
Early Aspects: a Model for Aspect-Oriented Requirements Engineering

Awais Rashid
†
, Peter Sawyer

†
, Ana Moreira

‡
, João Araújo

‡

†
Computing Department, Lancaster University, Lancaster LA1 4YR, UK

‡
Dept. Informática, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

{awais, sawyer}@comp.lancs.ac.uk, {amm, ja}@di.fct.unl.pt

Abstract

Effective RE must reconcile the need to achieve

separation of concerns with the need to satisfy broadly

scoped requirements and constraints. Techniques such as

use cases and viewpoints help achieve separation of

stakeholders' concerns but ensuring their consistency with

global requirements and constraints is largely

unsupported. In this paper we build on recent work that

has emerged from the aspect-oriented programming

(AOP) community to propose a general model for aspect

oriented requirements engineering (AORE). The model

supports separation of crosscutting functional and non-

functional properties at the requirements level. We argue

that early separation of such crosscutting properties

supports effective determination of their mapping and

influence on artefacts at later development stages. A

realisation of the model based on a case study of a toll

collection system is presented.

1. Introduction

The separation of concerns principle [4] proposes

encapsulating features into separate entities in order to

localise changes to them and deal with one important issue

at a time. For example, the UML uses different models to

deal with different properties of a problem domain

separately. In RE, viewpoints [6] have been advocated as

a means of partitioning requirements as a set of partial

specifications that aid traceability and consistency

management.

The focus of this paper is on concerns that cut across

other concerns. These crosscutting concerns are

responsible for producing tangled representations that are

difficult to understand and maintain. Examples of such

concerns at the implementation level are distribution and

synchronisation code that cannot be encapsulated in one

class and is typically spread across several classes.

Aspect-oriented software development [5] aims to identify

and specify such crosscutting concerns in separate

modules, known as aspects, so that localisation can be

promoted. This results in better support for modularisation

hence reducing development, maintenance and evolution

costs.

A number of aspect-oriented programming (AOP)

approaches have been proposed. These range from

linguistic mechanisms [1] to filter-based techniques [5]

through to traversal-oriented [5] and multi-dimensional

approaches [11] [13]. Work has also been carried out to

incorporate aspects, and hence separation of crosscutting

concerns, at the design level mainly through extensions to

the UML meta-model e.g. [3]. Research on the use of

aspects at the requirements engineering stage is still

immature and there is no consensus about what an aspect

is at this early stage of software development and how it

maps to artefacts at later development stages.

An aspect-oriented requirements engineering approach

targeted to component based software development has

been proposed in [7]. There is a characterisation of

diverse aspects of a system that each component provides

to end users or other components. However, the

identification of aspects for each component is not clearly

defined. Separation of crosscutting properties has also

been considered in [12] which proposes a viewpoint-

oriented requirements engineering method called

PREView. A PREView viewpoint encapsulates partial

information about the system. Requirements are organised

in terms of several viewpoints, and analysis is conducted

against a set of concerns intended to correspond broadly

to the overall system goals. Due to this broad scope

concerns crosscut the requirements emerging from

viewpoints. In applications of the method, the concerns

that are identified are typically high-level non-functional

requirements. Beyond alerting the requirements engineer

to the risk that viewpoint requirements and concerns may

cause inconsistencies, the approach does not identify the

mapping or influence of crosscutting properties on

artefacts at later development stages.

The above discussion highlights the need to include

aspects as fundamental modelling primitives at the

requirements engineering level. The motivations for this

are two-fold:

1. Providing improved support for separation of

crosscutting functional and non-functional properties

during requirements engineering hence offering a

better means to identify and manage conflicts arising

due to tangled representations;

2. Identifying the mapping and influence of

requirements level aspects on artefacts at later

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02)

1090-705X/02 $17.00 © 2002 IEEE

development stages hence establishing critical trade-

offs before the architecture is derived.

This paper proposes a model for aspect-oriented

requirements engineering aimed as a stepping-stone

towards the above goals. The model, discussed in section

2, supports effective determination of the mapping and

influence of aspects on later development stages. Section

3 describes the application of the model to a case study of

a toll collection system. Section 4 concludes the paper by

discussing key outstanding issues and directions for future

work.

2. A model for AORE

Modern systems have to run in highly volatile

environments where the business rules change rapidly.

Therefore, systems must be easy to adapt and evolve. If

not handled properly, crosscutting concerns inhibit

adaptability. It is therefore essential to think about

crosscutting concerns as early as possible. The model we

envisage to deal with crosscutting concerns at the

requirements level is composed of six activities (cf. fig.

1). This is based on treating PREView concerns as

adaptations of the AOP notion of aspects.

 Identify

concerns

Identify viewpoints,

discover requirements

and relate to concerns

Identify

candidate

aspects

Specify

concerns

Specify

aspect

dimensions

Specify

and

prioritise

aspects

Figure 1. AORE model

To begin with, we need to identify concerns and

discover requirements. The order in which these two

activities are accomplished is dependant on the dynamics

of the interaction between requirements engineers and the

stakeholders. In any case, it is useful to relate concerns to

requirements as the former may constrain the latter. The

next activity is to specify concerns in more detail. If a

concern crosscuts several requirements (i.e. if a concern

may influence or constrain more than one viewpoint) it is

considered a candidate aspect. This is followed by a

detailed specification of candidate aspects. This can lead

us to refine aspects, making them more concrete, and to

identify interactions and conflicts between them [9]. In

order to resolve conflicts among aspects a prioritisation

approach is used. The last activity in the model is

identification of the dimensions of an aspect. We have

observed that aspects at this early stage can have an

impact that can be described in terms of two dimensions:

• Mapping: an aspect might map onto a system

feature/function (e.g. a simple method), decision (e.g.

a decision for architecture choice) and design (and

hence implementation) aspect (e.g. response time).

This is the reason we have chosen to call aspects at

the RE stage candidate aspects as, despite their

crosscutting nature at this stage, they might not

directly map onto an aspect at later stages.

• Influence: an aspect might influence different points

in a development cycle, e.g. availability influences the

system architecture while response time influences

both architecture and detailed design.

Note that prioritisation of aspects should precede the

identification of their dimensions as conflict resolution

may be required when determining influence.

3. Applying the model to a case study

The case study is a simplified version of the toll

collection system on the Portuguese highways [2]:

"In a road traffic pricing system, drivers of authorised

vehicles are charged at toll gates automatically. The gates

are placed at special lanes called green lanes. A driver has

to install a device (a gizmo) in his/her vehicle. The

registration of authorised vehicles includes the owner’s

personal data, bank account number and vehicle details.

The gizmo is sent to the client to be activated using an

ATM
1
 that informs the system upon gizmo activation.

A gizmo is read by the toll gate sensors. The

information read is stored by the system and used to debit

the respective account.

When an authorised vehicle passes through a green

lane, a green light is turned on, and the amount being

debited is displayed. If an unauthorised vehicle passes

through it, a yellow light is turned on and a camera takes a

photo of the plate (used to fine the owner of the vehicle).

There are three types of toll gates: single toll, where the

same type of vehicles pay a fixed amount, entry toll to

enter a motorway and exit toll to leave it. The amount

paid on motorways depends on the type of the vehicle and

the distance traveled."

To help identify the crosscutting concerns we have

used the requirements elicitation tool JPREView
2
. In this

approach, viewpoints are specified through a template. A

viewpoint template consists of a viewpoint name, focus,

1 Portuguese ATMs offer a wide range of services, e.g. selling train or theatre tickets.
2 http://www.comp.lancs.ac.uk/computing/research/cseg/projects/deada/JPreview.html

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02)

1090-705X/02 $17.00 © 2002 IEEE

an optional list of sub-viewpoints, a list of concerns, and a

list of requirements. Concerns are elaborated by deriving a

set of requirements which we call external requirements.

Our approach is not limited to viewpoints. We can use:

goal-oriented requirements which cover functional and

non-functional concerns [10]; use cases or scenario-based

approaches, by specifying which use cases/scenarios are

crosscut by a concern; problem frames which can be

viewed as concerns [8].

3.1. Identify concerns

Concerns are identified by analysing the initial

requirements. For example, since the owner of a vehicle

has to indicate his/her bank details during registration,

security is an issue that the system needs to address. Other

concerns in our case study, identified in a similar fashion,

are: Response Time, Multi-user System, Compatibility,

Legal Issues, Correctness and Availability.

3.2. Specify concerns

For simplification we choose to specify only two

concerns here: Compatibility and Response Time. The

choice is aimed at demonstrating a range of dimensions

(cf. section 3.6).

Concern: Compatibility

External Requirements:

 1. Users will activate the gizmo using an ATM.

 2. The police will deal with vehicles using the system

without a gizmo.

Concern: Response-Time

External Requirements:

1. A toll gate has to react in-time in order to:

1.1 read the gizmo identifier;

1.2 turn on the light (to green or yellow) before

the driver leaves the toll gate area;

1.3 display the amount to be paid before the

driver leaves the toll gate area;

1.4 photograph the unauthorised vehicle’s plate

number from the rear.

2. The system needs to react in-time when:

2.1 The user activates the gizmo using an ATM.

3.3. Discover requirements and relate to concerns

The following viewpoints were identified: ATM,

Vehicle, Gizmo, Police, Debiting System,Entry Toll, Exit

Toll, Driver, Vehicle-Owner and System Administrator.

Having identified concerns and viewpoints, we must

relate them. We do this using the templates of JPREView.

In this example, we have chosen the viewpoints ATM and

Exit Toll. Viewpoint focus has been omitted for

simplification. An ATM allows customers to enter their

own transactions using cards. The ATM sends the

transaction information for validation and processing.

Viewpoint: ATM.

Concerns: Security, Compatibility, Response time

Requirements:

1. The ATM will send the customer’s card number,

account number and gizmo identifier to the system for

activation.

2. The ATM will send the account number to the system

to obtain the gizmo identifiers associated with the

account.

3. The ATM will send the account number, new card

number and the gizmo identifier to the system to

update the card number and reactivate the gizmo.

Viewpoint: Exit Toll

Concerns: Response Time, Correctness, Legal Issues

Requirements:

1. The driver will see a yellow light if s/he did not use an

entry toll.

2. The amount being debited depends upon the entry

point.

3.4. Identify candidate aspects

The requirements number 1 and 2 of the Response

Time concern crosscut the requirements of two different

viewpoints (ATM and Exit Toll). Consequently the

Response Time concern qualifies as a candidate aspect. In

fact, in our case study all the concerns identified form

candidate aspects as they cut across multiple viewpoints.

However, in another system a concern might constrain a

single viewpoint and, hence, will not qualify as a

candidate aspect.

3.5. Specify and prioritise aspects

Specification provides an opportunity to refine the

aspects and make them more concrete, e.g. “Legal Issues”

can be refined to “Legal Issues for Unauthorised

Vehicles”, “Legal Issues for Billing”, etc. Prioritisation

allows us to describe the extent to which an aspect may

constrain a viewpoint e.g. security is a concern for the

“Vehicle Owner” viewpoint. Security must be assigned a

high priority during registration as the vehicle owner

provides personal information such as bank account

details. However, security is not such a high priority for

correspondence as to use a personal courier.

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02)

1090-705X/02 $17.00 © 2002 IEEE

3.6. Specify aspect dimensions

Specification of a candidate aspect’s dimensions makes

it possible to determine its influence on later development

stages and identify its mapping onto a function, decision

or aspect. Consider our Compatibility candidate aspect.

The requirements derived from this aspect will influence

parts of the system specification, architecture and design

pertaining to requirements derived from viewpoints

constrained by it. They will also influence system

evolution as change of the user’s ATM cards must be

anticipated. The Compatibility aspect will, however, map

on to a function allowing activation and reactivation of the

gizmo. The Response Time concern, on the other hand,

will influence the type of architecture chosen and the

design of the classes realising the requirements

constrained by Response Time. It will map to an aspect at

the design and implementation level because response

time properties cannot be encapsulated in a single class

and will be otherwise spread across a number of classes.

The various candidate aspects in our case study and their

mappings and influences are shown in Table 1.

Table 1: Aspect dimension specification

Candidate aspect Influence Mapping

Compatibility Specification,

architecture, design,

evolution

Function

Response time Architecture, design Aspect

Legal issues Specification Function

Correctness Specification,

design

Function

Security Architecture, design Aspect

Availability Architecture Decision

Multi-user system Architecture, design Aspect

4. Conclusions

This paper has proposed a model for aspect-oriented

requirements engineering. The model supports separation

of crosscutting properties from early stages of the

development and identification of their mapping and

influence on later development stages. This makes it

possible to identify conflicts and establish possible trade-

offs early on in the development cycle and promotes

traceability of broadly scoped requirements and

constraints throughout system development, maintenance

and evolution. The improved modularisation and

traceability obtained through early separation of

crosscutting concerns can play a central role in building

systems resilient to unanticipated changes hence meeting

the adaptability needs of volatile domains such as

banking, telecommunications and e-commerce.

With increasing support for aspects at the design and

implementation level, the inclusion of aspects as

fundamental modelling primitives at the requirements

level and identification of their mappings also helps to

ensure homogeneity in an aspect-oriented software

development process.

Our future work will focus on validation of aspects,

their composition with other requirements and resolution

of possible conflicts resulting from the composition

process. We also aim to develop a notation to describe

aspects, their interactions and composition relationships at

the requirements level.

References

[1] Xerox PARC, USA, "AspectJ Home Page",

http://aspectj.org/, 2002.

[2] R. Clark and A. Moreira, "Constructing Formal

Specifications from Informal Requirements", Software

Technology and Engineering Practice, 1997, IEEE

Computer Society Press, pp. 68-75.

[3] S. Clarke and R. J. Walker, "Composition Patterns: An

Approach to Designing Reusable Aspects", International

Conference on Software Engineering (ICSE), 2001.

[4] E. W. Dijkstra, A Discipline of Programming. Englewood

Cliffs, NJ: Prentice Hall, 1976.

[5] T. Elrad, R. Filman, and A. Bader (eds.), "Theme Section

on Aspect-Oriented Programming", Communications of

ACM, Vol. 44, No. 10, 2001.

[6] A. Finkelstein and I. Sommerville, "The Viewpoints

FAQ." BCS/IEE Software Engineering Journal, Vol. 11,

No. 1, 1996.

[7] J. Grundy, "Aspect-Oriented Requirements Engineering

for Component-based Software Systems", 4th IEEE

International Symposium on RE, 1999, IEEE Computer

Society Press, pp. 84-91.

[8] M. Jackson, Problem Frames: Analyzing and Structuring

Software Development Problems: Addison Wesley, 2000.

[9] H. Klaeren, E. Pulvermueller, A. Rashid, and A. Speck,

"Aspect Composition Applying the Design by Contract

Principle", 2nd International Symposium on Generative

and Component-based Software Engineering (GCSE),

2000, Springer-Verlag, LNCS 2177, pp. 57-69.

[10] A. Lamsweerde, "Goal-Oriented Requirements

Engineering: A Guided Tour", 5th International

Symposium on Requirements Engineering, 2001, IEEE

Computer Society Press, pp. 249-261.

[11] A. Rashid, "A Hybrid Approach to Separation of

Concerns: The Story of SADES", Proc. Reflection conf.

2001, Springer-Verlag, LNCS, 2192, pp. 231-249.

[12] I. Sommerville and P. Sawyer, Requirements Engineering

- A Good Practice Guide: John Wiley and Sons, 1997.

[13] P. L. Tarr, H. Ossher, W. H. Harrison, and S. M. Sutton,

"N Degrees of Separation: Multi-Dimensional Separation

of Concerns", International Conference on Software

Engineering (ICSE), 1999, ACM, pp. 107-119.

Proceedings of the IEEE Joint International Conference on Requirements Engineering (RE’02)

1090-705X/02 $17.00 © 2002 IEEE

