In-
ternational Conference on Computer Vision (ICCV 1999). vol. 2. IEEE Computer
Society; 1999. p. 1150 –1157.

[52] Bustard JD, Nixon MS. ’Toward Unconstrained Ear Recognition From Two-
Dimensional Images’. Systems, Man and Cybernetics, Part A: Systems and Hu-
mans. 2010 April;40:486.

[53] Arbab-Zavar B, Nixon MS, Hurley DJ. ’On Model-Based Analysis of Ear Biomet-
rics’. In: First IEEE International Conference on Biometrics: Theory, Applications,
and Systems, 2007. (BTAS 2007); 2007. p. 1 –5.

[54] Badrinath G, Gupta P. ’Feature Level Fused Ear Biometric System’. In: Seventh
International Conference on Advances in Pattern Recognition (ICAPR); 2009. p.
197 –200.

[55] Kisku DR, Mehrotra H, Gupta P, Sing JK. ’SIFT-based ear recognition by fusion of
detected keypoints from color similarity slice regions’. In: International Conference
on Advances in Computational Tools for Engineering Applications (ACTEA); 2009.
p. 380 –385.

[56] Bay H, Tuytelaars T, Gool LV. ’SURF: Speeded Up Robust Features’. In: Pro-
ceedings of the 9th European Conference on Computer Vision; 2006. .

[57] Choras M. ’Perspective Methods of Human Identification: Ear Biometrics’. Opto-
Electronics Review. 2008;16:85–96.

[58] Mu Z, Yuan L, Xu Z, Xi D, Qi S. ’Shape and Structural Feature Based Ear Recog-
nition’. In: Li S, Lai J, Tan T, Feng G, Wang Y, editors. Advances in Biometric
Person Authentication. vol. 3338 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg; 2005. p. 311–364.

[59] Rahman M, Islam R, Bhuiyan NI, Ahmed B, Islam A. ’Person Identification Us-
ing Ear Biometrics’. International Journal of The Computer, The Internet and
Management. 2007 August;15:1–8.

[60] Guo Y, Xu Z. ’Ear Recognition Using a New Local Matching Approach’. In: 15th
IEEE International Conference on Image Processing (ICIP); 2008. p. 289 –292.

[61] Wang Zq, Yan Xd. ’Multi-Scale Feature Extraction Algorithm of Ear Image’. In: In-
ternational Conference on Electric Information and Control Engineering (ICEICE);
2011. p. 528.

[62] Jeges E, Mt L. ’Model-Based Human Ear Localization and Feature Extraction’.
IC-MED. 2007;1(2):101–112.

32



[63] Liu H, Yan J. ’Multi-view Ear Shape Feature Extraction and Reconstruction’. In:
Third International IEEE Conference on Signal-Image Technologies and Internet-
Based System (SITIS); 2007. p. 652 –658.

[64] Mukundan R, Ong SH, Lee PA. ’Image analysis by Tchebichef moments’. IEEE
Transactions on Image Processing. 2001 September;10(9):1357 –1364.

[65] Lu L, Xiaoxun Z, Youdong Z, Yunde J. ’Ear Recognition Based on Statistical Shape
Model’. In: First International Conference on Innovative Computing, Information
and Control (ICICIC); 2006. p. 353 – 356.

[66] Yuan L, Mu Z. ’Ear Recognition Based on 2D Images’. In: First IEEE International
Conference on Biometrics: Theory, Applications, and Systems (BTAS); 2007. p. 1
–5.

[67] Victor B, Bowyer K, Sarkar S. ’An evaluation of face and ear biometrics’. In: 16th
International Conference on Pattern Recognition (ICPR). vol. 1; 2002. p. 429 – 432
vol.1.

[68] Chang K, Bowyer KW, Sarkar S, Victor B. ’Comparison and Combination of Ear
and Face Images in Appearance-Based Biometrics’. IEEE Transactions in Pattern
Anallysis and Machine Intelligene. 2003 September;25:1160–1165.

[69] Alaraj M, Hou J, Fukami T. ’A neural network based human identification frame-
work using ear images’. In: TENCON 2010 - 2010 IEEE Region 10 Conference;
2010. .

[70] Zhang H, Mu Z. ’Compound Structure Classifier System for Ear Recognition’. In:
IEEE International Conference on Automation and Logistics (ICAL); 2008. p. 2306
–2309.

[71] Xie Z, Mu Z. ’Ear Recognition Using LLE and IDLLE Algorithm’. In: 19th
International Conference on Pattern Recognition (ICPR); 2008. p. 1 –4.

[72] Nanni L, Lumini A. ’A Multi-Matcher For Ear Authentication’. Pattern Recognition
Letters. 2007 December;28:2219–2226.

[73] Yuizono T, Wang Y, Satoh K, Nakayama S. ’Study on Individual Recognition for
Ear Images by using Genetic Local Search’. In: Proceedings of the 2002 Congress on
Processing Scociety of Japan (IPSJ) Kyushu Chapter Symposium; 2002. p. 237–242.

[74] Yaqubi M, Faez K, Motamed S. ’Ear Recognition Using Features Inspired by Visual
Cortex and Support Vector Machine Technique’. In: International Conference on
Computer and Communication Engineering (ICCCE); 2008. p. 533 –537.

[75] Gutierrez L, Melin P, Lopez M. ’Modular Neural Network Integrator for Human
Recognition From Ear Images’. In: The 2010 International Joint Conference on
Neural Networks (IJCNN); 2010. .

33



[76] Naseem I, Togneri R, Bennamoun M. ’Sparse Representation for Ear Biometrics’.
In: Bebis G, Boyle R, Parvin B, Koracin D, Remagnino P, Porikli F, et al., editors.
Advances in Visual Computing. vol. 5359 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg; 2008. p. 336–345.

[77] Yan P, Bowyer KW. ’A Fast Algorithm for ICP-Based 3D Shape Biometrics’. In:
Fourth IEEE Workshop on Automatic Identification Advanced Technologies; 2005.
p. 213 – 218.

[78] Cadavid S, Mahoor MH, Abdel-Mottaleb M. ’Multi-Modal Biometric Modeling
and Recognition of the Human Face and Ear’. In: IEEE International Workshop
on Safety, Security Rescue Robotics (SSRR); 2009. p. 1 –6.

[79] Zhou J, Cadavid S, Abdel-Mottaleb M. ’A computationally Efficient Approach
to 3D Ear Recognition Employing Local and Holistic Features’. In: IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW); 2011. p. 98 –105.

[80] Passalis G, Kakadiaris IA, Theoharis T, Toderici G, Papaioannou T. ’Towards Fast
3D Ear Recognition For Real-Life Biometric Applications’. In: IEEE Conference
on Advanced Video and Signal Based Surveillance (AVSS 2007); 2007. p. 39 –44.

[81] Liu H, Zhang D. ’Fast 3D Point Cloud Ear Identification by Slice Curve Match-
ing’. In: 3rd International Conference on Computer Research and Development
(ICCRD); 2011. p. 224.

[82] Islam SMS, Bennamoun M, Mian AS, Davies R. ’A Fully Automatic Approach for
Human Recognition from Profile Images Using 2D and 3D Ear Data’. In: Pro-
ceedings of 3DPVT - the Fourth Internatinoal Symposium on 3D Data Processing,
Visualization and Transmission; 2008. .

[83] Zeng H, Dong JY, Mu ZC, Guo Y. ’Ear Recognition Based on 3D Keypoint Match-
ing’. In: IEEE 10th International Conference on Signal Processing (ICSP); 2010.
p. 1694.

[84] Cadavid S, Abdel-Mottaleb M. ’3D ear modeling and recognition from video se-
quences using shape from shading’. In: 19th International Conference on Pattern
Recognition (ICPR); 2008. p. 1 –4.

[85] Islam SMS, Bennamoun M, Davies R. ’Fast and Fully Automatic Ear Detection
Using Cascaded AdaBoost’. In: Applications of Computer Vision, 2008. WACV
2008. IEEE Workshop on; 2008. p. 1 –6.

[86] Liu H, Liu D. ’Improving Adaboost Ear Detection with Skin-color model and Multi-
template Matching’. In: 3rd IEEE International Conference on Computer Science
and Information Technology (ICCSIT). vol. 8; 2010. p. 106 –109.

34



[87] Shih HC, Ho CC, Chang HT, Wu CS. ’Ear Detection Based on Arc-Masking Ex-
traction and AdaBoost Polling Verification’. In: Fifth International Conference on
Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP). vol.
ear detection; 2009. p. 669 –672.

[88] Burge M, Burger W. 13. In: Jain AK, Bolle R, Pankanti S, editors. ’Ear Biometrics’.
Springer US; 1998. p. 273–285.

[89] Moreno A B andSanchez, Velez JF. ’On The Use of Outer Ear Images for Personal
Identification in Security Applications’. In: IEEE 33rd Annual 1999 International
Carnahan Conference on Security Technology; 2002. p. 469 – 476.

[90] Yuan L, chun Mu Z, Zhang Y, Liu K. ’Ear Recognition using Improved Non-
Negative Matrix Factorization’. In: 18th International Conference on Pattern
Recognition (ICPR). vol. 4; 2006. p. 501 –504.

[91] Wang Y, chun Mu Z, Zeng H. ’Block-Based and Multi-Resolition methods for Ear
recognition Using Walelste Transform and Uniform Local Binary Patterns’. In: 19th
International Conference on Pattern Recognition (ICPR); 2008. p. 1 –4.

[92] Fooprateepsiri R, Kurutach W. ’Ear Based Personal Identification Approach Foren-
sic Science Tasks’. Chiang Mai Journal of Science. 2011 January;38(2):166–175.

[93] Islam SM, Davies R, Mian M A S an Bennamoun. ’A Fast and Fully Automatic
Ear Recognition Approach Based on 3D Local Surface Features’. In: Proceedings
of the 10th International Conference on Advanced Concepts for Intelligent Vision
Systems. ACIVS ’08. Berlin, Heidelberg: Springer-Verlag; 2008. p. 1081–1092.

35


