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1  | INTRODUC TION

The transition from anoxygenic to oxygenic photosynthesis initiated 

when an ancestral photochemical reaction center evolved the ca-

pacity to oxidize water to oxygen (Rutherford, 1989). Today, water 

oxidation is catalyzed in the Mn4CaO5 oxygen- evolving cluster 

of Photosystem II (PSII) of Cyanobacteria and photosynthetic eu-

karyotes. How and when Type II reaction centers diversified, and 

how and when one of these reaction centers evolved the capac-

ity to oxidize water are questions that still remain to be answered. 

While there is agreement that by 3.5 Ga (billion years before the 

present) a form of anoxygenic photoautotrophy had already evolved 

(Butterfield, 2015; Nisbet & Fowler, 2014; Tice & Lowe, 2004), the 

sedimentological and isotopic evidence for the origin of oxygenic 

photosynthesis has been interpreted to range from 3.7 Ga (Frei et al., 

2016; Rosing & Frei, 2004) to the Great Oxidation Event (GOE) at 

~2.4 Ga (Johnson et al., 2013). Molecular clock studies have gener-

ated a wider range of age estimates for the origin of Cyanobacteria 

spanning between 3.5 Ga (Falcon, Magallon, & Castillo, 2010) and 

<2.0 Ga (Betts et al., 2018; Shih, Hemp, Ward, Matzke, & Fischer, 

2017). There is thus great uncertainty and no consensus. For this 

reason, determining when PSII evolved the capacity to oxidize water 

should greatly advance our understanding of the origin of oxygenic 

photosynthesis.
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Abstract

Photosystem II is a photochemical reaction center that catalyzes the light- driven oxi-

dation of water to molecular oxygen. Water oxidation is the distinctive photochemi-

cal reaction that permitted the evolution of oxygenic photosynthesis and the eventual 

rise	of	eukaryotes.	At	what	point	during	the	history	of	life	an	ancestral	photosystem	
evolved the capacity to oxidize water still remains unknown. Here, we study the evo-

lution of the core reaction center proteins of Photosystem II using sequence and 

structural comparisons in combination with Bayesian relaxed molecular clocks. Our 

results indicate that a homodimeric photosystem with sufficient oxidizing power to 

split	water	had	already	appeared	in	the	early	Archean	about	a	billion	years	before	the	
most recent common ancestor of all described Cyanobacteria capable of oxygenic 

photosynthesis, and well before the diversification of some of the known groups of 

anoxygenic photosynthetic bacteria. Based on a structural and functional rationale, 

we	hypothesize	that	this	early	Archean	photosystem	was	capable	of	water	oxidation	
to oxygen and had already evolved protection mechanisms against the formation of 

reactive oxygen species. This would place primordial forms of oxygenic photosynthe-

sis at a very early stage in the evolutionary history of life.
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The evolution of Type II reaction center proteins has been described 

and discussed in some detail before (Beanland, 1990; Blankenship, 

1992; Cardona, 2015, 2016; Nitschke & Rutherford, 1991; Rutherford 

& Nitschke, 1996; Sadekar, Raymond, & Blankenship, 2006) and it is 

presented and schematized in Figure 1. Type II reaction centers can 

be divided into two major families: the oxygenic and the anoxygenic 

Type II reaction centers. The oxygenic Type II reaction center is also 

known as PSII, and its electron transfer core is made of two homol-

ogous reaction center proteins, D1 and D2, exclusively found in 

Cyanobacteria and photosynthetic eukaryotes. The Mn4CaO5 cluster 

is bound by D1 and the core antenna protein CP43 (Ferreira, Iverson, 

Maghlaoui, Barber, & Iwata, 2004). On the other hand, anoxygenic 

Type II reaction centers are found in phototrophic members of the 

phyla Proteobacteria, Chloroflexi, and Gemmatimonadetes, with 

the latter obtaining the reaction center via horizontal gene transfer 

(HGT) from a gammaproteobacterium (Zeng, Feng, Medova, Dean, & 

Koblizek, 2014). The core subunits of the anoxygenic Type II reaction 

centers are known as L and M and lack an oxygen- evolving cluster.

There is no doubt that D1, D2, L, and M share a common origin: 

Beanland (1990) was the first to record this but has been followed by 

many others (Cardona, 2015; Nitschke & Rutherford, 1991; Sadekar 

et al., 2006). That is to say that D1, D2, L and M, all descended from 

a single protein (denoted II in Figure 1). The earliest event in the evo-

lution of Type II reaction centers can be described as the divergence 

of this ancestral protein into two new forms, one ancestral to D1 

and D2, the oxygenic branch; and a second one ancestral to L and M, 

the anoxygenic branch (Figure 1). Hence, D1 and D2 originated from 

a gene duplication event and together make a monophyletic clade of 

Type II reaction center proteins, distinct from that which gave rise to 

L and M (Cardona, 2015, 2016). The ancestral protein to D1 and D2 

F IGURE  1 Evolution of Type II reaction 

center	proteins.	(a)	A	maximum	likelihood	
phylogeny of Type II reaction center 

proteins.	(b)	A	schematic	representation	
of	the	phylogeny	shown	in	(a).	All	reaction	
centers have common ancestry and 

descended from a homodimeric reaction 

center,	marked	A.	From	A,	two	new	
reaction centers emerged, one ancestral 

to all Type II reaction centers (II) and a 

second ancestral to all Type I reaction 

centers. This is the earliest diversification 

event of reaction center proteins that can 

be inferred from sequence and structural 

data and it is marked 1. The ancestral 

Type II reaction center protein (II) gave 

rise to two new proteins, one ancestral 

to D1 and D2, named here D0 and a 

second ancestral to L and M named K. 

The ancestral L and M subunits further 

diversify into Chloroflexi- type and 

Proteobacteria- type L and M subunits 

(5). Step 6 indicates that Type I reaction 

center proteins also diversified in parallel 

to Type II reaction center proteins. (c) 

Evolution of cyanobacterial D1 and D2, 

modified from Cardona et al. (2015). G0, 

G1, and G2 represent atypical D1 forms, 

and G3 and G4 standard D1 forms. ΔT 

marks the span of time between D0 and 

the appearance of the ancestral standard 

form of D1, which characterizes PSII 

and predates the most recent common 

ancestor of all known Cyanobacteria 

capable of oxygenic photosynthesis
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will be referred to as D0 and the ancestral protein to L and M will be 

referred to as K.

As	a	result	of	the	monophyletic	relationship	of	D1	and	D2	and	the	
conserved structural and functional characteristics between these 

two proteins, it is possible to reconstruct traits of the ancestral pho-

tosystem. Some of the conserved traits, present in both D1 and D2, 

but absent in L and M, suggest that the ancestral homodimeric pho-

tosystem, made of a D0 dimer, was already unlike any of the known 

anoxygenic Type II reaction centers and had acquired characteristics 

associated with the highly oxidizing potential required for water ox-

idation (Cardona, 2016; Cardona, Sedoud, Cox, & Rutherford, 2012; 

Rutherford & Faller, 2003; Rutherford & Nitschke, 1996). One of 

these conserved traits is a redox tyrosine–histidine pair strictly con-

served in both D1 and D2, YZ- H190 and YD- H189, respectively. The 

presence of these tyrosine–histidine pairs indicates that the mid-

point potential (Em) of the photochemical chlorophylls at the heart 

of the reaction center was oxidizing enough to generate the neutral 

tyrosyl radical on either side of the homodimeric reaction center 

(Rutherford & Faller, 2003; Rutherford & Nitschke, 1996). That is 

an Em of at least 1 V (DeFelippis, Murthy, Faraggi, & Klapper, 1989; 

DeFelippis et al., 1991), sufficient to drive the oxidation of water to 

oxygen, which has an Em of 0.82 V at pH 7 (Dau & Zaharieva, 2009; 

Tachibana, Vayssieres, & Durrant, 2012). Based on this and other ar-

guments, Rutherford and Nitschke (1996) suggested that before the 

gene duplication that led to D1 and D2, this ancestral photosystem 

was well on its way toward the evolution of water oxidation, and may 

have been able to oxidize water, even if only inefficiently.

Several types of D1 can be distinguished phylogenetically 

(Cardona, Murray, & Rutherford, 2015) and their evolution is sche-

matized in Figure 1c. The early evolving forms, referred to as atypical 

D1 forms (G0, G1, G2 in Figure 1), are characterized by the absence 

of some, but not all, of the ligands to the Mn4CaO5 cluster and 

have been recently found to be involved in the synthesis of chloro-

phyll f, which supports oxygenic photosynthesis using low energy 

far- red light (Ho, Shen, Canniffe, Zhao, & Bryant, 2016; Nurnberg 

et al., 2018); or the inactivation of PSII when anaerobic processes 

are being carried out (Murray, 2012; Wegener, Nagarajan, & Pakrasi, 

2015). The late evolving forms, referred to as the standard D1 forms, 

are characterized by a complete set of ligands to the Mn4CaO5 

cluster	and	are	 the	main	D1	used	 for	water	oxidation.	Among	 the	
standard forms, there are also several types, which have been 

roughly subdivided into two groups: the microaerobic forms of D1 

(G3) and the dominant form of D1 (G4). The microaerobic forms are 

suspected to be expressed only under low- oxygen conditions. The 

dominant form, G4, is the main D1 used for water oxidation by all 

Cyanobacteria and photosynthetic eukaryotes. Most Cyanobacteria 

carry in their genomes an array of different D1 types, yet every 

strain has at least one dominant form of D1 (G4). Therefore, all 

Cyanobacteria descended from a common ancestor that already 

had evolved efficient oxygenic photosynthesis, had a dominant form 

of D1, and was able to assemble a standard PSII virtually indistin-

guishable from that of later evolving strains. Furthermore, because 

the atypical D1 forms support or regulate oxygenic photosynthesis 

under specific environmental conditions it can be argued that when 

these branched out water oxidation to oxygen had already evolved.

Based on the phylogeny of reaction center proteins, several 

stages in the evolution of oxygenic photosynthesis can be envis-

aged: The earliest of these stages is the divergence of Type I and 

Type II reaction center proteins (1, Figure 1b); this is then followed 

by the divergence of the anoxygenic family (L/M) and the oxygenic 

family (D1/D2) of Type II reaction center proteins (2), then by the du-

plication event that led to the divergence of D1 and D2 (3), and the 

subsequent (7) gene duplication events and specializations that cre-

ated the known diversity of D1 forms, which ultimately resulted in 

the emergence of the standard form of D1. Because a photosystem 

made of a D0 had already acquired some of the fundamental fea-

tures required to oxidize water such as highly oxidizing chlorophyll 

cofactors and the capacity to generate the neutral tyrosyl radical at 

each side of the reaction center: Then, it can be suggested that some 

of the earliest stages specific to the evolution of PSII and oxygenic 

photosynthesis had occurred between stages 2 and 3 as depicted in 

Figure 1b. Therefore, the span of time between D0 and the ancestral 

standard form of D1 (marked 8 in Figure 1c) represents the duration 

of the evolutionary trajectory of PSII from a simpler homodimeric 

highly oxidizing reaction center to the more complex enzyme inher-

ited by all organisms capable of oxygenic photosynthesis. We denote 

this span of time by ΔT. If ΔT is small, such as a few million years 

or less for example, then the evolution of oxygenic photosynthesis 

may be better described as a sudden and fast process only getting 

started shortly before the GOE as suggested by some recent analy-

ses (Shih, Hemp et al., 2017; Ward, Kirschvink, & Fischer, 2016). On 

the other hand, if ΔT is large: Several hundred million years or more 

for example, then the earliest stages in the evolution of oxygenic 

photosynthesis could significantly predate the GOE as suggested 

by some geochemical (Mukhopadhyay et al., 2014; Planavsky et al., 

2014; Satkoski, Beukes, Li, Beard, & Johnson, 2015) and phyloge-

netic data (Blank & Sanchez- Baracaldo, 2010; Schirrmeister, de Vos, 

Antonelli,	&	Bagheri,	2013).
Here, we report an in- depth evolutionary analysis of Type II re-

action center proteins including Bayesian relaxed molecular clocks 

under various scenarios for the origin of photosynthesis. The data 

presented here indicate that a photosystem with the structural and 

functional requirements to support the oxidation of water to oxygen 

could	have	arisen	in	the	early	Archean	and	long	before	the	most	re-

cent common ancestor of Cyanobacteria.

2  | RESULTS

2.1 | Change in sequence identity as a function of 
time

A	 first	 approximation	 to	 the	 evolution	 of	 Type	 II	 reaction	 centers	
as a function of time can be derived from the level of sequence 

identity between D1 and D2 of different species with known or 

approximated divergence times as shown in Figure 2. For example, 
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the D1 protein of the dicotyledon Arabidopsis thaliana shares 99.7% 

amino acid sequence identity with that of the dicotyledon Populus 

trichocarpa, and these are estimated to have diverged between 127.2 

and 82.8 Ma (Clarke, Warnock, & Donoghue, 2011), see Figure 2 

and Supporting information Table S1. On the other hand, A. thali-

ana’s D1 shares 87.7% sequence identity with that of a unicellular 

red alga Cyanidioschyzon merolae. Complex multicellular red algae 

are known to have diverged at least 1.0 Ga ago (Butterfield, 2000; 

Gibson et al., 2017) and recently described fossils could push this 

date back to 1.6 Ga (Bengtson, Sallstedt, Belivanova, & Whitehouse, 

2017;	Sallstedt,	Bengtson,	Broman,	Crill,	&	Canfield,	2018).	At	 the	
other end of this evolutionary line, the three dominant forms of D1 

from Gloeobacter violaceous (G4) share on average 79.2% sequence 

identity with that of C. merolae or 78.5% with that of A. thaliana. 

If the percentage of sequence identity between pairs of species is 

plotted as a function of their divergence time, a linear decrease of 

identity is observed among reaction center proteins at a rate of less 

than 1% per 100 million years (Supporting information Table S2). The 

trend in Figure 2 indicates that the rate of evolution of D1 and D2 

since the GOE and since the emergence of photosynthetic eukary-

otes has remained very slow and stable until the present time, if con-

sidered over a large geological time scale, with less than 20% change 

in sequence identity in the past 2.0 Ga.

Now,	 if	 the	 most	 recent	 common	 ancestor	 (MRCA)	 of	
Cyanobacteria capable of oxygenic photosynthesis, defined as the 

MRCA	of	the	genus	Gloeobacter and all other extant photosynthetic 

strains, existed hundreds of millions of years before the GOE, this 

would presuppose an even slower rate of evolution of the core sub-

units of PSII. In contrast, if the rate of evolution of D1 and D2 are 

taken at face value, following the roughly uniform rate observed 

in photosynthetic eukaryotes, this would locate the divergence of 

Gloeobacter after the GOE (Figure 2, red spot): In consequence, the 

older	the	MRCA	of	Cyanobacteria,	the	slower	the	rate	of	evolution	
of the dominant form of D1 and D2. Therefore, large uncertainties in 

the fossil record of photosynthetic eukaryotes would result in only 

small changes to this trend. For example, if the divergence of red 

algae occurred as late as 1.0 Ga or as early as 2.0 Ga, this will only 

cause	a	small	shift	in	the	overall	rate.	Or	for	example,	if	the	MRCA	
of angiosperms is actually 100 million years older than currently un-

derstood, this would result in almost a negligible change in the rate 

of evolution of the dominant form of D1 and D2 compared over the 

large time scale of the planet.

Let us reiterate that all the evidence suggests that all reaction 

center proteins originated from a single ancestral protein that di-

versified as the multiple groups of photosynthetic bacteria arose. 

As	a	result	of	this	common	ancestry,	any	standard	D1	shares	on	av-

erage about 29% sequence identity with any D2 across their entire 

sequence.	Any	standard	D1	or	D2	shares	on	average	17%	sequence	
identity with any L or M. The level of sequence identity falls well 

below 10% if any Type II reaction center protein is compared with 

any	Type	I	reaction	center	protein	(Cardona,	2015).	As	a	result	of	
this, the rate of evolution of D1 and D2 since the GOE, as esti-

mated from the decrease of sequence identity (<1% per 0.1 Ga), is 

too slow to account for the evolution of photochemical reaction 

centers within a reasonable amount of time (Figure 2, dashed line). 

In other words, the rate of evolution of reaction center proteins 

since the origin of life could not have been constant, and any sce-

nario for the origin of photochemical reaction centers at any point 

in	the	Archean	requires	initially	faster	rates	of	evolution	than	any	
rate observed since the Proterozoic (Figure 2, light blue line).

Taking into consideration that D1 and D2 share only about 

29% sequence identity, two other observations can be made, as 

illustrated in Figure 2: (a) that the duplication that led to the di-

vergence of D1 and D2 is more likely to have occurred closer to 

the origin of the primordial reaction center proteins at the ori-

gin	of	photosynthesis	in	the	early	Archean,	than	closer	to	or	after	

F IGURE  2 Decrease of sequence identity of D1 and D2 proteins 

as a function of divergence time. D1 subunits are shown in gray 

and D2 in orange. The divergence time between pairs of species 

is plotted against the level of sequence identity as tabulated 

in Supplementary Table S1. The red circle, placed at 79.2%, 

corresponds to the average sequence identity of the three distinct 

Group 4 D1 sequences of Gloeobacter violaceous in comparison 

with that of Cyanidioschyzon merolae. The light orange bar marks 

the GOE. The dashed line is fitted from a linear function and shows 

that over a period of at least 2.0 Ga, no dramatic changes in the 

rates of evolution of D1 and D2 are observed. The red dashed lines 

show an extrapolation of current rates of evolution throughout 

Earth’s history. This line highlights that the rate is too slow for the 

divergence of D1 and D2 to have started right before the GOE. 

The gray dots around 3.5–3.8 Ga mark a speculative timing for the 

earliest events in the history of photosynthesis: the divergence of 

D1 and D2 (~29% sequence identity), the divergence of anoxygenic 

(L/M) and oxygenic (D1/D2) reaction center proteins (~17%), 

and the divergence of Type I and Type II reaction center proteins 

(≤10%).	The	curved	blue	line	highlights	that	any	scenario	for	the	
diversification of reaction centers after the origin of life requires 

faster rates of evolution at the earliest stages in the evolution of 

photosynthesis
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F IGURE  3 Relaxed	molecular	clock	of	Type	II	reaction	center	proteins.	A	log-	normal	autocorrelated	relaxed	clock	is	shown	implementing	
a	CAT	+	GTR	+	Γ model with flexible boundaries on the calibration points. Red dots are calibration points as described in Materials and 

Methods. The gray dot denoted II represents the ancestral Type II reaction center protein, as schematized in Figure 1. The orange dot (D0) 

marks the initial divergence of D1 and D2. The violet dot marks the divergence point between G2 atypical D1 sequences and standard D1. 

The green dot marks the divergence point between the microaerobic D1 forms (G3) and the dominant form of D1 (G4). This point represents 

the last common ancestral protein to all standard D1 forms predating crown group Cyanobacteria. The blue dot represents the origin of the 

dominant form of D1 inherited by all extant Cyanobacteria and photosynthetic eukaryotes. The gray bars represent the standard error of the 

estimated divergence times at the nodes. The orange bar shows the GOE
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the	GOE;	and	(b)	that	the	MRCA	of	Cyanobacteria	 is	more	 likely	
to have existed closer to the GOE than closer to the origin of 

photosynthesis.

2.2 | Bayesian relaxed molecular clock analysis

The simple approach used above indicates that the divergence of 

D1 and D2 is likely placed well before the GOE, to confirm this 

observation we applied a molecular clock to the phylogeny of Type 

II reaction center proteins. Figure 3 shows a Bayesian relaxed log- 

normal	autocorrelated	molecular	clock	built	using	the	CAT	+	GTR	+	Γ 

model allowing for flexible boundaries on the calibration points 

(Lartillot,	Lepage,	&	Blanquart,	2009).	As	an	informed	starting	point,	
we first specified the age of the root (root prior) at 3.5 Ga with a 

standard deviation of 0.05 Ga. That is to say, that the most ancestral 

form of a Type II reaction center protein is assumed to have already 

Root prior (Ga) II D0
Ancestral 

standard D1 ΔT (range)

CAT	+	GTR	+	Γ

 3.2 3.25 ± 0.05 2.80 ± 0.16 1.99 ± 0.19 0.80 (1.17–0.44)

 3.5 3.54 ± 0.05 3.22 ± 0.19 2.19 ± 0.24 1.02 (1.44–0.60)

 3.8 3.83 ± 0.05 3.44 ± 0.21 2.27 ± 0.24 1.17 (1.62–0.71)

 4.1 4.12 ± 0.05 3.71 ± 0.23 2.38 ± 0.25 1.32 (1.81–0.84)

CAT	+	GTR	+	Γ and removing calibration point 11

 3.5 3.52 ± 0.05 3.00 ± 0.29 1.78 ± 0.25 1.22 (1.77–0.66)

 3.8 3.81 ± 0.05 3.15 ± 0.29 1.77 ± 0.25 1.37 (1.93–0.81)

LG	+	Γ

 3.2 3.27 ± 0.05 3.19 ± 0.08 2.51 ± 0.13 0.68 (0.89–0.46)

 3.5 3.53 ± 0.05 3.40 ± 0.09 2.64 ± 0.15 0.77 (1.00–0.53)

 3.8 3.81 ± 0.05 3.64 ± 0.12 2.77 ± 0.17 0.88 (1.16–0.58)

 4.1 4.10 ± 0.05 3.91 ± 0.14 2.90 ± 0.19 1.01 (1.34–0.68)

LG	+	Γ and removing calibration point 11

 3.5 3.49 ± 0.05 3.18 ± 0.19 2.30 ± 0.20 0.87 (1.26–0.48)

 3.8 3.79 ± 0.05 3.52 ± 0.19 2.55 ± 0.22 1.38 (0.97–0.55)

TABLE  1 Effect on ΔT assuming 

different ages for the most ancestral Type 

II reaction center proteins

F IGURE  4 Effect of model selection on estimated divergence times. (a) Divergence times of key nodes in the evolution of Type II reaction 

centers	as	a	function	of	the	root	prior.	The	root	prior	was	varied	from	3.2	to	4.1	±	0.05	Ga	under	a	CAT	+	GTR	+	Γ model. The colored dots 

match selected nodes of interest in Figure 3. The thick gray bar marks the GOE and the narrow bar marks the minimum accepted age for the 

origin	of	photosynthesis.	(b)	Identical	to	(a)	but	using	a	LG	+	Γ model of amino acid substitutions. (c) Divergence times of key nodes assuming 

a root prior of 3.5 Ga as a function of the standard deviation on the root. The standard deviation was varied from 0.025 to 0.4 Ga under a 

CAT	+	GTR	+	Γ	model.	(d)	Identical	to	(c)	but	using	a	LG	+	Γ model. In every case, D0 is the oldest node after the root and the magnitude of 

ΔT is always in the range of a billion years
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evolved by 3.5 Ga. Under these conditions, the last common ances-

tral protein to the standard form of D1 prior to the divergence of the 

G3 and G4 types (Figure 3, green dot) is timed at 2.19 ± 0.22 Ga. On 

the other hand, D0 (Figure 3, orange dot) is timed at 3.22 ± 0.19 Ga. 

It follows then that the difference in time between D0 and the first 

standard form of D1, ΔT, is 1.02 Ga, with the level of uncertainty 

on the estimated ages resulting in a range for ΔT between 1.44 and 

0.60 Ga (see Table 1 and Figure 4a and b). This large ΔT agrees with 

the predictions made from the comparisons of sequence identity 

plotted in Figure 2.

To test the effect of different root priors on our results, we 

varied the age of the root and the standard deviation over a broad 

range. Table 1 lists estimates of divergence times of key ancestral 

Type II reaction center proteins and the respective ΔT value using 

different root priors. For example, under the assumption that Type 

II reaction centers had already evolved by 3.8 Ga ago (Czaja et al., 

2013; Nisbet & Fowler, 2014; Rosing, 1999), ΔT is found to be cen-

tered at 1.17 Ga. Similarly, if it is assumed to be a late event occurring 

at 3.2 Ga, though unlikely, ΔT is still 0.80 Ga. Furthermore, increas-

ing the standard deviation on the root prior pushes the timing of the 

earliest events in the evolution of Type II reaction centers to even 

older ages rather than younger ages, see Table 2 and Figure 4c and 

d. For example, a root prior of 3.5 Ga with a standard deviation of 

0.1 Ga pushes the estimated time for the root to 3.65 Ga, making D0 

3.30 ± 0.27 and generating a ΔT of over a billion years.

The Bayesian clock using flexible boundaries on the calibration 

points consistently produced ages for the divergence of the D2 

subunit of G. violaceous and the dominant form of D1 (G4) after 

the GOE, similar to the ages reported by Shih, Hemp et al. (2017). 

Yet,	previous	molecular	clocks	have	suggested	that	the	MRCA	of	
Cyanobacteria might predate the GOE (Schirrmeister, Gugger, & 

Donoghue, 2015), so we also performed a similar analysis that 

allowed us to explore this scenario. This was achieved using an 

empirical	 amino	 acid	 substitution	 model	 (LG	+	Γ) instead of the 

non- parametric approach described above. We found this to be the 

only way to locate the D2 of G. violaceous and the dominant form 

of D1 (G4) before the GOE. The effect of less flexible boundaries 

on the estimated divergence times is shown in Tables 1 and 2, and 

Figure 4b and d. For example, assuming a root at 3.5 ± 0.05 Ga, the 

estimated divergence time for the standard form of D1 becomes 

2.64 ± 0.15 Ga and pushes D0 back to 3.40 ± 0.09 Ga, making ΔT 

0.77 Ga. On the other hand, if we allowed flexibility on the root 

prior by increasing the standard deviation to 0.4 Ga (Table 2), the 

estimated divergence time for the standard form of D1 becomes 

2.83 ± 0.21, but the estimated age of the root is pushed back to 

3.92 ± 0.21 Ga with D0 at 3.79 ± 0.21, making ΔT about a billion 

years.	 Overall,	 placing	 the	 MRCA	 of	 Cyanobacteria	 before	 the	
GOE pushes the gene duplication event that led to the divergence 

of D1 and D2 even closer to the origin of Type II reaction centers 

and to the origin of photosynthesis, just as predicted by the com-

parison of the level of sequence identity.

2.3 | Rates of evolution

The inferences derived from Figure 2 revealed that the rates of evo-

lution	had	to	be	faster	in	the	initial	stages	during	the	Archean	com-

pared with the Proterozoic, even when ΔT is as large as one billion 

years. To gain a better understanding of the changes of the rate of 

evolution of Type II reaction center proteins, we plotted the rates as 

a function of divergence time. In Figure 5a, the rate of evolution (ν) 

of each node in the tree, expressed as amino acid substitutions per 

site per unit of time, is plotted against the estimated divergence time 

for each respective node. It can be seen that the rate at the earliest 

stage is much faster than the rates observed since the Proterozoic. 

Thus, faster rates are necessary to explain the origin and evolution 

of	Type	II	reaction	centers	at	any	point	in	the	Archean	and	regard-

less of when exactly photosynthesis originated, as seen in Figure 5b. 

The decrease in the rate of evolution is consistent with the observa-

tions derived from Figure 2 and can be roughly fitted with a first- 

order exponential decay curve (fitting parameters are presented in 

Supporting information Table S3). Figure 5a additionally shows that 

L and M have been evolving at a faster rate than D1 and D2. From 

SD (Ga) II D0
Ancestral 

standard D1 ΔT (range)

CAT	+	GTR	+	Γ

 0.025 3.50 ± 0.03 2.99 ± 0.22 2.07 ± 0.22 0.91 (1.31–0.46)

 0.05 3.54 ± 0.05 3.22 ± 0.19 2.19 ± 0.24 1.02 (1.44–0.60)

 0.10 3.65 ± 0.10 3.29 ± 0.26 2.22 ± 0.23 1.07 (1.56–0.57)

 0.20 4.00 ± 0.19 3.61 ± 0.32 2.32 ± 0.25 1.32 (1.87–0.70)

 0.40 4.82 ± 0.38 4.55 ± 0.44 2.50 ± 0.28 1.74 (2.48 – 1.01)

LG	+	Γ

 0.025 3.51 ± 0.02 3.36 ± 0.09 2.61 ± 0.15 0.75 (0.98–0.51)

 0.05 3.53 ± 0.05 3.37 ± 0.11 2.62 ± 0.15 0.75 (1.00–0.48)

 0.10 3.60 ± 0.09 3.45 ± 0.13 2.67 ± 0.16 0.79 (1.07–0.50)

 0.20 3.75 ± 0.14 3.62 ± 0.16 2.74 ± 0.18 0.88 (1.21–0.53)

 0.40 3.92 ± 0.21 3.79 ± 0.21 2.83 ± 0.21 0.96 (1.37–0.53)

TABLE  2 Effect of varying the 

standard deviation (SD) on the root prior 

at 3.5 Ga
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this slow- down of the rates, it can be calculated that since each re-

spective duplication event (stages 2 and 4 in Figure 1) it took about 

168 million years for D1 and D2 to fall to 50% sequence identity and 

about 115 million years for the same to occur for L and M.

The maximum rate of evolution in the D1 and D2 family of re-

action center proteins is placed at the node that represents D0. We 

will refer to this rate as νmax. Figure 5a shows that the rate of evolu-

tion flattens out to comparatively slow rates during the Proterozoic. 

These rates correspond to the rates of Group 4 D1 and D2. We will 

refer to the average rate of evolution during this zone of slow change 

as νmin and it is calculated as the average rate from each node in 

Group 4 D1 and D2. In Figure 5a, νmax is 5.03 ± 1.42 amino acid sub-

stitutions per site per Ga, while νmin is 0.12 ± 0.04 substitutions per 

site per Ga. Therefore, if Type II reaction centers had evolved by 

3.5 Ga, to account for the divergence of D1 and D2 in one billion 

years, the initial rate of evolution had to be about 40 times larger 

than	that	observed	since	the	MRCA	of	Cyanobacteria.
Table 3 lists the rates of evolution of a diverse number of pro-

teins reported in independent studies in a broad range of organ-

isms. It is found that the rate of evolution of the core subunits 

of PSII (νmin) is similar to the rate of other proteins that are bil-

lions of years old and highly conserved such as subunits of the 

ATP	synthase,	the	cytochrome	b6f complex, or the ribosome. Our 

estimated rates fall well within the expected range of other cya-

nobacterial proteins, thus validating our calibration choices and 

consistent with the expected level of sequence identity as derived 

from Figure 2. Furthermore, even νmax is found to be within plausi-

ble levels when ΔT is about a billion years: slower than known fast 

evolving proteins such as peptide toxins (Duda & Palumbi, 1999), 

the influenza virus (Carrat & Flahault, 2007), or proteins of the 

immune system (Hughes, 1997; Table 3).

A	 rate	 of	 evolution	 of	 0.12	 substitutions	 per	 site	 per	 Ga,	 as	
seen for standard D1 and D2, means that it would take about 8 

billion years for each position of the sequence to have changed 

at least once, assuming—just for the sake of simplicity—that each 

position has a similar chance of mutating. This very slow rate of 

evolution is the reason why standard D1 and D2 have changed 

little in more than 2.0 Ga, as seen in Figure 2. In contrast, the fast 

evolving peptide neurotoxins of the venomous gastropod Conus 

have been estimated to evolve at a rate of about 17 substitutions 

per site per Ga, which is about 140 times faster than D1 and D2. 

It means that each position in the sequence is expected to have 

changed at least once after only 60 Ma. In other words, it would 

take about 60 Ma for two identical neurotoxin peptides to lose all 

sequence identity. Unlike the slow- evolving and highly conserved 

proteins of bioenergetics (including D1 and D2), which are under 

strong purifying selection, neurotoxins, viruses, or the immune 

system has evolved to generate change at the amino acid level 

within a few generations or within the lifetime of the organism. 

From these comparisons in the rates, it can be concluded that the 

homodimeric stage (D0) was likely very short- lived, even when ΔT 

is in the order of a billion years.

F IGURE  5 Rates of evolution as a function of time. (a) Change in the rate of evolution of oxygenic (gray) and anoxygenic (orange) Type 

II reaction center proteins. The rates correspond to the tree in Figure 3, assuming an origin of photosynthesis at about 3.5 Ga. The dashed 

lines represent a fit of a single- component exponential decay and the rates are given as amino acid substitutions per site per million years. 

(b) Changes in the rate of evolution constraining the root to younger and younger ages. The red curve farthest to the right was calculated 

using a root prior of 4.2 ± 0.05 Ga, while the green curve farthest to the left was calculated using a root prior of 0.8 ± 0.05 Ga. Younger 

divergence times imply initial faster rates of evolution. (c) Change in the rate of evolution as a function of ΔT, the dashed lines represent a 

fit to a power law function. The curve in orange was calculated using ΔT values subtracting the mean average of the divergence times of D0 

and the ancestral standard D1. The curve in gray was calculated using ΔT values subtracting the minimum age of D0 and the maximum age 

for ancestral standard D1
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Our Bayesian analyses show that the evolution of PSII is better 

described by a long span of time since the appearance of a homodi-

meric photosystem (with sufficient power to oxidize water) until the 

emergence of standard PSII (inherited by all known Cyanobacteria 

capable of photosynthesis). Notwithstanding, a fast rate of evolution 

at the earliest stage implies that νmax would increase if ΔT is consid-

ered to be smaller, as would be the case for an evolutionary scenario 

in which PSII evolves rapidly before the GOE after an event of gene 

transfer of a bacteriochlorophyll a- based anoxygenic Type II reac-

tion center with low oxidizing power (i.e., before the evolution of 

tyrosine oxidation) like those found in phototrophic Proteobacteria 

and Chloroflexi (Shih, Hemp et al., 2017; Soo, Hemp, Parks, Fischer, 

& Hugenholtz, 2017). We illustrate this concept in Figure 5b and c. 

These figures depict the change of the rate of evolution as a function 

of ΔT. This manipulation of the molecular clock can only by accom-

plished computationally by changing the root prior to younger and 

younger ages. The increase of νmax with decreasing ΔT can be fitted 

using a power law function (see Supporting information Table S4 for 

fitting parameters). This function can then be used to calculate νmax 

under varying ΔT.

For example, Ward et al. (2016) calculated that the planet could 

have become oxygenated within just one hundred thousand years 

from the origin of oxygenic photosynthesis. Thus, in a hypothetical 

scenario in which a non- photosynthetic ancestor of Cyanobacteria 

obtained photosynthesis via HGT from an anoxygenic phototroph, 

and this transferred reaction center evolved standard levels of ox-

ygen evolution within one hundred thousand years (ΔT = 0.1 Ma), 

then νmax would need to be more than 400 thousand amino acid 

changes per site per Ga, which is orders of magnitude greater than 

the rate of evolution of any known protein (Table 3). If ΔT is hypoth-

esized to be 100 Ma instead, this would require a νmax of about 33 

amino acid substitutions per site per Ga, while less extreme, it is 

still twice the rate of short peptide neurotoxins. Unlike neurotoxins, 

photosynthetic reaction centers are highly regulated large multisub-

unit membrane protein complexes binding dozens of cofactors at 

precise orientations and distances to allow efficient photochemistry 

Rate (Amino acid substitu-
tions per site per Ga) References

D0 (νmax) 5.03 This worka

Group 4 D1 and D2 (νmin) 0.12 This worka

K 6.11 This worka

L and M 0.61 This worka

PsaA,	Photosystem	I	core	
subunit (Cyanobacteria)

0.09 Sanchez- Baracaldo (2015)

AtpA,	ATP	Synthase	CF1	Alpha	
Chain (Cyanobacteria)

0.08 Sanchez- Baracaldo (2015)

PetB, Cytochrome b6 

(Cyanobacteria)

0.05 Sanchez- Baracaldo (2015)

RpsM, S13 Ribosomal Protein 

Translation (Cyanobacteria)

0.13 Sanchez- Baracaldo (2015)

L1 Ribosomal Protein 

(Cyanobacteria)

0.11 Sanchez- Baracaldo (2015)

ADP-	glucose	pyrophosphory-
lase large subunit (plants)

1.2 Georgelis, Braun, and 

Hannah (2008)

PRTB Proteinb (humans) 0.13 Matsunami, Yoshioka, 

Minoura, Okano, and Muto 

(2011)

Alcohol	dehydrogenase	
(ascidians)

0.27 Canestro et al. (2002)

Protein- L- isoaspartyl (D- 

aspartyl) O- methyltransferase 

(bacteria to humansc)

0.39 Kagan, McFadden, 

McFadden, O’Connor, and 

Clarke (1997)

Peptide neurotoxins 

(gastropods)

17 Duda and Palumbi (1999)

Hepatitis C Virus 3,700 Bukh et al. (2002)

Influenza	virus	type	A	(H1) 5,800 Carrat and Flahault (2007)

aEstimated using a root prior of 3.5 Ga under a autocorrelated log- normal molecular clock as de-

scribed in the text and Materials and Methods. bProline- rich transcript overexpressed in the brain 

(PRTB). The human protein shares 99% sequence identity compared to that in mice. Rodents are 

estimated to have diverged about 74 Ma ago (Kay & Hoekstra, 2008). cThe authors pointed out that 

the rate of evolution of this methyltransferase has remained unchanged from bacteria to humans. 

TABLE  3 Comparison of rates of 

protein evolution
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to occur. Even the “simplest” known homodimeric reaction center is 

made of at least four protein subunits binding 62 chlorophyll- derived 

pigments, two carotenoids, two lipids, four Ca2+ ions, and a Fe4S4 

cluster (Gisriel et al., 2017). It is therefore likely that reaction cen-

ters have always been under strong purifying selection (Shi, Bibby, 

Jiang, Irwin, & Falkowski, 2005). In fact, even the scenario in which 

ΔT is a billion years (νmax = 5.03 ± 1.42) may be an overestimation 

and could potentially indicate that the age of the duplication event 

that led to D1 and D2 occurred immediately after the origin of the 

earliest reaction center. In consequence, the evolution of the core 

subunits of PSII is more consistent with a scenario in which oxygenic 

photosynthesis originated long before the GOE as supported by the 

geochemical record of inorganic redox proxies (Crowe et al., 2013; 

Havig, Hamilton, Bachan, & Kump, 2017; Planavsky et al., 2014; 

Wang et al., 2018).

2.4 | The D1/D2 duplication is older than the L/M 
duplication

In Figure 3, it can also be seen that the divergence of the L and M 

subunits occurs after the divergence of D1 and D2. The estimated 

time for the divergence of L and M is 2.87 ± 0.16 Ga, while the time 

for the divergence of D1 and D2, as we saw above, is 3.22 ± 0.19 Ga. 

Because no calibration points were set on L and M, greater levels of 

uncertainty are observed in this part of the tree: Hence, we refrain 

from making strong inferences on the timing of specific diversifica-

tion events within phototrophic Proteobacteria or Chloroflexi and 

only focus on the general trends. Still, we found the above result 

puzzling as it would place the roots of PSII before the roots of anoxy-

genic	Type	 II	 reaction	centers.	After	a	closer	 inspection,	we	noted	
that this effect is caused by faster rates of evolution computed for 

L and M, relative to D1 and D2, across all time points (Figure 5a and 

Table 3). In consequence, at a faster rate of evolution, it would take 

less time for L and M to converge to node K than D1 and D2 to 

node D0. What is more, the phylogeny of Type II reaction centers, as 

seen in Figure 1, also shows that L and M branches are overall longer 

than D1 and D2 branches, which is suggestive of accelerated rates. 

Longer branches can be caused by a relatively early diversification 

due to a slow rate of evolution, or alternatively by a late diversifica-

tion indicating comparatively faster rates. One question remains: Is 

this result an artifact of phylogenetic reconstruction given the lack 

of constraints on L and M, or does it have biological significance?

That anoxygenic phototrophs are displaying higher rates of 

evolution than Cyanobacteria is supported by other independent 

molecular clock studies (Magnabosco, Moore, Wolfe, & Fournier, 

2018; Shih, Ward, & Fischer, 2017). For example, the level of 

sequence identity between L in Roseiflexus castenholzii and L in 

Chloroflexus sp. Y- 400- fl, two relatively distant phototrophs of the 

phylum Chloroflexi, is about 45%. In comparison, the level of se-

quence identity between standard D1 in Gloeobacter and D1 in 

Arabidopsis is just under 80%, as we saw above. Shih, Ward et al. 

(2017)	 calculated	 that	 the	 MRCA	 of	 phototrophic	 Chloroflexi	
occurred about 1.0 Ga ago. That date would imply that the L in 

Roseiflexus and Chloroflexus lost 55% sequence identity since 

their most recent common ancestor about 1.0 Ga ago (1% loss for 

every ~18 Ma). If the estimated age reported by Shih, Ward et al. 

(2017) is correct, that would make the rate of evolution of L in 

the Chloroflexi about 5.5 times faster than D1 or D2 (1% loss for 

every ~100 Ma assuming Gloeobacter branched out 2.0 Ga ago). 

Magnabosco	et	al.	(2018)	computed	an	age	for	the	MRCA	of	pho-

totrophic Chloroflexi of 2.1 Ga (obtained with their Model D), 

which would make the rates of evolution of L 2.6 times faster than 

D1 and D2. The average rate of evolution for L and M calculated 

by our molecular clock is 0.61 ± 0.19 substitutions per site per Ga, 

while that for D1 and D2 is 0.12 ± 0.04 (see Table 3). Therefore, 

according to our clock L and M are evolving on average 4.7 times 

faster than D1 and D2. This result is nicely within the range sug-

gested by the two independent studies referenced above and 

confirms that our approach using a single protein produced similar 

rates of evolution as those computed using a large set of highly 

conserved concatenated sequences (Magnabosco et al., 2018; 

Sanchez- Baracaldo, 2015; Shih, Hemp et al., 2017).

It is worth noting here that under every scenario tested in this 

study, the duplication leading to D1 and D2 was always found to 

be the oldest node after the root. The late divergence of L and M 

relative to D1 and D2 does not seem to be artifactual but a conse-

quence of the apparent faster rates of evolution measured in anoxy-

genic	phototrophs.	A	ramification	of	this	is	that	the	hypothesis	that	
Cyanobacteria obtained a Type II reaction center via HGT from an 

anoxygenic phototroph, right before the GOE, becomes untenable 

because D1 and D2 would predate L and M.

2.5 | Sensitivity analysis

To test the reliability of the method, we explored a range of con-

trasting models. We compared the effect of the model of relative 

exchange rates on the estimated divergence times: Supporting 

information Figure S1 provides a comparison of estimated di-

vergence	 times	 calculated	 with	 the	 CAT	+	GTR	 model	 (Yang	 &	
Rannala,	2006)	against	divergence	times	calculated	using	the	CAT	
model with a uniform (Poisson) model of equilibrium frequencies. 

The GTR model does not have a strong effect on the calculated 

divergence times as the slope of the graph does not deviate from 

unity when paired with the uniform model (see Supporting infor-

mation Table S5 for linear regressions). Thus under a root prior 

of	3.5	±	0.05	Ga,	a	CAT	+	Poisson	model	also	generated	a	ΔT cen-

tered at 1.02 Ga, see Table 4.

To understand the effects of the oldest calibration point (point 

11, Figure 3) on the estimated divergence time, we tested a second 

set of boundaries restricting this point to a minimum age of 2.7 Ga 

(Calibration 2) to consider the possibility that the record for oxy-

gen several hundred million years before the GOE was produced 

by crown group Cyanobacteria (Havig et al., 2017; Planavsky et al., 

2014). Supporting information Figure S2 provides a comparison of 

the two calibration choices on the overall estimated times for flex-

ible and non- flexible models. If the divergence times using both 
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calibrations are plotted against each other, a linear relationship is 

obtained (see Supporting information Table S6 for linear regression). 

Calibration 2 did not seem to have a very strong effect on the es-

timated divergence times nor ΔT. For example, under a root prior 

of 3.5 ± 0.05 Ga and employing Calibration 2, ΔT was centered at 

0.97 Ga (Table 4). We also tested the effect of removing the oldest 

calibration point from the analysis (point 11, Figure 3), this has the 

effect of making many nodes younger, yet ΔT remained in the range 

of 0.8 to 1.3 Ga depending on the level of flexibility allowed (Table 1).

In contrast, the choice of model for the evolution of substitu-

tion rates had a strong impact on the estimated divergence times as 

shown in Supporting information Figure S3 and Table S7. Supporting 

information Figure S3 presents a comparison of divergence time 

estimates of a tree calculated using a relaxed log- normal autocor-

related molecular clock with a tree calculated using an uncorrelated 

gamma model on the rates of evolution. The autocorrelated model 

assumes that neighboring branches are more likely to evolve at a 

similar rate, while the uncorrelated model assumes that the rate of 

evolution of each branch can vary independently (Ho & Duchene, 

2014; Lepage, Bryant, Philippe, & Lartillot, 2007). Under the uncor-

related model, the estimated divergence times of many nodes were 

aberrantly shifted to younger ages: for example, most cyanobacte-

rial and eukaryotic D1 clustered in the range of 700 to 0 Ma, which 

is inconsistent with the fossil record. The molecular mechanism be-

hind this difference could be related to the fact that photochemis-

try imposes a strong constraint on the evolution of reaction center 

proteins: as all of them must coordinate and maintain all redox co-

factors, chlorophylls, quinones, carotenoids, and a non- heme iron, 

at a precise orientation and distance from each other to allow for 

control of electron transfer rates and redox potentials. These rates 

and potentials are crucial not only for function but also for protec-

tion against the formation of reactive oxygen species (Cardona et al., 

2012; Rutherford, Osyczka, & Rappaport, 2012). It seems reason-

able then, that the rates of evolution of all Type II reaction center 

proteins should be similar between closely related groups, thus cor-

responding to an autocorrelated model.

3  | DISCUSSION

3.1 | Change in sequence identity as a function of 
time

As	an	approximation	to	the	evolution	of	the	core	subunits	of	PSII,	we	
plotted the level of amino acid sequence identity of D1 and D2, a sim-

ple measurement of phylogenetic distance, as a function of known 

divergence times (Figure 2). Two main conclusions can be derived 

from this plot independent of, yet in agreement with, the molecular 

clock analysis. Firstly, the three earliest stages in the evolution of ox-

ygenic photosynthesis: the divergence of Type I and Type II reaction 

centers, the divergence of anoxygenic and oxygenic families of Type II 

reaction center proteins, and the divergence of D1 and D2, are more 

likely to have started soon after the origin of the first reaction cent-

ers rather than near the GOE. Taking into consideration that there 

is evidence for photosynthesis at 3.5 Ga (Butterfield, 2015; Nisbet 

& Fowler, 2014; Schopf, Kitajima, Spicuzza, Kudryavtsev, & Valley, 

2018; Tice & Lowe, 2004), then all three stages could well predate 

this	 time.	 Secondly,	 the	MRCA	 of	 Cyanobacteria	 is	more	 likely	 to	
have lived near the time of the GOE rather than shortly after the 

origin	of	photosynthesis	in	the	early	Archean.	This	common	ancestor	
must have had a standard PSII, which places it relatively far after the 

origin of photosynthesis. The early divergence of D1 and D2 means 

that the earliest stages in the evolution of oxygenic photosynthesis 

could	predate	the	MRCA	of	Cyanobacteria	by	over	a	billion	years.

3.2 | Bayesian relaxed molecular clock analysis

The application of a Bayesian molecular clock analysis to the phy-

logeny of Type II reaction centers can be problematic because this 

was designed to deal with heterotachy of orthologs within and be-

tween lineages (Ho & Duchene, 2014) and thus they may not be able 

to perfectly model the variation in the rates of evolution across the 

long history of ancient paralogs. Therefore, the reader should inter-

pret the reported age estimates as an approximation, as simulations 

Model Root prior (Ga) Calibration (Ga) ΔT (Ga)

CAT	+	GTR	(autoc.a) 3.5 2.45 1.02 (1.44–0.52)

CAT	+	GTR	(autoc.) 3.5 2.70 0.97 (1.29–0.64)

CAT	+	GTR	(autoc.) 3.8 2.45 1.19 (1.64–0.70)

CAT	+	GTR	(autoc.) 3.8 2.70 1.13 (1.48–0.76)

CAT	+	Pois.	(autoc.) 3.5 2.45 1.02 (1.51–0.52)

CAT	+	Pois.	(autoc.) 3.5 2.70 1.00 (1.34–0.66)

CAT	+	Pois.	(autoc.) 3.8 2.45 1.17 (1.68–0.70)

CAT	+	Pois.	(autoc.) 3.8 2.70 1.12 (1.50–0.75)

CAT	+	Pois.	(uncor.b) 3.5 2.45 1.94 (2.62 - 1.26)

CAT	+	Pois.	(uncor.) 3.5 2.70 1.84 (2.46–1.22)

CAT	+	Pois.	(uncor.) 3.8 2.45 1.67 (2.31–1.03)

CAT	+	Pois.	(uncor.) 3.8 2.70 2.03 (2.70–1.38)

aLog normal autocorrelated clock model. bUncorrelated gamma model. 

TABLE  4 Change in ΔT under different 

evolutionary models
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of plausibility, and as a tool to distinguish between competing hy-

potheses. Even so, molecular clocks on duplicated proteins have 

been	used	informatively	before	(Aguileta,	Bielawski,	&	Yang,	2006;	
Boyd et al., 2011; Gold, Caron, Fournier, & Summons, 2017; Sharma 

& Wheeler, 2014; Shih & Matzke, 2013) and our molecular clock is 

strongly constrained by three pieces of well- supported and inde-

pendent evidence: (a) by evidence of photosynthesis at 3.5 Ga, (b) by 

the fact that all Cyanobacteria and photosynthetic eukaryotes have 

inherited a standard form of D1, and (c) by the very slow rate of evo-

lution of the core proteins over the Proterozoic. Under these con-

straints, the divergence between D1 and D2 is better explained by 

the duplication event occurring early in the evolutionary history of 

photosynthesis,	in	the	early	Archean,	with	the	appearance	of	stand-

ard PSII occurring after a long period of evolutionary innovation. We 

highlight this long period by introducing the concept of ΔT. The mag-

nitude of ΔT is dictated by the large phylogenetic distance between 

D1 and D2 and the slow rate of evolution determined from the geo-

chemical and fossil record. Therefore, it is not surprising that under 

most models employed in this analysis, ΔT is in the range of 1.0 Ga.

We have considered two possible evolutionary scenarios that are 

both consistent with a large ΔT (Figure 6). In the first scenario, the 

standard forms of D1 start to diverge at about 2.4 Ga, as seen in 

Figure 3, and diversify into G3 and G4 after the GOE. If we consider 

that	the	MRCA	of	Cyanobacteria	had	a	G4	D1,	this	would	set	it	after	
the GOE. This scenario, derived from the application of a relaxed 

molecular	 clock	 using	 a	 non-	parametric	 CAT	 model	 with	 flexible	
boundaries, is in agreement with the recent observations by Shih, 

Hemp et al. (2017) and other molecular clock studies that placed the 

divergence of Gloeobacter	after	the	GOE	(David	&	Alm,	2011;	Feng,	
Cho, & Doolittle, 1997; Marin, Battistuzzi, Brown, & Hedges, 2017). 

In this scenario, assuming that the earliest events in the history of 

photosynthesis started about 3.5 Ga, the divergence of D1 and D2 

is set at about 3.2 Ga.

In	 the	 second	 scenario,	 we	 considered	 that	 the	 MRCA	 of	
Cyanobacteria occurs before the GOE as suggested by other mo-

lecular clock analyses (Falcon et al., 2010; Sanchez- Baracaldo, 2015; 

Schirrmeister et al., 2015). In the present work, this scenario can be 

fitted most satisfactorily with the application of a relaxed molecular 

clock	using	an	empirical	amino	acid	substitution	model	 (LG	+	Γ). In 

this scenario, under a root prior of 3.5 Ga, the appearance of the 

ancestral standard form of D1 is set at about 2.6 Ga; and this has 

the consequence of pushing the divergence of D1 and D2 closer to 

the root, and thus D0 is set at about 3.4 Ga (Table 1 and 2, Figure 6). 

This effect is due to the fact that the phylogenetic distance between 

D1 and D2 is invariable, and thus under any scenario, the data are 

better explained by a long span of time separating D0 and the stan-

dard heterodimeric PSII. What can be concluded from this is that 

the	older	the	MRCA	of	Cyanobacteria	is,	the	more	likely	it	is	that	the	
divergence of D1 and D2 started near the origin of photochemical 

reaction centers and thus, near the origin of photosynthesis.

Our results are consistent with the emerging view that most, if 

not all, identified groups of phototrophs started to diversify long 

after the origin of photosynthesis. Recent molecular clock analysis 

aimed	at	dating	 the	MRCA	of	various	groups	of	phototrophs	have	
concluded that these appeared at around the GOE or after the GOE 

(Cardona, 2018; Magnabosco et al., 2018; Shih, Hemp et al., 2017; 

Shih, Ward et al., 2017). Our results support this view, yet at the 

same time they highlight the great antiquity of photosynthesis by 

showing that some of the early duplications of the core reaction cen-

ter	proteins	likely	predate	the	MRCA	of	each	of	the	known	groups	of	
phototrophs by a large span of time. The implications of this emerg-

ing view are discussed in more detail in the Supporting information 

Discussion section “Diversification of phototrophic lineages.”

3.3 | Rates of evolution

It should be observed that if a relatively constant rate of change were 

to be applied to the evolution of D1 and D2, the ancestral duplication 

would be placed long before the formation of the planet (dashed red 

line in Figure 2). Given the fact that the rate of evolution of D1 and 

D2 is constrained at slow rates from the Proterozoic until present 

F IGURE  6 Scenarios for the evolution of Type II reaction 

centers. The rows of colored dots represent estimated divergence 

times of key nodes as highlighted in Figure 3 and calculated using 

the	CAT	+	GTR	+	Γ	and	LG	+	Γ models and root priors of 3.8 or 

3.5	±	0.05	Ga.	A	highly	oxidizing	photosystem	with	enough	power	
to split water is likely to have originated before the gene duplication 

event	that	led	to	D1	and	D2	(orange	dot).	Making	the	MRCA	of	
Cyanobacteria older (green arrow) pushes the earliest stages in 

the evolution of PSII and water oxidation closer to the origin of 

photosynthesis (orange arrow). The yellow vertical bar marks the 

GOE



     |  13CARDONA et Al.

times, the period of fast evolutionary change has to be located at 

the earliest stages to account for the evolution of photosynthesis 

within a reasonable timeframe. The rates calculated using the mo-

lecular clocks are in agreement with the observations based solely 

on a comparison of the level of sequence identity and revealed that 

even considering an origin of Type II reaction centers at 3.8 Ga the 

maximum rate during the evolution of D1 and D2, νmax, is more than 

thirty times greater than the measured rates since the Proterozoic. 

The much faster rates required to place the early stages of reaction 

center evolution (including the D0 duplication) in the Paleoarchean 

are difficult to reconcile with the structural complexity inherited by 

all known reaction centers. This structural complexity should have 

subjected the rates of evolution to strong constraints from early on. 

We hypothesize that such rates were only possible near the origin of 

reaction centers when life was still “figuring out” how to do photo-

synthesis for the first time.

There are other scenarios that can potentially account for the ex-

ponential decrease in the rates observed here, and these are further 

discussed in the Supporting information Discussion section “Rates 

of Evolution”: briefly, (a) duplication followed by neofunctionalization 

(Innan & Kondrashov, 2010; Lynch & Conery, 2000), (b) a proposed 

exponential decrease in the temperature- dependent rate of de-

amination of cytosine on a warm early Earth (Lewis, Crayle, Zhou, 

Swanstrom, & Wolfenden, 2016), (c) greater exposure to UV radi-

ation in the photic zone in the absence of an ozone layer (Cockell, 

2000), and (d) a combination of the above.

3.4 | Was there water oxidation before D1 and D2?

Even before the gene duplication that allowed the divergence of D1 

and D2, the ancestral homodimeric photosystem had enough oxidiz-

ing power to form the neutral tyrosyl radical: high enough to surpass 

the Em of water oxidation to oxygen. However, this does not neces-

sarily imply that water oxidation was occurring at this time. Is there 

any evidence that would support or argue against an origin of water 

oxidation before the D1 and D2 duplication event?

Almost	 every	major	 structural	 difference	 between	 anoxygenic	
Type II reaction center proteins and the core proteins of PSII can be 

explained in the context of water oxidation, protection against the 

formation of reactive oxygen species, and enhanced repair and as-

sembly mechanisms due to oxidative damage from the formation of 

singlet	oxygen	around	the	photochemical	pigments.	A	similar	ratio-

nale has recently been proposed for the divergence of homodimeric 

Type I reaction centers of anoxygenic photosynthesis and heterod-

imeric Photosystem I of oxygenic photosynthesis (Orf, Gisriel, & 

Redding, 2018).

Five major structural differences distinguish D1 and D2 from L 

and M (Figure 7a and b). Starting from the N- terminus:

3.4.1 | The N- terminus itself (Figure 7c) 

PSII is known to generate singlet oxygen, a very damaging form of 

reactive oxygen species that without control can lead to irreparable 

damage to the organism and death. Singlet oxygen is produced 

when molecular oxygen interacts with the excited triplet state of 

chlorophyll (Krieger- Liszkay, Fufezan, & Trebst, 2008; Rutherford 

et al., 2012; Vass & Cser, 2009). Triplet chlorophyll is in turn formed 

when excess harvested light energy cannot be efficiently dissi-

pated or when the forward electron transfer reactions of PSII are 

blocked and instead a backflow of electrons occurs (back- reactions) 

(Krieger- Liszkay et al., 2008; Santabarbara, Bordignon, Jennings, & 

Carbonera, 2002). Thus, the unavoidable production of singlet oxy-

gen by PSII results in rapid damage of the core proteins in such a way 

that the half- lifetime of D1 is about 30 min. D1 is known to be the 

protein with the fastest turnover in the photosynthetic membrane 

(Aro,	 Virgin,	 &	 Andersson,	 1993).	 The	 half-	lifetime	 of	 D2	 is	 also	
relatively fast, measured at about 3 hours. In comparison, the half- 

lifetime of Photosystem I core proteins is about 2 days (Yao, Brune, 

& Vermaas, 2012). Damaged D1 and D2 are degraded by dedicated 

FtsH proteases, which target and recognize the N- terminus of both 

subunits. Deletion of the N- terminus results in impairment of deg-

radation and repair (Komenda et al., 2007; Krynicka, Shao, Nixon, 

& Komenda, 2015). The preserved sequence and structural iden-

tity at the N- terminus of both D1 and D2 suggests that the evolu-

tion of enhanced repair mechanisms had started to evolve before 

the duplication. Consistent with this, the evolution of all bacterial 

FtsH proteases confirms that the lineage of proteases specifically 

dedicated to the repair of PSII makes a monophyletic and deep- 

branching	clade	(Shao,	Cardona,	&	Nixon,	2018).	As	is	the	case	for	
the evolution of reaction center proteins, this deep- branching clade 

of PSII- FtsH proteases appeared to have diverged before the ra-

diation of those found in all the other groups of phototrophs (Shao 

et al., 2018).

3.4.2 | A protein fold between the 1st and 2nd 
transmembrane helices (Figure 7d) 

In D1 and D2, this region is made of 54 and 52 residues in com-

parison with 28 and 35 residues in L and M, respectively. This 

fold is enlarged in D1 and D2 to provide a site for protein–protein 

interactions with the small peripheral subunits and the extrinsic 

polypeptides (Cardona, 2015, 2016), none of which are present 

in anoxygenic Type II reaction centers. In D1, this site provides 

a connection to PsbI, M, T, and O; and in D2 to the cytochrome 

b559, PsbH, J, and X. The small subunits are necessary to support a 

more complex assembly and disassembly cycle due to much higher 

rates of repair (Komenda, Sobotka, & Nixon, 2012). They provide 

stability, help with photoprotective functions, assist with the pho-

toassembly of the Mn4CaO5 cluster (Dobakova, Tichy, & Komenda, 

2007; Hamilton et al., 2014; Komenda, Lupinkova, & Kopecky, 

2002; Popelkova & Yocum, 2011; Sugiura, Nakamura, Koyama, & 

Boussac, 2015), and even contribute to the highly oxidizing po-

tential of PSII (Ishikita, Saenger, Biesiadka, Loll, & Knapp, 2006). 

The extrinsic polypeptides are fundamental for the stability of the 

Mn4CaO5 cluster, in particular PsbO, also known as the manganese 

stabilizing protein (De Las Rivas, Balsera, & Barber, 2004; Franzen, 
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Hansson,	&	Andreasson,	1985;	Roose,	Frankel,	Mummadisetti,	&	
Bricker, 2016). That this site and its structural fold is conserved 

in D1 and D2 suggests that before their divergence the ancestral 

homodimeric photosystem had already achieved a high degree 

of structural complexity and was interacting with a number of 

auxiliary subunits in a way that it is not matched by anoxygenic 

Type II reaction centers. Because the role of the auxiliary subunits 

is the support of water oxidation and associated functions, this 

expansion of structural complexity can only start after the origin 

of water oxidation.

3.4.3 | The peripheral pigment pairs, ChlZD1- 
CarD1 and ChlZD2- CarD2 (Figure 7e) 

D1 and D2 each coordinate a peripheral chlorophyll from a con-

served histidine ligand in the 2nd transmembrane helix, known as 

F IGURE  7 Structural comparisons of Type II reaction center proteins. (a) Several structural domains are conserved in D1 and D2 but 

are absent in L and M: These are highlighted in orange. D1 and D2 are plotted from the crystal structure of PSII from Thermosynechococcus 

vulcanus, PDB: 3WU2 (Umena et al., 2011) and L and M from Thermochromatium tepidum, PDB: 3WMM (Niwa et al., 2014). (b) Overlap 

of D2 (gray) with M (transparent blue) and D1 (gray) with L (transparent blue). (c) Overlap of D1 (gray) and D2 (orange) highlighting the 

conserved N- terminus. (d) Overlap of D1 and D2 highlighting the conserved protein fold between the 1st and 2nd transmembrane helices. 

(e) D1 is shown in gray and D2 in orange. ChlZD1, CarD1, W105, and QB are shown in gray sticks. ChlZD2, CarD2, W104, and QA are shown 

in orange sticks. (f) Overlap of D1 and D2 highlighting the conserved protein fold where the bicarbonate binding site is placed. (g) Overlap 

of D1 and D2 highlighting the conserved protein fold at the C- terminus. (h) The Mn4CaO5 cluster coordination sphere and the equivalent 

location in D2. (i) Perspective view showing the interaction of CP47 and CP43 with the electron donor side of D2 and D1, respectively. The 

structural homology of CP43 and CP47 indicates that these originated from a gene duplication event making the homodimeric antenna to a 

homodimeric core (Cardona, 2016). The reason why CP47, and in particular CP43, interact with the donor side of PSII is an unsolved mystery 

given the fact that their main role is that of light harvesting. It can be rationalized however if water oxidation started in a homodimeric 

reaction center early during the evolution of photosynthesis (Cardona, 2017)
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ChlZD1 and ChlZD2. These peripheral pigments are absent in anoxy-

genic Type II reaction centers but are present in Type I reaction cent-

ers indicating that they existed before the divergence of D1 and D2 

(Cardona, 2015). Both peripheral chlorophylls are required for pho-

toautotrophic growth as mutations that impair their binding cannot 

assemble functional PSII (Lince & Vermaas, 1998; Ruffle et al., 2001). 

ChlZD1 and ChlZD2 are each in direct contact with a beta- carotene 

molecule, known as CarD1 and CarD2 respectively, seen using crystal-

lography first by Ferreira et al. (2004) and Loll, Kern, Saenger, Zouni, 

and Biesiadka (2005), but detected and characterized by spectros-

copy well before that; see for example (Hanley, Deligiannakis, Pascal, 

Faller, & Rutherford, 1999; Kwa, Newell, van Grondelle, & Dekker, 

1992; Noguchi, Mitsuka, & Inoue, 1994). The position of CarD1 and 

CarD2 differs in that the former is positioned perpendicular to the 

membrane plane while the latter is parallel to the membrane plane: 

However, one of the beta- rings of each carotenoid links to ChlZD1 

and ChlZD2 via strictly conserved tryptophan residues (D1- W105 

and D2- W104, respectively), located in the unique protein fold be-

tween the 1st and 2nd transmembrane helices described above, and 

therefore absent in L and M. CarD2 is tilted relative to CarD1 partly 

to give way to the exchangeable plastoquinone, QB. The core carote-

noids of PSII have been shown to contribute little to light harvesting 

and have dominantly a protective role (Stamatakis, Tsimilli- Michael, 

& Papageorgiou, 2014). The close association of ChlZD1 and ChlZD2 

with carotenoids would suggest a role in protection, by quench-

ing chlorophyll triplet states or directly scavenging singlet oxygen 

(Cogdell	 et	al.,	 2000;	 Telfer,	 2002).	 A	 role	 for	 the	 direct	 scaveng-
ing of singlet oxygen for both ChlZD1- CarD1 and ChlZD2- CarD2 has 

been suggested based on spectroscopy of isolated reaction cent-

ers (Telfer, Dhami, Bishop, Phillips, & Barber, 1994). Furthermore, 

ChlZD2- CarD2 have been demonstrated to be involved in protective 

electron transfer side pathways within PSII. For a detailed overview 

of these pathways see for example (Faller, Fufezan, & Rutherford, 

2005). That ChlZD1 and ChlZD2 have been retained since before 

the divergence of Type I and Type II reaction centers indicates that 

they predate the D1 and D2 divergence. The acquisition of closely 

interacting carotenoids seems to have occurred therefore after the 

K and D0 divergence, but before the D1 and D2 split, in support of 

water oxidation before heterodimerization. However, carotenoids at 

a similar position to CarD1 and CarD2 have recently been identified 

in the homodimeric Type I reaction center of Heliobacteria (Gisriel 

et al., 2017) suggesting that these may predate the Type I/Type II 

split (Figure 8).

3.4.4 | An extended loop between the 4th and the 
5th transmembrane helices (Figure 7f) 

This is required for the coordination of bicarbonate, a ligand to 

the non- heme iron (Ferreira et al., 2004), which is a distinctive 

feature of PSII. In anoxygenic Type II reaction centers, the non- 

heme iron is coordinated asymmetrically by a glutamate from the 

M subunit. There is significant sequence and structural conser-

vation of the bicarbonate binding site in D1 and D2. Two strictly 

conserved tyrosine residues D1- Y246 and D2- Y244 provide sym-

metric hydrogen bonds to bicarbonate (Ferreira et al., 2004). This 

indicates that bicarbonate binding was a feature existing before 

F IGURE  8 Carotenoids in the reaction center core. (a) Overlap of the M subunit of the anoxygenic Type II reaction center from 

Thermochromatium tepidum (light blue) with the D2 subunit of PSII from Thermosynechococcus vulcanus	(gray)	and	the	PshA	subunit	of	the	
homodimeric Type I reaction center of Heliobacterium modesticaldum (orange), PDB ID: 5v8k (Gisriel et al., 2017). The protein backbone is 

showed in transparent ribbons, some of the photochemical pigments are displayed as thin sticks, and the closest carotenoids to the core 

are	shown	as	thick	sticks.	SX	stands	for	spirilloxanthin	and	DN	for	4,4′-	diaponeurosporene.	CarD2 is the core beta- carotene bound by D2. 

Both SX and CarD2 have been demonstrated to have photoprotective roles, while the role of DN in the homodimeric Type I reaction center 

has not been demonstrated yet. However, based on its structural position overlapping with half of CarD2 and in Van der Waals contact 

with several bacteriochlorophyll g molecules, it can be predicted that it also has a photoprotective role. P denotes the photochemical 

“special	pair”	pigments.	(b)	A	rotated	view	of	the	position	of	the	carotenoids	in	the	overlapped	structures.	The	protein	backbone	has	been	
hidden for clarity. ChlZD2 and the bacteriochlorophyll g molecule, GBF1024, occupy homologous positions
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the divergence of D1 and D2. The role of bicarbonate had been 

a long- standing mystery, but recently it was shown that binding 

and unbinding of bicarbonate modulates the Em of the quinones, 

working as a switch from a productive state into a protective 

state that prevents chlorophyll triplet state and singlet oxygen 

formation (Brinkert, De Causmaecker, Krieger- Liszkay, Fantuzzi, 

& Rutherford, 2016). Previously, G. N. Johnson, Rutherford, and 

Krieger (1995) had shown that a shift in the Em of the fixed qui-

none, QA, plays a key role in protection of PSII during assembly 

of the Mn4CaO5 cluster, a light- driven process. It is understood 

now that such a shift is mediated by bicarbonate binding (Brinkert 

et	al.,	 2016).	A	 further	 conclusion	 from	 this	 is	 that	 the	ancestral	
photosystem made of a D0 homodimer had already evolved to in-

corporate bicarbonate- mediated protective mechanisms as well, 

implying oxygen evolution, and by extension, the assembly of a 

primordial water- oxidizing complex.

3.4.5 | An extended C- terminus and the Mn4CaO5 

cluster binding site (Figure 7g) 

D1 and D2 share an extended C- terminus made of about 50 

residues and with a distinctive alpha- helix parallel to the mem-

brane plane. The C- terminus is necessary for the coordination 

of the Mn4CaO5 cluster, Cl- binding, water channels, and proton 

pathways (Debus, 2001; Linke & Ho, 2013; Umena, Kawakami, 

Shen, & Kamiya, 2011). Remnants of this C- terminal extension 

may be found in some of the M and L subunits of phototrophic 

Proteobacteria and Chloroflexi (Cardona, 2015), but see Figure 7a. 

In	 D1	 H332,	 E333,	 D342,	 and	 A344	 coordinate	 the	 Mn4CaO5 

cluster (Figure 7h). H337 provide a hydrogen bond to one of the 

bridging oxygens. In addition, E354 from the CP43 antenna subu-

nit coordinates two of the Mn atoms and R357 offers a hydrogen 

bond to another bridging oxygen. While there is not a cluster in 

D2, an examination of the donor side in the immediate vicinity of 

the redox active tyrosine shows that the site has been blocked 

by a number of phenylalanine residues (Svensson, Vass, & Styring, 

1991). Every ligand to the cluster is matched by a phenylalanine 

residue in D2 (Figure 7h). In the CP47 antenna, the ligands found 

in the CP43 are also replaced by phenylalanine residues (Figure 7h 

and i). The only exception is a histidine in a position equivalent 

to H337, which perhaps not coincidentally, provides a hydrogen 

bond to a water molecule locked within the hydrophobic patch 

made by the phenylalanine residues. No such phenylalanine patch 

is found in any other reaction center protein, except D2 (Cardona, 

2016). The presence of a redox tyrosine in D2 and what seems 

like a vestigial metal- binding site would be puzzling if the water- 

oxidizing cluster evolved after the divergence of D1 and D2 in 

a heterodimeric system, but it would make sense if a primordial 

water- oxidizing cluster appeared first on both sides of the reaction 

center in the ancestral homodimeric photosystem.

In conclusion, based on the above structural and functional ev-

idence we find it highly likely that water oxidation originated be-

fore the divergence of D1 and D2. Hence, in a homodimeric Type 

II ancestor containing two identical exchangeable quinones charge 

separation would result in enhanced back- reactions caused by elec-

tron transfer to a quinone site when empty or when occupied by 

a reduced form of the quinone; and additionally, by shorter back- 

reaction pathways (Cardona et al., 2012; Rutherford et al., 2012). 

Back- reactions would give rise to chlorophyll triplet states in 

the heart of the reaction center (Dutton, Leight, & Seibert, 1972; 

Rutherford, Paterson, & Mullet, 1981). In the evolution of a water- 

splitting homodimeric ancestor with an increased oxidizing potential, 

as mentioned above, avoidance of photodamage could be a signifi-

cant selective pressure for heterodimerization, as the enhanced 

back- reactions intrinsic to the homodimeric Type II reaction centers 

would have become a major problem only if oxygen were present. In 

addition, two primordial clusters on each side of the reaction cen-

ter would double the chance of forming back- reacting intermediary 

states driving forward heterodimerization (Keren, Ohad, Rutherford, 

Drepper,	 &	 Krieger-	Liszkay,	 2000).	 An	 inefficient	 homodimeric	
water- splitting photosystem would have encountered this problem 

first and thus come under strong selection pressure toward het-

erodimerization at an early time. The results of the present work fit 

with this picture and indicate that this transitional water- oxidizing 

homodimeric state was very short- lived.

Our present finding that the duplication leading to L and M 

occurred significantly later in anoxygenic Type II reaction centers 

opens the possibility that oxygen could have also been a driving 

force in their heterodimerization process, since K would have en-

countered these selection pressures at a time when oxygen con-

centrations began to rise or fluctuate in localized environments 

during	the	late	Archean	(Bosak,	Liang,	Sim,	&	Petroff,	2009;	Lyons,	
Reinhard, & Planavsky, 2014; Riding, Fralick, & Liang, 2014; Wang 

et al., 2018). Mirroring the evolution of Type II reaction centers, a 

molecular clock study on Type I reaction centers showed that the 

duplication event that led to the heterodimerization of the core of 

Photosystem I was also more likely to be the oldest node after the 

root (Cardona et al., 2012). This duplication event is widely accepted 

to have been an evolutionary adaptation to oxygenic photosyn-

thesis (Ben- Shem, Frolow, & Nelson, 2004; Hohmann- Marriott & 

Blankenship, 2008; Rutherford et al., 2012) and was found to pre-

date the earliest diversification event of anoxygenic Type I reaction 

centers (Cardona, 2018); namely, the divergence of the reaction cen-

ter of Heliobacteria from that which gave rise to those in phototro-

phic	Chlorobi	and	Acidobacteria.
It is rather remarkable that the anoxygenic Type II reaction center 

of phototrophic Proteobacteria contains an asymmetrically located 

carotenoid in contact with a core bacteriochlorophyll (Deisenhofer & 

Michel, 1989), see Figure 8. The role of this carotenoid is to quench 

bacteriochlorophyll triplet states to prevent the formation of singlet 

oxygen	 (Cogdell	 et	al.,	 2000).	A	 carotenoid	with	 a	 similar	 position	
to CarD1 and CarD2 in PSII has been now discovered in the struc-

ture of a homodimeric Type I reaction center (Gisriel et al., 2017). 

In addition, light- harvesting complexes in all anoxygenic photosyn-

thetic bacteria contain carotenoids (e.g., chlorosome, LH1, LH2, 

B808- 866), which perform photoprotective roles (Kim, Li, Maresca, 
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Bryant, & Savikhin, 2007; Melo, Frigaard, Matsuura, & Naqvi, 2000; 

Tsukatani,	 Romberger,	Golbeck,	&	Bryant,	 2012).	 As	 an	 extension	
of this, it does not seem unreasonable to think that even ancestral 

populations of anoxygenic phototrophic bacteria were under strong 

selective pressure by the threat of bacteriochlorophyll and chloro-

phyll triplet- induced formation of reactive oxygen species.

If primordial forms of oxygenic photosynthesis appeared so early 

in the history of life, the bioavailability of oxygen should have left 

a mark on the evolution of other ancient molecular processes. We 

think that this is indeed the case and in the Supporting information 

Discussion section “Peculiar oxygen anomalies,” we compile a number 

of observations in the literature that are potentially consistent with 

the conclusions presented in this study.

4  | FINAL REMARKS

The evolution of Type II reaction centers highlights the long his-

tory of oxygenic photosynthesis before the GOE. We show that 

the span of time between the gene duplication event that led to 

D1 and D2 and the appearance of standard PSII could have been 

in the order of a billion years. We argue that water oxidation is 

likely to have started before the divergence of D1 and D2. So 

what happened during this long period of time? If water oxidation 

originated in a simpler homodimeric photosystem in a completely 

anaerobic world, the large increase in the structural complexity of 

PSII, PSI, and associated light- harvesting complexes had to occur 

alongside this trajectory. This includes the acquisition of many 

peripheral and extrinsic protein subunits and the heterodimeriza-

tion	 of	D1	 and	D2,	CP43	 and	CP47,	 and	PsaA	 and	PsaB.	At	 the	
same time, the thermodynamic coupling between both photosys-

tems and the retuning of the entire electron transport chain and 

all electron carriers to increasingly oxidizing conditions also had to 

occur. This expansion in complexity had to be coupled in PSII with 

the evolution of highly organized assembly and repair processes. 

Thus, the first water- oxidizing reaction centers may have been ac-

tive only for brief amounts of time in the absence of efficient re-

pair, or alternatively they may have been more energetically costly 

to maintain resulting in a decreased productivity. Greater water 

oxidation efficiency also needed the innovation of photoprotec-

tive mechanisms acting at different time scales spanning several 

orders of magnitude, like dissipatory recombination pathways, 

non- photochemical quenching, or state- transitions. Furthermore, 

the light reactions of photosynthesis had to be linked to carbon 

fixation and other downstream metabolic process. Signaling, 

feedback, and regulatory mechanisms had to be put in place to 

control photosynthesis under varying environmental conditions 

and across a diel cycle. Needless to say, all anaerobic reactions 

and processes inhibited by oxygen originally found in the earli-

est anaerobic water- oxidizing ancestors had to be separated from 

oxygen production or readapted to work under aerobic conditions. 

The link to carbon fixation is of particular importance since CO2 

levels in the atmosphere were higher than now (Nutman, Bennett, 

& Friend, 2017; Sheldon, 2006). However, limiting diffusion across 

boundary layers in the then prevalent mats and stromatolites 

would have restricted anoxygenic and early oxygenic phototrophs 

alike. The development of water oxidation would have opened up 

the way to faster photosynthetic rates, spurring on gross primary 

production	rates,	later	in	the	Archean,	with	the	concomitant	need	
for increases in nitrogen fixation. In consequence, if water oxida-

tion originated at an early stage during the evolutionary history of 

life other geological processes should have delayed the oxygena-

tion of the planet until the Great Oxidation Event (Bindeman et al., 

2018; Smit & Mezger, 2017).

5  | MATERIAL S AND METHODS

5.1 | Phylogeny of Type II reaction centers

Sequences were retrieved from the RefSeq NCBI database using 

PSI-	BLAST	 restricted	 to	 Cyanobacteria,	 Proteobacteria,	 and	
Gemmatimonadetes.	 A	 total	 of	 1703	 complete	 sequences	 were	
downloaded and aligned using Clustal Omega employing ten com-

bined guide trees and Hidden Markov Model iterations (Sievers 

et al., 2011). To confirm that the alignment conformed with known 

structures, the 3D structures of the D1, D2, L, and M, from the 

crystal structures 3WU2 (Umena et al., 2011) of PSII and 2PRC 

(Lancaster & Michel, 1997) of the anoxygenic Type II reaction 

center were overlapped using the CEalign (Jia, Dewey, Shindyalov, 

& Bourne, 2004) plug- in for PyMOL (Molecular Graphics System, 

Version 1.5.0.4 Schrödinger, LLC) and structural homologous po-

sitions were cross- checked with the alignment. Maximum likeli-

hood (ML) phylogenetic analysis was performed using PhyML 3.1 

(Guindon et al., 2010) using the LG model of amino acid substi-

tution. The amino acid equilibrium frequencies, proportion of in-

variable sites, and across site rate variation were allowed to be 

determined by the software from the dataset. Tree search opera-

tions were set as the best from the Nearest Neighbor Interchange 

and Subtree Pruning and Regrafting method, with the tree topol-

ogy optimized using five random starts. The ML tree using all se-

quences is shown in Figure 1 and it replicates earlier evolutionary 

studies of Type II reaction centers that used simpler methods and 

fewer sequences (Beanland, 1990; Cardona, 2015).

5.2 | Change in sequence identity as a 
function of time

To get a better understanding of the evolutionary trends of D1 and 

D2 as a function of time, we compared the percentage of sequence 

identity of D1 and D2 from species of photosynthetic eukaryotes 

with known or approximate divergence times. In total, 23 pairs of 

sequences were compared and are listed in Supporting information 

Table 1. When two sequences were of different length, the longest 

was taken as 100%. Of these 23 pairs, the first 16 were based on the 

fossil calibrations recommended by Clarke et al. (2011) after their 

extensive review of the plant fossil record. Divergence times were 
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taken as the average of the hard minimum and soft maximum fos-

sil ages suggested by the authors. The last seven comparisons are 

approximate dates taken from the molecular clock analysis of the 

evolution of red algae by Yang et al. (2016). The plot of sequence 

identity vs. approximate divergence time was then fitted with a lin-

ear regression and the fitting parameters are shown in Supporting 

information Table S2.

5.3 | Bayesian relaxed molecular clock and fossil 
calibrations

A	 total	 of	 54	bacterial	 sequences	 spanning	 the	 entire	 diversity	 of	
Type II reaction centers were selected for Bayesian molecular clock 

analysis,	including	atypical	and	standard	forms	of	D1,	Alpha-	,	Beta-	,	
Gammaproteobacteria, Chloroflexales, and Gemmatimonas pho-

totrophica. Furthermore, 10 D1 and 10 D2 sequences from pho-

tosynthetic eukaryotes from taxa with a well characterized fossil 

record were added to allocate calibration points. The phylogeny 

of Type II reaction centers was cross- calibrated on D1 and D2 as 

listed in Table 5 and calibration points were assigned as presented 

in Figure 3, red dots.

Dates for the Arabidopsis/Populus divergence, the divergence of 

the angiosperms (Amborella), gymnosperms (Cycas), and land plants 

(Marchantia) were implemented as suggested and discussed by Clarke 

et al. (2011), representing points 1 to 4 in Figure 3. Three ages from 

eukaryotic	algae	were	used	too:	An	age	of	190	Ma	was	assigned	to	
the divergence of Phaeodactylum trichornutum and Thalassiosira 

pseudonana, based on fossil Jurassic diatoms from the Lias Group, re-

viewed	by	Sims,	Mann,	and	Medlin	(2006).	A	minimum	age	of	600	Ma	
based on a Late Neoproterozoic Chinese multicellular red alga fossil 

(Xiao, Knoll, Yuan, & Pueschel, 2004) was assigned to the split be-

tween the diatom sequences and the sequences from Porphyra pur-

purea, as a conservative estimate for the divergence of complex red 

algae, which predates this time (Yang et al., 2016). The oldest calibra-

tion point in photosynthetic eukaryotes was assigned as a minimum 

age of 1.2 Ga to the divergence of the sequences from Cyanidium 

caldarium a unicellular early- branching red algae. This was used as a 

conservative estimate for the origin of photosynthetic eukaryotes. 

The earliest widely accepted fossil of a photosynthetic eukaryote is 

that from a multicellular red algae, Bangiomorpha (Butterfield, 2000; 

Knoll, Worndle, & Kah, 2013), thought to be 1.0 Ga (Gibson et al., 

2017). Recently described multicellular eukaryotic algae fossils have 

been reported at 1.6 Ga (Bengtson et al., 2017; Qu, Zhu, Whitehouse, 

Engdahl, & McLoughlin, 2018; Sallstedt et al., 2018) suggesting that 

the earliest photosynthetic eukaryotes might be older than that, 

which would be consistent with recent molecular clock analysis (Yang 

et al., 2016; Sanchez- Baracaldo, Raven, Pisani, & Knoll, 2017).

Previously implemented cyanobacterial fossils were also used 

to calibrate the clock (Blank & Sanchez- Baracaldo, 2010; Sanchez- 

Baracaldo,	2015;	Sanchez-	Baracaldo	et	al.,	2017).	A	minimum	age	of	
1.6 Ga was assigned to Nostocales because described akinetes of 

this	age	have	been	found	in	cherts	from	Siberia,	China,	and	Australia	
(Golubic, Sergeev, & Knoll, 1995; Schirrmeister, Sanchez- Baracaldo, 

& Wacey, 2016; Tomitani, Knoll, Cavanaugh, & Ohno, 2006). 

Pleurocapsales are characterized by multiple fissions during cell 

division and fossils retaining this morphology have been described 

at 1.7 Ga (Golubic & Lee, 1999; Sergeev, Gerasimenko, & Zavarzin, 

2002). The earliest well- assigned filamentous Cyanobacteria fossils 

of comparable size to those of the early- branching Pseudanabaena 

have been reported at 1.9 Ga (Golubic & Lee, 1999; Sanchez- 

Baracaldo et al., 2017; Schirrmeister et al., 2016; Sergeev et al., 

2002), and this was assigned as a minimum age to the sequences 

from Pseudanabaena biceps.

The oldest calibration point, point 11, was selected to be the 

branching point of the D2 and the G4 D1 from Gloeobacter vio-

laceous. This was set to be around the age for the GOE and was 

assigned as a minimum age of 2.45 Ga (Calibration 1) (Bekker 

et al., 2004). For comparison, a calibration of 2.7 Ga was also 

used (Calibration 2) to test the effect on the estimated divergence 

times of an older age for crown group Cyanobacteria. Geological 

evidence suggests that oxygen “whiffs” or “oases” could signifi-

cantly predating the GOE (Havig et al., 2017; Lyons et al., 2014; 

Planavsky et al., 2014; Wang et al., 2018) so this scenario is not 

entirely implausible.

Node Event Maximum (Ma) Minimum (Ma)

1 Arabidopsis-Populus divergence 127 82

2 Angiosperms 248 124

3 Gymnosperms 366 306

4 Land plants – 475

5 Diatoms – 190

6 Floridae – 600

7 MRCA	of	red	algae – 1,200

8 Heterocystous Cyanobacteria – 1,600

9 Pleurocapsales – 1,700

10 Early- branching multicellular 

Cyanobacteria

– 1,900

11 MRCA	of	Cyanobacteria – 2,450/2,700

TABLE  5 Calibration points
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The calibration points on D1 were allocated on Group 4 because 

this type of D1 is the only one retained in all Cyanobacteria with PSII, 

it is the only type of D1 inherited by photosynthetic eukaryotes, and 

it is the main D1 used to catalyze water oxidation under most growth 

conditions: see Cardona et al. (2015) for a detailed analysis of the 

evolution of D1 proteins. It should be noted therefore that the du-

plications leading to all other forms of D1 occurred before the most 

recent common ancestor of Cyanobacteria (Cardona et al., 2015).

It is well accepted that a form photosynthesis had already 

evolved by 3.5 Ga, which is usually assumed to be anoxygenic. This 

is demonstrated by both sedimentological and isotopic evidence for 

photoautotrophic microbial communities recorded in Paleoarchean 

rocks (Butterfield, 2015; Nisbet & Fowler, 2014; Tice & Lowe, 

2004). In addition, sedimentary rocks and banded iron formations 

from Isua, Greenland, hint at the presence of photosynthetic bac-

teria in the marine photic zone as early as 3.7–3.8 Ga (Czaja et al., 

2013;	Grassineau,	Abell,	Appel,	Lowry,	&	Nisbet,	2006;	Knoll,	2015;	
Rosing, 1999; Rosing & Frei, 2004; Schidlowski, 1988). Therefore, 

we used a root prior of 3.5 Ga as a conservative estimate for photo-

autotrophy based on photochemical reaction centers. Nevertheless, 

because it is not yet known exactly when photosynthesis originated 

for the first time we also tested the effect of varying the root prior 

from 3.2 to 4.1 Ga on the estimated divergence time under restric-

tive and flexible scenarios.

A	Bayesian	Markov	 chain	Monte	Carlo	 approach	was	 used	 to	
calculate the estimated divergence times. We used Phylobayes 3.3f, 

which allows for the application of a relaxed log- normal autocor-

related	molecular	 clock	 under	 the	CAT	+	GTR	+	Γ model (Lartillot 

& Philippe, 2004; Lartillot et al., 2009) necessary for the imple-

mentation of flexible boundaries on the calibration points (Yang & 

Rannala, 2006). To understand the effect of different evolution-

ary	models	on	the	age	estimates	we	compared	the	CAT	+	GTR	+	Γ 

model	 with	 (a)	 a	 LG	+	Γ model that sets less flexible boundaries 

on	the	calibration	points,	(b)	a	CAT	+	Γ model assuming a uniform 

(Poisson) distribution of amino acid equilibrium frequencies, or (c) 

an uncorrelated gamma model where the rates of substitution can 

vary	 independently.	 The	 flexible	 bounds	 on	 the	 CAT	+	GTR	+	Γ 

model were set to allow for 2.5% tail probability falling outside 

each calibration boundary or 5% in the case of a single minimum 

boundary.	All	molecular	clocks	were	computed	using	four	discrete	
categories for the gamma distribution and four chains were run in 

parallel until convergence.

In this work, we define the period of time between the duplica-

tion event that led to the divergence of D1 and D2 and the appear-

ance of the ancestral standard D1 as ΔT. This value is calculated as 

the subtraction of the mean age of the latter node (Figure 3, green 

dot) from the former’s mean node age (Figure 3, D0, orange dot). The 

instant rates of evolution, which are necessary for the computation 

of divergence time from the phylogeny, were retrieved from the out-

put files of Phylobayes. These rates are calculated by the software 

as described by the developers elsewhere (Kishino, Thorne, & Bruno, 

2001; Lepage et al., 2007) and are expressed as amino acid changes 

per site per unit of time. The rate at node D0 was termed νmax and 

a baseline rate of evolution during the Proterozoic was obtained as 

the average of all node rates in Group 4 D1 and D2 and denoted 

νmin.	All	sequence	datasets	and	estimated	divergence	times	for	each	
node of each tree used in this analysis are provided in the Supporting 

information.
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