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Early adversity is an important risk factor that influences brain aging. Diverse animal
models of early adversity, including gestational stress and postnatal paradigms
disrupting dam-pup interactions evoke not only persistent neuroendocrine dysfunction
and anxio-depressive behaviors, but also perturb the trajectory of healthy brain aging.
The process of brain aging is thought to involve hallmark features such as mitochondrial
dysfunction and oxidative stress, evoking impairments in neuronal bioenergetics.
Furthermore, brain aging is associated with disrupted proteostasis, progressively
defective epigenetic and DNA repair mechanisms, the build-up of neuroinflammatory
states, thus cumulatively driving cellular senescence, neuronal and cognitive decline.
Early adversity is hypothesized to evoke an “allostatic load” via an influence on
several of the key physiological processes that define the trajectory of healthy brain
aging. In this review we discuss the evidence that animal models of early adversity
impinge on fundamental mechanisms of brain aging, setting up a substratum that can
accelerate and compromise the time-line and nature of brain aging, and increase risk
for aging-associated neuropathologies.

Keywords: maternal separation, early stress, hippocampus, proteostasis, mitochondria, neuronal survival,
neuroinflammation, cognition

INTRODUCTION

Early adversity is a potent risk factor for adult psychopathology (Gee, 2021; Teicher et al.,
2021). Early stressors such as physical, sexual and emotional abuse, parental neglect/loss,
parental/caregiver substance abuse and incarceration disrupt physiological and psychological
functioning driving maladaptive health outcomes (Brown et al., 2009; Brenhouse et al., 2019).
Animal models attempt to capture the molecular, cellular, neuroendocrine, structural, functional
and behavioral changes that arise due to early stress, to gain a mechanistic insight into how
early adversity programs psychiatric vulnerability (Tzanoulinou and Sandi, 2017; Blaisdell et al.,
2019; Torres-Berrío et al., 2019). While the impact of early stress is experienced by multiple
physiological systems, the brain remains the central player as a target of stress and in the top-
down control over stress-response pathways (McEwen, 2007). Prior reviews have discussed the
influence of early stress on anxio-depressive behaviors and disrupted cognition, accompanied
by transcriptional, cytoarchitectural, neuroendocrine and functional changes in diverse limbic

Abbreviations: MIA, maternal immune activation; LGABN, licking, grooming, arched back nursing; MD, maternal
deprivation; MS, maternal separation; MSUS, maternal separation and unpredictable stress; LBN, limited bedding and
nesting; PFC, prefrontal cortex; DNA, Deoxyribonucleic acid; ETC, electron transport chain; ROS, reactive oxygen species;
OCR, oxygen consumption rate; ATP, Adenosine triphosphate; UPR, unfolded protein response; GR, glucocorticoid receptor;
BDNF, brain derived neurotrophic factor; HPA, Hypothalamo-pituitary-adrenal axis; RNA, Ribonucleic acid.
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brain regions (Chen and Baram, 2016; Teicher et al., 2016;
Pervanidou and Chrousos, 2018). Amongst the hallmark features
of early stress is that it evokes enduring consequences (Miller
et al., 2011; Szyf, 2019). Early adversity exacerbates aging-
induced telomere erosion, establishing a pathophysiological
basis for enhanced morbidity and mortality (Epel and Prather,
2018; Colich et al., 2020). Clinical literature also indicates that
individuals exposed to early stress are more likely to suffer a
premature death (Brown et al., 2009). In this review, we critically
discuss the evidence that early stress accelerates brain aging.

ANIMAL MODELS OF EARLY ADVERSITY

Animal models of early adversity involve stress exposure in
utero, or during early postnatal time-windows, which can evoke
persistent alterations in mood-related behavior, noted long
after the cessation of stress (Figure 1A; Schmidt et al., 2011).
Gestational stress which involves administration of chronic stress
to the dam, or exposure to an inflammatory milieu in utero, such
as in the maternal immune activation (MIA) model, results in
persistent changes in anxio-depressive behaviors in the progeny
(Brown and Conway, 2019). During the postnatal temporal
window, most rodent models of early adversity capitalize on
perturbation of dam-pup interactions and fragmented caregiving
behavior from the dam (Orso et al., 2019). These include
perturbed licking, grooming, and arched back nursing behavior
(LGABN), maternal deprivation (MD), maternal separation
(MS), maternal separation combined with unpredictable stress
to the dam (MSUS), or limited access to bedding and nesting
(LBN) (Caldji et al., 2000; Ladd et al., 2000; Molet et al., 2014;
Walker et al., 2017). Common across these models are enhanced
anxio-depressive behaviors in the progeny, often accompanied
by perturbed cognitive, reward and social behavior (Syed and
Nemeroff, 2017; Tzanoulinou and Sandi, 2017; Birnie et al.,
2020). Juvenile stress models are usually initiated post-weaning
from the dam during the peripubertal window, and for the
purposes of this review we have restricted our discussion to early
adversity models that involve time-windows prior to juvenile
life. Early adversity disrupts stress-responsive neuroendocrine
pathways, drives neuroinflammatory states, evokes epigenetic
changes, and results in structural and functional changes in
neurocircuits that regulate anxio-depressive behaviors, including
the hippocampus, prefrontal cortex (PFC), amygdala, and the
brain-stem monoaminergic nuclei (Babenko et al., 2015; Teicher
et al., 2016; Agorastos et al., 2019; Brenhouse et al., 2019).
In this review, we discuss the evidence of an altered brain
aging trajectory as a consequence of early adversity, focusing
predominantly on studies from animal models.

HALLMARK SIGNATURES OF BRAIN
AGING

Aging is characterized by a time-dependent loss of molecular,
cellular, structural and functional integrity leading to impaired
homeostasis (López-Otín et al., 2013). Accompanying the

aging-evoked attrition in all organ systems, “brain aging”
also exhibits hallmark features with steady and cumulative
decrements noted in structure and function, spanning from
atrophy-associated cognitive decline to motor deficits (Mattson
and Arumugam, 2018; Oschwald et al., 2019). The characteristic
signatures of “brain aging” include mitochondrial dysfunction,
oxidative stress, compromised neuronal bioenergetics, impaired
proteostasis, perturbed DNA repair, altered intracellular
signaling, and a cumulative buildup of neuroinflammatory
states (Mattson and Arumugam, 2018). Distinct brain regions
show individual variation in the extent of their vulnerability
to aging-associated neuronal loss, with the hippocampus,
cerebral cortex and cerebellum reported to exhibit both synaptic
and cellular attrition, accompanied by impaired synaptic
plasticity (Fjell and Walhovd, 2010; Morrison and Baxter,
2012; Bartsch and Wulff, 2015; Fan et al., 2018; Mattson and
Arumugam, 2018). A key driver of these changes is thought to
be aging-associated neuroinflammation, which also appears to
differentially impact specific vulnerable cell populations in the
brain (Sparkman and Johnson, 2008; Simen et al., 2011; Mattson
and Arumugam, 2018). Correlated with these changes is the
compromised structural/functional integrity of mitochondria
and impaired neuronal bioenergetics, cumulative buildup of
dysfunctional proteins and an unfolded protein response,
markers of endoplasmic reticulum (ER) stress, failure to
effectively scavenge reactive oxygen species (ROS) and oxidative
damage, overlaid on a baseline substratum of neuroinflammatory
changes, namely a disrupted cytokine milieu and microglial
activation (Wyss-Coray, 2016; Mattson and Arumugam, 2018;
Webb and Sideris, 2020; Uddin et al., 2021). While these changes
overlap and correlate with each other, the causal association
between these events still remains unclear. However, several
studies highlight that these changes, namely enhanced oxidative
stress and neuroinflammatory states, accompanied by impaired
DNA repair and mitochondrial dysfunction may play a vital role
in driving the synaptic, structural and functional impairments
associated with aging (Raz and Rodrigue, 2006; Dröge and
Schipper, 2007; Paradies et al., 2011; Regnell et al., 2012; Green
and Nolan, 2014; Pluvinage and Wyss-Coray, 2020). While these
molecular and cellular changes are vital drivers of determining
the aging trajectory, they are further impacted by both genetic
background and life-course factors (Yuan et al., 2009; Kõks et al.,
2016; Zannas, 2018; Marini et al., 2020; Ancelin et al., 2021). In
this review, we focus on the vital life-course factor of early life
experience, which can exert a long-lasting impact in determining
an organism’s aging trajectory and health-span, in particular
impacting the quality and nature of brain aging. A working
hypothesis suggests that early adversity sets up an underlying
“allostatic load” which impacts the physiology of normal aging
creating fertile conditions that hasten and compromise the brain
aging trajectory (Figure 1B; Danese and McEwen, 2012; Epel and
Prather, 2018).

Given that most of the literature addressing the impact
of early adversity on the brain aging trajectory is based on
rodent models, it is worth considering a comparative scale of
the equivalent age stages between rodents and humans. We
have described in Figure 1B the distinct stages of perinatal,
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FIGURE 1 | Early adversity and brain aging-associated processes. (A) Shown here are specific animal models of early adversity viz. maternal immune activation,
maternal separation/deprivation, limited bedding and nesting, and low maternal care. (B) The schematic depicts the hastening of brain aging and an earlier onset of
neuronal damage and cognitive decline following early adversity. (C) Depicted below are some of the aging-associated processes that are perturbed by early
adversity, namely the following physiological mechanisms viz. mitochondrial homeostasis, proteostasis, epigenetics, neuroinflammation, structural and cognitive
function.

childhood, adolescence, adult, middle-aged and aged, as the
major epochs of life. The perinatal stage encompasses the window
of life from 23 weeks of gestation onward till about 2 years of
human age. While it is challenging to draw direct parallels, the
emergence of developmental milestones suggest that postnatal
day 1–10 for rodents is equivalent to 23–40 weeks of human
gestation, and postnatal day 10–21 is comparable to the window
from birth till 3 years of human age. The childhood window
comprising of 2–11 years of age for humans is thought to have
an equivalence based on developmental indices to postnatal day
20–35 in rodents. The adolescent phase in humans (12–18 years)
is thought to be comparable to postnatal day 35–49 in rodent
models, with adulthood (20 years onward) compared to rodent
models commencing from postnatal day 60 onward. The middle-
aged and aged windows are generally thought to commence
from 40 and 60 years of age respectively in humans, which has

been suggested to compare to 9–15 months for middle-aged and
18 months upward as aged in rodent models (Flurkey et al., 2007;
Semple et al., 2013; Dutta and Sengupta, 2016; Agoston, 2017;
Wang et al., 2020).

EARLY ADVERSITY, MITOCHONDRIAL
DYSFUNCTION AND OXIDATIVE STRESS

Mitochondria are an integrative hub that sense, adapt to and drive
cellular stress responses, shaping the homeostatic adaptations
to stress (Eisner et al., 2018; Picard et al., 2018). Mitochondria
respond dynamically to stress signaling cues and mitokines,
adjusting both architecture and function to rapidly adapt to
altered energetic demands (Picard et al., 2015; Daniels et al.,
2020). This ability of mitochondria to orchestrate effective
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cellular stress responses is a key component of the “resilient”
phenotype (Hoffmann and Spengler, 2018), and a decline in this
buffering capacity is linked to cellular senescence (Correia-Melo
et al., 2016; Vasileiou et al., 2019). Early stress is speculated
to deteriorate in the stress-buffering capacity of mitochondria,
via a disrupted mitostasis, and thus accelerate senescence and
neuronal damage, a cumulative consequence of brain aging
(Figure 1C; Tyrka et al., 2016; Hoffmann and Spengler, 2018;
Zitkovsky et al., 2021).

Studies using models of fragmented maternal care indicate
both short (postnatal day 9) and long-term (10–12 months)
changes in mitochondrial function within limbic brain regions
and the periphery (Ruigrok et al., 2021). Adult progeny with
a history of LBN exhibit perturbed electron transport chain
(ETC) activity in the hypothalamus, and altered mitochondrial
fusion/fission associated gene expression in the hippocampus
upto 1 year of age (Ruigrok et al., 2021). MS evokes dysregulation
of mitochondrial sirtuins within the PFC that persist well
into middle-aged life (15 months) (Pusalkar et al., 2016),
and robust decreases in mitochondrial mass in the periphery,
namely the muscle, noted 8 months post the cessation of MS
(Ghosh et al., 2016). Further, MS animals exhibit enhanced
sensitivity to oxidative stress in peripheral mononuclear cells,
noted until 18 months of age, and also reported in gut epithelial
cells when examined in adulthood (2 months) in MS animals
(Grigoruta et al., 2020; Khorjahani et al., 2020). Impaired
calcium homeostasis, enhanced ROS and a decrease in oxygen
consumption rate (OCR) or ATP production is also reported
in the PFC, raphe and hippocampus of adult (2–6 month) MS
animals, suggestive of a broad mitochondrial dysfunction in
multiple systems (Della et al., 2013; Amini-Khoei et al., 2017;
Masrour et al., 2018; Nold et al., 2019). Proteomic studies in
diverse early stress models, spanning analysis from 12–24 weeks
of age, indicate a dysregulation of proteins associated with
mitochondrial energy metabolism in the PFC and hippocampus
(Marais et al., 2009; Mairesse et al., 2012; Föcking et al., 2014;
van Zyl et al., 2016; Nold et al., 2019), with a specific study
suggesting a temporal variation in these effects noted at postnatal
day 21 and 3–4 months following LBN, accompanied by a sex-
specific differential expression of the hippocampal proteome
at these timepoints (Eagleson et al., 2020). Furthermore, MS
regulated glyoxalase enzymatic machinery at around 3 months
of age that could result in a build-up of the pro-oxidant,
methylglyoxal, which is a precursor of advanced glycation end-
products implicated in neurodegeneration (Marais et al., 2009;
Allaman et al., 2015). Early stress of MD also reduced superoxide
dismutase and catalase activity in the hippocampus and PFC
observed as early as postnatal day 20 and persisting into young
adulthood (2 months), which could exacerbate oxidative stress
in vulnerable limbic neurocircuits (Réus et al., 2017; Talukdar
et al., 2020; Abelaira et al., 2021). Collectively, most reports of
mitochondrial dysfunction following early stress restrict analysis
to young adulthood (2–4 months of age) (Della et al., 2013;
Masrour et al., 2018; Eagleson et al., 2020; Lapp et al., 2020),
with few exceptions examining the consequences either in
early postnatal life or well into middle-aged life ranging from
8–15 months (Ghosh et al., 2016; Pusalkar et al., 2016; Ruigrok

et al., 2021). A careful analysis of the impact of early stress on the
ontogeny of mitochondria within neuronal circuits, interaction
with variables such as sex and genetic background remains
to be extensively explored. Such studies are vital because a
single-snapshot cannot capture the continuum of mitochondrial
functional changes following early adversity, and it is likely that
organ systems and brain regions will exhibit distinct timelines
with different inflection points when adaptive attempts tip into
maladaptive outcomes (Suri and Vaidya, 2015). Thus far the
emerging picture raises the intriguing possibility that cumulative
mitochondrial allostatic load following early adversity could
sow the seeds for the hastening of age-associated impairments
(Daniels et al., 2020).

EARLY ADVERSITY, IMPAIRED
PROTEOSTASIS AND AUTOPHAGY

Early stress is speculated to alter proteostasis, trigger abnormal
unfolded protein responses (UPR), and drive impaired autophagy
thus establishing a substrate for aging-associated neuropathology
(Figure 1C; Pinto et al., 2016; Liu et al., 2018; Criado-Marrero
et al., 2019; Saulnier et al., 2021; Sierra-Fonseca et al., 2021).
Maintaining effective protein quality is a multistep process
spanning from synthesis, appropriate folding and conformational
stability to turnover, and is vital in neurons that do not have
the scope of cellular replacement to maintain the proteome
(Muñoz-Carvajal and Sanhueza, 2020; Giandomenico et al., 2021;
Saulnier et al., 2021). The proteostasis network, consisting of
proteasome-dependent degradation machinery and autophagic
processes is critical to maintaining the integrity of the functional
proteome. Aging-dependent progressive decline in the efficiency
of the proteostatic network is implicated in the establishment
of neurodegeneration (Giandomenico et al., 2021). MS evokes
significant disruption in expression of components of both
the ubiquitin-proteasome system and the autophagy-lysosomal
pathway in the hippocampus with changes noted in young
adulthood (3 months), and specific alterations persisting well into
middle-aged life (16 months). It is interesting that these changes
appear to be restricted to the hippocampus and are not observed
in the neocortex, suggesting differential vulnerability of neuronal
circuits (Sierra-Fonseca et al., 2021). A recent report indicates
that MIA evokes a sex-specific integrated stress response, evoking
disrupted proteostasis in the cortex of embryonic 14.5 and
18.5 day old male fetuses, that is linked to the emergence
of perturbed social and stereotypic behavior via a cytokine-
dependent mechanism (Kalish et al., 2021). Early adversity could
aggravate the aging-evoked UPR, in particular in the context
of mitochondrial proteins, and serve as an early molecular
signature that accelerates neuronal impairment (Muñoz-Carvajal
and Sanhueza, 2020). Postnatal metabolic stress results in a
perturbed UPR in the hippocampus and hypothalamus at
3 months of age, raising the intriguing possibility that the toxic
combination of early adversity and metabolic insults could be
a potent insult that disrupts healthy brain aging in animals
as early as young adulthood (Pinto et al., 2016; Chen et al.,
2021). Early adversity is a risk factor for neurodegeneration,
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which is linked to a disruption of proteostasis and perturbed
amyloidogenic processing in 6–12 month old genetic mouse
models of Alzheimer’s disease subjected to LBN (Sarter and
Bruno, 2004; Dallé and Mabandla, 2018; Lesuis et al., 2018b,a).
LBN enhances hippocampal Aβ40 and Aβ42 levels, primary
components of amyloid plaques, in 6–12 months old male
animals (Lesuis et al., 2018b). Further, gestational stress, MS
and LBN enhance plaque burden, hasten cognitive decline noted
at 9–12 months of age and shorten life expectancy in genetic
mouse models of Alzheimer’s disease (Lesuis et al., 2016, 2018b;
Hui et al., 2017; Jafari et al., 2019). However, there are also
contradictory reports, wherein LBN does not alter the course
of cognitive or neurogenic decline in 8–10 month old genetic
Alzheimer’s disease animal models (Hoeijmakers et al., 2018).
Whilst several reports link early adversity to mitochondrial
dysfunction, there is still a paucity of detailed reports examining
the influence of early adversity on proteostasis, UPR and
autophagy in the brain, in particular across the life-span.

EARLY ADVERSITY, EPIGENETIC AND
TRANSCRIPTIONAL DYSREGULATION

Amongst the foremost candidates for mediating the persistent
effects of early adversity is a perturbed epigenetic landscape,
thus driving transcriptional changes that hasten aging-evoked
changes (Szyf, 2009; Doherty and Roth, 2018; Zannas, 2019;
Palma-Gudiel et al., 2020). In animals exposed to early adversity,
cognitive decline emerges as early as 12 months, and has
been correlated with an altered epigenome in the hippocampus
and PFC (Brunson et al., 2005; McClelland et al., 2011; Suri
et al., 2013, 2014; Short et al., 2020). Several studies indicate
altered expression of epigenetic machinery and of epigenetic
modifications in the promoter regions of stress-responsive genes,
such as the glucocorticoid receptor (GR) and brain derived
neurotrophic factor (BDNF), with only a few reports examining
these changes across the life-span (Roth and Sweatt, 2011;
Suri et al., 2013; Pusalkar et al., 2016; Seo et al., 2016, 2020;
Liu and Nusslock, 2018; Mourtzi et al., 2021). Several of the
epigenetic and transcriptional changes evoked by early adversity
are sex-dependent (Parel and Peña, 2022). MS is associated
with dysregulated expression of the “writer” and “eraser” class
of histone modifying enzymes, as well as DNA modifying
enzymes, which in specific cases persist across the life-span,
well into middle-aged life (15 months) (Pusalkar et al., 2016).
This could contribute to global transcriptional changes in limbic
brain regions, in particular within the hippocampus as observed
at 15 months of age by Suri et al. (2014) (Marrocco et al.,
2019; Peña et al., 2019; Usui et al., 2021). 15 month old
MS animals exhibit perturbed expression of genes associated
with calcium homeostasis, neuroinflammation, synaptogenesis,
autophagy, proteasomal function, and cellular responses to stress
(Suri et al., 2014). The nature of transcriptional dysregulation
evoked by early adversity varies based on age, highlighting the
importance of life-span studies (Suri et al., 2014). Amongst the
key genes targeted by early adversity is GR, which plays a key role
in mediating stress responses and HPA axis regulation. Diverse

models of early adversity exhibit enhanced CpG methylation at
the GR promoter in the hippocampus in young adults, driving
reduced GR expression and disrupting the negative feedback
regulation of the HPA axis (Weaver, 2007; Smart et al., 2015). This
would enhance circulating corticosteroid levels, thus impacting
neuronal atrophy and cognitive decline (McEwen, 2007). Aging
is associated with enhanced circulating corticosteroid that
negatively impact hippocampal neuron structure and function
(Yau and Seckl, 2012). Following early adversity, animals have
enhanced baseline, circadian and stress-evoked corticosteroid
levels, compromising hippocampal cytoarchitecture/function
and enhancing cognitive decline (McEwen, 2007). GRs and
BDNF, both of which are dysregulated by early adversity,
profoundly influence mitochondria (Daskalakis et al., 2015).
GRs translocate into mitochondria, can regulate oxidative
phosphorylation associated nuclear-encoded and mitochondrial
gene expression, and influence bioenergetics (Psarra and Sekeris,
2009; Picard et al., 2014). BDNF, which is shown to exhibit a
robust decline in the hippocampus and PFC of 15 month old
animals subjected to early stress, can influence mitochondrial
biogenesis and transport (Roth et al., 2009; Suri et al., 2013;
Markham et al., 2014). The disrupted dyad of BDNF-GR
signaling could influence cellular changes spanning from altered
mitochondrial structure/function to dendritic atrophy, and at the
organismal level perturb the neuroendocrine milieu and drive
neurodegenerative decline (Rothman and Mattson, 2013; Suri
and Vaidya, 2013; Daskalakis et al., 2015). A prior study indicates
a marked reduction in expression of genes linked to antioxidant
responses and DNA repair in the aging human neocortex after
40 years of age with enhanced oxidative DNA damage associated
with the promoters of these downregulated genes likely due to
attenuated base-excision repair mechanisms (Lu et al., 2004).
Though speculative, one can envisage that early adversity could
cumulatively enhance oxidative damage to DNA, RNA, proteins,
and lipids (Karanikas et al., 2021). This is supported by evidence
of hastened telomere attrition noted in 4–5 year old children
that experienced childhood maltreatment, and phenocopied in
animal models of early adversity (Drury et al., 2012; Price et al.,
2013; Ridout et al., 2018). Amongst the implicated mediators
of such DNA damage and telomere shortening following early
adversity are the toxic cocktail of glucocorticoid-evoked oxidative
stress, mitochondrial dysfunction, enhanced proton leak and
neuroinflammation (Swaab et al., 2005; Casagrande et al.,
2020).

EARLY ADVERSITY,
NEUROINFLAMMATION, STRUCTURAL
AND COGNITIVE DECLINE

Early stress triggers neuroimmune responses that drive
prolonged, pathological and maladaptive neuroinflammation
(Ganguly and Brenhouse, 2015; Nettis et al., 2020).
Neuroinflammatory states evoked by early stress have been
reviewed extensively, with evidence pointing to an induction of
inflammatory cytokines, astrogliosis, and microglial activation
(Ganguly and Brenhouse, 2015; Desplats et al., 2020). Most
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studies examine consequences of early adversity in postnatal
or adult life, and do not address the long-term consequences
on neuroinflammation (Delpech et al., 2016; Réus et al., 2019;
Desplats et al., 2020; Dutcher et al., 2020; Reshetnikov et al.,
2020; Kim et al., 2021). One of the reports indicates that MS
increases microglial numbers/activation in 10 month old animals
(Criado-Marrero et al., 2020), but few studies have actually
followed animals with a history of early adversity across the
life-span, to address the temporal and circuit-specific emergence
of neuroinflammatory signatures (Ganguly and Brenhouse, 2015;
Tay et al., 2018; Andersen, 2022). However, it is noteworthy
that in some models of early stress (MIA), neuroinflammatory
changes do not appear to contribute to synaptic atrophy and
cognitive decline, with no changes reported in microglia or
reactive astrocytes in 22 month old animals with a history of
MIA (Giovanoli et al., 2015). Adult female, but not male, mice
(2–3 months of age) with a life history of being subjected to
fragmented maternal care showed deficits in reversal learning,
suggesting a sex-specific influence of early adversity on cognition
(Goodwill et al., 2018). This raises the possibility that while
neuroinflammation is a consequence of early adversity, it
remains poorly understood whether it is a causal contributor to
accelerated aging-evoked neuronal and functional decline (Merz
and Turner, 2021). It also highlights the critical importance
of addressing potential sex differences in the pattern, onset
and magnitude of neuroinflammatory changes evoked by
early adversity, as neurohormones may exert a profound
impact in modifying the trajectory of neuroinflammatory
signatures (Ganguly and Brenhouse, 2015; González-Pardo et al.,
2020).

The aging brain has several hallmark features, including
atrophy of vulnerable neuronal populations and marked
cognitive impairments (Fjell and Walhovd, 2010). Amongst the
brain regions most extensively studied in this regard are the
PFC and hippocampus, with dendritic atrophy, reduced spine
density, decreased hippocampal neurogenesis, cellular shrinkage
and volumetric loss being the key reported features (Figure 1C;
McEwen and Morrison, 2013; Bartsch and Wulff, 2015). Several
of these changes evoked by early adversity have been shown
to be sex-dependent. In rats exposed to pre-pubertal stress,
adult hippocampal neurogenesis is altered in adulthood in
males, but not in females (Brydges et al., 2018). Further, in
rats exposed to MS, females exhibit a more elaborate dendritic
morphology and reduced thin spine density in infralimbic
pyramidal neurons of the mPFC, which is not observed in
male rats when examined at postnatal day 40 (Farrell et al.,
2016). Several of these changes arise in a milieu associated
with enhanced oxidative stress, mitochondrial dysfunction,
disrupted proteostasis, neuroinflammatory signatures and an
epigenetic milieu that drives reduced growth factor and enhanced
inflammatory cytokine expression (Mattson and Arumugam,
2018). Early stress is associated with a long-lasting BDNF
dysregulation in the hippocampus and/or PFC noted well into
aged life reported at the age of 15 months (Suri et al., 2013)
and 22 months (Giovanoli et al., 2015), along with a robust
decline in hippocampal neurogenesis reported at the age of
10 months (Ruiz et al., 2018) and 15 months (Suri et al., 2013).

The effects of early adversity on neurotransmitters and growth
factors are suggested to be sex-dependent, which has been
reviewed extensively by Perry et al. (2021). Neural stem cells
shift to quiescence with aging, but continue to show similar
proliferative capacity upon activation. Early stress is suggested
to impair this proliferative capacity in aging neural stem cells,
dampening the capacity for repair (Suri et al., 2013; Kalamakis
et al., 2019). Several early stress models (MS, LBN, MIA,
and MD) exhibit significant cognitive impairments in middle-
aged and aged life (Brunson et al., 2005; Sterlemann et al.,
2010; Suri et al., 2013; Sousa et al., 2014; Giovanoli et al.,
2015; Yajima et al., 2018). The preponderance of literature
using early stress models reporting changes at the epigenetic,
transcriptional, mitochondrial, proteostatic, neuroinflammatory,
cytoarchitectural and behavioral level is at best correlative, but
thus far does not provide a clear causal relationship between
changes at distinct levels of organization that mechanistically
drive the accelerated aging phenotype evoked by early adversity.

CONCLUSION

Early adversity disrupts the functioning of key physiological
processes that facilitate adaptive stress responses, setting in
motion a cumulative “allostatic load” that alters the nature and
time-line of healthy brain aging. Further, early adversity could
also impact key neurodevelopmental milestones, which could
alter the optimal functioning of neurocircuits thus setting up a
substratum for a disruption of the trajectory for brain aging. The
interim duration between exposure to early stressors and eventual
brain aging outcomes provides a substantial temporal window
for interventional approaches, including life-course factors such
as exercise, diet, environmental enrichment, epigenetic and
pharmacological interventions that may serve to reverse or
ameliorate the negative impacts of early adversity on brain aging.
Here we have provided an overview of the key brain aging-
associated processes targeted by early adversity, and highlighted
gaps in knowledge that require future investigation.
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