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Abstract

Severe trauma-related bleeding is associated with high mortality. Standard coagulation tests provide limited

information on the underlying coagulation disorder. Whole-blood viscoelastic tests such as rotational

thromboelastometry or thrombelastography offer a more comprehensive insight into the coagulation process in

trauma. The results are available within minutes and they provide information about the initiation of coagulation,

the speed of clot formation, and the quality and stability of the clot. Viscoelastic tests have the potential to guide

coagulation therapy according to the actual needs of each patient, reducing the risks of over- or under-transfusion.

The concept of early, individualized and goal-directed therapy is explored in this review and the AUVA Trauma

Hospital algorithm for managing trauma-induced coagulopathy is presented.

Keywords: ROTEM, TEG, trauma, goal-directed coagulation therapy

Introduction

Major brain injury and uncontrolled blood loss remain

the primary causes of early trauma-related mortality

[1-3]. One-quarter to one-third of trauma patients exhi-

bit trauma-induced coagulopathy (TIC) [4,5], which is

associated with increased rates of massive transfusion

(MT) and multiple organ failure (MOF), prolonged

intensive care unit and hospital stays, and a four-fold

increase in mortality [4]. Most patients with coagulopa-

thy also have uncontrolled bleeding, and early diagnosis

of the underlying coagulation disorder is paramount for

effective treatment.

One major challenge in treating severely bleeding

trauma patients is to determine whether the blood loss

is attributable to surgical causes or coagulopathy. If the

patient is coagulopathic, it is paramount to characterize

the cause of the coagulopathy and whether thrombin

generation is impaired or clot quality or stability is

diminished. Recent data suggest that whole-blood vis-

coelastic tests, such as thromboelastometry (ROTEM®,

Tem International GmbH, Munich, Germany) or throm-

belastography (TEG®, Haemonetics Corp., Braintree,

MA, USA) portray trauma induced coagulopathy (TIC)

more accurately and substantially faster than standard

coagulation tests [6-8]. There is increasing evidence that

these coagulation monitoring devices are helpful in

guiding coagulation therapy for heavily bleeding trauma

patients according to their actual needs [9].

The intention of this review is to examine the concept

of individualized, early, goal-directed therapy for TIC,

using viscoelastic tests and targeted coagulation therapy.

In addition, the AUVA Trauma Hospital algorithm for

managing TIC is presented.

Value of standard coagulation tests

Fast, reliable diagnosis and characterization of TIC is

important. Standard coagulation tests (e.g. prothrombin

time [PT], international normalized ratio [INR], pro-

thrombin time index [PTI] and activated partial throm-

boplastin time [aPTT]) fail to accurately describe the

complex nature of TIC for several reasons [4,5]. In vivo

coagulation occurs primarily on the surface of platelets

and tissue factor-bearing cells [10], and red blood cells

(RBCs) also play a significant role in haemostasis [11].

Standard coagulation tests are performed using plasma

in the absence of blood cells (these are removed by cen-

trifugation). Also, these tests are stopped upon forma-

tion of the first fibrin strands, when only ~5% of the

total thrombin has been generated [12]. Moreover, these

tests do not assess the quality/the strength of the clot.
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Hyperfibrinolysis is recognized as a potential contributor

to mortality in trauma [13-15], and this aspect is not

assessed by standard coagulation tests [16].

Coagulation factors do not decrease homogeneously in

severe bleeding. Although there may be a tendency

towards excessive thrombin generation, coagulation fac-

tor levels are decreased and fibrinogen appears to reach

critical levels at an early stage [17-19]. Therefore, mea-

surement of fibrinogen concentration is strongly recom-

mended in trauma patients [14,19]. However, when

using artificial colloids, falsely high fibrinogen levels are

recorded by some coagulation analysers that employ the

Clauss method [20,21]. Artificial colloids also impair

fibrin polymerization, and standard laboratory measure-

ment does not represent fibrinogen functionality [22].

Another shortcoming of standard coagulation tests,

including fibrinogen concentration measurement, is that

the results are available only after a substantial time

delay. Median turnaround times of 78-88 minutes have

been reported [23,24].

In summary, standard coagulation tests are unable to

characterize the complex nature of TIC. They are time-

consuming and offer little prognostic value regarding

transfusion requirements [25].

Role of thromboelastometry/thrombelastography

Trauma care providers are increasingly aware that vis-

coelastic coagulation monitors such as thromboelasto-

metry (ROTEM) and thrombelastography (TEG) are

valuable alternatives to standard coagulation testing,

providing a more comprehensive overview of the coagu-

lation process [6,8,23,26-29]. In contrast to most stan-

dard coagulation measurements, ROTEM and TEG can

be used as point-of-care methods. Viscoelastic tests are

performed in whole blood as opposed to plasma, which

provides a better reflection of the in vivo situation,

avoids the need for centrifugation and allows initial

results to be available within minutes [23,30].

ROTEM and TEG tests provide dynamic information

on the speed of coagulation initiation, kinetics of clot

growth, clot strength, and breakdown of the clot [16,31].

The ROTEM device uses a plastic pin immersed verti-

cally into a cup containing the blood sample; the pin is

rotated slowly, backwards and forwards, through an

angle of 4.75°. The device has four channels, allowing

four tests to be performed simultaneously. Two basic

ROTEM tests that use intrinsic activation (INTEM) and

extrinsic activation (EXTEM) provide information on

the general coagulation status (impaired, normal, and

hypercoagulable). Figure 1 shows examples of EXTEM

plots with normal and impaired coagulation. A set of

standard reagents can additionally be used to character-

ize coagulopathy. For example, the FIBTEM test, which

comprises the EXTEM assay with added cytochalasin D

to inhibit platelets, provides information on the fibrin

component of the clot.

The TEG device uses a stationary torsion wire and the

cup is rotated. TEG is a two channel system that uses

either kaolin as an activator or a combination of kaolin

and tissue factor (’rapid TEG’ or ‘r-TEG’ assay). The

Figure 1 Examples of ROTEM traces using the EXTEM test: a. normal test result. b. reduced maximum clot firmness (MCF). c. delayed

initiation of coagulation (prolonged coagulation time [CT]). d. prolonged CT and reduced MCF. e. hyperfibrinolysis.
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functional fibrinogen test is equivalent to the ROTEM

FIBTEM test. These methods and devices are described

in detail elsewhere [16,31].

Assessment of platelet function

Platelet count provides quantitative information on plate-

let numbers, but it provides no information on platelet

function. Prior treatment with platelet inhibitors such as

aspirin or thienopyridines is commonly encountered

among emergency room patients and, although platelet

function may potentially influence patient outcomes [32],

platelet inhibitor therapy cannot be assessed adequately

by standard viscoelastic analyses [33]. POC monitoring

devices allowing rapid assessment of platelet function (e.

g. Multiplate®; Roche Diagnostics, Munich, Germany)

have been developed recently [34]. Whole blood is added

to test cells which incorporate two independent sensor

units. Platelet aggregation takes place on the sensor units

following addition of a platelet activator. Different plate-

let activators are used such as adenosine diphosphate

(ADPtest), arachidonic acid (ASPItest), and thrombin

receptor-activating peptide-6 (TRAP-6; TRAPtest). The

platelets’ ability to adhere to the metal sensors and build

aggregates is measured by the electrical resistance change

between two sensor wires. The impedance change

between each pair of wires is recorded as an aggregation

curve and expressed in “aggregation units” (U). In the

AUVA trauma hospital, Mulitplate was used as a diag-

nostic tool for assessing platelet function in all patients

admitted to the ER between 2009 and 2011 [32]. In light

of our data published in 2011, [32] we now use Multi-

plate only in patients who are unconscious (meaning that

anamnesis is impossible) or known to be taking platelet

inhibitor medication.

Rationale for massive transfusion protocols

It has been shown that the majority of massively trans-

fused patients who exsanguinated within the first 24

hours after hospital admission received insufficient

amounts of fresh frozen plasma (FFP) and platelet con-

centrate (PC) [35]. Inadequate replacement of coagula-

tion factors during the initial care was identified as the

main cause of prolonged INR upon admission to the

intensive care unit (ICU) [36]. Recent data indicate that

early and aggressive transfusion of FFP and PC is asso-

ciated with improved survival rates among major trauma

patients [37-42]. To increase the effectiveness of coagu-

lation therapy, massive transfusion protocols (MTPs)

have been implemented. Predefined sets of RBC concen-

trate, FFP and PC are issued by the blood bank after the

activation of such MTPs [43,44]. However, MTPs vary

in format between trauma centres, with different ratios

of FFP to RBCs and PC [45]. MT prediction scores have

been developed for early identification of at-risk

patients, with the aim of initiating MTPs as early as pos-

sible thereby minimizing treatment delays. These scores

are based on anatomic findings and/or rapidly available

laboratory data such as PT and base deficit [46-49].

What is the optimal ratio of FFP:RBC?

It has long been assumed that high-volume plasma

replacement therapy may potentially avoid or correct

coagulopathy in severely bleeding patients. A computer

model by Hirshberg et al. has indicated that late transfu-

sion of plasma may be insufficient for preventing or cor-

recting coagulopathy [50]. Moreover, the optimum FFP:

RBC replacement ratio was calculated in the same study

to be approximately 2:3 [50]. Similarly, data from a mili-

tary centre show that the optimal FFP:RBC ratio for

minimizing mortality among trauma patients receiving

MT is close to 1:1.4 [37]. A retrospective analysis of

civilian trauma patients reported that a high FFP:RBC

ratio (> 1:1) significantly lowers intraoperative, 24-hour

and 30-day mortality [42]. An abundance of studies sup-

port early and aggressive coagulation management with

FFP [51]. However, the optimal ratio of FFP:RBC is still

under discussion [7,52,53].

For example, Kashuk et al. suggest that the optimal

ratio of FFP:RBC appears to be in the range of 1:2 to 1:3

[7], with no improvement in survival rate among

patients receiving higher ratios. More recently, Daven-

port et al. found no improvement in coagulation status

when FFP:RBC were transfused in a ratio of 1:1 com-

pared with 1:2 or 3:4 [52]. Simmons et al. reported data

from the Iraq War in which a change of clinical practice

guidelines toward higher FFP:RBC ratios resulted in sig-

nificantly higher FFP transfusion but no improvement in

survival [54]. Similarly, implementation of an MTP tar-

geting an FFP:RBC ratio of 1:1 in a Scandinavian trauma

centre significantly increased transfusion of FFP without

improving mortality [55].

Timing of haemostatic intervention is crucial

There is no doubt that coagulation therapy should be

started as early as possible. Riskin et al. reported a signifi-

cant reduction in mortality from 45% to 19% after imple-

mentation of an MTP despite unchanged FFP:RBC ratios.

The most likely reason for the improvement was a signif-

icant reduction in mean time to administration of FFP,

from 254 to 169 minutes [56]. Early haemostatic therapy

appears to prevent the development of coagulopathy in

some patients, eliminating the need for MT; plasma

transfusion seems to be most effective during the first 2-

3 hours of care for massively bleeding patients [57].

FFP: safety and the need for selective use

High-volume FFP transfusion is associated with consid-

erable side effects [55,58-61]. Chaiwat et al. reported a
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dose-dependent relationship between FFP transfusion

and acute respiratory distress syndrome (ARDS) in

trauma patients [58]. In another study, FFP transfusion

was independently associated with increased risk of

MOF and ARDS in patients who survived beyond 48

hours [62].

There is little evidence that patients receiving < 10

units (U) of RBCs benefit from FFP transfusion. Inaba et

al. showed that in non-MT trauma patients (< 10 U

RBC/24 hours), plasma administration increased compli-

cations (e.g. ARDS, pneumonia, sepsis and MOF), with-

out improving survival [59]. Other data show a greater

increase in side effects with FFP among patients receiv-

ing < 6 U RBCs within the first 6 hours [60]. Recently,

Sambasivan et al. analysed outcome data form 1,788

non-MT patients (< 10 U RBC/24 hours) who received

FFP and PC. A high ratio of FFP:RBC and PC:RBC was

associated with fewer ventilator-free and fewer ICU-free

days [61]. Therefore, early identification of patients who

are prone to MT seems important.

In summary, FFP transfusion is associated with serious

side effects, and transfusion triggers should be chosen

carefully. In particular, patients receiving < 10 U RBCs

do not appear to benefit from FFP transfusion.

Concept of early and individualized goal-directed

coagulation therapy

In contrast to a fixed ratio of FFP:PC:RBC, goal-directed

coagulation therapy aims to adapt treatment to the

actual needs of the individual patient, based on viscoe-

lastic test results (Figure 2) [6,8]. The short turnaround

times of ROTEM and TEG assays allow rapid diagnostic

testing and individualized drug therapy to be based on

test results, with a feedback loop to monitor and opti-

mize treatment effectiveness and to minimize side-

effects. This “theragnostic” concept offers several poten-

tial advantages, and these are discussed below.

Rapid assessment of coagulation status and prediction of

the need for massive transfusion

In severe trauma patients, it is crucial to receive rapid

information on the patient’s current coagulation status.

The first ROTEM or TEG test results are available

within minutes [30]. Low maximum clot firmness

(MCF) in EXTEM, INTEM and FIBTEM or maximum

amplitude (MA, the equivalent TEG parameter) has

been identified as an important determinant of RBC

transfusion [23,30,63-67]. In one study, MA but not

standard coagulation tests (INR, PT, aPTT) was predic-

tive for blood product transfusions [66]. Leemann et al.

showed that low INTEM MCF and low haemoglobin

levels were independent risk factors for MT [63]. TEG

clot strength (G) on admission to the ER has been

reported to provide consistent prediction of MT in

trauma patients [65]. Davenport et al. observed that

ROTEM clotting times in trauma patients show only a

trend toward prolongation in coagulopathic patients

(116 vs. 66 seconds; p = 0.0068). However, EXTEM clot

amplitude < 35 mm at 5 minutes was identified as a

predictor of MT with a detection rate of 71% [23]. A

retrospective study of major trauma patients (ISS > 16)

showed that a low FIBTEM amplitude (< 4 mm) and/or

a low EXTEM amplitude (< 35 mm) at 10 minutes

(CA10) reliably predicts MT [30].

AUVA TRAUMA HOSPITAL TREATMENT

ALGORITHM FOR TIC - DIAGNOSIS

To provide rapid information on the coagulation sta-

tus of major trauma patients: run ROTEM tests

(EXTEM, INTEM, FIBTEM and APTEM) to assess

clotting times and/or clot quality on admission to

the ER. For patients who are unconscious or known

to be taking platelet inhibitor medication, Multi-

plate tests (adenosine diphosphate [ADP] test, ara-

chidonic acid [ASPI] test, and thrombin receptor

activating peptide-6 [TRAP] test) are also performed,

to assess platelet function.

Improving and maintaining clot quality in TIC

Based on the evidence available, it appears reasonable to

focus goal-directed coagulation therapy on the mainte-

nance or restoration of clot strength. Clot strength is

determined by interactions between the fibrin network,

activated platelets and activated factor XIII.

Fibrinogen supplementation

Fibrinogen seems to reach critically low levels very early

after trauma [9,13,23,30]. Current European guidelines

recommend a plasma fibrinogen concentration in

trauma patients of no less than 1.5-2.0 g/L [29]. How-

ever, there is limited evidence that fibrinogen adminis-

tration improves outcomes in trauma patients. A

retrospective military study reported increased survival

among patients receiving a high fibrinogen:RBC ratio

(0.48 g fibrinogen per unit of RBCs), compared with

those receiving a lower ratio (0.1 g fibrinogen per unit

of RBC) [68].

FFP is one potential source of fibrinogen, but it is col-

lected from healthy volunteers who may occasionally

have low fibrinogen levels. Fibrinogen concentrations of

~2 g/L have been found in both FFP and solvent-deter-

gent (SD) plasma [69]. Chowdhury et al. compared

changes in coagulation factor levels after FFP transfu-

sion of 12 mL/kg bodyweight or 35 mL/kg bodyweight,

and observed a substantial increase in fibrinogen solely

in the high-FFP volume group [70]. Prior to infusion,

FFP must be thawed and this is a time-consuming pro-

cess. Pre-thawing of FFP may avoid this delay, but sto-

rage time is limited. Lyophilized plasma, which is
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Figure 2 ROTEM-guided treatment algorithm: managing trauma-induced coagulopathy and diffuse microvascular bleeding (AUVA

Trauma Hospital, Salzburg, Austria). The algorithm represents standard operating procedure for ROTEM-guided haemostatic therapy upon

admission of trauma patients to the emergency room. In parentheses: haemostatic agents suggested for use in clinics where coagulation factor

concentrates are not available. * For patients who are unconscious or known to be taking platelet inhibitor medication, Multiplate tests

(adenosine diphosphate [ADP] test, arachidonic acid [ASPI] test, and thrombin receptor activating peptide-6 [TRAP] test) are also performed. § If

decreased ATIII is suspected or known, consider co-administration of ATIII. † Any major improvement in APTEM parameters compared to

corresponding EXTEM parameters may be interpreted as a sign of hyperfibrinolysis. ‡ Only for patients not receiving TXA at an earlier stage of

the algorithm. Traumatic brain injury: platelet count 80,000-100,000/μl. Normal values: EXTEM/APTEM coagulation time (CT): 38-79 seconds;

EXTEM/APTEM clot amplitude at 10 minutes (CA10): 43-65 mm; EXTEM/APTEM maximum lysis (ML) < 15%; FIBTEM CA10: 7-23 mm; INTEM CT:

100-240 seconds. CA10, clot amplitude at 10 minutes; BGA, blood gas analysis; BW, body weight; Ca, calcium; CT, clotting time; FFP, fresh frozen

plasma; ISS, injury severity score; MCF, maximum clot firmness; ML, maximum lysis; PCC, prothrombin complex concentrate; TXA, tranexamic acid.
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immediately available in the ER, represents a possible

future solution to these problems [71].

Cryoprecipitate, another source of fibrinogen, is still

available in the US and the UK, but it has been with-

drawn from some European countries in response to

significant safety concerns [72]. The fibrinogen content

of a unit of cryoprecipitate can vary widely, from 120 to

796 mg [73]. In patients not receiving plasma compo-

nents within the preceding 2 hours, cryoprecipitate has

been reported to produce a mean increase in fibrinogen

concentration of ~0.06 g/U [74]. If using cryoprecipitate

to increase plasma fibrinogen concentration, European

Guidelines recommend transfusion of 15-20 U in a 70-

kg adult [29]. Only limited data show improved survival

following transfusion of cryoprecipitate in trauma

patients [62].

Fibrinogen concentrate is licensed in some European

countries for congenital and acquired bleeding. It can be

reconstituted easily and quickly using sterile water or

saline [75], allowing rapid and controlled dosing.

Approximately 3 g of fibrinogen concentrate is required

to raise the plasma concentration by 1 g/L in a 70-kg

patient [76]. Fibrinogen concentrate can be administered

without thawing or cross-matching, significantly redu-

cing time to infusion [8]. In emergency cases, adminis-

tration of 6 g in 1-2 minutes has been reported [76].

Post-treatment improvements in clot formation and clot

strength can be monitored using viscoelastic tests [8,76].

The safety profile of fibrinogen concentrate appears to

be favourable with a low risk of thromboembolic events

[77-79], although the available data cannot be consid-

ered as definitive in this regard.

AUVA TRAUMA HOSPITAL TREATMENT

ALGORITHM FOR TIC

FIBTEM CA10 < 7 mm suggests insufficient fibrin

clot formation. Fibrinogen concentrate should be

administered until a FIBTEM CA10 of 10-12 mm is

reached.

Platelet transfusion

Platelets are important determinants of clot quality and

serve as a matrix for coagulation factors [11]. Upon ER

admission, platelet count < 150,000/μL has been

reported in only 4% of trauma patients with an injury

severity score (ISS) of 5 and in 18% of patients with ISS

> 45 [80].

In bleeding trauma patients, it is recommended to

maintain platelet count > 50,000/μL and in patients with

substantial brain injury, a platelet count > 100,000/μL is

suggested as optimal [29]. However, the value of platelet

transfusion in a fixed, predefined ratio for the manage-

ment of TIC is currently unclear. The reported

improvements in survival associated with platelet trans-

fusion are subject to survival and selection biases similar

to those seen with FFP and the efficacy and safety of

platelet transfusion in a predetermined ratio has not

been established. Holcomb et al. reported improved

early and late survival and decreased rates of haemor-

rhagic deaths in patients receiving a high ratio of PC:

RBC. As a potential side effect of increased platelet

transfusion, MOF increased as the PC:RBC ratio

increased [81]. The MTP published by Dirks et al.

resulted in a significant increase in PC transfusion with-

out any improvement in the survival rate [55]. Similar

results were reported by Simmons et al., who observed

that the introduction of new clinical practice guidelines

forcing early platelet transfusion resulted in no survival

benefit [54]. Thus, platelet transfusion in a fixed prede-

fined ratio carries the potential for wasting valuable

resources and the risk of complications (e.g. transfusion-

related acute lung injury, pathogen transmission).

AUVA TRAUMA HOSPITAL TREATMENT

ALGORITHM FOR TIC

EXTEM CA10 < 40 mm and FIBTEM CA10 > 12

mm and platelet count < 50,000/μL suggests suffi-

cient fibrin clot formation, but insufficient platelets

to produce adequate clot strength. Platelet concen-

trate transfusion is indicated.

Improving initiation of the coagulation process

Thrombin generation is not substantially affected in the

early stages of TIC [82]. Brohi et al. reported that gen-

eration of prothrombin fragment1-2 increased with

increasing ISS [83]. Thrombin generation in patients

with possible TIC (PT > 18 seconds or INR > 1.5) has

been reported as threefold higher than in controls (p =

0.01) [17]. The concept of of early, high-dose FFP trans-

fusion with the aim of increasing thrombin generation

must be debated in the light of adequate or even

increased thrombin generation in trauma patients upon

admission to the ER.

Coagulation time (CT) in ROTEM or reaction time (r-

time) in TEG serve as surrogate markers for the speed of

initiation of coagulation and can be considered as the

whole-blood PT or aPTT. Weiss et al. studied PTI, aPTT,

EXTEM CT and INTEM CT in a dilution model [84]. A

linear relationship was observed between either PTI or

aPTT and the concentration of coagulation factors. How-

ever, EXTEM CT remained < 80 seconds (normal range)

until coagulation factor activity fell below ~35% of normal.

Therefore, in the AUVA treatment algorithm, EXTEM

CT > 80 seconds and INTEM CT > 240 seconds indi-

cate a need for treatment to improve thrombin genera-

tion (Figure 2).
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Current options for increasing thrombin generation

during trauma-related bleeding include FFP, prothrom-

bin complex concentrate (PCC) and activated recombi-

nant factor VII (rFVIIa) [8,37,85-87]. rVIIa was studied

in two randomized controlled trials and failed to show a

survival benefit [85,88].

Limited data on the use of PCC in trauma are cur-

rently available. In one study, administration of fibrino-

gen concentrate (n = 128), along with PCC (n = 98), in

trauma patients (n = 131) produced more favourable

survival rates than those predicted by the trauma injury

severity score (TRISS) or revised injury severity classifi-

cation (RISC) score [8]. Schöchl et al. also reported sig-

nificantly higher transfusion rates for RBC and PC

among trauma patients receiving haemostatic therapy

with allogeneic blood products only, compared with

those receiving coagulation factor concentrates [86].

However, no randomized controlled trials have been

conducted to investigate this concept.

Robust safety data are lacking for the use of PCCs in

the treatment of TIC. PCC is a procoagulant drug, and a

possible risk of thromboembolic adverse events must be

considered alongside patients’ possible tendency towards

thrombosis following trauma [79,89-91]. The risk of hae-

mostatic imbalance relating to the prothrombotic nature

of PCC therapy may be offset by the use of viscoelastic

coagulation monitoring (EXTEM CT) to minimize the

risk of excessive dosing. Although some PCCs contain

the anticoagulant proteins C, S and Z, the main antago-

nist of factor II (antithrombin, ATIII) is either absent

from PCC or present in far smaller quantities than would

be needed to balance the procoagulant potential of factor

II [92]. In addition, the administered quantity of factor II

may be higher than that suggested by the labeled dose,

because PCCs are standardized according to factor IX (e.

g. in one product investigated by Kalina et al., the ratio of

FII:FIX was 1.6) [92]. Co-administration of ATIII with

PCC may be an option, particularly in patients with a

lack of coagulation inhibitors. When time is available (e.

g. oozing bleeding, in either the operating room or the

ICU), the plasma ATIII level should be measured before

PCC administration. However, clinical trial data are

needed to confirm best practice regarding potential

ATIII co-administration.

AUVA TRAUMA HOSPITAL TREATMENT

ALGORITHM FOR TIC

Prolongation of EXTEM CT > 80 seconds

1. Rule out the following reasons for CT

prolongation:

fibrinolysis (APTEM CT < EXTEM CT [not well

established for assessing fibrinolysis])

heparin effect (HEPTEM CT < INTEM CT [e.g.

following transfusion of cell- saver blood].

2. EXTEM CT > 80 seconds serves as a surrogate

parameter for insufficient thrombin generation. PCC

is a treatment option for improving thrombin

production.

Improvement of clot stability

Hyperfibrinolysis is associated with high mortality and

increased risk of MT [13-15]. Kashuk et al. reported

that even a small reduction (1 unit) in TEG clot

strength (G value) 1 hour post-injury increased mortality

by > 10%, and that primary fibrinolysis occurs in a

higher percentage of patients requiring MT than in the

overall group of trauma patients (34% vs. 18%) [13].

These observations are in line with data from the

CRASH-2 study which showed an improved survival rate

in patients receiving early antifibrinolytic therapy (tranexa-

mic acid [TXA] 1 g over 10 minutes followed by an infu-

sion of 1 g over 8 hours). Mortality in the placebo group

was 16%, whereas in the TXA group it was 14.5% [87].

Surprisingly, mortality was increased among patients

receiving TXA later than 3 hours post-trauma [93].

AUVA TRAUMA HOSPITAL TREATMENT

ALGORITHM FOR TIC

TXA (15-20 mg per kg bodyweight) should be admi-

nistered to all major trauma patients (ISS > 16), to

all trauma patients admitted in shock, and to all

trauma patients with hyperfibrinolysis confirmed by

ROTEM test results (any major improvement in

APTEM parameters compared to corresponding

EXTEM parameters).

Figure 2 depicts the “theragnostic” algorithm estab-

lished in the AUVA Trauma Hospital, Salzburg, and Fig-

ure 3 displays an example of a severe bleeding patient

treated according to this algorithm. The algorithm is

not currently supported by data from randomized con-

trolled trials, but clinical evidence has indicated its viabi-

lity in terms of safety and effectiveness [8,86]. Because

of the poor evidence base and international variations in

the approval status of coagulation factor concentrates, it

would be inappropriate to advocate widespread adoption

at this stage. However, the lack of well-designed rando-

mized controlled trials supporting the use of allogeneic

blood products must also be considered [94], together

with the empirical advantages of individualized, goal-

directed therapy.

Conclusion

The “theragnostic” concept is based on rapidly available

whole-blood viscoelastic test results. Haemostatic ther-

apy is individualized according to the patient’s actual

needs. Compared with predefined ratio-driven

Schöchl et al. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine 2012, 20:15
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approaches to administering allogeneic blood products,

individualized coagulation management potentially

reduces the risks of both under-transfusion (increased

risk of bleeding) and over-transfusion (increased risk of

ARDS, acute lung injury, sepsis and MOF). Coagulation

factor concentrates offer possible advantages over FFP,

but the potential risks must be considered carefully. To

confirm the efficacy and safety of individualized haemo-

static management based on coagulation viscoelastic

tests, randomized controlled studies are mandatory.
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