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Simple Summary: An early assessment of response to treatment is crucial to informing appropriate
therapeutic management. Using a plasma-only strategy, we measured changes in circulating tumor
DNA (ctDNA) levels after one or two cycles of chemotherapy in 92 patients with advanced non-
small-cell lung cancer (NSCLC) treated with first-line chemo- or chemoradiation therapies. A ≤50%
decrease in ctDNA level after one cycle of chemotherapy was associated with shorter progression-free
survival and overall survival. A ≤50% decrease in ctDNA level after two cycles of chemotherapy also
had shorter survival. Our findings demonstrate that using liquid biopsies to measure early changes in
ctDNA levels in response to chemotherapy may help identify non-responders before standard-of-care
imaging in advanced NSCLC. Monitoring treatment efficacy earlier and accurately can enable more
personalized regimens to improve patient outcomes.

Abstract: Monitoring treatment efficacy early during therapy could enable a change in treatment
to improve patient outcomes. We report an early assessment of response to treatment in advanced
NSCLC using a plasma-only strategy to measure changes in ctDNA levels after one cycle of chemother-
apy. Plasma samples were collected from 92 patients with Stage IIIB-IV NSCLC treated with first-line
chemo- or chemoradiation therapies in an observational, prospective study. Retrospective ctDNA
analysis was performed using next-generation sequencing with a targeted 198-kb panel designed
for lung cancer surveillance and monitoring. We assessed whether changes in ctDNA levels after
one or two cycles of treatment were associated with clinical outcomes. Subjects with ≤50% decrease
in ctDNA level after one cycle of chemotherapy had a lower 6-month progression-free survival rate
(33% vs. 58%, HR 2.3, 95% CI 1.2 to 4.2, log-rank p = 0.009) and a lower 12-month overall survival
rate (25% vs. 70%, HR 4.3, 95% CI 2.2 to 9.7, log-rank p < 0.001). Subjects with ≤50% decrease in
ctDNA level after two cycles of chemotherapy also had shorter survival. Using non-invasive liquid
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biopsies to measure early changes in ctDNA levels in response to chemotherapy may help identify
non-responders before standard-of-care imaging in advanced NSCLC.

Keywords: ctDNA; NSCLC; chemotherapy; NGS; early molecular response

1. Introduction

Lung cancer remains the leading cause of cancer-related mortality worldwide [1],
with only 10–30% of patients surviving five years after diagnosis [2]. The latest analysis of
epidemiological data on non-small cell lung cancer (NSCLC) in the United States suggests
the introduction of more effective treatments and earlier treatment associated with earlier
diagnosis may have increased the five-year survival estimate from 23.3% in 2014 to 26.4%
in 2017 [3]. With the growing number of available treatment options, such as molecular
targeted therapies and immunotherapies, monitoring response to therapy during initial
cycles of treatment may enable an earlier change in treatment to further improve patient
outcomes. However, treatment response in solid tumors is primarily based on radiological
assessments, which are recommended from every 6 to 8 weeks or from 6 to 12 weeks for
advanced NSCLC [4]. Performing serial computed tomography (CT) scans at short intervals
from 3 to 4 weeks can detect changes in tumor size after one cycle of chemotherapy and
potentially change clinical management [5], though standard methods such as Response
Evaluation Criteria in Solid Tumors (RECIST) [6] are limited by practicability, radiation
exposure, and challenges in morphological evaluation [7].

Liquid biopsies have emerged as a promising tool for precision oncology [8]. In 2018,
the International Association for the Study of Lung Cancer (IASLC) issued a statement
paper concluding that clinical implementation of liquid biopsy approaches is justified in
several therapeutic settings relevant to NSCLC, particularly for initial molecular diagnosis
when tumor tissue is unavailable and for sparing an invasive re-biopsy to determine subse-
quent therapy after progression on a targeted therapy [9]. Furthermore, quantifying changes
in the levels of tumor-specific mutations in circulating tumor DNA (ctDNA) enables early
response prediction and monitoring in various advanced solid tumors [10], including col-
orectal cancer [11–13] and breast cancer [14,15]. In advanced lung cancer, changes in ctDNA
levels can be used as a biomarker to monitor early response to immunotherapy [16–20] or
tyrosine kinase inhibitors (TKIs) [21–24].

Despite novel treatment advances, chemo- and chemoradiation therapy remain
standard-of-care options in certain settings for treating advanced NSCLC [4]. A limited
number of studies have explored the use of changes in ctDNA levels to monitor early re-
sponse to chemotherapy. Previous work tracked changes in mutant levels of single genes in
ctDNA, such as KRAS and TP53 [25–27], or examined ctDNA positivity rather than a change
from baseline [28,29]. Moreover, analyses of ctDNA typically leverage prior knowledge of
variants from matched tissue biopsies [29,30]. Since a tissue biopsy is often inaccessible
in many late-stage lung cancer patients [31], we sought to determine whether variants
found in baseline plasma ctDNA can also enable longitudinal monitoring without any prior
knowledge of variants from matched tissue biopsies. Using a targeted next-generation
sequencing (NGS) panel optimized for surveillance and monitoring of lung cancer, we
hypothesized that a plasma-only approach measuring changes in ctDNA levels can assess
early molecular response to chemo- or chemoradiation therapies in advanced NSCLC.

2. Materials and Methods
2.1. Study Design and Population

The Lung Cancer Multi-Marker Study was an observational, prospective clinical re-
search study at Thoraxklinik, Heidelberg University Hospital, Germany. Eligible treatment-
naïve subjects with histologically or cytologically proven late-stage adenocarcinoma or
squamous cell carcinoma of the lung were enrolled in this study between December 2015
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and March 2018 (Table 1). Blood samples from subjects were collected during regular
clinical assessments at baseline, prior to the start of therapy, and throughout treatment.
Response Evaluation Criteria in Solid Tumors guidelines (RECIST 1.1) [6] were followed
when assessing the efficacy of treatment. The study was approved by the local ethics
committee (S-611/2017) and health authority and carried out in accordance with Good
Clinical Practice and the Declaration of Helsinki: Ethical Principles for Medical Research
Involving Human Patients. Informed consent was obtained from all donors.

Table 1. Baseline characteristics of study subjects.

Characteristic Subjects (n = 92)

Histology Subtype, n (%)
Adenocarcinoma 56 (61)

Squamous cell carcinoma 36 (39)

Age, median (IQR) 65 (59, 71)

Sex, n (%)
Female 23 (25)
Male 69 (75)

Smoking History, n (%)
Ex-smoker 48 (52)

Never smoked 5 (5)
Smoker 39 (42)

UICC, n (%)
IIIB 29 (32)
IIIC 9 (10)
IV 34 (37)

IVA 14 (15)
IVB 6 (7)

ECOG, n (%)
0 55 (60)
1 36 (39)
2 1 (1)

Tumor Stage, n (%)
T1 3 (3)
T2 15 (16)
T3 31 (34)
T4 42 (46)
TX 1 (1)

N Stage, n (%)
N0 4 (4)
N1 6 (7)
N2 35 (38)
N3 46 (50)
NX 1 (1)

M Stage, n (%)
M0 34 (37)
M1 54 (59)
MX 4 (4)

Note: IQR, interquartile range; UICC, Union for International Cancer Control; ECOG—0 = Fully active, able
to carry on all pre-disease performance without restriction, 1 = Restricted in physically strenuous activity but
ambulatory and able to carry out work of a light or sedentary nature, 2 = Ambulatory and capable of all self-care
but unable to carry out any work activities; up and about more than 50% of waking hours.
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For our assessment of plasma-based measurements within the first one or two cycles
of chemotherapy, we analyzed up to three plasma samples per subject (Figure 1A). The
baseline (B0) plasma sample was the last sample collected prior to the treatment start date.
The treatment start date was defined as the date of initiation of cycle 1 of chemotherapy
in first line. The first post-treatment (P1) plasma sample was the first sample collected
between 21 and 49 days after treatment started. The P1 sample had to be collected on or
before the initiation of cycle 2 of chemotherapy in first-line, or on or before initiation of
second-line therapy. The second post-treatment (P2) plasma sample was the first sample
collected between 21 and 49 days after the start of chemotherapy cycle 2. The P2 sample
had to be collected on or before the initiation of cycle 3 of chemotherapy in first-line or on
or before initiation of second-line therapy. For all time points, samples were not included if
the patient received any radiotherapy within 14 days prior to plasma collection.
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Figure 1. Study design and ctDNA level distributions. (A) ctDNA sequencing was performed
on baseline plasma (B0) and first available plasma after one cycle of chemotherapy (P1) and first
available plasma after two cycles of chemotherapy (P2). ctDNA levels were measured as mean
mutant molecules per milliliter (MMPM). (B) Distribution of ctDNA levels in B0, P1, and P2 samples.
(C) Distribution of changes in ctDNA level at P1 from B0 and P2 from B0 in matched samples. Center
line indicates the median value. **** Wilcoxon p ≤ 0.0001. ns: not significant, Wilcoxon p > 0.05.

2.2. ctDNA Sequencing and Bioinformatics Analysis

Cell-free DNA (cfDNA) was isolated from plasma samples and prepared for sequenc-
ing using the AVENIO ctDNA Surveillance Kit (Roche; for research use only; not for use in
diagnostic procedures). The analytical quality of the extracted DNA was evaluated using a
quantitative polymerase chain reaction (qPCR) method as described by Saelee et al. [32] to
maximize cfDNA input into the hybrid capture-based NGS workflow, which was based
on cancer personalized profiling by deep sequencing (CAPP-Seq) technology [33]. The
workflow utilizes a 198-kb panel designed to cover recurrently mutated genomic loci in
lung and colorectal cancers as well as genes in the U.S. National Comprehensive Cancer
Network (NCCN) Guidelines. Analysis was carried out as described in the instructions of
the kit. For the 223 samples from 92 patients used in this study, the median input mass was
25.7 ng (range 5–290 ng), median paired-end reads per sample were 54.9 million (range
31.9–164.9 million), median percentage of on-target reads was 69.0% (range 31.5–78.9%),
and median unique molecular depth was 4747 (range 781–11,883).
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NGS analysis was completed with the AVENIO Oncology Analysis Software [34]
(Roche; for research use only; not for use in diagnostic procedures), which incorporates
bioinformatics methods from CAPP-Seq technology and integrated digital error suppres-
sion [35] to remove random PCR errors and stereotypical errors from technical artifacts.
Somatic calling was performed on the unfiltered list of single nucleotide variants (SNVs)
from the software. The somatic calling approach used a previously described machine
learning model [36] that takes into account the variation in variant allele fraction (AF)
and information on common germline variants in public databases (Exome Aggregation
Consortium [37] release 0.3.1, 1000 Genomes [38] phase3v5b, and dbSNP [39] build 144).
The model was trained to remove germline variants based on the lower variation in AFs
of germline variants than somatic variants in longitudinal plasma samples from the same
subject. In addition to the tumor-specific SNVs, filtered insertion/deletions (indels) from
the AVENIO Oncology Analysis Software were included in downstream analyses as tumor-
specific variants for each subject.

We performed longitudinal ctDNA analysis and measured changes in mean mutant
molecules per milliliter (MMPM) in post-treatment plasma compared to baseline by tracking
the AF of the tumor-specific variants identified in the baseline plasma (Figure 1A). The
MMPM for each variant was quantified as the variant AF multiplied by the extracted mass
(ng) and 330, then divided by the plasma volume (mL). The factor of 330 is the estimated
number of haploid genome equivalents per ng of DNA based on the molecular weight of
the human genome. In ctDNA analyses not informed by baseline plasma information, we
calculated a mean MMPM from all somatic variants identified in post-treatment plasma.

2.3. ctDNA Thresholds for Molecular Response

A pre-specified threshold of >50% vs. ≤50% decrease in ctDNA level from baseline
was selected to classify molecular responders vs. molecular non-responders. Selection of
the threshold was based on review of prior studies, which included ctDNA decreases of
either >50% or >30% for immunotherapy response [16,18,19] or >98% or >90% for EGFR
TKI response [22,23]. Zou et al. [20] used a threshold of >50% ctDNA decrease at 6 weeks
after second-line chemotherapy or immunotherapy.

We also explored the possibility of establishing a threshold based on a single post-
treatment sample, not informed by a subject-specific baseline sample. This approach
to molecular monitoring of response is well-established in the clinical management of
chronic myeloid leukemia treated with TKIs, where molecular response is measured by the
log decrease in BCR-ABL1 transcript level from a standardized baseline [40,41]. Instead
of requiring analysis of the baseline sample, analysis of ctDNA levels in a single post-
treatment plasma could provide an assessment of treatment response. For this method,
the P1 samples in our study were randomly split into 60% training and 40% test sets with
stratification by stage, smoking history, performance status, and radiotherapy status. The
optimal threshold identified by maximally selected LogRank statistics [42] in the training
set for classifying responders vs. non-responders was then applied to the test set.

2.4. Statistical Analysis

Subject baseline characteristics were summarized using proportions for categori-
cal variables and median and interquartile ranges (IQR) for continuous variables. Tu-
mor response assessment on the first CT scan after the post-treatment plasma collection
date was used to evaluate the association with mean MMPM change after one cycle of
chemotherapy using Fisher’s exact test and calculation of the odds ratio and associated
95% confidence interval.

Kaplan–Meier estimates and log-rank tests were used to evaluate classification of
subjects as molecular responders vs. non-responders based on the developed algorithms
using pre-defined or optimal thresholds. The differences in median progression-free
survival (PFS) and overall survival (OS) between classification groups were estimated
based on the Kaplan–Meier method. Six-month PFS was defined as time from treatment
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initiation to the date of first documented progressive disease (PD) in first line or death
within 182 days after treatment initiation. Subjects who did not have a documented PD or
remained alive at 182 days were censored at either 182 days or the date last known alive
at time of data cut, whichever was earlier. Twelve-month OS was defined as time from
treatment initiation to the date of death from any cause within 365 days after treatment
initiation. Subjects who remained alive at 365 days were censored at either 365 days
or the date last known alive at time of data cut, whichever was earlier. PFS rate at the
six-month time point and OS rate at the twelve-month time point were estimated using
Kaplan–Meier methodology.

Association between the classification groups and survival (PFS and OS) was assessed
using both unadjusted and adjusted Cox proportional hazards models. Univariable Cox
models were performed to assess the association between each potential adjustment vari-
able (histology, age, sex, smoking history [smoker vs. ex-smoker vs. never smoked], UICC
[III vs. IV], ECOG at baseline [0 vs. 1 or 2], and radiotherapy status) and survival. Variables
with clinical relevance (p-value < 0.1) were included as multivariable adjustments.

Data were analyzed using R 3.6.1 (The R Foundation for Statistical Computing Plat-
form, Vienna, Austria). All tests were two-sided and considered statistically significant at
p-value < 0.05 unless specified otherwise.

3. Results
3.1. Cohort Baseline Characteristics

A total of 223 plasma samples from 92 stage IIIB-IV NSCLC subjects were analyzed. In
total, 80 subjects had a baseline (B0) and post-chemotherapy cycle 1 (P1) plasma available
for analysis. In total, 51 subjects had a B0 and post-chemotherapy cycle 2 (P2) plasma
available for analysis. Approximately 60% of subjects had lung adenocarcinoma, and 40%
had lung squamous cell carcinoma (Table 1). Most subjects received first-line doublet
chemotherapy with a platinum-based agent (carboplatin or cisplatin) in combination with
vinorelbine or pemetrexed (Table S1).

3.2. Quantification of Circulating Tumor DNA in Plasma

P1 plasma was collected on treatment days 21–41 (median: 23) after chemotherapy
initialization, and P2 plasma was collected on days 42–91 (median: 45) of chemotherapy.
All subjects had at least one tumor-specific SNV, insertion, or deletion detected in baseline
plasma, with a median of 10 somatic mutations that were most frequently found in lung
cancer genes, including TP53, KRAS, and NPAP1 (Table S2). Each variant was quantified
with the MMPM metric, and the ctDNA level in a plasma sample was summarized as the
mean MMPM across the tumor-specific variants in that sample. The median mean MMPM
in plasma samples was 37.4 at baseline, 7.6 at P1, and 4.9 at P2 (Figure 1B). The distribution
of changes in mean MMPM at P1 and P2 compared to baseline shows that most subjects
experienced a decrease in ctDNA levels after one cycle of chemotherapy, and this decrease
persisted after two cycles of chemotherapy (Figure 1C).

3.3. Association of Change in ctDNA Level with Clinical Outcome

The tumor response assessment from the first available CT scan after treatment ini-
tiation (median of 20 days after P1 plasma collection) was compared with the change in
ctDNA level between B0 and P1 plasma (Figure 2A). Most subjects who had a partial
response had a decrease in ctDNA level. A >50% decrease (equivalent to <−50% change)
in ctDNA level from baseline was significantly associated with partial response (OR 13.15,
95% CI 2.75–127.66, p < 0.001; Figure 2B).
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Figure 2. Association between first response assessment and ctDNA decrease after one chemotherapy
cycle. (A) Waterfall plot showing change in ctDNA level at post-chemotherapy cycle 1 (P1) from
baseline (B0). ctDNA levels were measured as mean mutant molecules per milliliter (MMPM). Each
bar is colored by the first available response assessment after initiation of therapy: partial response
(PR), stable disease (SD), progressive disease (PD), or CT scan not available (NA). Dotted line indicates
the threshold of 50% decrease in mean MMPM. (B) Contingency table shows classification of response
by ctDNA using a >50% decrease threshold vs. response by CT scan. p-value and odds ratio were
calculated with Fisher’s Exact Test.

Subjects with ≤50% decrease in ctDNA level after one cycle of chemotherapy had a
lower 6-month progression-free survival rate (Figure 3A; 33% vs. 58%, HR 2.3, 95% CI 1.2 to
4.2, log-rank p = 0.009) and a lower 12-month overall survival rate (Figure 3B; 25% vs. 70%,
HR 4.3, 95% CI 2.2 to 8.7, log-rank p < 0.001). Unadjusted Cox proportional hazards models
were performed for each potential adjustment variable to determine which ones to include
in multivariate models determining associations between treatment response classification
and PFS and OS (Table S3). A significant association between a ≤50% decrease in ctDNA
level and PFS was seen after adjusting for stage (HR 1.9, 95% CI 1.0 to 3.7, log-rank p = 0.041;
Figure 4A). Similarly, after adjusting for radiotherapy (received at any time during the
study), ECOG performance status at baseline, and smoking history, a significant association
was observed between a ≤50% decrease in ctDNA level and OS (HR 4.43, 95% CI 2.14 to
9.2, log-rank p < 0.001; Figure 4B).
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tant molecules per milliliter (MMPM) from baseline in the first available plasma after one cycle
of chemotherapy.
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In the 51 subjects with both a baseline plasma and post-chemotherapy cycle 2 plasma,
those with ≤50% decrease in ctDNA level in the P2 plasma had a lower 6-month progression-
free survival rate (29% vs. 73%, HR 4.3, 95% CI 1.8 to 10, log-rank p < 0.001) and a lower
12-month overall survival rate (37% vs. 75%, HR 3.2, 95% CI 1.3 to 8.2, log-rank p = 0.009)
(Figure 5).
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Progression-free survival (A) and overall survival (B) for >50% vs. ≤50% decrease in mean mu-
tant molecules per milliliter (MMPM) from baseline in the first available plasma after two cycles
of chemotherapy.
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3.4. Association of Single Time Point ctDNA Level with Clinical Outcome

The 80 subjects with a P1 plasma sample were randomly split into 60% training and
40% test sets with stratification by stage, smoking history, performance status, and radio-
therapy status. For the stratification factors as well as other variables such as histology and
age, there were no significant differences between the training and test sets (Figure S1A). By
maximally selected LogRank statistics, an optimal threshold of 10 mean MMPM was identi-
fied for classifying OS in the 49 subjects in the training cohort. Subjects with a ≥10 mean
MMPM had a worse 12-month OS (HR 4.7, 95% CI 1.7 to 13, log-rank p < 0.001) (Figure S1B).
Using the same threshold for the test set of 31 subjects, those with ≥10 mean MMPM had
worse 12-month OS (HR 4.6, 95% CI 0.99 to 21, log-rank p = 0.033) (Figure S1C). For PFS, an
optimal threshold of 227 mean MMPM was identified. Subjects with ≥227 mean MMPM
had worse 6-month PFS in the training cohort (HR 2.8, 95% CI 1.1 to 7.7, log-rank p = 0.031)
and the test cohort (HR 5.5, 95% CI 1.6 to 19, log-rank p = 0.003) (Figure S2A). Given the
distribution of mean MMPM values at P1 (Figure 1B), 227 is a very high cutoff that would
classify only 14% of subjects as non-responders. Therefore, we also tried the threshold of
10 mean MMPM from the OS analysis to classify PFS. Although not statistically significant,
subjects with ≥10 mean MMPM had worse 6-month PFS (Figure S2B).

There were not enough P2 samples (n = 51) for a train/test split, and, therefore, we
did not analyze post-chemotherapy cycle 2 in single time point analyses.

4. Discussion

Our results suggest that ctDNA analysis using a targeted 197-gene NGS panel is a
feasible approach for monitoring early treatment effect in subjects with advanced NSCLC
treated with chemotherapy. We found that a ≤50% decrease in ctDNA levels after one
or two cycles of chemotherapy was significantly associated with worse 6-month PFS and
12-month OS (Figures 3 and 5). This finding is consistent with the results in Zou et al. [20],
which used the same targeted NGS panel and reported that a ≤50% decrease from baseline
in maximum AF at 6 weeks after second-line treatment initiation in the docetaxel cohort
had worse OS, though the separation was not significant (p = 0.061). We observed a larger
separation in the Kaplan–Meier curves in our study for a ≤50% decrease in ctDNA from
baseline at the same time point (P2), possibly because the treatment effect could be more
pronounced in a first-line setting.

Another study utilizing a 22-gene NGS panel [28] found that the absence of ctDNA,
not the decrease in ctDNA level, from 4 to 8 weeks after treatment initiation was the
best prognostic marker; however, the analysis was based on a heterogeneous cohort of
patients treated with either EGFR TKI or chemotherapy, precluding a direct comparison
of chemotherapy response assessment. The smaller gene panel may limit the ability to
detect tumor burden in plasma. In fact, this may explain the smaller decreases in ctDNA
levels observed in single-gene studies, such as Jiang et al. [27], where patients with partial
responses averaged a 31% drop in TP53 ctDNA levels after two cycles of chemotherapy.

Patient coverage is also an important consideration; studies tracking KRAS in patients
with advanced NSCLC could detect KRAS mutations in only 10% or 48% of baseline
plasma [25,26]. In our study, 100% of the 92 subjects had at least one trackable baseline
mutation with the 197-gene NGS panel. For subjects treated with targeted therapies, one
can take advantage of the mutations in genes that are relevant to the corresponding targeted
therapies for response monitoring [43]. For tumors with no known driver genes, there are
no readily available tools to monitor the disease burden of these subjects due largely in
part to the molecular heterogeneity of the disease. Earlier work described a way to monitor
these subjects, but customized assays are necessary [44]. The current work demonstrated
the feasibility of an NGS panel approach to achieve high mutation detection rates for lung
cancers, which is consistent with other work that utilized CAPP-Seq technology [33,45].

Importantly, we relied on baseline plasma instead of tissue biopsy at diagnosis to
identify tumor-specific variants to enable post-treatment monitoring. Previous studies
on longitudinal monitoring have mainly used baseline tissue biopsies as a starting point
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to identify tumor-derived variants [29,33,44]. Since tissue is not always accessible in
late-stage lung cancer subjects, a complementary approach is needed in the absence of a
tissue biopsy. In this study, we demonstrate the feasibility of identifying tumor-specific
variants in baseline plasma ctDNA that could enable longitudinal monitoring. Consistent
with prior studies [33,45], most of the somatic variants we identified in the plasma of
lung cancer subjects were in non-driver genes. However, the presence and level of these
non-driver mutations correlated with disease burden and were useful for post-treatment
response assessment.

If baseline plasma is unavailable, a single-time point analysis of ctDNA level in post-
treatment plasma could monitor therapy response. We identified a potential threshold
of 10 mean MMPM in plasma after one cycle of chemotherapy to classify responders vs.
non-responders. The same threshold was not significantly associated with 6-month PFS,
suggesting that predicting PFS but not OS after treatment initiation requires quantification
relative to a subject-specific baseline. This is consistent with the fact that progressive disease
per RECIST criteria is measured by comparing tumor size from a baseline CT scan. Longitu-
dinal measurement relative to baseline has been explored with other methods as well, such
as a >20% reduction in standardized uptake volume by positron emission tomography after
one cycle of chemotherapy [46], a >27% drop in serum levels of cytokeratin 19 fragment
(CYFRA 21-1) after one cycle of chemotherapy [47], or a >20% decrease in serum levels
of both carcinoembryonic antigen (CEA) and CYFRA 21-1 after two cycles of chemother-
apy [48]. Besides measuring changes in ctDNA levels in plasma, other approaches could be
considered for a multimodal approach for predicting progression.

5. Conclusions

We found that quantification of changes in ctDNA level using a targeted NGS panel is
a promising biomarker reflecting tumor dynamics and could identify subjects who had a
higher risk of failing therapy one treatment cycle earlier than routine CT imaging. Moreover,
an early assessment of the treatment effect can potentially be measured in plasma within
the first treatment cycle. Our results demonstrate that ctDNA quantitation is potentially
feasible for early assessment of the treatment response of solid tumors, especially when
tissue is not available. We present a framework whereby longitudinal ctDNA analysis could
enable real-time, non-invasive monitoring of cancer, providing novel insights into whether
an early response assessed by changes in the mutant molecule level has the potential
to predict treatment effect in a tissue-independent fashion. The cutoffs and parameters
described in this study may be suitable for different clinical research settings depending on
sample availability relative to treatment.

6. Patents

A.B., C.J., X.M.M., T.M., F.J.H., N.T., and B.W. have filed a patent (WO2019211418) on
utilizing mutant molecule count for quantifying ctDNA.
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