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Abstract 

A class of biometrics based upon ear features is intro- 
duced for use in the development of passive identification 
systems. The viability of the proposed biometric is shown 
both theoretically in terms of the uniqueness and measur- 
ability over time of the ear, and in practice through the 
implementation of a computer vision based system. Each 
subject’s ear is modeled as an adjacency graph built from 
the Voronoi diagram of its curve segments. We introduce 
a novel graph matching based algorithm for authentica- 
tion which takes into account the erroneous curve segments 
which can occur due to changes (e.g., lighting, shadowing, 
and occlusion) in the ear image. This class of biometrics 
is ideal for passive identification because the features are 
robust and can be reliably extracted from a distance. 

1 Introduction 

Automating identification through biometrics [3] espe- 
cially face recognition has been extensively studied in ma- 
chine vision. Despite extensive research many problems in 
face recognition remain largely unsolved due to the inher- 
ent difficulty of extracting face biometrics. A wide vari- 
ety of imaging problems (e.g., lighting, shadows, scale, and 
translation) plague the attempt for unconstrained face iden- 
tification In addition to the many imaging problems, it is 
inherently difficult to collect consistent features from the 
face as it is arguably the most changing part of the body 
due to facial expressions, cosmetics, facial hair and hair 
styling. The combination of the typical imaging problems 
of feature extraction in an unconstrained environment, and 
the changeability of the face, explains the difficulty of au- 
tomating face biometrics. Despite the attractiveness of face 
biometrics (e.g., they are easily verifiable by non-experts) 
other biometrics (e.g., fingerprint based) provide the basis 
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for most commercial implementations. 
Unlike facial biometrics, fingerprint-based biometrics 

have been shown to be highly amenable to automation by 
machine vision techniques The automation of fingerprint 
biometrics began in 1971 and has culminated in a num- 
ber of commercial machine vision based systems. Finger- 
print imaging is done within a controlled environment, usu- 
ally with a specially designed scanner, which eliminates the 
problem of localization and artifacts from shadowing and 
lighting variations. Physical changes, a bane of facial bio- 
metrics, is a miniscule problem as the finger, baring surgery, 
remains comparatively constant over time. Machine vision 
techniques have been successfully applied to create highly 
accurate and robust commercial systems which are in use 
worldwide. 

2 Passive Biometrics 

Fingerprints are not the only successful example of the 
application of machine vision techniques to automated bio- 
metrics, both the three dimensional shape of the hand and 
retinal patterns have also been used. All of the biometrics 
which have been successfully automated using machine vi- 
sion techniques are inherently invasive. They require the 
subject to participate actively in both enrolling into the sys- 
tem and during subsequent identification. The willing par- 
ticipation of the subject in the controlled environment of 
these systems is intrinsic in the success of the identification. 

One class of passive physiological biometrics are those 
based upon iris scans. Unlike retinal scans, which require 
close contact with the scanner, iris-based recognition has 
been reported to be successful at distances of up to 46 cm 
[SI. The unique collection of striations, pits, and other ob- 
servable features of the iris along with the ease of segment- 
ing the iris from the white tissue of the eye which serves 
as its background, make iris based biometrics attractive. 
The decided disadvantage is the small size of the iris which 
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makes image acquisition from a distance, and therefore pas- 
sive usage, problematic. 

To summarize the two classes of passive physiological 
biometrics which have been researched in machine vision 
up to now; face and iris-based techniques both have a num- 
ber of drawbacks which make their usage in commercial ap- 
plications limited. Facial biometrics fail due to the changes 
in features caused by expressions, cosmetics, hair styles, 
and the growth of facial hair as well as the difficulty of re- 
liably extracting them in an unconstrained environment ex- 
hibiting imaging problems such as lighting and shadowing. 
Unlike facial biometrics, Iris biometrics remain relatively 
consistent over time and are easy to extract, but acquisition 
of the image at the necessary resolution from a distance is 
difficult. Therefore, we propose a new class of biometrics 
for passive identification based upon ears which have both 
reliable and robust features which are extractable from a 
distance. 

3 Ear Biometrics 

In proposing the ear as the basis for a new class of bio- 
metrics, we need to show that it is viable (i.e., unique to 
each individual, and comparable over time). In the same 
way that no one can prove that fingerprints are unique, we 
can not show that each of us have an unique pair of ears. In- 
stead, we will assert that this is probable and give support- 
ing evidence by examining two studies from Iannarelli [6]. 
The first study compared over 10,000 ears drawn from a ran- 
domly selected sample in California, and the second study 
examined fraternal and identical twins, in which physiolog- 
ical features are known to be similar. The evidence from 
these studies supports the hypothesis that the ear contains 
unique physiological features, since in both studies all ex- 
amined ears were found to be unique though identical twins 
were found to have similar, but not identical, ear structures 
especially in the Concha and lobe areas. Having shown 
uniqueness it remains to ascertain if the ear provides bio- 
metrics which are comparable over time. 

It is obvious that the structure of the ear does not change 
radically over time. The medical literature reports [6] that 
ear growth after the first four months of birth is propor- 
tional. It turns out that even though ear growth is propor- 
tional, gravity can cause the ear to undergo stretching in 
the vertical direction. The effect of this stretching is most 
pronounced in the lobe of the ear, and measurements show 
that the change is non-linear. The rate of stretching is ap- 
proximately five times greater than normal during the pe- 
riod from four months to the age of eight, after which it is 
constant until around 70 when it again increases. 

We have shown that biometrics based upon the ear are 
viable in that the ear anatomy is probably unique to each in- 
dividual and that features based upon measurements of that 

Figure 1. Anthropometric measurements 
used in the “lannarelli System”. 

anatomy are comparable over time. Given that they are vi- 
able, identification by ear biometrics is promising because 
it is passive like face recognition, but instead of the diffi- 
cult to extract face biometrics, robust and simply extracted 
biometrics like those in fingerprinting can be used. 

4 Iannarelli’s Ear Biometrics 

An anthropometric technique of identification based 
upon ear biometrics was developed by A. Iannarelli [6] in 
1949. The “Iannarelli System” is based upon 12 measure- 
ments illustrated in Figure 4. The locations shown are mea- 
sured from specially aligned and normalized photographs 
of the right ear. To normalize and align the images, they 
are projected onto a standard “Iannarelli Inscribed” enlarg- 
ing easel which is moved horizontally and vertically until 
the ear image projects into a prescribed space on the easel. 
The system requires the exact alignment and normalization 
of the ear photos. 

Since each ear is aligned and scaled during development, 
the resulting photographs are normalized, enabling the ex- 
traction of comparable measurements directly from the pho- 
tographs. The distance between each of the numbered areas 
in Figure 4 is measured in units of 3 mm and assigned an 
integer distance value. These twelve measurements, along 
with information on sex and race, are then used for identi- 
fication. The system as stated provides for too small of a 
classification space as within each sex and race category a 
subject is classified into a single point in a 12 dimensional 
integer space where each unit on an axis represents a 3 mm 
measurement difference. Assuming an average standard de- 
viation in the population of four units (i.e., 12 mm) then the 
12 measurements provide for a space with less than 17 mil- 
lion distinct points. 
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Though simple remedies (e.g., the addition of more mea- 
surements or using a smaller metric) for increasing the size 
of the space are obvious, the method is additionally not 
suited for machine vision because of the difficultly of lo- 
calizing the anatomical point which serves as the origin of 
the measurement system. All measurements are relative to 
this origin which if not exactly localized, results in all sub- 
sequent measurements being incorrect. In fact Iannarelli 
himself was aware of t h s  weakness as he states on page 83, 
“This is the first step in aligning the ear image .... and it 
must be accurate or the entire classification of the ear will 
be inaccurate”. In the next section we present a proof of 
concept implementation which avoids the problem of local- 
izing anatomical points and the frailty of basing all subse- 
quent feature measurements on a single such point. 

5 Automating Ear Biometrics 

The goal in identification is to verify that the biometric 
extracted from the subject sufficiently matches the previous 
acquired biometric for that subject. Let s’ be the subject at 
the time of identification and s the subject at time of en- 
rollment, further let G, = f ( s )  represent a function which 
extracts some biometric from a subject s as a graph Gs, and 
let d(G,, G,!) compute some previously defined distance 
metric between these two graphs. Identification is then the 
task of determining if d(G,,G,!) < t ,  where t is a given 
acceptance threshold. 

Since the subject and environment change over time, a 
certain tolerance in the matching criterion must be permit- 
ted. This tolerance can be defined in terms of thefalse reject 
rate (FRR) and the false acceptance rate (FAR) exhibited 
by the system. A system is usually designed to be tunable 
to minimize either the FAR or the FRR (i.e., in the given 
formulation by lowering or raising t respectively) depend- 
ing upon the type of security which is required. 

The problem of recognition is harder than that of iden- 
tification since the system must determine if the subject’s 
identity can be verified against any previously enrolled 
subject. If the system’s enrolled identities are the set 
Z = {Go, G I , .  . . , Gn} then recognizing some subject 
s‘ is equivalent to finding the least member of the set 
{GiIGi E Z A d(G,t, Gi) < t } .  We have developed a ma- 
chine vision system as a proof of concept of the viability 
of ear biometrics for passive and passive identification. The 
system implements f (s’) using the following steps: 

1. Acquisition: A 300 by 500 grayscale image is taken of 
the subject’s head in profile using a CCD camera. 

Next the location of the ear in the image must be found; 

since our goal was to construct a proof of concept sys- 
tem, we used a relatively simple method based on de- 
formable contours. 

(a) Ear print. (b) Voronoi. 

(d) Ear print. (e) Voronoi. 

(c )  N-graph. 

Figure 2. Ear biometric graph model. 

Localization: The the ear is located by using de- 
formable contours [7] on a Gaussian pyramid repre- 
sentation of the image gradient. 

Edge extraction: Edges are computed using the Canny 
operator (i.e., (T = 3.0) and thresholding with hystere- 
sis using upper and lower thresholds of 46 and 20 (see 
Figure 2(b)). 

Curve extraction: Edge relaxation is used to form 
larger curve segments, after which the remaining small 
curve segments (i.e., length less than 10) are removed. 

We could attempt to perform identification at this stage 
by trying to match features computed from the ex- 
tracted curves to those computed from the model. Dif- 
ferences in lighting and positioning would render such 
a method very unreliabel. What is needed is to de- 
scribe the relations between the curves in a way which 
is first invariant to Affine transformations and secondly 
invariant to small changes in the shape of the curves 
resulting from differences in illumination. To achieve 
invariance under affine transformations we tum to the 
neighboring relation, and construct a Voronoi neigh- 
borhood graph of the curves and use it as our model. 
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5. Graph model: A generalized Voronoi diagram [l] of 
the curves is built and a neighborhood graph is ex- 
tracted (see Figure 2(c)). 

Using the above steps results in a high FRR due to vari- 
ations in the graph models due to underlying differences 
in the spatial relations of the extracted curves [2]. To im- 
prove the FRR rate we first eliminating some of the er- 
ronous curves and then develop a new matching process 
which takes into account broken curves. 

5.1 Error Correcting Graph Matching 

Let G(V, E )  denote the graph model with each vertex 
U E V containing unary features of a curve and edges e E E 
containing binary features between two neighboring curves. 
Matching is done by searching for subgraph isomorphisms 
between the subject’s stored graph G, and the extracted 
graph G,I and if the distance d(G,t, G,) between them is 
less then the established acceptance threshold t then identi- 
fication is verified. 

In the case where G’, and G, belong to the same sub- 
ject, erroneous curves can arise from differences in lighting 
and orientation. From our analysis [4] most of these false 
curves occur within the inner cavity of the ear. The main 
reasons are that areas of high specularity arising from oil 
and wax build up and shadowing caused by the Tragus and 
Antitragus create edges in Step 3 which are built into false 
curves in Step 4. These false curves are removed by first 
segmenting the inner cavity and then removing small, high 
curvature, and closed curves occuring within it. 

This removes many of the false curves while preserv- 
ing those arising from ear structures. Unfortunately due 
to imaging problems, many of the remaining curves may 
be broken even after Step 4. To compensate for this, we 
have developed Algorithm 1 for computing subgraph iso- 
morphisms between G, and G,, which considers the possi- 
bility of broken curves in G,, . The idea is to merge neigh- 
boring curves in G,J if their Voronoi regions indicate that 
they are possibly part of the same underlying feature. 

Algorithm 1 Calculate d(G,, Gal) 
1: while d(G,, G,,) . c < t and IVI 5 IV’I do 
2: 
3: 
4: 
5:  contract (w , a) 
6: end if 
7: end for 
8: end for 
9: 

10: end while 

for all w E V’ do 
for all a adjacent to w do 

if d ,  (w, a )  < y then {see Equation 1) 

increase tl and decrease c 

Figure 3. Ear curve widths. 

Let the boundary of the Voronoi region of a curve 
c j  be represented by a V ( c j )  such that aV(cj)  = 
{pld(p,  c j )  = d ( p ,  c k ) , j  # I C }  where d ( p ,  c j )  is the dis- 
tance minqEcj d ( p ,  q )  between a point p and any point on 
the curve c j .  Then the adjacent vertices w and a are con- 
tracted (i.e., all incident edges of a are added to w and self- 
loops removed) when 

is less than some threshold, 7,  the contraction threshold. 
We continue in this way to change the topology of G,I until 
either we have a match or the number of vertices in G,, is 
less then that in G, and since curves may be erroneously 
merged we decrease our confidence in the match each time 
by a factor c. 

5.2 Decreasing the FAR 

As only the topological relations between the extracted 
curve segments are used during the matching process, their 
is the possibility of a false acceptance since there exists a set 
of ears having the same topology. By measuring physical 
features of the ear curves we can significantly decrease the 
FAR. We have found that measurements based on the length 
of the ear curves are not reliable since small changes occur 
due to lighting. More reliable is the width of an ear curve, 
in particular we have found that the width of the curve cor- 
responding to the upper Helix rim (See Figure 5.2) can be 
reliably extracted and normalized against the height of the 
ear (i.e., the distance from the top of the upper Helix rim to 
the lowest point on the Lobule as found during the Local- 
ization step. 

5.3 Thermograms and Occlusion by Hair 

The main drawback of ear biometrics is that they are not 
usable when the ear of the subject is covered. In the case 
of active identification systems this is not a drawback as 
the subject can pull their hair back and proceed with the 
authentication process. The problem arises during passive 
identification as in this case no assistance on the part of the 
subject can be assumed. 
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In the case of the ear being only partially occluded by 
hair then it is possible to recognize the hair and segment it 
out of the image. This can be done using texture and color 
segmentation, or as we have implemented it, using thermo- 
gram images. A thermogram image is one in which the sur- 
face heat (i.e., infrared light) of the subject is used to form 
an image. Figure 6 is a thermogram of the external ear. The 
subjects hair in this case has an ambient temperature be- 
tween 27.2 and 29.7 degrees Celsius, while the pinna (i.e., 
the external anatomy of the ear) ranges from 30.0 to 37.2 de- 
grees Celsius. Removing partially occluding hair is done by 
segmenting out the low temperature areas which lie within 
the pinna. 

The Meatus (i.e., the passage leading into the inner ear) 
of the ear is easily localizable using thermogram imagery. 
In a profile image of a subject, if the ear is visible, then 
the Meatus will be the hottest part of the image, with an 
expected 8 degree Celsius temperature differential between 
it and the surrounding hair. In Figure 6 the Meatus is the 
clearly visible section in the temperature range of 34.8 to 
37.2 degrees Celsius. By searching for this high tempera- 
ture area it is possible to detect and localize ears using ther- 
mograms. 

6 Conclusions 

The proof of concept system discussed lends support to 
the theoretical evidence that ear biometrics are a viable and 
promising new passive approach to automated human iden- 
tification. They are especially useful when used to supple- 
ment [SI existing automated methods. Though ear biomet- 
rics appear promising, additional research needs to be con- 
ducted to answer important questions like: 

Feature or appearance based: can primitives (e.g., 
curves) be extracted under varying imaging conditions 
with sufficient reliability for a feature based approach 
or will appearance based approaches (e.g., eigenim- 
ages) be necessary, and 

Occlusion by  hair: in the case of the ear being com- 
pletely occluded by hair there is no possibility of iden- 
tification using ear biometrics, it remains to be seen 
with what degree of partial occlusion is identification 
possible and if thermogram imagery can resolve this 
problem. 

In conclusion we have shown that ear biometrics can be 
used for passive identification and for the further develop- 
ment, testing, and comparison of ear biometric algorithms 
the creation of an imagebase of ear-images and a set of stan- 
dardized tests must be the next step. 

Figure 4. Thermogram of an ear. Image pro- 
vided by Brent Griff ith, Infrared Thermogra- 
phy Laboratory, Lawrence Berkeley, National 
Laboratory. 
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