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Abstract—One of the major problems, caused by the traffic
congestion, owes its existence to the unwanted delay experienced
by the priority vehicles. The evaluation of two scheduling algo-
rithms as adaptive traffic control algorithms has been proposed
here to reduce this unwanted delay. One of these algorithms is the
earliest deadline first (EDF) while the other is the fixed priority
(FP) algorithm. The performance of both the algorithms as
adaptive traffic lights control algorithms is evaluated for isolated
traffic intersections. A comparative study is performed here,
where the performance of these algorithms is compared against a
fixed static traffic lights controller. Moreover their performance
is also compared against each other. Conclusive results from the
simulation of the algorithms reveal that the number of stops,
average delay and mean trip time of the priority vehicles is
significantly reduced by the implementation of these algorithms.
Furthermore it has been shown that the overall performance of
the EDF is much better than the FP in terms of improvement
of different performance measures for congestion reduction of
Priority vehicles.

Index Terms—Earliest deadline First (EDF), Fixed Priority
(FP), Intelligent Transportation System (ITS), SUMO (simulation
of urban mobility), Adaptive Traffic Light Control

I. INTRODUCTION

REDUCTION of vehicular traffic congestion, a very hot

area of research in recent times, has many direct and

indirect effects on the economic and social growth of coun-

tries. Among the many problems caused by congestion one

is the excessive and unwanted delay experienced by many

vehicles. This delay becomes more pronounced in cases where

a high priority vehicle, having an early deadline for reaching

its destination, needs to be serviced. These vehicles include

ambulances, carrying critically ill patients, as well as the

security vehicles of law enforcement agencies that need to

reach their destination on time. The Intelligent transportation

system (ITS) based traffic streamlining techniques are gain-

ing excessive attention, nowadays. ITS refers to intelligent

and operationally advanced techniques for traffic manage-

ment and regulation. It works by making transportation smart

and forming an intelligent communication network oriented

framework for the efficient handling of the traffic and con-

sequently reducing the congestion [1]. ITS includes a large

number of different techniques but the most important ones
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are the Global Positioning System (GPS), Dedicated Short

Range Communications (DSRC), wireless networks, mobile

telephony, radiowave and infrared beacons. Also in the list are

roadside camera recognition, sensing technologies, inductive

loop detection and Bluetooth detection. Among all these ITS

techniques, the advanced transportation management system

is an area garnering a lot interest. The latter encompasses

management of traffic applications focusing on control devices

- like traffic signals, ramp metering and dynamic highway

message signs [1]. These control devices communicate with

vehicles by setting up a communication framework for the

information exchange. They collect important traffic data and

take timely and necessary decisions for traffic management

and control.

This work focuses on the development and usage of adaptive

traffic signal control in order to do away with the fixed time

traffic control. The idea is to utilize the intuitive and smart traf-

fic signals as the control devices for traffic management. In the

adaptive control, the duration for which a traffic light remains

green or red depends on the information collected regarding

the state of traffic and vehicles at that particular time. This

information may be collected via some specialized sensors and

technologies. The contemporary research [2][3][4], regarding

the use of dynamic adaptive control, reveal that very effective

results can be achieved, in the context of controlling the traffic

congestion, as opposed to the fixed time traffic control, since

the latter does not take into account the traffic state and may

lead to unnecessary delays. The adaptive control of traffic

lights, on the other hand, has the potential of reducing the

traveling time of vehicles manifold. The major contribution of

this research is to evaluate scheduling algorithms particularly

the Earliest Deadline First(EDF) and the Fixed Priority(FP)

algorithms for the adaptive control and management of traffic

lights in order to reduce congestion by improving the perfor-

mance parameters like waiting time, overall travel duration

and servicing of priority vehicles.

The rest of the paper is arranged as follows. Section II gives

a detailed literature review of the techniques adopted to reduce

urban traffic congestion. Section III gives details regarding the

architectural considerations while applying the Adaptive con-

trol algorithms. Section IV elaborate the simulation setups and

the results of the implemented algorithms. While a conclusion

is presented in section V.

II. RELATED WORK

The adaptive traffic lights control (TLC) has long got the

attention of the researchers and one can find references as old
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Fig. 1. (a) Simple four Arms Traffic Intersection (b) Complex Traffic
Intersection

as [5], [6] wherein the proposed exhaustive algorithm (EA)

controls the duration of traffic lights, in a particular direction,

in such a way that the switching of green light occurs when

the served queue becomes empty. The main advantages of EA

include no car waiting time during the whole EA cycle and

minimization of time wastage during the green period. The

major drawback behind the use of EA is that it is efficient only

when applied to short queues. The interval reacting algorithm

(IRA) [7] takes decisions based on the interval between two

successive vehicles following a green way or a green direction.

The interval between successive vehicle is monitored vigilantly

at traffic intersections and the light is switched whenever the

interval exceeds a set threshold value or whenever the duration

of a green light reaches its saturation point. The IRA is also

good for short queues, only.

Recent literature [8][9] demonstrates that the adaptive con-

trol of traffic lights can be efficiently achieved by the effective

use of wireless sensor networks (WSN’s). The sensors are

deployed at lanes forming an entrance and an exit to different

intersections. These sensors collect the information of the

vehicles entering and leaving an intersection and communicate

it to the nearby traffic controlling servers or agents most

probably installed at the intersection. A decision regarding the

traffic signal is taken based on the information statistics of the

traffic collected from all the sensors of the intersection lanes.

This decision is communicated to the traffic signal controller

in order to decide the duration of a certain light remaining

green or red.

Many different ITS based techniques and algorithms have

been proposed for intelligently managing the adaptive TLC.

One such technique involves the time-space model and is

known as cycle and split optimization technique [2]. This

optimization is used to set the timing of traffic signals at an

isolated intersection. The cycle length is adjusted according

to the state of the residual queues at the end of each cycle,

while the splits are adjusted depending on the minimization of

delay per cycle. By using the concept of time-space diagram

for each traffic intersection, the duration of green lights can be

aptly managed in order to minimize the residual queue lengths

at the end of each cycle.

The adaptive TLC techniques of [10][3] are based on the

reinforcement learning (RL) and relies on the Q-learning algo-

rithm with function approximation [11], State-Action, Reward-

State Action (SARSA) [12] and the Policy Gradient Actor

Critic algorithm [13]0. The traffic light decisions of all RL

algorithms are based on the congestion level information (low,

medium or high) updated on each lane and do not require

accurate queue length information. A neural network [4] is

used to predict Q values for each control decision, based on

the number of waiting vehicles and the time since the traffic

lights last changed.

An adaptive algorithm [14] exploits fuzzy logic for man-

aging the traffic lights at isolated traffic intersections. Us-

ing the urgency demand, the fuzzy logic controller controls

the signal timings according to the observed changes and

updates its traffic light phase information that may be the

extension/termination of a particular phase or the selection

of some other sequences. The Particle Swarm Optimization

(PSO) algorithm of [15] works by optimizing the mean delay

and average number of stops at adjacent intersections. A fuzzy

logic controller, also installed at each junction, assists in the

initial phases of PSO algorithm. PSO has been found effective

in optimizing signal timings and its implementation does not

require any complicated hardware.

Another technique employed to optimize traffic signal

timings is the Genetic Algorithm based approach proposed

in [16]. The total number of vehicles in the lanes and the

weights allotted to each road are the important parameters

which optimize the signal timings. Another adaptive TLC

approach is the Longest Queue Maximal Weight Matching

(LQ-MWM) approach [17]. This algorithm tends to reduce

the average delay of vehicles through isolated intersections

by making all queues stable. The maximal weight matching

algorithm controls the timing of traffic signals so as to sig-

nificantly reduce queue sizes and, as a consequence, increase

the traffic management throughput and minimize the average

latency experienced by the vehicles.

Some advantages and disadvantages of the techniques dis-

cussed in this section are detailed in Table I

III. ADAPTIVE TLC: ARCHITECTURAL CONSIDERATIONS

The EDF and FP algorithms are being applied to two

types of traffic signal intersections. One is the simple traffic

intersection in which there are four edges, where each edge

contains two way lanes for the commuting traffic. The other

architecture is a complex traffic signal intersection having

more than four edges (see Figure 1).

For the application of the two algorithms, wireless sensors

are deployed on each lane. One of the sensors on each lane

is used for detecting the vehicles entering the queue and the

other sensor on each lane is used for detecting the vehicles

leaving the queue. The sensors thus form the entry and exit to

a queue. Each vehicle will be able to convey its information

including its deadline to the traffic controller via a road side

unit using a suitable wireless communication technology e.g.

Zigbee. The information being communicated to the controller

includes the following information par rapport a queue:

• the number of vehicles,

• type of each vehicle,

• the time spent by each vehicle and

• the initial assigned deadline of each vehicle.

In the proposed environment, each edge in an intersection

is being served as a whole, rather than serving individual
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TABLE I
ADVANTAGES AND DISADVANTAGES OF FORMERLY PROPOSED TECHNIQUES

Method Advantages Disadvantages

[2] Neural Network based Traffic signal control 1. Online learning Capability at different Stages 1. Complex Design

2. Can effectively monitor traffic for large networks 2. Complexity of real time implementation as well

as difficulty in off-line parameter optimization

[8] WSN based Traffic Light Control 1. A real time testbed presented along with simu-

lation to determine system feasibility

Wrong choice of topology or deployment can lead

to detection of vehicles on one intersection leg, that

belong to a different intersection leg

2. Tested on multiple traffic intersections

3. Follows international standard for traffic lights

operation

4. Self Configurable and operates in real time to

detect traffic states and exchange information

[9] WSN traffic signal control while using vehicle

numbers forecasted in an in intersection

The proposed model realizes flow and velocity of

vehicles for a single intersection

Extensive simulation not performed

[10] Two reinforced learning TLC algorithms

proposed

Both algorithms require only coarse information

regarding traffic congestion (i.e. low, high or

medium) rather than detailed traffic parameters

The use of the proposed techniques is limited to

simple smaller networks only and the practical

implementation for larger networks is not feasible

[14] Fuzzy Logic based traffic controller A flexible form of fuzzy logic controller whose

parameters can be tuned effectively offline

Tested on a simple singles intersection and the sim-

ulations are not as extensive as the ones discussed

in current proposed research

[15] Partcle swarm optimization algorithm for

optimized traffic control

1. Provides flexible means to deal with imbalanced

and varying traffic demands

Simulations performed on a single traffic junction

only

2. Significantly reduces average traffic delays

Earliest Deadline based Scheduling (Proposed

Technique)

The total number of stops, average delay, and mean

trip time of priority vehicles is reduced compared

to a Fixed Priority (FP) based scheme

Heavily dependant on the mechanism,accuracy, and

reliability of data exchange between the Road Side

Modules and the Vehicles

(a) Fixed Priority Flow Diagram (b) Earliest Deadline First Flow Diagram

(c) Non-Priority vehicles Servicing Flow Diagram

Fig. 2. FP, EDF and Non-Priority Algorithmic Flow Diagram
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lanes separately. In the considered intersection for algorithmic

application the opposite edges are coupled as is the norm

nowadays with traffic lights utilization. For example, when

one horizontal edge(see Figure 1(a)) is being served then its

opposite horizontal edge is also served.

A. Fixed Priority (FP) Implementation Considerations

For the FP algorithm, the vehicles are partitioned into four

distinct fixed priority classes, namely:

1) high priority vehicles (HV),

2) Moderate priority vehicles (MV)

3) low priority vehicle(LV) and

4) the no-priority vehicles(NV).

When applying the FP algorithm, the lane within an edge

having the highest priority vehicle is served first. As mentioned

previously, in reference to Figure 1, the edges are coupled and

if the traffic along one edge is being serviced, the traffic along

its coupled opposite edge is also being served.

The FP algorithm is static in nature, as it processes the tasks

according to the fixed priorities starting from highest to the

lowest. Thus when applied to the intersections of Figure 1,

the algorithm will first serve all the lanes having HV type

vehicles. It will then service lanes with MV type vehicles and

then provide service to the lanes containing the LV vehicles.

The priorities of the vehicles will always remain fixed. The

FP algorithm is demonstrated in the form of a flowchart in

Figure 2(a).

B. Earliest Deadline First (EDF) Implementation Considera-

tions

The EDF, as the name suggest, prioritizes processes ac-

cording to their deadlines. For the application of the EDF

algorithm, the HV type vehicles are assigned the smallest

absolute deadline, the MV type vehicles are assigned the

intermediate absolute deadline and the LV type vehicles are

assigned the lowest absolute deadline. The NV type vehicles

are not assigned any deadline. The algorithm then serves the

queues having vehicles with the earliest deadline first. The

priority of a given vehicle may change, depending on its

already consumed time in reaching its current location, i.e.

the priorities of the vehicles are relative to the time they

spent commuting. The serving of a lane thus also becomes

dependent on the total time spent by all the vehicles contained

in the lane. This demonstrates the dynamic nature of the EDF

algorithm as the priority of the vehicles it serves changes at

each instant of time. The flow of the EDF algorithm at the

intersections considered in Figure 1 can be realized from the

flowchart shown in Figure 2(b).

Consideration has been given to a special case, when all

the lanes contain NV type vehicles only. In such a case, the

algorithm will get the total number of vehicles in all the lanes

and service the edge having the most number of vehicles. The

same case will be applied when all the lanes contain the same

priority vehicles. The flow of the algorithm in such a case can

be observed in the flowchart of Figure 2(c).

Fig. 3. Markov Model M showing the State Transition Rate

1) Mathematical Model for EDF: The mathematical model

for EDF can be determined with the help of the method pro-

posed in [18]. For the EDF model for traffic simulation, con-

sider a system of K intersections (indexed k = 1, 2, . . . ,K),

serving Q queues (indexed q = 1, 2, . . . , Q), with N vehicles

(indexed n = 1, . . . , N ) currently traveling in the system.

Let the priority vehicle rate (traffic intensity) be defined as

ǫ and let λn be the rate of missed deadlines. Each vehicle is

assigned a deadline βn based on its type. Let R>0 denote the

set of positive real numbers, then for a time t, we associate a

real number σ ∈ R>0 with each vehicle in the system, such

that ω(t, σ) defines the probability that a vehicle misses its

deadline during the time frame [t, t+ σ]. where σ defines the

increment in seconds from time t after which a vehicles misses

its deadline.

Let us define the rate of missed deadlines as

λn(t) =
ω(t, σ)

σ
(1)

Assuming that the system is at an equilibrium statistically,

λn = lim
σ→0

λn(t) (2)

λn defines a steady state loss rate, in the presence of n

vehicles (both the moving and those waiting at intersections)

in the system. By deriving a Markov Chain Model M (see

Figure 3) for the system, it can be seen that in the presence of n

vehicles traveling from intersection to intersection, the number

of vehicles can be decreased by 1 based on the fact that either

a vehicle reaches its destination (at the rate Min(m,n)β or

misses its deadline(at the rate λn).

The concept of steady state rate λn was introduced by Bar-

rer [19] for determining the relative deadlines in a determin-

istic case. The case of EDF, being discussed in this research,

follows the Deadline till end of Service(DES) for which λ

has been derived in [20]. The model M(Figure 3) solution

along with the probabilities of the system in equilibrium can

be derived by letting the steady state probability that n vehicles

are present at the intersection be ψ. The balance equations for

a system model in the state of equilibrium are

0 =



















−σψ0 + (β + λ1)ψ1, if n = 0

σψn−1 + (σ +Min(m,n)β + λn)ψn

+ (Min(m,n+ 1)β + λn+1)ψn+1, if n > 0

(3)
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Solving for the equilibrium conditions given in equation 3,
one get equation 4

ψn =
σn

∏

n
j=1

(λj +Min(m, j)β)
(4)

The normalized condition after derivation becomes,
∞
∑

n=0

ψn = 1 (5)

Using equation 4 and 5, it can be derived that

ψ0 =

(

1 +

∞
∑

n=0

σn

∏

n
j=1

(λj +Min(m, j)β)

)

−1

(6)

The probabilities for the vehicles missing their deadlines can
now be obtained from the expression in equation 7

βdead =

∑

∞

n=1
ψnλn

∑

∞

n=0
ψnσ

=

∑

∞

n=1
ψnλn

σ
(7)

Equation 7 shows the average rate of deadlines being missed

by the average arrival time of vehicles in an intersection.

C. Adaptive TLC Communication Architecture

The proposed communication architecture at each inter-

section consists of Road Side Modules (RSM), In-Vehicle

Modules (IVM), Synchronization Modules (SM), Decision

Module (DM), and a Data logger (DL). All of these modules

communicate using the Zigbee communication framework in

the 2.4 GHz frequency band. At each leg of an intersection,

at least one RSM and one SM are present. The SM module

acts as a coordinator for the IVM modules (IVM modules act

as End Devices). Each intersection has its unique intersection

ID and each leg of an intersection has its unique road ID. The

IVM modules operate on a certain default radio frequency

channel termed as DRFC. Each SM module also operates

using the DRFC. When an IVM module passes through the

SM module, it communicates with the SM module and gets

the intersection ID, road ID and in some cases, a channel

ID from it. The channel ID indicates to an IVM module,

the particular radio frequency channel an RSM is using for

that particular leg of the intersection. The IVM module can

then switch to that particular radio frequency channel in

order to communicate with the RSM. When the IVM module

switches its channel to communicate with the RSM, it sends

the required information(number of vehicles, type of each

vehicle, time spent by each vehicle) to the RSM including

its deadline to reach a certain destination. Once the IVM

module communicates with the RSM, it switches back to the

DRFC. When it encounters the SM module at the exit leg of

the intersection, it gets information about the intersection ID,

road ID and channel ID again. It compares the intersection ID

with its previously stored intersection ID. A positive match

indicates that it has already communicated at the entry leg

of the intersection with the required RSM and therefore,

does not switch its channel again. The RSMs at each leg

of an intersection use a different radio frequency channel to

avoid interfering with one another and also the possibility

of detecting IVMs from different intersection legs than theirs

once they come in the transmission range of one another. The

RSMs at each leg of an intersection periodically send data to

the DM module at the intersection that includes the deadlines

Fig. 4. Communication Scenarios for WSN Implementation

of IVMs. The DM module then makes decisions based on

the proposed algorithm to schedule the traffic flows of each

queue/ intersection leg. The DL module is equipped with a

GPRS/EGDE/HSPA radio to send the data collected at each

intersection to a traffic control and monitoring center. In our

proposed architecture, we have considered two scenarios based

on the roles assigned to each of the participating modules

present at an intersection.

1) Scenario 1: In the first scenario (Figure 4(a)), each RSM

is equipped with a single Zigbee radio and operates on a

distinct channel compared to the rest of the RSMs deployed

at the same intersection. The SM module at each intersection

leg is responsible for indicating to the IVMs, the particular

channel on which the RSM at that intersection leg is operating.

The IVM then switches its radio frequency channel to the

channel of the RSM and communicates with it. The SM takes

on the role of the coordinator; the RSM takes on the role of a

router, and the DM module acts as a coordinator, and the IVM

module acts as an end device. The communication between the

IVM modules with the SM and the RSM is contention based

i.e. Carrier Sense Multiple Access with Collision Avoidance

(CSMA/CA) is used. The communication with RSMs and the

DM module is contention free i.e. Time Division Multiplexing

(TDMA) is used. The reason for using CSMA/CA based

channel access for communication between IVM modules and

the SM and RSM modules is that since the IVM modules are

mobile, achieving synchronization and allocation of time slots

in case of using TDMA will be difficult.

2) Scenario 2: In the second case (Figure 4(b)), each

RSM is equipped with two Zigbee radios, each operating on

a different radio frequency channel. One radio is tasked to

act as a coordinator for the IVM modules, while the second

radio is assigned the role of an end device to communicate
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with the DM module. Therefore, each radio of the RSM

module dedicatedly communicates with the IVM modules

and the DM module on different channels. The SM module

again takes on the role of a coordinator and the DM acts

as a coordinator. Each RSM in the second scenario uses the

CSMA/CA access mechanism to communicate with the IVM

modules as well as with the DM module. The radio of the

RSM that communicates with the IVM operates on the DRFC.

Therefore, no channel switching is required in scenario 2 by

the IVM.

The main advantage and the reason behind the consideration

of scenario 2 is the use of dedicated radios in the RSM for

communication with IVM modules and the DM module. A

complete superframe is assigned by one radio to accommodate

the requesting IVM modules to communicate with the RSM

that helps in reducing the probability of missed vehicles.

Furthermore, at any time instant (within the time slot duration

assigned to a particular RSM), the information collected from

IVM modules can be sent to the DM module for decision

making.

The communication aspects of the proposed solution were

analyzed by integrating SUMO with the OPNET Modeler.

The integration of SUMO with OPNET Modeler was based

on the details given in [21]. However, the details of the

communication aspects taken into account, and the respective

evaluation are considerably exhaustive and therefore, to be

detailed in a separate treatise on the subject.

IV. SIMULATIONS AND RESULTS

The simulations of both the algorithms are carried out for

the two types of intersections shown in Figure 1. However

most simulations are carried out keeping in view the simple

four-edged intersection.

A. Simulation Setup

For the simulations of EDF and FP, as adaptive TLC

algorithms, the SUMO (Simulation Of Urban Mobility) traffic

simulator had been adopted [22]. SUMO is a microscopic

traffic simulator and provides better evaluation of the two men-

tioned algorithms. In order to code the 2-D traffic networks

and vehicle routes, XML scripting had been employed, as

SUMO works proficiently with the XML files while efficiently

managing simulations of large traffic networks [23]. SUMO

has an added advantage, that it supports different vehicle

types [22]; tailor made for the proposed scenarios of diverse

vehicle types. The simulator sends the traffic statistics to the

python-based controller which takes a decision regarding the

serving of the lanes following a client/server model, where

SUMO acts as the server and the controller is the client. The

controller uses its EDF or FP algorithm to schedule the queues

at any given intersection.

1) Relationship between SUMO and XML coded scripts:

SUMO is used to carry out static as well as adaptive traffic

lights simulation. XML scripting files are used to generate

2-D road network, vehicles and their routes. The XML files

are then integrated to produce a single SUMO configuration

or simulation file which is responsible for running the overall

Fig. 5. Network containing Simple Intersections

simulation. Figure 6 shows the overall flow of the relationship

between SUMO and XML coded files. The overall simulation

process required to start simulation in SUMO consists of the

following four basic steps as evident from Figure 6 and are

listed below

• Generation of road network

• Generation of road traffics (vehicles and their routes)

• Deployment of induction loops

• Integration into SUMO configuration file

In the first phase, SUMO road network is generated using

XML scripting files. One of the XML file is used to define all

the nodes in the network. Nodes or junctions can be described

as the positions (x-y coordinates) in the traffic network from

where vehicles depart into simulation and the positions to

represent traffic intersections. Another XML file is used to

define all the roads in the network. The graphical visualization

of road network in SUMO is generated by running the NET-

CONVERT application, on command line. NETCONVERT

converts the road network definitions, described in network

configuration file, into 2-D SUMO road network and stores

all the necessary parameters of network in the final XML

file which is the output file generated by NETCONVERT

application.

In the second phase, vehicles along their particular routes

are to be setup on the road network. Flow XML file is used to

define vehicles, their types (normal, priority etc), their routes

and the number of vehicles on a particular route. Route of

the vehicle is defined from source edge to destination edge.

The acceleration, deceleration and maximum speed of the

vehicles are also defined in the flow XML file. Then the route

configuration file integrates the SUMO road network and flow

XML file. The DUAROUTER (Dynamic User Assignment

Router), an application of SUMO runs on command line

to build the vehicle routes on the principle of best optimal

path selection from source edges to destination edges and

stores all the vehicles demands information in route XML file.

Route XML file is the output file generated by DUAROUTER

application.

In the third phase, induction loops or detectors are deployed

on each lane. Detector XML file is used to define road

side induction loops on each lane. Two induction loops are

deployed on each lane (directing towards traffic intersection),
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Fig. 6. Flow diagram depicting the generation of road network, vehicle
Routes and the deployment of roadside detectors in SUMO using XML coded
files

one for detecting the vehicles entering the queue and the other

for detecting the vehicles leaving the queue. Detector XML

file is referred to as additional XML file in SUMO which is

directly integrated in SUMO configuration file.

In the final phase, a SUMO configuration file by integrating

SUMO road network, set of routes and definition of detectors

is built. TraCI (traffic control interface) is an application of

SUMO which allows dynamic interface of traffic in SUMO

with python controller encoding scheduling algorithms. TraCI

is used to establish a client server communication between

python controller and SUMO using the remote port number

which uniquely identifies a particular simulation file simulat-

ing a defined scenario.

2) Flow of data between SUMO and Python Controller:

The adaptive traffic lights simulation of the two proposed

algorithms, EDF and FP, can only be achieved if python

script or controller encoding scheduling algorithms and SUMO

establish client server communication. This communication

can be achieved only by using special application of SUMO,

TraCI (Traffic Control Interface). TraCI allows the duplex

communication between python controller and SUMO using

TCP/IP protocol in which python script acts as a client and

SUMO acts as a server. The step by step duplex communica-

tion between python controller and SUMO has been depicted

in Figure 7.

B. Important Parameters associated with Different Networks

during Simulation

The important parameters associated with each network

scenario are:

• Number of lanes per each edge

Fig. 7. Flow Diagram depicting the flow of Data between Python Controller
and SUMO using TraCI (Traffic Control Interface)

• Number of edges per each signalized traffic intersection

which describes the complexity of traffic intersections

• Number of adaptive traffic lights intersections which

describe the static and dynamic lights (lights which are

implemented with adaptive control algorithms).

• Intensity of priority vehicles out of total traffic intensity

• Initial deadlines spanning of LV, MV and HV types

vehicles and

• Length of each edge.

The last two parameters, initial deadlines spanning and edge

length, have been fixed throughout the simulations in all the

scenarios. Length of each edge has been fixed to 500 meters

while the longest route in all the scenarios consist of four

edges, therefore initial deadlines spanning remain same in

all the scenarios. Intensity of priority vehicles describes the

percentage of EDF or FP vehicles out of total traffic intensity.

The two parameters including percentage of priority vehicles

and initial deadlines spanning are specifically associated to

EDF implementation while intensity of priority vehicles and

initial fixed priority fashion are specifically associated with FP

implementation.

The parameters including length of each edge, number of

lanes per each edge, number of intersections and complexity

of traffic intersections are the network parameters which define

the network infrastructure. In all the scenarios number of

intersections are also fixed to four while their complexities can

vary from simple to complex in different scenarios. Simple in-

tersection consist of simple four arms/edges intersection while

complex intersections can have varied numbers of arms/edges

per intersection oriented at different angles in plane.
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TABLE II
A COMPARATIVE TABLE SHOWING THE PARAMETER CHANGES IN

DIFFERENT NETWORK SCENARIOS

SCENARIOS Changing number

of Lanes per each

edge

Network Contain-

ing Complex In-

tersection

Changing Inten-

sity Of Priority

Vehicles

Hybrid

Signalized Traffic

Intersections

Lanes per each

edge Changing

(1, 2 and 3) 2 2 2

Edge Length

(meters)

500 500 500 500

Traffic

Intersections

4 4 4 4

Complexity

of Traffic

Intersections

Simple Complex Simple Simple

Percentage of

Adaptive Traffic

Intersections (%)

100 100 100 Changing

(0,25,50,75,100)

Intensity of Pri-

ority Vehicles out

of total Traffic In-

tensity (%)

14 14 Changing (14, 30

and 50)

15

Initial Deadlines

Spanning

(seconds) of

LV, MV and

HV vehicles

respectively

240, 250 and 260 240, 250 and 260 240, 250 and 260 240, 250 and 260

The comparison of all the parameters associated to different

scenarios has been depicted in Table II

To study the effect of number of lanes per edge on the

performance evaluations of scheduling algorithms, all other

parameters except number of lanes are fixed to their optimum

values as shown in table B. As described earlier, the optimum

deadlines spanning are 240, 250 and 260 seconds for LV,

MV and HV types vehicles respectively. In the same way the

optimum intensity of priority vehicles are kept 14% of the total

traffic intensity (the reason for this optimum priority vehicles

intensity are described as, ”effect of changing intensity of

priority vehicles”). Similarly to study the effect of any other

parameter (in other scenarios including traffic intersections

turn into complex, changing intensity of priority vehicles

and changing number of adaptive traffic intersections) on

performance evaluation of scheduling algorithms, all other

parameters except the parameter under study are kept constant

as depicted in table B.

To study the effect of number of lanes per edge on the

performance evaluations of scheduling algorithms, all other

parameters except number of lanes are fixed to their optimum

values as shown in table II. As described earlier, the optimum

deadlines spanning are 240, 250 and 260 seconds for LV,

MV and HV types vehicles respectively. In the same way the

optimum intensity of priority vehicles are kept 14% of the total

traffic intensity (the reason for this optimum priority vehicles

intensity are described in the subsection D, ”effect of changing

intensity of priority vehicles”). Similarly to study the effect

of any other parameter (in other scenarios including traffic

intersections turn into complex, changing intensity of priority

vehicles and changing number of adaptive traffic intersections)

on performance evaluation of scheduling algorithms, all other

parameters except the parameter under study are kept constant

as depicted in table II.

C. Simulation Network 1: Network Containing Simple Inter-

sections

A simple intersection network scenario is given in Figure 5,

where all the edges (roads) have a fixed length of 500 meters.

The trip time, of a particular vehicle, along the longest route

had been fixed at 163 seconds, in the absence of traffic

congestion. A latency amounting to 48% of the congestion-

free trip time, had been assumed in the case of congestion.

For the EDF simulation, an initial deadline spanning 240, 250
and 260 seconds, from the start time, had been assumed for

all HV, MV and LV type vehicles, respectively.

For the sake of simplicity, four traffic intensities were

assumed, namely:

1) the low traffic intensity of up to 400 vehicles amounting

to 0.8 vehicles per second,

2) the medium traffic intensity of up to 600 vehicles, i.e.

1.2 vehicles per second,

3) the high traffic intensity of up to 800 vehicles equivalent

to 1.6 vehicles per second and

4) the very high traffic intensity of more than 800 vehicles,

that is 2.0 vehicles per second.

Simulations were performed for a number of different scenar-

ios by changing the number of lanes of the intersecting edges.

The ensued results were evaluated in terms of:

• the mean waiting steps,

• mean trip time,

• average speed and

• deadlines missed by the priority vehicles.

The maximum speed of vehicles on each edge in SUMO

has been set to a default value of 12.3 meters/second. This

maximum speed can be set to any value other than default.

Our simulations have assumed the default maximum speed of

12.3 meters/second on all the edges. The vehicles following the

longest route consisting of four edges, for instance the vehicles

traveling from edge E2 towards E6, cover 2000 meters distance

(500x4 = 2000) with maximum speed of 12.3 meters/second

if traffic congestion is assumed to be zero. The ideal trip time

for such vehicles following the longest routes in the absence of

traffic congestion (maximum speed) can be calculated by the

formula, Triptime = longestroutelength
maximumspeed

= 2000
12.3 = 163secs.

The 163 seconds trip time is the ideal time which can be

achieved by vehicles following longest route in the absence

of congestion. However as the number of vehicles along the

longest routes increases, the waiting steps of the vehicles

increases as a result of close proximity of vehicles and speed

of the vehicles decreases. In other words traffic congestion

reduces the speed of the vehicles and consequently increases

their trip time. Vehicle’s traveling with maximum speed is

possible only if all the static lights are green and the intensity

of vehicles are kept to such a minimum level that the distance

between two vehicles do not decelerate the vehicles, which is

the ideal case.

To determine what range of trip times can be acceptable

with practically few numbers of stops, the basic criteria is to

vary the intensity of vehicles (start from very low, zero number

of stops) along the longest routes and examine the number of

stops for each intensity. If the number of stops is acceptable,

determine the mean trip time of that traffic intensity which

has maximum number of acceptable stops. This highest trip

time of the vehicles along the longest routes with maximum

acceptable number of stops is to be chosen as the deadline
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TABLE III
MEAN TRIP TIME AND WAITING STEPS OF DIFFERENT INTENSITIES OF

VEHICLES GENERATING WITHIN SAME INTERVAL OF 500 SECONDS

Traffic Intensity Mean Trip Time

(secs)

Mean Waiting

Steps (secs)

20 163 0

100 164 1.08

150 173 4.84

180 223 15

200 240 20

210 260 45

250 280 60

that should be achieved by the vehicles.

Number of simulations has been performed for network of

Figure 5 having two lanes per each edge with varying low

traffic intensities along the longest routes (four edges) only.

Table III tabulates the mean trip time of the vehicles along

with their mean waiting steps. As evident from table A, zero

waiting steps (maximum speed) results in trip time of 163

seconds which is in agreement with mathematical derivation

of trip time presented before.

Table III suggests that as the number of vehicles increases,

mean waiting steps along the longest routes increases and

consequently mean trip time also increases. This is due to

the face that all the vehicles enter in to the simulation

within same generation interval of 500 seconds. Keeping

the same generation interval, increasing number of vehicles

results in decreasing distance between two successive vehicles

and hence results in increasing number of stops. The traffic

intensities including 20, 100 and 150 vehicles are almost the

ideal cases. However number of stops increases after traffic

intensity of 150. For traffic intensities of 180 and 200 vehicles,

the mean waiting steps increases up to 20 seconds but these

numbers of stops are acceptable. If one chooses the maximum

acceptable mean waiting steps to be 4.84 seconds and choose

the corresponding trip time of 173 seconds as the deadline

to be achieved by the vehicles, then very few percentages

of vehicles will achieve deadlines by the implementation of

scheduling algorithm (EDF) because it is very difficult to

reduce congestion level to such a small extent equivalent

to waiting steps of 4.84 seconds. So the trip time of 240

seconds corresponding to 20 seconds waiting steps can be

better chosen as the optimum deadline to be achieved by

the priority vehicles (one should not relate these results with

any other results presented in the paper because the results

presented in table A have been collected for vehicles following

the longest routes only). At traffic intensities of 210, 250 and

afterwards, the congestion increases above acceptable level

and the corresponding trip times cannot be chosen as deadlines

to be achieved.

In short a latency amounting to 48% of the congestion

free trip time (163 seconds), have been assumed in the case

of congestion. For the EDF simulation, an initial deadline

spanning 240, 250 and 260 seconds, from the start time,

have been assumed for all HV, MV and LV type vehicles,

respectively. Though the deadlines have been set according

to the longest route criteria however the same initial deadlines

have been set for vehicles following the shortest routes with an

added advantage that vehicles following the shortest routes can

TABLE IV
PERCENTAGE REDUCTION IN WAITING STEPS FOR DIFFERENT TRAFFIC

INTENSITIES AS COMPARED TO STATIC(%)

Algorithms No of

Lanes

Percentage Reduction in waiting steps for Intensities

Low (400) Medium

(600)

High

(800)

Very High

(1000)

EDF 1 83 70 55 20

2 86 82 50 21

3 90 71 56 15

FP 1 70 60 49 15

2 79 70 47 10

3 81 57 36 10

TABLE V
MEAN WAITING STEPS COMPARISON FOR DIFFERENT VEHICLE TYPES

Algorithms Vehicle Types Initial Fixed Pri-

ority

Mean Waiting

Steps

EDF HV High 67.44

MV Intermediate 71.66

LV Low 72.2

NV None -

FP HV High 53.71

MV Intermediate 78.7

LV Low 94.27

NV None -

easily achieve deadlines. Moreover as the length of edges in

all the scenarios presented in this paper is same, therefore the

initial deadlines spanning remain the same in all the scenarios.

1) The mean waiting steps of the priority vehicles: Fig-

ures 8(a),(b) and (c) plot the mean waiting steps for the simple

network as a function of the traffic intensity, with the number

of lanes per edge being one, two and three, respectively.

It must be mentioned here that the results compiled here are

irrespective of the number of lanes as our main purpose is to

compare the performance of the adaptive algorithms against

the static algorithm to reduce the mean waiting steps. This

is because increasing the number of lanes brings about an

improvement in the mean waiting steps by all three algorithms

by the same percentage. This can be observed from table IV,

which gives the percentage reduction in waiting steps experi-

enced by priority vehicles as compared to static algorithm for

different lane scenarios.

With a single lane, in comparison to the static control

algorithm, the EDF algorithm reduced the mean waiting steps

of priority vehicles by 83% for low traffic intensity, 70% for

medium traffic intensity, 55% for high traffic intensity and

20% for very high traffic intensity; the same comparison of

the FP algorithm yielded a reduction of 70% for low traffic

intensity, 60% for medium traffic intensity, 49% for high traffic

intensity and 15% for very high traffic intensity.

Along the same lines, when the lanes were doubled (Fig-

ure 8(b)), the EDF algorithm improved further by 86% for low

traffic intensity and by 82% for the medium traffic intensity in

comparison to the static algorithm. The FP algorithm reduced

the waiting steps of priority vehicles, par rapport the static

algorithm, by 79% for low traffic intensity, 70% for medium

traffic intensity, 47% for high traffic intensity and 10% for

very high traffic intensity. Barring the low intensity case,

the reduction is lower than that of the single-lane version .

Generally, the EDF outperformed the FP algorithm, especially

at high intensities.

When it came to the three lanes per edge situation (Fig-
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(a) Mean Waiting Steps Lanes = 1 (b) Lanes = 2 (c) Lanes = 3

(d) Mean Trip Time Lanes = 1 (e) Lanes = 2 (f) Lanes = 3

(g) Deadlines Missed Lanes = 1 (h) Lanes = 2 (i) Lanes = 3

(j) Mean Speed Lanes = 1 (k) Lanes = 2 (l) Lanes = 3

(m) Mean Halting Durations Lanes = 1 (n) Lanes = 2 (o) Lanes = 3

Fig. 8. Performance Evaluation for Priority Vehicles with Different number of Lanes per Edges for Network with Simple Intersections
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ure 8(c)), the EDF algorithm reduced the waiting steps of

priority vehicles by 90% for low traffic intensity, 71% for

medium traffic intensity, 56% for high traffic intensity and

15% for very high traffic intensity. The FP algorithm under

performed, comparatively, and the waiting steps of priority

vehicles were found to be reduced by 81% for low traffic

intensity, 57% for medium traffic intensity, 36% for high traffic

intensity and 10% for very high traffic intensity. Table V

reveals that simulation of fixed priority algorithm results in low

mean waiting steps experienced for highest priority vehicles.

In comparison, the MV and LV type vehicles experience more

waiting steps. With the EDF algorithm, the average waiting

steps had been almost the same irrespective of the priority of

vehicles.

As compared to static control algorithm the two adaptive

TLC algorithms, EDF and FP, reduce the waiting steps of

priority vehicles dramatically. The reason for such dramatic

reduction is obvious from the fact that the static control

algorithm does not take into account priority vehicles found on

the roads. It can also be observed that increasing the number of

lanes increases efficiency of the two algorithms in comparison

with static control algorithms.

As far as the inter se comparison of EDF and FP is

concerned, the former outperforms the latter as is being evident

from Figures 8(a), (b) and (c), the main reason being that EDF

is a dynamic algorithm in which the deadlines change at each

interval of time as against the static priorities in FP.

It can be concluded that FP and EDF produce efficient

results when the traffic intensity is not very high. At very

high traffic intensities however, performance degradation can

be seen. Although the mean waiting steps still remain smaller

than the static flow algorithm. This is because increasing traffic

intensity over the same generation interval of 500 seconds (all

vehicles are generated and departed in the simulation within

this time) causes the vehicles to depart into simulation very

closely one after the other, thereby decreasing the gap between

vehicles leading to more waiting steps for priority vehicles.

2) Mean Trip time of Priority vehicles: Another important

performance measure for testing the viability of the algorithms

is the average trip time of the priority vehicles. The average

trip time has also been evaluated at different number of lanes

per edge at an intersection. Figure 8(d), (e) and (f) show that

the FP and EDF strategies greatly reduce the trip time for

the priority vehicles. Furthermore, it can be seen that EDF

performs better than FP when reducing the average trip time

for priority vehicles.

It is evident from the figures that for low and medium

traffic intensities, the mean trip time remains the same for both

the FP and EDF algorithm based controllers. A comparative

analysis of the mean trip time of the adaptive algorithms

with the static algorithm with respect to an increase in the

number of lanes shows that the mean trip time is independent

of the number of lanes. This is concluded by studying the

percentage reduction in the mean trip time of priority vehicles

when compared against the static algorithm under high traffic

intensity and with different number of lanes. Considering the

single lane scenario, it was found that the EDF algorithm

reduced the mean trip time of priority vehicles by 21% for high

TABLE VI
MEAN TRIP TIME OF DEADLINE MISSING VEHICLES

Algorithms Deadlines Missed

Vehicles

Mean Trip Time Of deadlines

missed vehicles

EDF 40.71% 432.49 secs

FP 34.28% 519.29 secs

traffic intensity while FP algorithm reduced the time by 16%

when compared against the static algorithm. By increasing the

number of lanes to two, EDF reduced mean trip time by 20%

and FP reduced trip time by 15%. While considering a three

lane scenario, it was found that the EDF algorithm reduced

mean trip time by 18% while FP reduced mean trip time by

11% for the same traffic intensity as compared to static.

3) Deadlines missed by priority vehicles: One important

performance measure for evaluating the performance of the

EDF and the FP is to study the percentage of deadlines missed

by the important priority vehicles. Figures 8(g), (h) and (i)

show these percentages for priority vehicles traveling in edges

with one, two and three lanes respectively.

With the implementation of the EDF and FP algorithms on

the traffic lanes, the number of missed deadlines reduced by

60% with low and medium traffic intensities and by 25% with

high and very high traffic intensities in comparison to the static

control. From the three figures, it is also evident that the EDF

behaves better than FP, as the former operates on the deadlines

of the vehicles while the latter only serves the vehicles based

on their initial assigned priority. Figure 8(h) however shows

some contradictory results in which the FP outperforms the

EDF for very high traffic intensities. This behavior can be

explained by taking into context the mean trip time of the

vehicles which missed their deadlines in table VI. The table

shows that although the vehicles traveling on EDF operated

intersections miss their deadlines as compared to the FP

operated intersections, yet their mean time is still considerably

reduced in comparison to the FP operated intersections.

From Figure 8(g), (h) and (i), it is also clear that that

increasing number of lanes has no affect on comparative

deadline missed vehicles percentage but the analysis of the

two dynamic algorithms for comparison with static has been

taken to be independent of the number of lanes.

4) Average speed of priority vehicles: Typically, the speed

decreases when the traffic intensity increases irrespective of

the control strategy. Figure 8(j),(k) and (l) plot the average

speed of priority vehicles with respect to various traffic inten-

sities on the basis of EDF, FP and static control algorithms

for 1, 2 and 3 lanes per edge, respectively. It can be readily

observed that the EDF algorithm reduces the waiting steps

of priority vehicles and hence causes their speed to increase.

The three figures reveal that the two adaptive TLC algorithms

increase the speed of priority vehicles more as compared to

static traffic light control algorithm. However in comparison

to FP, the EDF causes the priority vehicles to maintain higher

speed. Moreover increasing the number of lanes also increases

the speed of priority vehicles.

5) Traffic congestion at different intersections: At different

traffic intersections, the congestion is measured in terms of

mean halting duration of all the vehicles (priority and non
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Fig. 9. Scenario of a Fixed Priority Vehicle at distance from the Intersection

priority) near that intersection. Though the scheduling algo-

rithms, EDF and FP only serve the priority vehicles, they do

reduce the overall traffic congestion at traffic intersections.

Figures 8(m), 8(n), and 8(o) plot the mean halting durations

of all the vehicles at all intersections at various intensities for

the three algorithms involving 1, 2, and 3 lanes per intersection

edge. The halting durations at individual intersections are not

presented here. Instead, the overall halting durations at all the

intersections are depicted. These are obtained by taking the

mean of halting durations of individual intersections for all

the intersections considered.

From the figures it is also clear that the congestion is

reduced by 50% when FP and EDF are applied at the traffic

intersections. As evident from the three figures, the graph lines

of EDF and FP algorithms are not following a uniform or but

dominating each other at several points. This random behavior

has been detailed as follows.

• In most of the scenarios, EDF reduces the halting duration

more than FP. In case of EDF implementation, none of

the queues have to wait for a long while to get serviced

as opposed to the FP implementation where the duration

of red light is quite large for a particular queue. This

can be analyzed by taking into consideration a scenario

in which a particular queue contains an HV type vehicle,

then during FP implementation the remaining queues will

be given red light so long as the HV type vehicle is not

serviced. While in the same scenario if EDF is applied

the remaining queues will not have to wait for so long to

get serviced as the smallest remaining deadline will be

the factor on which the queues will be serviced and this

a continuously varying parameter.

• In some cases the fixed priority improves the congestion

more than EDF however an overall analysis shows no

major difference in their performance in terms of effi-

ciency to improve traffic congestion. This behavior can be

attributed solely to the halting durations experienced by

non-priority vehicles. The calculation of halting durations

not only take into account the congestion of priority ve-

hicles but also congestion of non-priority vehicles, which

are not served by either of the two adaptive algorithms.

The non-priority vehicles may sometime experience more

waiting steps and sometime less waiting steps causing the

Fig. 10. Network containing Complex Intersections

results of two algorithms to vary irregularly. It should be

noted here that the priority vehicles experience much low

halting duration near traffic intersections as compared to

the non-priority vehicles which experience more waiting

steps resulting in the increase of mean halting durations.

Yet the mean halting durations for these adaptive algo-

rithms are much lower then the mean halting durations

resulting from the use of static control algorithm.

• The figures also reveal that at very high traffic intensity

the performance of the two algorithms, EDF and FP,

become close to the performance of the static algorithm.

The reason is that in some cases when traffic intensity

increases, a situation may arise where a priority vehicle

is found at the end of a queue away from the intersection

(Figure 9) and preceded by many non-priority vehicles.

This can cause the priority vehicle to experience a long

waiting time before it reaches the intersection and gets

served. Such scenario is more common in very high

traffic intensity as compared to other traffic intensities.

At high traffic intensities, the halting durations at traffic

intersection increase manifold and the performance of

scheduling algorithms while curbing congestion coincides

with the performance of the static algorithm. Note that

the halting durations of priority vehicles are still low but

the corresponding increase in halting durations of non

priority vehicles becomes a cause of such undesirable

situations.

D. Simulation Network 2: Network Containing Complex In-

tersections

The testing of FP, EDF and static control algorithms has

also been carried out by making traffic intersections complex

and changing the number of edges per intersection. The results

discussed in this section have been compiled for the scenario,

given in Figure 10, which contains a network containing

complex traffic intersections. The number of lanes, per edge,

had been fixed at two since the effect of the number of lanes

is not being considered here. All the edges in the figure

were assumed to have a fixed length of 500 meters except

for edge E13 with a length of more than 500 meters. The

vehicle generation interval was assumed to be 500 seconds
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for increasing number of vehicles during the simulation. The

intensity with which priority vehicles were generated had been

kept at 14% of the total traffic intensity.

In this section, not only a comparative study of the algo-

rithms will be considered for the complex network, but also a

comparative analysis of this network will be performed with

the network considered in Figure 5. However, the analysis will

be limited to two lanes per edge case only.

1) Mean Waiting Steps Of Priority Vehicles: The mean

waiting steps of priority vehicles, as a function of traffic

intensity, resulting from the implementation of EDF, FP and

static algorithms on the scenario of Figure 10, can be observed

from Figure 11(a). In comparison to the static control, the

EDF and FP reduce the mean waiting steps of the priority

vehicles by more than 50%. Furthermore the EDF, as can be

viewed from Figure 11(a), tends to give better performance at

scheduling than the FP.

Comparing the mean waiting steps of the two intersections1,

given in Figures 5 and 10, for double-lane edges (Figure 8(b)

and Figure 11(a)) it is readily observable that FP, EDF and

static control perform better at simple traffic intersections than

at complex ones. This behavior can be attributed to the fact

that the traffic at simple intersections is uniformly distributed

and the traffic moving from edge E1 and E2 to other edges will

be distributed via edges E11 and E12. While in the network of

Figure 10, edge E13 is the only edge which provides a route

for the traffic commuting from edge E1 and E2 towards all

other edges. Therefore E13 is serving the traffic of both the

edges E11 and E12 from Figure 5. This extra traffic flow on

E13 (having the same width as all the edges) results in traffic

congestion causing the priority vehicles to experience much

more waiting steps, as compared to the simple network.

2) Mean trip time and average speed of priority vehicles:

The respective trends of these two parameters, for the complex

network of Figure 10, can be observed graphically in Fig-

ures 11(b) and 11(c). It can be seen that the mean trip time and

the mean speed of the priority vehicles are markedly reduced

using the EDF and FP algorithms. If we compare the results

of the complex scenario (Figures 11(b) and 11(c)) with the

results obtained for simple scenario (Figures 8(f) and 8(k)), it

is evident that the results of the two networks are pretty much

close to each other. However, due to the extra traffic congestion

on E13, the mean trip time of priority vehicles increases in

the complex network but still the priority vehicles maintain

speeds comparable to those of the simple scenario.

3) Traffic congestion (mean halting durations) at different

intersections: Both the simple and complex network scenarios

contain four intersections but the difference lies in the number

of edges connecting the intersections. The simple network has

symmetric traffic intersections where all the intersections are

constituted by four edges while the complex network con-

tains asymmetric intersections with three of the intersections

constituted by three edges and the fourth one by five edges.

Figure 12 and Figure 13 plot the mean halting durations of

vehicles near different traffic intersections of both the simple

1From here onwards the simple scenario/network refers to Figure 5 and the
complex scenario/network refers to Figure 10

Fig. 12. Mean Halting Duration for Simple Intersections

Fig. 13. Mean Halting Duration for Complex Intersections

and complex scenarios, respectively, having two lanes per edge

with a medium traffic intensity of 600 vehicles. It is evident

from Figures 12 and 13 that the mean halting durations near

each of the four traffic intersections diminish considerably with

the EDF and FP scheduling. The inter se performance of EDF

and FP are close to each other. However, the EDF surpasses

FP in terms of managing traffic congestions at all the traffic

intersections of a particular network. The figures also show

that using any of the adaptive control algorithms, the traffic

congestions at the I1 (combining edges E1, E2 and others) and

I2 (combining edges E5, E6 and others) traffic intersections

are lower in case of the simple network, as compared to the

complex network. However, the traffic congestions at I3 and I4

traffic intersections are low in the case of the complex network

as compared to the simple network. This is because of the

edge E13 in Figure 10 which replaced edges E11 and E12 of

Figure 5. Such mean halting duration can be attributed to the

reasons that

1) In the simple network, edges E11 and E12 are connected

with the I3 and I2 traffic intersections respectively,

whereas no such edges exist in the complex network.

2) The traffic congestion of vehicles on edges E11 and E12,

near their respective traffic intersection, adds up to the

mean halting durations at I3 and I2 intersections in the

simple network while the congestion of edges E11 and

E12 are not included in the mean halting durations at I3

and I2 intersections of the complex network as the two

previously mentioned edges do not exist in the latter.

This causes the traffic congestions at I3 and I2 traffic

intersections to increase in case of the simple network

as compared to the corresponding congestions in case

of the complex network.
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(a) Mean Waiting Steps of Priority Vehicles (b) Mean Trip Time of Priority Vehicles (c) Mean Speed of Priority Vehicles

Fig. 11. Performance Evaluation for Priority Vehicles for Network with Complex Intersections

The traffic congestions at I1 and I4 traffic intersections can

be attributed to

1) The more traffic flow on edge E13 in the complex

network, causing more waiting steps on edge E13. This

increases the congestion on edge E13 which conse-

quently increases the mean halting durations at I1 and I4

traffic intersections as compared to the simple network.

2) It can also be observed that there is much more traffic

congestion at the I4 traffic intersection of the complex

network as compared to congestion at other intersections

in the same network. This is due to the fact that the I4

intersection combines five edges and most of the traffic

flow occurs through this intersection.

E. Changing the intensity for priority vehicles

For all the aforementioned simulations the traffic intensity

of priority vehicles, for all the testing scenarios, has been kept

at a constant rate of 14% of the total traffic. However, it had

been observed that changing the intensity of priority vehicles

also affects the performance of EDF and FP algorithms. Three

different intensity percentages (14%, 30% and 50%) had been

selected to study the effects of changing traffic intensities. The

network considered for the simulation of traffic with these

three intensities is the network simple network of Figure 5.

1) Mean waiting steps of the priority vehicles: Figures 14

and 15 plot the mean waiting steps of priority vehicles as a

function of varying priority vehicle intensities taken at 14%,

30% and 50% of the total traffic for traffic density of 600

(medium) and 800 (high) vehicles respectively. Number of

lanes are kept at 2.

From the two plots in Figures 14 and 15, it is evident

that the mean steps of the two adaptive algorithms when

compared with static decrease as the intensity of priority

vehicles increases for a fixed traffic intensity of either medium

or high traffic density. For example Table VII gives the

percentage reduction in waiting steps of priority vehicles, upon

the implementation of EDF and FP algorithms as compared

with static, for different intensities of priority vehicles at a

traffic density of 600 vehicles.

As the number of priority vehicles increases in the total

traffic, the probability of finding more and more priority

vehicles in the same lane increases. Consider the scenario of

low priority vehicles found in edge1, which in case of EDF

Fig. 14. Mean waiting steps of priority vehicles for different percentage of
priority vehicles at medium traffic intensity (600 vehicles)

Fig. 15. Mean waiting steps of priority vehicles for different percentage of
priority vehicles at high traffic intensity (800 vehicles).

are the vehicles with more remaining deadlines and in case of

FP are the vehicles with low initial fixed priority. High priority

vehicles are continuously entering edge2 (as the intensity of

priority vehicles are high so more priority vehicles are coming

one after the other). In this particular scenario the LV in Edge1

tend to wait until all the HV in Edge2 get served. For low

intensity of priority vehicles, HV are few in number and the

priority vehicles in vertical edge soon get serviced while on the

other hand for high intensity of priority vehicles, HV vehicles

TABLE VII
PERCENTAGE REDUCTION IN WAITING STEPS FOR DIFFERENT

INTENSITIES OF PRIORITY VEHICLES AS COMPARED TO STATIC (%)

Algorithms Percentage Reduction in waiting steps for different intensities

14% 30% 50%

EDF 82 61 47

FP 76 58 40
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Fig. 16. Mean Waiting Steps at different Percentages of Adaptive Traffic
Lights Intersections

Fig. 17. Mean Trip Time at different Percentages of Adaptive Traffic Lights
Intersections

in Edge2 are large in number resulting in LV in Edge1 to wait

long and consequently the overall waiting steps increase. Such

scenario of increasing waiting steps is a function of intensity

of priority vehicles out of fixed total traffic intensity. Thus

the performance of both EDF and FP algorithms becomes

low as the intensity of priority vehicles increases. But still

the performances of the two adaptive algorithms remains far

better than static the algorithm.

Again comparing EDF and FP algorithms we observe that

at a total traffic of 600 vehicles (Figure 14) EDF performance

is better than FP while in case of high traffic of 800 vehicles

(Figure 15), the FP outperforms EDF.

F. Simulation Network 3: Scenario of Hybrid Signalized Traf-

fic Intersections

Rather than relying on a single algorithm, the implemen-

tation was also carried out in the hybrid form, i.e. some

of the intersections were static while others being following

the FP or EDF. The effect of this hybrid nature of traffic

intersections (some intersections adaptive and some static) are

being evaluated in this section.

Figures 16 and 17 plot the mean waiting steps and mean trip

time of the priority vehicles resulting from implementation of

EDF and FP algorithms at different numbers of adaptive out of

a fixed number of traffic light intersections. These two figures

show the simulations for a certain network having four traffic

intersections. The two figures show that the mean waiting

steps and the mean trip duration of priority vehicles are much

improved by the implementation of EDF and FP algorithms if

we make all traffic lights adaptive. However upon decreasing

the fraction of adaptive traffic lights and replacing them by

static lights, the performance measures for the commuting

priority vehicles are affected. It is evident from the figures

that the EDF algorithm produces good results as compared to

FP algorithm but the two graph lines coincides at 0% adaptive

traffic intersections. This is due to the fact that 0% adaptive

intersections represent all static traffic lights and thus the two

adaptive algorithms are not implemented on any of traffic

intersections.

V. CONCLUSION

We presented a comparative evaluation of two scheduling
algorithms for reducing the unwanted delay experienced by
priority vehicles as a consequence of traffic congestion. These
algorithms include EDF and FP, as the adaptive traffic light
control algorithms. The simulation results showed that the
two priority vehicle serving algorithms produce much better
results as compared to fixed time control of traffic lights.
The performance measures of priority vehicles such as the
mean waiting steps, the mean trip time, the mean speed,
deadlines achieved and the overall traffic congestion reduc-
tion are remarkably improved by the use of the proposed
algorithms. Their main advantage becomes apparent while
employing them at complex road networks and at heavy
traffic intensities. Here the performance measures of priority
vehicles significantly improve as compared to fixed timing
algorithm. Furthermore the comparative study of EDF and FP
algorithms conclude that EDF algorithm is more efficient than
FP algorithm. It is also observed that increasing the number
of lanes has no affect on the comparative performance of
scheduling algorithms.
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