Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K)

Combined User's Manual for the ECLS-K Eighth-Grade and K-8 Full Sample Data Files and Electronic Codebooks

Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K)

Combined User's Manual for the ECLS-K Eighth-Grade and K-8 Full Sample Data Files and Electronic Codebooks

February 2009

Karen Tourangeau
Christine Nord
Thanh Lê
Alberto G. Sorongon
Westat

Michelle Najarian
Educational Testing Service

Elvira Germino Hausken
Project Officer
National Center for Education Statistics

U.S. Department of Education

Arne Duncan
Secretary

Institute of Education Sciences

Sue Betka
Acting Director

National Center for Education Statistics

Stuart Kerachsky
Acting Commissioner
The National Center for Education Statistics (NCES) is the primary federal entity for collecting, analyzing, and reporting data related to education in the United States and other nations. It fulfills a congressional mandate to collect, collate, analyze, and report full and complete statistics on the condition of education in the United States; conduct and publish reports and specialized analyses of the meaning and significance of such statistics; assist state and local education agencies in improving their statistical systems; and review and report on education activities in foreign countries.

NCES activities are designed to address high-priority education data needs; provide consistent, reliable, complete, and accurate indicators of education status and trends; and report timely, useful, and highquality data to the U.S. Department of Education, the Congress, the states, other education policymakers, practitioners, data users, and the general public. Unless specifically noted, all information contained herein is in the public domain.

We strive to make our products available in a variety of formats and in language that is appropriate to a variety of audiences. You, as our customer, are the best judge of our success in communicating information effectively. If you have any comments or suggestions about this or any other NCES product or report, we would like to hear from you. Please direct your comments to

National Center for Education Statistics
Institute of Education Sciences
U.S. Department of Education
1990 K Street NW
Washington, DC 20006-5651

February 2009

The NCES World Wide Web Home Page address is http://nces.ed.gov.
The NCES World Wide Web Electronic Catalog is http://nces.ed.gov/pubsearch.
This report is available only on the Web at http://nces.ed.gov/pubsearch.

Suggested Citation

Tourangeau, K., Nord, C., Lê, T., Sorongon, A. G., and Najarian, M. (2009). Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), Combined User's Manual for the ECLS-K Eighth-Grade and K-8 Full Sample Data Files and Electronic Codebooks (NCES 2009-004). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC.

Content Contact

Gail Mulligan
(202) 502-7491
gail.mulligan@ed.gov

CONTENTS

Chapter Page
GETTING STARTED xxv
1 INTRODUCTION 1-1
1.1 Background. 1-4
1.2 Conceptual Model 1-5
1.3 Study Components 1-6
1.4 ECLS-K Data Files 1-7
1.4.1 Differences Between ECLS-K Restricted-Use and Public- Use Files 1-7
1.4.2 Overview of Available Data Files 1-9
1.5 Contents of Manual 1-13
2 DESCRIPTION OF DATA COLLECTION INSTRUMENTS 2-1
2.1 Child Assessments and Questionnaire 2-1
2.1.1 Cognitive Assessments 2-2
2.1.2 Student Questionnaire 2-5
2.1.3 Physical Components 2-7
2.2 Parent Interview 2-7
2.3 General Education Teacher Questionnaires 2-9
2.4 Special Education Teacher Questionnaires 2-11
2.5 School Administrator Questionnaire. 2-13
3 ASSESSMENT AND RATING SCALE SCORES USED IN THE ECLS-K 3-1
3.1 Direct Cognitive Assessment 3-1
3.1.1 Number-Right Scores 3-3
3.1.2 Item Response Theory Scale Scores; Standardized Scores (T-Scores) 3-5
3.1.3 Proficiency Levels 3-9
3.1.3.1 Reading 3-10
3.1.3.2 Mathematics 3-10
3.1.3.3 Highest Proficiency Level Mastered 3-11
3.1.3.4 Proficiency Probability Scores 3-14

CONTENTS (continued)

Chapter Page
3.1.4 Choosing the Appropriate Score for Analysis 3-19
3.1.4.1 Item Response Theory-Based Scores 3-19
3.1.4.2 Scores Based on Number Right for Subsets of Items (Non-IRT Based Scores) 3-21
3.1.5 Measuring Gains 3-21
3.1.6 Reliability 3-25
3.1.7 Validity 3-27
3.2 Indirect Cognitive Assessment 3-28
3.2.1 Comparison to Direct Cognitive Assessment 3-29
3.2.2 Scores Available for the Teacher Ratings 3-29
3.3 Self-Description Questionnaire 3-32
3.4 Self-Concept and Locus of Control Scale Scores 3-34
4SAMPLE DESIGN AND IMPLEMENTATION4-1
4.1 Base-Year Sample 4-2
4.2 Fall-First Grade Subsample 4-7
4.3 Spring-First Grade Sample 4-11
4.3.1 Subsampling Movers 4-11
4.3.2 Child Freshening 4-14
4.4 Spring-Third Grade Sample 4-15
4.4.1 Subsampling Movers 4-15
4.4.2 Language Minority Children 4-16
4.5 Spring-Fifth Grade Sample 4-18
4.6 Eighth-Grade Sample 4-23
4.7 Sample Attrition 4-24
4.8 Calculation and Use of Sample Weights 4-28
4.8.1 Types of Cross-Sectional Sample Weights 4-30
4.8.2 Weighting Procedures 4-33
4.8.3 Computation of Spring-Eighth Grade Initial Child Weights 4-35

CONTENTS (continued)

Chapter Page
4.8.3.1 Base-Year Nonresponse-Adjusted School Weights 4-35
4.8.3.2 Base-Year Child Weights 4-36
4.8.4 Computation of Spring-Eighth Grade Child Weights 4-41
4.8.4.1 Adjustment for Unknown Eligibility and Nonresponse 4-41
4.8.4.2 Raking to Sample-Based Control Totals 4-42
4.8.4.3 Additional Adjustment for Child-Parent-Teacher Cross-Sectional Weights 4-43
4.8.5 Types of Cross-Sectional Weights and Their Use. 4-45
4.8.5.1 Cross-Sectional Weights to Be Used With Direct Child Assessment Data (C7CW0) 4-46
4.8.5.2 Cross-Sectional Weights To Be Used With Parent Data (C7PW0) 4-46
4.8.5.3 Cross-Sectional Weights To Be Used With a Combination of Child Direct Assessment Data and Parent Interview Data and Teacher Data for Children With English Teacher Questionnaire (C7CPTE0) 4-47
4.8.5.4 Cross-Sectional Weights To Be Used With a Combination of Child Direct Assessment Data and Parent Interview Data and Teacher Data for Children With Mathematics Teacher Questionnaire (C7CPTM0) 4-47
4.8.5.5 Cross-Sectional Weights To Be Used With a Combination of Child Direct Assessment Data and Parent Interview Data and Teacher Data for Children With Science Teacher Questionnaire (C7CPTS0) 4-48
4.8.6 Replicate Weights 4-48
4.8.7 Characteristics of Cross-Sectional Sample Weights 4-48
4.9 Variance Estimation 4-49
4.9.1 Paired Jackknife Replication Method 4-49
4.9.2 Taylor Series Method 4-52
4.9.3 Specifications for Computing Standard Errors 4-53

CONTENTS (continued)

Chapter Page
4.10 Design Effects 4-55
4.10.1 Use of Design Effects. 4-56
4.10.2 Median Design Effects for the ECLS-K 4-57
5 DATA COLLECTION METHODS AND RESPONSE RATES 5-1
5.1 Overview of Data Collection Methods 5-1
5.2 Field Staff Training. 5-3
5.2.1 Obtaining Parent Consent Training 5-3
5.2.2 Parent Interview Training 5-4
5.2.3 Advance School Contact and Recruitment Training 5-5
5.2.4 Spring-Eighth Grade Direct Student Assessment Training. 5-5
5.3 2006 Eighth-Grade Data Collection Activities 5-6
5.3.1 Obtaining Parent Consent 5-6
5.3.2 Conducting the Parent Interview 5-7
5.3.3 Fall Preassessment Contact 5-8
5.4 Tracing Activities During the Eighth-Grade Data Collection 5-11
5.5 Spring-Eighth Grade Data Collection 5-11
5.5.1 Preassessment School Contact 5-12
5.5.2 Conducting the Direct Student Assessments 5-12
5.5.3 Teacher and School Data Collection 5-14
5.6 Data Collection Quality Control 5-15
5.6.1 Quality Control on the Child Assessment 5-16
5.6.2 Validation of Parent Interviews. 5-16
5.7 Spring-Eighth Grade Completion Rates 5-19
5.7.1 Children Sampled in Kindergarten 5-20
5.7.2 Children Sampled in First Grade 5-36
5.7.3 Spring-Eighth Grade Completion Rates-All Children. 5-38
5.7.4 Overall Response Rates. 5-42
5.7.5 Nonresponse Bias Analysis 5-46

CONTENTS (continued)

Chapter Page
6 DATA PREPARATION 6-1
6.1 Coding and Editing Specifications for Computer-Assisted Interviews (CAI) 6-1
6.1.1 Range Specifications 6-1
6.1.2 Consistency Checks (Logical Edits) 6-2
6.1.3 Additional Coding 6-2
6.2 Coding and Editing Specifications for Hard-Copy Questionnaires and Assessments 6-7
6.2.1 Receipt Control 6-7
6.2.2 Coding 6-8
6.2.2.1 Coding of Questionnaires 6-8
6.2.2.2 Coding of Reading and Mathematics Assessment Forms 6-9
6.2.3 Data Editing 6-9
7 DATA FILE CONTENTS AND COMPOSITE VARIABLES 7-1
7.1 Identification Variables 7-2
7.2 Using Teacher Variables 7-4
7.2.1 Teacher Flags (J71TQUEX, J72TQUEX, F7MTHSCI, T7SAMTCH) 7-5
7.3 Child Assessment Flags (C7ENGFLG, C7MTHFLG, C7SCIFLG, C7STUDAT) 7-6
7.4 Missing Values 7-6
7.5 Variable Naming Conventions 7-9
7.6 Composite Variables 7-12
7.6.1 Child Composite Variables 7-12
7.6.1.1 Child's Age at Assessment (R7AGE) 7-13
7.6.1.2 Gender (R7GENDER) 7-13
7.6.1.3 Child's Date of Birth (R7DOBYY, R7DOBMM, and R7DOBDD) 7-13

CONTENTS (continued)

Chapter Page
7.6.1.4 Race/Ethnicity (W8AMERIN, W8ASIAN, W8PACISL, W8BLACK, W8WHITE, W8HISP, W8MT1RAC, W8RACETH, and R7RACE) 7-14
7.6.1.5 Child's Height (C7HEIGHT) 7-16
7.6.1.6 Child's Weight (C7WEIGHT) 7-16
7.6.1.7 Child's Body Mass Index (C7BMI) 7-17
7.6.1.8 Child's Disability Status (P7DISABL) 7-17
7.6.2 Family and Household Composite Variables 7-18
7.6.2.1 Number of Siblings (P7NUMSIB) 7-18
7.6.2.2 Parent and Household Members' Age (P7LESS18, P7OVER18, P7HDAGE, and P7HMAGE) 7-19
7.6.2.3 Food Security Status 7-20
7.6.2.4 Food Security Status: Continuous Measures (P7FSSCAL, P7FSCHSC, and P7FSADSC) 7-21
7.6.2.5 Food Security Status: Categorical Measures (P7FSSTAT, P7FSCHST, and P7FSADST) 7-22
7.6.2.6 Food Security Status: Raw Scores (P7FSRAW P7FSCHRA, and P7FSADRA) 7-23
7.6.2.7 Socioeconomic Status (SES) and Poverty (W8DADSCR, W8MOMSCR, W8SESL, W8SESQ5, W8INCCAT, W8POVRTY) 7-23
7.6.2.8 Parent Education (W8PARED, W8DADED, and W8MOMED) 7-31
7.6.2.9 Parent Race/Ethnicity (P7HDRACE and P7HMRACE) 7-32
7.6.3 Teacher Composite Variable 7-33
7.6.3.1 Grade-Level Composite (T7GLVL) 7-33
7.6.4 School and Class Composite Variables 7-34
7.6.4.1 School Type (S7SCTYP) 7-34
7.6.4.2 Public or Private School (S7PUPRI) 7-35
7.6.4.3 School and Grade-Level Enrollment (S7ENRLS, S7ENRL8) 7-36
7.6.4.4 Percent Minority Students in the School (S7MINOR) 7-36
7.6.4.5 Highest and Lowest Grade at the School (S7HIGGRD, S7LOWGRD) 7-38

CONTENTS (continued)

Chapter Page
7.6.4.6 School Lunch Composites (S7FLCH_I, S7RLCH_I). 7-38
7.6.4.7 School Year Start and End Dates (S7SCHBDD, S7SCHBMM, S7SCHBYY, S7SCHEDD, S7SCHEMM, S7SCHEYY) 7-41
7.6.5 FMS Composite Variables 7-42
7.6.5.1 \quad Year-Round Schools (F7YRRND) 7-42
7.6.5.2 Indicator of Whether Child Received Special Education Services (F7SPECS) 7-42
7.6.5.3 Indicator of Whether Child Has an Individualized Education Plan (IEP) on Record at School (F7RIEP) 7-42
7.6.6 Parent Identifiers and Household Composition (P7DADID, P7MOMID, P7HPARNT, P7HDAD, P7HMOM, P7HFAMIL, P7MOMTYP, P7DADTYP) 7-43
7.6.7 Industry and Occupation Codes Used in the ECLS-K 7-47
7.7 Methodological Variables 7-50
7.8 Children Who Changed Schools 7-51
7.8.1 Children Who Changed Schools Between Rounds (R7R6SCHG) 7-51
7.9 Composite Table 7-52
7.10 Masked Variables 7-52ELECTRONIC CODEBOOK8-1
8.1 Introduction. 8-1
8.1.1 Hardware/Software Requirements 8-1
8.1.2 ECB Features 8-2
8.2 Installing, Starting, and Exiting the ECB 8-3
8.2.1 Installing the ECB Program on Your Personal Computer 8-3
8.2.2 Starting the ECB 8-7
8.2.3 Exiting the ECB 8-10
8.2.4 Removing the ECB Program From Your Personal Computer 8-11

CONTENTS (continued)

Chapter Page
8.2.5 Title Bar 8-12
8.2.6 Menu Bar 8-12
8.2.7 Using Shortcut Keys to Navigate 8-13
8.3 Variable List 8-13
8.3.1 Searching the Codebook for Variables 8-16
8.3.1.1 Using the Go Button 8-16
8.3.1.2 Narrowing Your Variable Search 8-17
8.3.1.3 Expanding Your Variable Search 8-20
8.3.1.4 Resetting Your Variable List 8-22
8.4 Working Taglist 8-22
8.4.1 Opening a Taglist 8-23
8.4.2 Adding Variables to the Working Taglist 8-24
8.4.3 Removing Variables From the Working Taglist 8-26
8.4.4 Saving Taglists 8-27
8.4.5 Exporting Taglists 8-29
8.4.6 Importing Taglists 8-30
8.4.7 Using Predefined Taglists 8-31
8.4.8 Deleting Taglists 8-32
8.4.9 Viewing Codebook and Variable Information 8-33
8.5 Extracting Data From the ECB 8-41
8.5.1 Reviewing the Extract Specifications 8-48
8.5.2 Repairing and Compacting the Database 8-49
8.6 Menu Bar Descriptions 8-50
9 LONGITUDINAL ANALYSES 9-1
9.1 Conducting Longitudinal Analyses 9-2
9.2 Examples of Research Questions 9-3
9.3 K-8 Longitudinal Weights 9-4
9.3.1 Types of $\mathrm{K}-8$ Longitudinal Weights 9-4
9.3.2 Weighting Procedures 9-9

CONTENTS (continued)

Chapter Page
9.3.2.1 Longitudinal Weights Not Involving the Fall-First Grade Data 9-9
9.3.2.2 Longitudinal Weights Involving the Fall-First Grade Data 9-10
9.3.3 Characteristics of Longitudinal Weights 9-11
9.3.4 Variance Estimation 9-12
9.3.5 Design Effects 9-17
9.4 Merging Base-Year Child-Level Data With the First-Grade, Third-Grade, Fifth-Grade, and Eighth-Grade Child-Level Data 9-33
10 KINDERGARTEN-EIGHTH GRADE FULL SAMPLE PUBLIC-USE DATA FILE 10-1
10.1 Introduction 10-1
10.2 Individuals Included on the K-8 Full Sample Public-Use Data File.. 10-2
10.3 Content. 10-2
10.4 K-8 Weights 10-3
10.5 Characteristics of Weights 10-29
REFERENCES R-1

CONTENTS (continued)

List of Tables

Table Page
3-1 Direct cognitive assessment: routing test number-right, kindergarten and first-grade (K-1) assessments: School years 1998-99 and 1999-2000 3-4
3-2 Direct cognitive assessment: routing test number-right, third-grade assessment: School year 2001-02 3-5
3-3 Direct cognitive assessment: routing test number-right, fifth-grade assessment: School year 2003-04 3-5
3-4 Direct cognitive assessment: routing test number-right, eighth-grade assessment: School year 2006-07 3-5
3-5 Direct cognitive assessment: Item Response Theory (IRT) scale scores: School year 2006-07 3-8
3-6
Direct cognitive assessment: standardized scores: School year 2006-07 3-9
3-7 Direct cognitive assessment: highest proficiency level mastered, in percent: School year 2006-07 3-13
3-8 Eighth-grade direct cognitive assessment: proficiency probability scores-reading: School year 2006-07 3-15
3-9
Eighth-grade direct cognitive assessment: proficiency probability scores-mathematics: School year 2006-07 3-17
3-10 Reliability of Item Response Theory-based scores: IRT scale scores,T-scores, proficiency probabilities, by round of data collection and domain:School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-073-26
3-11 Reliability of routing test number correct (alpha coefficient), by round of data collection and domain: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07 3-27
3-12 Percent agreement of highest proficiency level mastered score by round of data collection: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07 3-27
3-13 Teacher rating scale reliability statistics for the IRT-based score, by category: School year 2006-07 3-30

CONTENTS (continued)

List of Tables (continued)

Table Page
3-14 Teacher rating scale range, mean, and standard deviation (weighted): School year 2006-07 3-31
3-15 Spring-eighth grade Oral Expression Skills item difficulties (arranged in order of difficulty): School year 2006-07 3-31
3-16
Spring-eighth grade Written Expression Skills item difficulties (arranged in order of difficulty): School year 2006-07 3-31
3-17 Spring-eighth grade Mathematic Skills item difficulties (arranged in order of difficulty): School year 2006-07 3-32
3-18
Spring-eighth grade Science Skills item difficulties (arranged in order of difficulty): School year 2006-07 3-32
3-19
Self-description questionnaire scale reliabilities (alpha coefficient): School year 2006-07 3-34
3-20 Self-description questionnaire scale range, mean, and standard deviation (weighted): School year 2006-07 3-34
3-21 Self-Concept and the Locus of Control scale reliabilities (alpha coefficient): School year 2006-07 3-36
3-22 Self-Concept and the Locus of Control scale range, mean, and standard deviation (weighted): School year 2006-07 3-36
4-1 Distribution of the ECLS-K primary sampling unit (PSU) sample by self-representing (SR) status, Metropolitan Statistical Area (MSA) status, and census region: School year 1998-99 4-3
4-2 Number of schools in the ECLS-K base-year school sample, by selected school characteristics: School year 1998-99 4-4
4-3 Number (unweighted) of children in the ECLS-K base-year sample, by selected characteristics: School year 1998-99 4-6
4-4 Number of base-year cooperating schools selected for fall-first grade, by selected school characteristics: School year 1999-2000 4-8
4-5 Number (unweighted) of children subsampled and eligible for fall-first grade, by selected characteristics: School year 1999-2000 4-10

CONTENTS (continued)

List of Tables (continued)

Table
4-6 Number (unweighted) of eligible children in spring-first grade sample excluding freshened children, by selected characteristics: School year

1999-2000

4-7 Number (unweighted) of eligible children in spring-third grade sample excluding freshened children, by selected characteristics: School year 2001-024-17

4-8 Number of children eligible after the base year but excluded from the
fifth-grade data collection: School year 2003-04 4-19

4-9 Number (unweighted) of eligible children in spring-fifth grade sample excluding freshened children, by selected characteristics: School year 2003-044-22

4-10 Number (unweighted) of eligible children in spring-eighth grade sample excluding freshened children, by selected characteristics: School year 2006-074-25

4-11 Number (unweighted) of children in the ECLS-K sample, by response status and data collection round: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07.4-26

4-12 Number (unweighted) of public school children in the ECLS-K sample, by response status and data collection round: School years 1998-99, 1999-2000, 2001-02, 2003-04 and 2006-074-27

4-13 Number (unweighted) of private school children in the ECLS-K sample, by response status and data collection round: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07.4-28

4-14 Number of children with direct child assessment, parent interview, and child-level data from mathematics teacher, by number of teachers who filled out teacher-level questionnaire: School year 2006-074-44

4-15 Number of children with direct child assessment, parent interview, and child-level data from science teacher, by number of teachers who filled out teacher-level questionnaire: School year 2006-074-45

CONTENTS (continued)

List of Tables (continued)

Table Page
4-16 Number of children who were not assessed in spring-eighth grade, by special situations: School year 2006-07 4-46
4-17 Characteristics of the eighth-grade cross-sectional child-level weights: School year 2006-07 4-49
4-18 Specifications for computing standard errors, spring-eighth grade: School year 2006-07 4-54
4-19 4-58 year 2006-07 ,ECLS-K median design effects for subgroups: School year 2006-07Number and percent of completed parent interviews by data collection modeand language: School year 2006-075-8
5-2 Completed child assessments, by accommodation, spring-eighth grade data collection: School year 2006-07 5-13
5-3 Number of children excluded from or accommodated in the spring-eighth grade assessments: School year 2006-07 5-14
5-4 Results of parent interview validations: School year 2006-07 5-185-5 Number of completed child-level cases and child-level completion rates forthe child assessment and parent interview for children sampled in the baseyear, by school characteristics: School year 2006-075-22
5-6 Number of completed child-level cases and child-level completion rates for the student questionnaire, school administrator questionnaire, and teacher-level questionnaire for children sampled in the base year, by school characteristics: School year 2006-07 5-24
5-7 Number of completed child-level cases and child-level completion rates for the child-level teacher questionnaires for children sampled in the base year, by school characteristics: School year 2006-07 5-26

CONTENTS (continued)

List of Tables (continued)

Table Page
5-8 Number of completed child-level cases and child-level completion rates forthe child assessment and parent interview for children sampled in the baseyear, by mover's status: School year 2006-075-29
5-9 Number of completed child-level cases and child-level completion rates for the student questionnaire, school administrator questionnaire, and teacher-level questionnaire for children sampled in the base year, by mover's status: School year 2006-07 5-305-10 Number of completed child-level cases and child-level completion rates forthe child-level teacher questionnaires for children sampled in the base year,by child's mover status: School year 2003-045-315-11 Number of completed child-level cases and child-level completion ratesfor the child assessment and parent interview for children sampled in thebase year, by child characteristics: School year 2006-075-32
5-12 Number of completed child-level cases and child-level completion rates for the student questionnaire, school administrator questionnaire, and teacher-level questionnaire for children sampled in the base year, by child characteristics: School year 2006-07 5-33
5-13 Number of completed child-level cases and child-level completion rates for the teacher-level questionnaires for children sampled in the base year, by child's mover status: School year 2006-07 5-34
5-14 Number of completed instruments and child-level completion rates forthe special education teacher questionnaires for children sampled in thebase year: School year 2006-075-35
5-15 Number of completed child-level cases and child-level completion rates for children sampled in first grade: School year 2006-07 5-37
5-16 Number of completed child-level cases and child-level completion rates, for children sampled in kindergarten and first grade, by survey instruments: School year 2006-07 5-40
5-17 Number of completed child-level cases and child-level completion rates,for children with scorable reading, mathematics, or science assessment orchildren not assessed due to disabilities, by survey instruments: School year2006-075-41

CONTENTS (continued)

List of Tables (continued)

Table

$$
7-1
$$

7-3 Levels of the detailed income range, fall-eighth grade: School year 2006-077-24
7-4 Households asked to report income to the nearest $\$ 1,000$, fall-eighth grade: School year 2006-07 7-25
7-5 Missing data for SES source variables, fall-eighth grade: School year 2006-07 7-25
7-6 Selected statistics on imputed parental education variables, fall-eighth grade: School year 2006-07 7-28
7-7 Selected statistics on imputed labor force status, fall-eighth grade: School year 2006-07. 7-28
7-8 Selected statistics on imputed occupation variables, fall-eighth grade: School year 2006-07 7-28
7-9 Selected statistics on imputed detailed income range, fall-eighth grade: School year 2006-07 7-29
7-10 ECLS-K and census poverty thresholds for 2006: School year 2006-07 7-30
7-11 Public schools with missing values of the school lunch composites, spring-eighth grade: School year 2006-07 7-39
7-12 Imputation of school lunch composites at the school level, spring-eighth grade: School year 2006-07. $7-40$
7-13 Results of imputation of school lunch composites at the child level, spring-eighth grade: School year 2006-07 $7-40$

CONTENTS (continued)

List of Tables (continued)

Table

7-15 Spring-eighth grade composite variables: School year 2006-07..................... 7-54
7-16 Recoded and suppressed data on the ECLS-K Eighth-Grade Public-Use
Data file... $7-87$

9-1 Characteristics of child-level K-8 longitudinal weights, spring-eighth grade: School year 2006-079-11

9-2 Specifications for computing standard errors, spring-eighth grade: School year 2006-079-15

9-3 ECLS-K, spring-fifth grade/spring-eighth grade panel: standard errors and design effects using C67CW0-C67CW90 and C67PW0-C67PW90, by selected child and parent variables: School years 2003-04 and 2006-079-18
9-4 ECLS-K, spring-third grade/spring-fifth grade/spring-eighth grade panel: standard errors and design effects using C567CW0-C567CW90 and C567PW0-C567PW90, by selected child and parent variables: School years 2001-02, 2003-04, and 2006-07 $9-20$

9-5 ECLS-K, spring-first grade/spring-third grade/spring-fifth grade/ spring-eighth grade panel: standard errors and design effects using C4_7CW0-C4_7CW90 and C4_7PW0-C4_7PW90, by selected child and parent variables: School years 1999-2000, 2001-02, 2003-04, and 2006-07$9-22$

9-6 ECLS-K, spring-kindergarten/spring-first grade/spring-third grade/ spring-fifth grade/spring-eighth grade panel: standard errors and design effects using $\mathrm{C} 2 _7 \mathrm{FC} 0-\mathrm{C} 2 _7 \mathrm{FC} 90$ and $\mathrm{C} 2 _7 \mathrm{FP} 0-\mathrm{C} 2 _7 \mathrm{FP} 90$, by selected child and parent variables: School years 1998-99, 1999-2000, 2001-02, 2003-04 and 2006-07.

9-7 ECLS-K, fall-kindergarten/spring-kindergarten/spring-first grade/ spring-third grade/spring-fifth grade/spring-eighth grade panel: standard errors and design effects using C1_7FC0-C1_7FC90 and C1_7FP0-C1_7FP90, by selected child and parent variables: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2003-04.

CONTENTS (continued)

List of Tables (continued)

Table

9-8 ECLS-K, panel of all seven rounds: standard errors and design effects for the full sample using C1_7SC0-C1_7SC40 and C1_7SP0-C1_7SP40, by selected child and parent variables: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07

9-9 ECLS-K panel: median design effects for subgroups, kindergarten through eighth grade: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07

List of Exhibits

Exhibit
A Sections of User's Manual that do not apply to both data files x. xiv
ECLS-K waves of data collection: School years $1998-99,1999-2000$,
$2001-02,2003-04$, and 2006-07.. $1-2$

1-2 ECLS-K conceptual model .. $1-6$
4-1 ECLS-K eighth-grade cross-sectional weights: School year 2006-07 4-31
4-2 Movers and nonmovers by retention status: School year 2003-04................. 4-40
4-3 ECLS-K Taylor Series stratum and first-stage unit identifiers: School year \quad 2006-07 ... 4-52
5-1 Timeline of eighth-grade data collection: 2006-07 5-2
7-1 Missing values codes, School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-077-7

7-2 Prefixes for eighth-grade variables and cross-sectional and cross-round
longitudinal weights: School year 2006-07.

Windows Run screen

CONTENTS (continued)

List of Exhibits (continued)

Exhibit Page
8-2 InstallShield Wizard 8-4
8-3 Welcome window 8-5
8-4 Choose Destination Location 8-5
8-5 Setup Status 8-6
8-6 InstallShield Wizard Complete 8-6
8-7a Desktop icon 8-7
8-7b Desktop screen-click start 8-8
8-8 First-time user dialog box 8-8
8-9 ECB splash screen 8-9
8-10 Select Catalog screen 8-9
8-11 Main ECB screen 8-10
8-12 Exit screen 8-11
8-13 Save working taglist dialog box 8-11
8-14 Title Bar 8-12
8-15Menu Bar8-12
8-16ECB main screen8-14
8-17 Variable List 8-15
8-17
Go button
8-18
Narrow Search Text dialog box
No Matches Found message 8-19
8-21 Example of narrowing a search 8-20

CONTENTS (continued)

List of Exhibits (continued)

Exhibit Page
8-22 Expand Search Text dialog box 8-21
8-23 No Matches Found message 8-22
8-24 ECB Working Taglist 8-23
8-25 Open Taglist dialog box 8-24
8-26 Add variables buttons 8-25
8-27 Add Taglist dialog box 8-26
8-28 Remove variables buttons 8-26
8-29 Save Taglist As dialog box 8-28
8-30 Save Taglist As dialog box (\#2) 8-29
8-31 Pulldown menu to select Taglist Export 8-30
8-32 Export Taglist dialog box 8-30
8-33 Pulldown menu to select Taglist Import 8-31
8-34 Import Taglist dialog box 8-32
8-35Delete Taglist selection8-33
8-36Delete Taglist confirmation window8-33
Codebook information 8-34
Codebook view 8-35
Navigation buttons 8-35
Printing status screen 8-36
Export codebook selection screen 8-37
Variable Quick View 8-38

CONTENTS (continued)

List of Exhibits (continued)

Exhibit Page
8-43 Add All Variables dialog box 8-39
8-44 View of the entire codebook 8-40
8-45 Printer dialog box 8-40
8-46 Limiting fields dialog box. 8-42
8-47 Save SAS program file dialog box. 8-43
8-48 Save SAS program file location browse screen 8-44
8-49 Save SAS data file dialog box 8-44
8-50 Save SPSS program file dialog box 8-45
8-51 Save SPSS program file location browse screen 8-46
8-52
Save SPSS data file dialog box 8-46
8-53 Save Stata program file dialog box 8-47
8-54 Save Stata program file location browse screen 8-48
8-55 Save Stata data file dialog box 8-48
8-56
Repair database completed screen 8-49
8-57
Menu Bar descriptions 8-50
9-1 ECLS-K: K-8 longitudinal weights, spring-eighth grade: School year 2006-07 9-7
9-2 ECLS-K Taylor Series stratum and first-stage unit identifiers, spring-eighth grade: School year 2006-07 9-14
10-1 Crosswalk between round number of data collection, grade, and school year: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07 10-4
10-2 Interpretation of letters used in names of weights 10-5

CONTENTS (continued)

List of Exhibits (continued)

Exhibit Page
10-3 ECLS-K: K-8 cross-sectional weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07. 10-7
10-4 ECLS-K: K-8 longitudinal weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07 10-14
10-5 Examples of research questions and appropriate weights to use: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07 10-28

This page is intentionally left blank.

GETTING STARTED

This chapter highlights key information needed to work with the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K) data and directs users to the appropriate sections of this manual to get started quickly. For additional information about any particular topic, users should go to the indicated section of this manual, hereinafter referred to as the User's Manual. In this chapter, major differences between the eighth-grade data collection and previous rounds are summarized; cautions and caveats about using the data are provided; and basic information about using the Electronic Codebook is summarized.

As described in section 1.4 of chapter 1, two files are available for analyzing eighth-grade data: (1) a restricted-use data file containing information collected during the eighth-grade round and recalibrated assessment scores for all rounds and (2) a kindergarten-eighth grade ($\mathrm{K}-8$) full sample public-use data file that has been produced in the place of both an eighth-grade public-use file and a $\mathrm{K}-8$ longitudinal file. As described in chapter 10, the full sample data file can be used for within-year analyses of any round of data collection from kindergarten through eighth grade, and it also can be used for any combination of cross-year analyses.

This manual serves as a guide for users of both of these files. Most of the User's Manual chapters apply to both the public-use and the restricted-use data files, but a few sections apply to only one of the two. Exhibit A summarizes the User's Manual sections that do not apply to both files and indicates the data file to which they apply. The user should watch for notices ($\boldsymbol{>}$ Please note...) at the beginning of sections that indicate if a section does not apply to both data files.

In preparing public-use data files, the National Center for Education Statistics (NCES) takes steps to minimize the likelihood that an individual school, teacher, parent, or child ${ }^{1}$ participating in the study can be identified. Every effort is made to protect the identity of individual respondents. Some modifications to the data contained in the eighth-grade restricted-use file have been made to the $\mathrm{K}-8$ full sample public-use data file to ensure confidentiality. These modifications do not affect the overall data quality and most researchers should be able to find all data needed for analysis in the public-use data file. Chapter 1, section 1.4.1, provides a general description of the differences between public-use and

[^0]restricted-use files. Table $7-16$ in chapter 7 contains a list of eighth-grade variables that have been modified. Section 7.10 contains additional information about the "masking" process.

Exhibit A. Sections of User's Manual that do not apply to both data files

Section	Description	Data file to which section applies		
7.9: table 7-15	Composite table	The last two columns of table 7-15 contain information that is file-specific. The second-to-last column in table $7-15$ contains information for the restricted-use file. Information for the eighth-grade data in the K-8 full sample public-use data file is contained in the last column of table 7-15.		
7.10	Masked variables 9.4	Eighth-grade data in the public-use K-8 full sample file		
third-, fifth-, and eighth-				
grade data			\quad	Eighth-grade restricted-use file
:---				

Major Differences in the Eighth-Grade Data Collection and Release

Although the eighth-grade data collection shares many similarities with earlier rounds, some modifications were made to capture important information relevant to children in eighth grade. The major differences between the eighth-grade data collection and the earlier rounds are summarized below:

- Parent data were collected in the fall rather than in the spring, as was the method in previous rounds. Because the data were collected at the beginning of the school year, items tapping parent involvement in various school functions were followed by items asking whether parents had yet had an opportunity to be involved in those functions.
- New construct areas were added to the parent interview for eighth grade. These new construct areas included the following:
- expectations of how far child will go in school;
- family activities (e.g., working on homework together, going shopping, attending concerts, plays, or movies);
- family rules (e.g., rules new to round 7 are about the child maintaining a certain grade point average, doing homework, and hours spent on the computer or playing video games);
- parent monitoring (e.g., checking homework, having and enforcing a curfew);
- days per week that child has adult supervision after school;
- parent reading habits;
- child's use of tutors in science or English/Language Arts;
- parent discussions with child (e.g., about courses at school, events);
- characteristics of parent's relationship with child;
- child performance in school;
- whether school is in the assigned district;
- school suspension;
- parent perceptions of and satisfaction with the school;
- characteristics of parent's relationship with spouse;
- parent religious practices;
- parent political views;
- nonresident parent contribution to medical and other expenses;
- child health questions regarding depression, weight and eating disorders, diabetes, and various treatments (e.g., medicine, individual therapy);
- child internalizing and externalizing problems;
parent depression (the same questions were used in round 2 of the study);
stressful life events;
- home ownership, value, and mortgage debt; and
- savings for post-high school education.
- The sample of children included on the K-8 longitudinal public-use data file differs from the sample included in prior ECLS-K longitudinal files. In each of the previous ECLS-K longitudinal files, children were included if they had at least one nonzero weight among the weights computed for the rounds included in the longitudinal file. However, the K-8 longitudinal public-use data file included any child who was ever sampled in the base year who had base-year data, and any child sampled in the first-grade year who had at least one round of data in first grade and beyond.
- In eighth grade, children were assessed in proctored group settings rather than one on one. In earlier rounds, the mathematics, reading, and science assessments were conducted via one-on-one direct assessment. In the eighth grade, however, children were expected to be familiar with proctored testing in school. Thus, groups of ECLSK sampled children who attended the same school were assessed in a single, proctored group administration. The content changes of the assessment are described in section 2.1.2.
- Two-level (high versus low) second-stage assessment forms were used, rather than three-level forms used in previous rounds. In the eighth-grade timed assessment session, all children were given separate routing tests in each subject area to determine the level (high versus low) of their second-stage reading, mathematics, and science assessments. Routing children into two, rather than three, second-stage forms facilitated accurate and efficient distribution of the second-stage forms. Results of the spring 2006 field test showed that there was no loss of data by using a two-level second-stage form. Information on the results of the spring 2006 field test can be found in the ECLS-K Methodology Report for the Eighth Grade (NCES 2009-003) (Tourangeau et al. forthcoming). Information on the quality of the eighth-grade assessment data can be found in the ECLS-K Psychometric Report for the Eighth Grade (NCES 2009-002) (Najarian, Pollack, and Sorongon forthcoming).
- Age-appropriate changes were made to the rating items used to tap children's perceptions of their social skills, interest in school subjects, self-concept, and control they had over their own lives. In the kindergarten and first-grade rounds of the ECLS-K, parents and teachers reported on children's social skills. In the third and fifth grade of the ECLS-K, the children provided information about themselves by completing a short self-description questionnaire that included items from a published instrument appropriate for third- and fifth-graders (Self Description Questionnaire I) (Marsh 1992a). In eighth grade, a new version of the self-description questionnaire was developed using items from a published instrument designed to be used with adolescents (Self Description Questionnaire II) (Marsh 1992b). See sections 2.1.1, 3.3, and 3.4 for additional information on the eighth-grade self-description questionnaire. In addition, two scales from the student questionnaire adapted from the National Education Longitudinal Study (NELS:88) tapped children's self-concept and their perceptions of how much control they had over their own lives. See sections 3.3
and 3.4 for more information on these scales and the scores that are available for analysis.
- The procedures for collecting height and weight data were modified. In the previous rounds of the ECLS-K, height and weight data were collected during the one-on-one direct assessment sessions. In the eighth grade, height and weight data were collected during the group assessment sessions. In most cases the groups were small (in many cases there was a single child). However, in some cases, the assessment sessions had several children participating. In the group assessment sessions, children were measured one at a time at a single height and weight station. The average size of the assessment group was three children and ranged from one to nine children per group. See section 5.5.2 or the ECLS-K Eighth-Grade Methodology Report (NCES 2009-003) (Tourangeau et al. forthcoming) for additional information on the height and weight data collection.
- In eighth grade, children completed self-administered paper and pencil questionnaires about their school experiences, their activities, their perceptions of themselves, and their weight, diet, and level of exercise. This questionnaire was completed during the group assessment session.
- The Academic Rating Scale (ARS) was replaced with other items tapping children's classroom behavior and performance. English, mathematics, and science teachers were asked to rate children on their respective domain-relevant skills. Teachers also rated children on their effort (e.g., "Does this student usually work hard for good grades in your class?"), behavior (e.g., "Does this student seem to relate well to other students in your class?"), and attendance (e.g., "How often is this student absent from your class?"). Teachers also were asked to report if they had either spoken to a guidance counselor regarding a child's poor performance or if they had recommended children for academic honors or advanced placement. Information on the scaling of these items can be found in section 3.2.
- Information about children's food consumption was collected through a selfadministered questionnaire. In previous rounds, the assessor read the questionnaire items for the children and recorded their responses. In the eighth-grade round, the food consumption items were included in the self-administered questionnaire completed during the group assessment session.
- Collection of school record abstracts and school facilities checklists was discontinued. These instruments were discontinued due to cost constraints and low response rates in prior rounds. Items associated with Individualized Education Programs (IEPs) that were collected from school record abstracts in previous rounds were collected in the special education teacher questionnaire (B).

Cautions and Caveats

Users of previous rounds of the ECLS-K data have frequently asked certain questions. For example, can school-level and teacher-level estimates be made with the ECLS-K data? Or, did the ECLS-K sample whole classrooms? NCES has developed a set of responses to users' most common questions. Please see the NCES website for commonly asked questions and responses: http://nces.ed.gov/ecls.

In addition to the frequently asked questions and responses, other aspects of working with the data are important to know, including the following:

- The sample is not representative of children in eighth grade, classrooms, or schools. The ECLS-K base-year sample is a representative sample of children attending kindergarten during the 1998-99 school year, of schools with kindergartens, and of kindergarten teachers. Because the first-grade sample was freshened with children who had not attended kindergarten in the United States in the previous year, the first-grade sample is representative of children attending first grade in the United States during the 1999-2000 school year. However, it is not representative of schools with first grades or of first-grade teachers. The eighth-grade sample is not representative of children in eighth grade, eighth-grade teachers, or schools with eighth grades. Children who started their schooling in the U.S. after first grade are not represented in the sample. The data should not be used to make statements about eighth-graders, schools with eighth grades, or eighth-grade teachers.
- Not all sample children were in eighth grade. The eighth-grade data file includes children who were in eighth grade in spring 2007, and others who were either held back (e.g., seventh-graders) or promoted ahead an extra year or more (e.g., ninthgraders). Users should be aware of this fact when using the data and interpreting the findings. Most children in the sample had been in school for at least 9 years ($\mathrm{K}-8$) and some more than 9 years (those who were repeating kindergarten in the base year). A very small number may have been in school less than 9 years (some were part of the freshened sample added in first grade).
- Child mobility and its consequences. A random subsample of children who transferred from their base-year schools was flagged to be followed in fall-first grade and in subsequent rounds of data collection. Sections 4.3.1, 4.4.1, 4.5, and 4.6 describe the subsampling of movers. A number of variables on the file can be used to determine if a child moved to a different school between rounds. Section 7.8 describes these variables.
- Missing data. Users should be certain to recode any missing data properly before conducting analyses. If the user is analyzing data over time, it is especially important to check that all skip patterns are the same across years because some changed between rounds of data collection. Five different possible missing data codes are used
on the file. See section 7.4 for a discussion of the different missing values codes and the circumstances in which they are used.
- Rescaled scores. The longitudinal scales necessary for measuring gain over time were developed by pooling all rounds of item response data, from fall-kindergarten through spring-eighth grade. Scale scores reported in each successive round were based on all test items present in the assessments up to and including that round. Each time the item pool was expanded, scores were recalibrated for all rounds to make longitudinal comparisons possible. Each recalibration of the scale score represents the estimated number right on a larger and larger set of items. As a result, the scale score for the same child in the same grade changes each time a new set of test items is incorporated and the scale on which the score is based is expanded. Estimates of gains in scale score points should be made using the recalibrated versions for all rounds. It would be inappropriate to compare previously reported scale score means with means based on recalibrated scores in the eighth-grade data file because the set of items on which the score is based has changed. This caveat applies primarily to analyses that report gains in scale score points. The effect of rescaling on previously reported Tscores and proficiency probability scores should be relatively small. However, to the extent that the pooling of test items across rounds represents a redefinition of the construct being measured, slight differences in these statistics may be observed as well. See the ECLS-K Psychometric Report for the Eighth Grade (NCES 2009002) (Najarian, Pollack, and Sorongon forthcoming) for more information.
- Use of weights. The eighth-grade restricted-use data file contains 5 sets of crosssectional weights and 12 longitudinal (panel) weights. Although a variety of weights exist on the file, there are scenarios for which there may not be a perfect weight. For a discussion of the weights and guidance in selecting an appropriate one, refer to sections 4.8, 9.3.1, and 10.4.
- Defining special populations. The ECLS-K includes a number of analytic groups of interest that can be identified and studied separately. For example, the eighth-grade data file contains variables that identify children who have a disability diagnosed by a professional (P7DISABL) and those who live in households with incomes below the federal poverty threshold (W8POVRTY). With variables from earlier rounds of data collection, it is possible to identify children who participated in Head Start in the year prior to kindergarten (HSATTEND from the base year and P4HSBEFK asked of new respondents in spring-first grade) and language minority children (WKLANGST), as well as other subgroups. Users who wish to study a specific subpopulation should consult the ECLS-K composite variables (table 7-15) or the data collection instruments to identify variables that might help them identify their population of interest.
- Examining school and classroom effects. Examination of classroom effects is possible with kindergarten and first-grade data because child assessment data were collected at the start and end of each of these grades. When studying the effects of schools and classrooms, it is important to group the subject children in the same classroom and/or same school. Each type of respondent (child, parent, regular teacher, special education teacher, and school) has a unique ID number. These ID numbers can
be used to identify children in the same classrooms and schools. Section 7.1 describes the available identification variables.
- Date of assessments and elapsed times between assessments are not the same for all children. The Electronic Codebook contains variables that indicate the month, day, and year in which the direct assessment was administered. The Electronic Codebook also contains composite variables for children's age at assessment for each sampled child. See the NCES website http://nces.ed.gov/ecls for information on how to calculate the elapsed time period between two assessments.
- Measuring achievement gains. One of the major strengths of the ECLS-K is the ability to measure children's achievement gains as they progress from kindergarten through eighth grade. There are several different approaches to measuring gains. See section 3.1.5 for a discussion of measuring gains with the ECLS-K.

Electronic Codebook Reference Guide

- Electronic Codebook (ECB). The ECB is designed to run under Windows 95^{\circledR}, Windows 98^{\circledR}, Windows 2000^{\circledR}, Windows XP^{\circledR}, or Windows NT^{\circledR} on a Pentium-class or higher personal computer (PC). (Given the variations of Windows Vista, it is uncertain what issues may be encountered when attempting to run the ECB on this operating system). The PC should have a minimum of 20 megabytes (MB) of available disk space. The ECB offers the most convenient way to access the data because it enables users to search the names and labels of variables, to examine question wording and response categories for individual items, and to generate SAS, SPSS for Windows, or Stata programs for extracting selected variables (see section 8.1.2 for a description of the ECB features). Section 8.2 of the User's Manual contains detailed instructions on how to install and open the ECB. The ECB allows users to easily examine the variables in the ECLS-K ECB dataset. The data user can create SAS, SPSS for Windows, and Stata programs that will generate an extract data file from the text (ASCII) data file on the ECLS-K CD-ROM. This text data file is referred to as the "child catalog." The restricted-use eighth grade child catalog is named child8r.dat in the restricted-use CD-ROM root directory. The K-8 full sample public-use child catalog is named childk8p.dat in the public-use DVD root directory. For more information about the data file, see appendix E on the CDROM or DVD.
- Data files. The eighth-grade restricted-use child catalog contains one record for each of 9,725 responding children in spring-eighth grade. The $\mathbf{K} \mathbf{- 8}$ full sample public-use child catalog contains one record for each of the 21,409 children responding in any round from fall-kindergarten to spring-eighth grade data collections. Data collected from teachers and schools are stored in the child catalog. Appendix B on the eighthgrade CD-ROM and DVD contains the data file record layout for the child catalog. It is strongly recommended that users access the data for both data files by using the ECB software available on the CD-ROM and DVD rather than access the ASCII file directly.
- Identification variables. The eighth-grade data file contains a child identification variable (CHILDID) that uniquely identifies each record. The same ID is used in each round of the survey. Teachers on the child records are identified with ID variables J71T_ID (reading teacher ID) and J72T_ID (mathematics or science teacher ID); schools are identified by the ID variable S7_ID. See section 7.1 in the User's Manual for further information on these identification variables.
- Instruments. For the ECLS-K eighth-grade data collection, data were collected using computer-assisted interviewing for parent interviews. Eighth-graders completed cognitive assessments in paper-and-pencil format in timed group administrations. They also completed self-administered paper-and-pencil questionnaires about their school experiences, their activities, their perceptions of themselves, and their weight, diet, and level of exercise. Self-administered questionnaires in paper-and-pencil format were used to collect information from teachers and school administrators or their designees. Chapter 2 of the User's Manual provides an overview of the instruments. To help decide what variables to use in analyses, the user should always review the actual instruments. Seeing the specific wording of the questions and the context in which they are asked is useful in understanding the results of the user's analyses and can help minimize errors. Appendix A on the ECLS-K ECB CD-ROM and DVD contains, with some exceptions, the eighth-grade instruments. The exceptions are measures that contain copyright-protected items.
- Composite variables. Numerous composite variables have been constructed for the ECLS-K data to make it easier for users to use the dataset. Most composite variables were created using two or more variables that are on the data file or using information from other sources. Other composites are recodes of single variables. Composites based on the child assessment include height, weight, and body mass index (BMI). Composites based on the teacher data include the percentage of minority children in class and children's grade level. Composites based on the school data include the percentage of minority children and school type. Composites based on the parent data include parent education, poverty status, and socioeconomic status. See section 7.6 and table $7-15$ of the User's Manual for details on all the composites contained on the eighth-grade restricted-use and the $\mathrm{K}-8$ full sample public-use data files. It is strongly recommended that users consider using the composite variables in their analysis, as appropriate. These variables represent the compilation of study data, including data from sources not otherwise available on the data file.
- Assessment scales. A key feature of the ECLS-K data is the set of assessments administered to each child. These assessments included cognitive assessments and measures of children's social development. Chapter 2 provides a general description of the survey instruments, including the cognitive assessments. The eighth-grade cognitive assessment contained items in reading, mathematics, and science. See section 3.1 of the User's Manual for details on the cognitive assessment and the scores that are available for analysis. Section 3.1.4 of the User's Manual discusses choosing the appropriate score for analysis. Section 3.1.5 discusses approaches to measuring gains in child achievement.

The measures of children's social development consisted of a self-description questionnaire in which the children rated their own perceptions of competence and
interest in reading and mathematics and also reported problem behaviors. In addition, two scales from the student questionnaire adapted from the National Education Longitudinal Study of 1988 (NELS:88) tapped children's self-concept and their perceptions of how much control they had over their own lives. See sections 3.3 and 3.4 for more information on these scales and the scores that are available for analysis.

- Sample design and weights. The ECLS-K employs a complex sample design. See chapter 4 for a description of the sample design. In order to obtain accurate estimates, the user will need to select the appropriate weights. Section 4.8 describes the eighth-grade cross-sectional weights and provides advice for which weight to use for a given type of analysis. See exhibit 4-1 for a summary of the cross-sectional weights available for analysis. A description of the eighth-grade longitudinal weights is provided in chapter 9 . Section 9.3.1 describes the $\mathrm{K}-8$ longitudinal (panel) weights and provides advice for which panel weight to use for a given type of analysis. See exhibit 9-1 for a summary of the K-8 longitudinal (panel) weights. Section 10.4 describes the eighth-grade cross-sectional weights and the $\mathrm{K}-8$ longitudinal (panel) weights available on the $\mathrm{K}-8$ full sample public-use data file and provides advice for which weight to use for a given type of analysis.
- Creating a longitudinal file. It is possible to merge the eighth-grade restricted-use data with data from earlier rounds. Instructions on how to create such a file are provided in chapter 9 , section 9.4.

1. INTRODUCTION

- Please note that this manual will refer to student respondents in the eighth-grade round as "children" to be consistent with the terminology used in documentation from earlier rounds of the $E C L S-K$.

This manual provides guidance and documentation for users of the eighth-grade data ${ }^{2}$ of the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K). It begins with an overview of the ECLS-K study. Subsequent chapters provide details on the instruments and measures used, the sample design, weighting procedures, response rates, data collection and processing procedures, and the structure of the data file.

The ECLS-K focuses on children's early school experiences beginning with kindergarten and ending with eighth grade. It is a multisource, multimethod study that includes interviews with parents, the collection of data from principals and teachers, and student records abstracts, as well as direct child assessments. In the eighth-grade data collection, a student paper-and-pencil questionnaire was added. The ECLS-K was developed under the sponsorship of the U.S. Department of Education, Institute of Education Sciences, National Center for Education Statistics (NCES). Westat conducted this study with assistance provided by Educational Testing Service (ETS) in Princeton, New Jersey.

The ECLS-K followed a nationally representative cohort of children from kindergarten into middle school. The base-year data were collected in the fall and spring of the 1998-99 school year when the sampled children were in kindergarten. A total of 21,260 kindergartners throughout the nation participated.

Two more waves of data were collected in the fall and spring of the 1999-2000 school year when most, but not all, of the base-year children were in first grade. ${ }^{3}$ The fall-first grade data collection was limited to a 30 percent subsample of schools ${ }^{4}$ (see exhibit 1-1). It was a design enhancement to enable researchers to measure the extent of summer learning loss and the factors that contribute to such loss and to better disentangle school and home effects on children's learning. The spring-first grade data

[^1]collection, which included the full sample, was part of the original study design and can be used to measure annual school progress and to describe the first-grade learning environment of children in the study. All children assessed during the base year were eligible to be assessed in the spring-first grade data collection regardless of whether they repeated kindergarten, were promoted to first grade, or were promoted to second grade. In addition, children who were not in kindergarten in the United States during the 1998-99 school year, and therefore did not have a chance to be selected to participate in the base year of the ECLS-K, were added to the spring-first grade sample. ${ }^{5}$ Such children include immigrants to the United States who arrived after fall 1998 sampling, children living abroad during the 1998-99 school year, children who were in first grade in 1998-99 and repeated it in 1999-2000, and children who did not attend kindergarten. Their addition allows researchers to make estimates for all first-graders in the United States rather than just for those who attended kindergarten in the United States in the previous year.

A fifth wave of data was collected in the spring of the 2001-02 school year when most, but not all, of the sampled children were in third grade. ${ }^{6}$ In addition to the school, teacher, parent, and child assessment data collection components, children were asked to complete a short self-description questionnaire, which asked them how they thought and felt about themselves both academically and socially. The spring-third grade data collection can be used to measure school progress and to describe the third-grade learning environment of children in the study.

Exhibit 1-1. ECLS-K waves of data collection: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07

Data collection	Date of collection	Sample
Fall-kindergarten	Fall 1998	Full sample
Spring-kindergarten	Spring 1999	Full sample
Fall-first grade	Fall 1999	30 percent subsample ${ }^{1}$
Spring-first grade	Spring 2000	Full sample plus freshening ${ }^{2}$
Spring-third grade	Spring 2002	Full sample
Spring-fifth grade	Spring 2004	Full sample
Spring-eighth grade	Spring 2007	Full sample
${ }^{1}$ Fall data collection consisted of a 30 percent sample of schools containing approximately 27 percent of the base-year children eligible to		
participate in year 2.		
${ }^{2}$ See description of freshened sample in text preceding exhibit 1-1.		
NOTE: See section 1.3 for a description of the study components.		
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of		
1998-99 (ECLS-K), spring 2007.		

[^2]A sixth wave of data was collected in the spring of the 2003-04 school year when most, but not all, of the sampled children were in fifth grade. ${ }^{7}$ In addition to the data collection components used in third grade, children also were asked about their food consumption at school and other places (e.g., home, restaurants) in the week prior to the interview. The spring-fifth grade data collection can be used to measure school progress and to describe the fifth-grade learning environment of children in the study.

A seventh wave of data was collected in the spring of the 2006-07 school year when most, but not all, of the sampled children were in eighth grade. ${ }^{8}$ In addition to the data collection components used in fifth grade, children were asked to complete a paper-and-pencil questionnaire about their school experiences, their activities, their perceptions of themselves, and their weight, diet, and level of exercise. The spring-eighth grade data collection can be used to measure school progress and to describe the eighth-grade learning environment of children in the study.

The sample of children in the eighth-grade round of data collection of the ECLS-K represents the cohort of children who were in kindergarten in 1998-99 or in first grade in 1999-2000. Since the sample was not freshened after the first-grade year with children who did not have a chance to be sampled in kindergarten or first grade (as was done in first grade), estimates from the ECLS-K eighthgrade data are representative of the population cohort rather than all eighth-graders in 2006-07. Comparisons of the weighted population of ECLS-K children enrolled in the eighth grade with the weighted population of eighth-graders reported in the 2006 Current Population Survey ${ }^{9}$ suggest that the ECLS-K represents about 80 percent of all U.S. eighth-graders in the 2006-07 school year. ${ }^{10}$ Some examples of subpopulations of eighth-graders who are not represented in the ECLS-K in 2006-07 include children who started kindergarten before fall of 1998 and were retained in a later grade, children who immigrated to the United States after first grade, and children who were home-schooled until after first grade. Data were collected from teachers and schools to provide important contextual information about the school environment for the sampled children, but the teachers and schools are not representative of eighth-grade teachers and schools in the country in 2006-07. For this reason, the only weights produced from the study for eighth-grade estimates are for making statements about children, including statements about the teachers and schools of those children.

[^3]The ECLS-K has several major objectives and numerous potential applications. The ECLS-K combines (1) a study of achievement in the elementary and middle school years; (2) an assessment of the developmental status of children in the United States at the start of their formal schooling and at key points during elementary and middle school; (3) cross-sectional studies of the nature and quality of kindergarten programs in the United States; and (4) a study of the relationship of family, preschool, and school experiences to children's developmental status at school entry and their progress during kindergarten, elementary school, and middle school.

The ECLS-K has both descriptive and analytic purposes. It provides descriptive data on children's status at school entry, their transition into school, and their progress into middle school. The ECLS-K also provides a rich dataset that enables researchers to analyze how a wide range of family, school, community, and individual variables affect children's early success in school; to explore school readiness and the relationship between the kindergarten experience and middle school performance; and to record children's academic growth as they move into middle school.

The ECLS-K is part of a longitudinal studies program comprising two cohorts-a kindergarten cohort and a birth cohort. The birth cohort (ECLS-B) is following a national sample of children born in the year 2001 from birth to kindergarten. The ECLS-B examines how early learning environments are associated with early cognitive, physical, and socioemotional development and thus prepare children for kindergarten success. Together these cohorts will provide the depth and breadth of data required to more fully describe and understand children's early learning, development, and education experiences.

1.1 Background

Efforts to expand and improve early education will benefit from insights gained through analyses of data from the large-scale, nationally representative ECLS-K data and the study's longitudinal design. The ECLS-K database contains information about the types of school programs in which children participate, the services they receive, and repeated measures of the children's cognitive skills and knowledge. The ECLS-K database also contains measures of children's physical health and growth, social development, and emotional well-being, along with information on family background and the educational quality of their home environments.

As a study of early achievement, the ECLS-K allows researchers to examine how children's progress is associated with such factors as placement in high or low ability groups, receipt of special services or remedial instruction, grade retention, and frequent changes in schools attended because of family moves. Data on these early school experiences were collected as they occurred, with the exception of their experiences before kindergarten, which were collected retrospectively. Collecting this information as the experiences occurred produces a more accurate measurement of antecedent factors and enables inferences to be made about their relationship to later academic progress. The longitudinal nature of the study enables researchers to study children's cognitive, social, and emotional growth and to relate trajectories of change to variations in children's experiences in kindergarten and the early to later grades.

The spring-eighth grade data collection can be used to describe the diversity of the children in the study and the classrooms and schools they attended. It can also be used to study children's academic gains in the years following kindergarten. The ECLS-K sample includes substantial numbers of children from various minority groups. Thus, the ECLS-K data present many possibilities for studying cultural and ethnic differences in the educational preferences, home learning practices, and school involvement of families; the developmental patterns and learning styles of children; and the educational resources and opportunities that different groups are afforded in the United States.

1.2 Conceptual Model

The design of the ECLS-K was guided by a framework of children's development and schooling that emphasizes the interrelationships between the child and family; the child and school; the family and school; and the family, school, and community. The ECLS-K recognizes the importance of factors that represent the child's health status and socioemotional and intellectual development and incorporates factors from the child's family, community, and school-classroom environments. The conceptual model is presented in exhibit 1-2. The study paid particular attention to the role that parents and families played in helping children adjust to formal school and in supporting their education through the elementary and middle school grades. It also gathered information on how schools prepare for and respond to the diverse backgrounds and experiences of the children and families they serve.

Exhibit 1-2. ECLS-K conceptual model

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 1998.

1.3 Study Components

The emphasis placed on measuring children's environments and development broadly has critical implications for the design of the ECLS-K. The design of the study included the collection of data from the child, the child's parents/guardians, teachers, and schools.

- Children participated in various activities to measure the extent to which they exhibited those abilities and skills deemed important to success in school. They were asked to participate in activities designed to measure important cognitive (i.e., literacy, quantitative, and science) and noncognitive (i.e., fine motor and gross motor coordination and socioemotional) skills and knowledge. Children were assessed in each round of data collection. During kindergarten and elementary school, most measures of a child's cognitive skills were obtained through an untimed one-on-one assessment of the child. In the eighth grade, children were assessed in a formal group setting. Beginning with the third-grade data collection, children also reported on their own perceptions of their abilities and achievement, their interest in and enjoyment of reading, mathematics, and other school subjects, their peer relationships, and their own problem behaviors. Children in eighth grade completed a self-administered paper-and-pencil questionnaire about their school experiences, their activities, their perceptions of themselves, and their weight, diet, and level of exercise.
- Parents/guardians were an important source of information about the families of the children selected for the study and about themselves. Parents provided information
about children's development at school entry and their experiences both with family members and with others. Information was collected from parents/guardians in each round of data collection.
- Teachers, like parents, represented a valuable source of information on themselves, the children in their classrooms, and the children's learning environment (i.e., the classroom). Teachers were not only asked to provide information about their own backgrounds, teaching practices, and experience; they were also called on to provide information on the classroom setting for the sampled children they taught and to evaluate each sampled child on a number of critical cognitive and noncognitive dimensions. Special education teachers and service providers of sampled children with disabilities were also asked to provide information on the nature and types of services provided to the child. With the exception of the fall-first grade data collection, teachers completed self-administered questionnaires each time children were assessed.
- School administrators, or their designees, were asked to provide information on the physical, organizational, and fiscal characteristics of their schools, and on the schools' learning environment and programs. Special attention was paid to the instructional philosophy of the school and its expectations for children. School administrators or their designees were also asked to provide basic information about the school grade level, school type (public or private), length of school year, and attendance recordkeeping practices. Prior to the third-grade data collection, the questions had been part of the school administrator questionnaire. These items were collected in a separate school fact sheet in third grade but were reintegrated into the school administrator questionnaire in the fifth- and eighth-grade data collections. Information was collected from school administrators via self-administered questionnaires during each spring data collection.

1.4 ECLS-K Data Files

The ECLS-K data are released in restricted-use and public-use versions. A brief overview of the differences between the restricted-use and public-use data files is provided here, followed by a description of the data files that are currently available.

1.4.1 Differences Between ECLS-K Restricted-Use and Public-Use Files

In preparing public-use data files, NCES takes steps to minimize the likelihood that an individual school, teacher, parent, or child participating in the study can be identified. Every effort is made to protect the identity of individual respondents. This is in compliance with the Privacy Act of 1974, as amended, the E-Government Act of 2002, the Education Sciences Reform Act of 2002, and the

USA Patriot Act of 2001, which mandate the protection of confidentiality of NCES data that contain individually identifiable information. The process begins with a formal disclosure risk analysis. Variables identified as posing the greatest disclosure risk are altered (e.g., by combining categories), and in some instances, entirely suppressed.

The following data modifications account for the differences between public-use and restricted-use data files:

- Outlier values are top- or bottom-coded; ${ }^{11}$
- Individual cases for which a particular variable poses an especially high risk of disclosure have the value of that variable altered (usually by no more than 5 to 10 percent for continuous variables) to reduce the risk;
- Some continuous variables are modified into categorical variables, and categories of certain categorical variables are collapsed;
- A small number of variables with too few cases and a sparse distribution are suppressed altogether, rather than modified; and
- A small number of variables are further masked to enhance confidentiality.

After modifying individual records that have the greatest risk of disclosure, the disclosure risk analysis is repeated to verify that the risk of disclosure has been reduced to acceptable levels. The

[^4]The outlier values are $0,1,5$, and 6 . Values 0 and 1 are bottom-coded and values 4,5 , and 6 are top-coded. The resulting masked variable has the following frequency:

Masked variable X frequency distribution		
Value	Count	Percent
Total	4,641	100.00
≤ 1	238	5.13
2	2,846	61.32
3	1,318	28.40
≥ 4	239	5.15

modifications that are implemented to avoid identification of schools, teachers, parents, and children do not affect the overall data quality, and most researchers should be able to find all that they need in the public-use data files. While very few of the variables are suppressed, some users might require the restricted-use data files. Researchers examining certain rare subpopulations, such as children with disabilities, or children with specific non-English home languages or countries of birth, for example, will find that the restricted-use data files contain a few more variables with a wider range of data values. However, in many instances, even though the detailed information on the restricted-use data files may be of interest, the sample sizes will be too small to support these analyses. NCES recommends that researchers who are uncertain of which data release to use first examine the public-use data files to ascertain whether their specific analytic objectives can be met using those data files.

1.4.2 Overview of Available Data Files

Several ECLS-K data files are available for use by analysts. These are described below beginning with the eighth-grade data files.

- ECLS-K Eighth-Grade Restricted-Use Data File. The eighth-grade data are available only as a child-level data file. The file includes all data collected from or about the children and their schools including data from the child assessments and the student, parent, teacher, and school administrator questionnaires. No eighth-grade teacher or school files are released because the sample of teachers and schools is not nationally representative of eighth-grade teachers or schools with eighth grades. Analysts who wish to examine children's experiences in eighth grade and the influence of their classroom or school characteristics on their eighth-grade experiences should use the eighth-grade restricted-use file or the $\mathrm{K}-8$ full sample public-use file described below.

The eighth-grade data file can be used not only to analyze data collected in the eighth grade but also to provide weights and variables that can be used in longitudinal data analysis of kindergarten, first, third, fifth, and eighth grades. In addition to the crosssectional weights, cross-year (kindergarten-eighth grade) weights have been added to the eighth-grade data file for those analysts who wish to examine children's learning across school years (see chapter 9). Instructions on how to create a longitudinal file using the base-year, first-grade, third-grade, fifth-grade, and eighth-grade restricteduse data are provided in chapter 9. A public-use data file, however, is available that combines the base-year, first-grade, third-grade, fifth-grade, and eighth-grade publicly released data (see next bullet). Most analysts will find it more convenient to use the already created full sample file described below.

- Kindergarten-Eighth Grade Full Sample Public-Use Data File. This public-use data file combines data from the base, first-, third-, fifth-, and eighth-grade years. It contains both within-year and cross-year weights so that analysts can examine children's growth and development between kindergarten and eighth grade. Unlike the public-use longitudinal files released in previous rounds, this file contains all data for all ECLS-K sample cases that have been publicly released in any of the rounds. Thus, it can be used for within-year (cross-sectional) analyses of any round of data collection and cross-year (longitudinal) analyses of combinations of rounds. See chapter 10 for details on how to use the $\mathrm{K}-8$ full sample public-use file.
- ECLS-K Fifth-Grade Restricted- and Public-Use Data Files. The fifth-grade data are available only as child-level data files. The files include all data collected from or about the children and their schools including data from the child assessments and from their parents, teachers, or schools. No fifth-grade teacher or school files were released because the sample of teachers and schools is not nationally representative of fifth-grade teachers and schools with fifth grades. Analysts who wish to examine children's experiences in fifth grade and the influence of their classroom or school characteristics on their fifth-grade experiences should use the fifth-grade data file or the $\mathrm{K}-8$ full sample public-use data file.

The fifth-grade data file can be used not only to analyze data collected in the fifth grade but also to provide weights and variables that can be used in longitudinal data analysis of kindergarten, first, third, and fifth grades. In addition to the cross-sectional weights, cross-year (kindergarten-fifth grade) weights were included in the fifth-grade data file for those analysts who wish to examine children's learning across school years. Instructions on how to create a longitudinal file using the base-year, first-grade, third-grade, and fifth-grade data are provided in chapter 9 . However, most analysts will find it more convenient to use the already created $\mathrm{K}-8$ full sample public-use data file described above. For more information on these files, refer to the $E C L S-K$ Combined User's Manual for the ECLS-K Fifth-Grade Data Files and Electronic Codebooks (NCES 2006-032) (Tourangeau et al. 2006).

- Longitudinal Kindergarten-Fifth Grade (K-Fifth Grade) Public-Use Data File. This public-use data file combines data from the base, first-, third-, and fifth-grade years. This file is now superseded by the $\mathrm{K}-8$ full sample public-use data file.
- ECLS-K Third-Grade Restricted- and Public-Use Data Files. The third-grade data are available only as child-level data files. The files include all data collected from or about the children and their schools including data from the child assessments and from their parents, teachers, and schools. No third-grade teacher or school files were released because the sample of teachers and schools is not nationally representative of third-grade teachers or schools with third grades. Analysts who wish to examine children's experiences in third grade and the influence of their classroom or school characteristics on their third-grade experiences should use the third-grade data file or the $\mathrm{K}-8$ full sample public-use data file.

The third-grade data file can be used not only to analyze data collected in the third grade but also to provide weights and variables that can be used in longitudinal data analysis of kindergarten, first grade, and third grade. In addition to the cross-sectional
weights, cross-year (kindergarten-third grade) weights were included in the thirdgrade data file for those analysts who wish to examine children's learning across school years. Instructions on how to create a longitudinal file using the base-year, first-grade, and third-grade data are provided in chapter 9. However, most analysts will find it more convenient to use the already created $\mathrm{K}-8$ full sample public-use data file described above. For more information on these files, refer to the ECLS-K User's Manual for the ECLS-K Third Grade Public-Use Data File and Electronic Code Book (NCES 2004-001) (Tourangeau, Brick, Lê et al. 2004).

- Longitudinal Kindergarten-Third Grade (K-Third Grade) Public-Use Data File. This public-use data file combines data from the base, first-grade, and third-grade years. This file is now superseded by the $\mathrm{K}-8$ full sample public-use data file
- ECLS-K First-Grade Restricted- and Public-Use Data Files. The first-grade data (fall and spring) are available only as child-level data files. The files include all data collected from or about the children and their schools including data from the child assessments and from their parents, teacher, and schools. Although these data are freshened to be representative of first-graders in the U.S. in 1999-2000, no first-grade teacher or school files are released because the sample of teachers and schools is not nationally representative of first-grade teachers or schools with first grades. Analysts who wish to examine children's experiences in first grade and the influence of their classroom or school characteristics on their first-grade experiences should use the first-grade data file or the $\mathrm{K}-8$ full sample public-use data file.

The first-grade data file can be used not only to analyze data collected in the first grade but also to provide weights and variables that can be used in longitudinal data analysis of both kindergarten and first grade. In addition to the cross-sectional weights, cross-year (kindergarten-first grade) weights have been added to the firstgrade data file for those analysts who wish to examine children's learning across school years. However, most analysts will find it more convenient to use the alreadycreated $\mathrm{K}-8$ full sample public-use data file described above. For more information on these files, refer to the ECLS-K User's Manual for the ECLS-K First Grade PublicUse Data Files and Electronic Codebook (NCES 2002-135) (Tourangeau et al. 2002).

- Longitudinal Kindergarten-First Grade (K-First Grade) Public-Use Data File. This public-use data file combines data from the base and first-grade years. This file has now been superseded by the $\mathrm{K}-8$ full sample public-use data file.
- ECLS-K Base-Year Data Files. There are three main and four supplementary data files available for the base year. The three main data files are the child-level data file, the teacher-level data file, and the school-level data file. The supplementary files are the teacher salary and benefits file, the special education file, the student records abstract file, and the Head Start Verification Study file.

The child file data contains all the data collected from or about the children, including data from the child assessments, and from their teachers, parents, and schools. Analysts who wish to obtain descriptive information about U.S. kindergarten children or their families, or who want to examine relationships involving children and families, children and teachers, or children and schools, should make use of the child
data file or the $\mathrm{K}-8$ full sample public-use data file. Analysts wishing to obtain descriptive information about the population of kindergarten teachers in the United States, or to study relationships involving teachers as the principal focus of attention, should use the teacher data file. Analysts who want to obtain descriptive information about public and private schools that contain kindergarten classes, or who want to examine relationships among school characteristics, should make use of the school data file. These child-, teacher-, and school-level data files are available in public-use and restricted-use versions. For more information on these files, refer to the $E C L S-K$ Base Year Public-Use Data Files and Electronic Codebook: User's Manual (NCES 2001-029rev) (Tourangeau, Burke et al. 2004).

- The Salary and Benefits File is at the school level and contains information on the base salary, merit pay, and benefit pay of teachers and principals. The salary and benefits data, when combined with other ECLS-K data, can be used to examine, for example, the relationship between child outcomes and school resource allocation and use. This file is only available as a restricted-use file. For more information about this file, see the ECLS-K Base Year Restricted-Use Salary and Benefits File (NCES 2001014) (Tourangeau et al. 2001b).
- The Special Education File is a child-based data file that contains information on 784 children identified as receiving special education or related services in kindergarten. Special education teachers were asked to complete two questionnaires designed to collect information about their professional background and experience and about the nature of the special education program and special education services provided to each of the sampled children receiving services. It is only available as a restricted-use file. For more information about this file, see the ECLS-K Base Year Restricted-Use Special Education Child File (NCES 2001-015) (Tourangeau et al. 2001c).
- The Student Records Abstract File contains information from school records about children's school enrollment and attendance; Individualized Education Program (IEP) and disability status; and home and school language. The student records abstract form was completed by school staff after the end of the school year. This data file is useful in providing additional predictors and correlates of children's transitions to kindergarten and later progress in school. This file is only available as a restricted-use data file. For more information about this file, see the ECLS-K Base Year RestrictedUse Student Record Abstract File (NCES 2001-016) (Tourangeau et al. 2001d).
- The Head Start Verification File contains information from Head Start program providers. The purpose of the Head Start Verification Study was twofold: (1) to identify which of the children reported by either their parents or their schools as having attended Head Start the year prior to kindergarten did indeed attend a Head Start program and (2) to evaluate the process of identifying Head Start participation through parent and school reports and provide further information on the actual process of verifying these reports. This file is a restricted-use data file. For more information about this file, see the ECLS-K Base Year Restricted-Use Head Start File (NCES 2001-025) (Tourangeau et al. 2001a). The outcomes of the verification process are also included as data items on the ECLS-K first-grade and kindergartenfirst grade longitudinal files.
- The Census Data and Geocoded Location File contains census tract and ZIP Code tabulation area (ZCTA) codes for ECLS-K children's homes and schools for each round of the ECLS-K up to third grade. It also has about 600 census variables (or census-derived variables) for each census tract and ZCTA including income, race/ethnicity, and many other sociodemographic characteristics. Supporting documentation included on the CD consists of a user's manual, data file record layouts describing the variables on each of the ASCII data files, and SAS code for converting the data files. This file is a restricted-use data file available upon request from the Institute of Education Sciences Security Data Officer.

1.5 Contents of Manual

This manual provides documentation for users of the eighth-grade data files (the eighthgrade restricted-use data file and the K-8 full sample public-use data file) of the ECLS-K. Prior to fifth grade, separate manuals were issued for each data file. Please refer to the previous chapter, Getting Started, for a summary of which sections of the manual do not apply to both files and for an overview of the major differences between the eighth-grade round of data collection and previous rounds.

The manual contains information about the data collection instruments (chapter 2) and the psychometric properties of these instruments (chapter 3). It describes the ECLS-K sample design and weighting procedures (chapter 4); data collection procedures and response rates (chapter 5); and data processing procedures (chapter 6). In addition, this manual shows the structure of the eighth-grade data file and provides definitions of composite variables (chapter 7); describes how to install and use the Electronic Codebook (chapter 8); and describes how to use and merge the base-year, first-grade, thirdgrade, fifth-grade, and eighth-grade files (chapter 9). Finally, chapter 10 presents information on the kindergarten-eighth grade full sample public-use data file. The Electronic Codebook contains unweighted frequencies for all variables. Because this manual focuses on the eighth-grade data collection, minimal information is provided about the base-year, first-grade, third-grade, or fifth-grade data. Users who wish to learn more about these data collections should refer to the ECLS-K Base Year Public-Use Data Files and Electronic Codebook: User's Manual (NCES 2001-029rev) (Tourangeau, Burke et al. 2004); the User's Manual for the ECLS-K First Grade Public-Use Data Files and Electronic Codebook (NCES 2002-135) (Tourangeau et al. 2002), the User's Manual for the ECLS-K Third Grade Public-Use Data File and Electronic Code Book (NCES 2004-001) (Tourangeau, Brick, Lê et al. 2004), or the Combined User's Manual for the ECLS-K Fifth-Grade Data Files and Electronic Codebooks (NCES 2006032) (Tourangeau et al. 2006). Additional information about the ECLS program can be found on the World Wide Web at http://nces.ed.gov/ecls.

This page is intentionally left blank.

2. DESCRIPTION OF DATA COLLECTION INSTRUMENTS

This chapter describes the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K) eighth-grade data collection instruments. The ECLS-K eighth-grade data collection instruments consisted of eight questionnaires (student, parent, teacher, special education teacher/service, and school administrator), three achievement tests (reading, mathematics, and science), and one physical measurement record form.

The eighth-grade data collection instruments, with the exception of the assessments and the items adapted from the Self Description Questionnaire II (Marsh 1992) ${ }^{12}$ in the student questionnaire, are available on the ECLS-K DVD and CD-ROM as appendix A. The assessments and Self Description Questionnaire II items contain copyright-protected materials.

For information on the data collection instruments used in any of the past rounds of the ECLS-K, please refer to chapter 2 of the ECLS-K base-year, first-grade, third-grade, fifth-grade, and eighth-grade user's manuals. These can be found on the Web at http://nces.ed.gov/pubsearch.

2.1 Child Assessments and Questionnaire

The child assessments were paper-and-pencil assessments administered in small group settings timed and proctored by a trained test administrator in the spring of the 2006-07 school year. Children were assessed with the same assessment regardless of whether they were on grade level (i.e., in eighth grade). As in the previous rounds, the eighth-grade assessments included cognitive and physical (i.e., height and weight) components. In addition, a self-administered student questionnaire was completed during the eighth-grade assessment session. This included an adaptation of the Self Description Questionnaire (SDQ) II (Marsh 1992b) and the Self-Concept and Locus of Control scales from the National Education Longitudinal Study of 1988 (NELS:88), with questions about children's socioemotional development. The questionnaire also included questions about children's activities in and out of school and their relationships with their friends and parents. Items about children's food consumption were included in the "Your Diet" section, with questions about the kinds of food they could

[^5]buy at school and the food that they had eaten in the past week. The entire assessment session was 2 hours in duration.

Chapter 3 contains a detailed description of the assessment scores and information on their use and interpretation.

2.1.1 Cognitive Assessments

The ECLS-K eighth-grade direct cognitive assessment battery was designed to assess children's academic achievement in spring of eighth grade, and to provide a means of measuring academic growth since kindergarten entry. A panel of child development, middle school education, and content area experts recommended that the knowledge and skills assessed by the ECLS-K eighth-grade assessments should represent the typical and important academic goals of middle school curricula in English, mathematics, and science. Reading, mathematics, and science were the three cognitive domains assessed in the eighth grade.

While the direct cognitive assessments were individually administered at all six previous time points, in spring-eighth grade, groups of ECLS-K sampled children who attended the same school were assessed in a single, proctored group administration. All children were given separate routing assessment forms to determine the level (high/low) of their reading, mathematics, and science assessments. The two-stage cognitive assessment approach was used to maximize the accuracy of measurement and reduce administration time by using the child's responses from a brief first-stage routing form to select the appropriate second-stage level form. ${ }^{13}$ For the reading, mathematics, and science routing forms, children read items in a booklet and recorded their responses on an answer form. These answer forms were then scored by the test administrator. Based on the score of the respective routing forms, the test administrator then assigned a high or low second-stage level form of the reading, mathematics, and science assessments. For the second-stage level tests, children read items in the assessment booklet and recorded their responses in the same assessment booklet. The routing tests and the second-stage level tests were timed and took 80 minutes to complete.

[^6]Accommodations that did not significantly affect the assessment were provided to those children whose Individualized Education Programs (IEPs) required accommodations for assessments. These included allowing for additional time or the presence of a health care aide. Children were excluded from the direct assessment if they had a disability (e.g., blindness or deafness) that could not be accommodated by the ECLS-K direct assessment, if their IEP prevented their participation in assessments, or they required an accommodation not offered by the ECLS-K assessments. Chapter 5, section 5.5.2 has more information on accommodations and exclusions in the ECLS-K.

In order to measure growth across time, a longitudinal scale is needed. Therefore, the cognitive assessments were designed to have overlapping items, i.e., items that were included in at least two rounds of data collection. Assessment items in each of the content domains were drawn from assessments used in other large-scale studies of similar-aged youth, such as the National Assessment of Educational Progress (NAEP), the National Education Longitudinal Study of 1988 (NELS:88), and the Education Longitudinal Study of 2002 (ELS:2002), the Texas Assessment of Knowledge and Skills (TAKS), as well as previous rounds of the ECLS-K. Items were chosen to extend the longitudinal scales initiated in kindergarten, first grade, third grade, and fifth grade, but were grade-appropriate in terms of content and format. Items were reviewed by content area specialists for appropriateness of content and difficulty, and for relevance to the assessment framework. In addition, items were reviewed for issues related to sensitivity to minorities. Items that passed these content, construct, and sensitivity screenings were field tested in the spring of 2006. For additional detail on the selection of items for the eighth-grade cognitive assessments, see the ECLS-K Psychometric Report for the Eighth Grade (NCES 2009002) (Najarian, Pollack, and Sorongon forthcoming).

Reading. The eighth-grade reading assessment focused on four aspects of reading comprehension skills including forming a general understanding of the text, developing a more complete understanding of what was read, making connections from the text with personal background knowledge, and critically evaluating, comparing and contrasting, and understanding the effect of literary devices or the author's intentions.

The kindergarten through eighth-grade proficiency levels included (1) Letter Knowledgeidentifying upper- and lower-case letters of the alphabet by name; (2) Beginning Sounds-associating letters with sounds at the beginning of words; (3) Ending Sounds-associating letters with sounds at the end of words; (4) Sight Words—recognizing common "sight" words; (5) Words in Context—reading words in context; (6) Literal Inference-making inferences using cues that were directly stated with key
words in text; (7) Extrapolation-identifying clues used to make inferences; (8) Evaluationdemonstrating understanding of author's craft and making connections between a problem in the narrative and similar life problems; (9) Evaluating Nonfiction-comprehension of biographical and expository text; and (10) Evaluating Complex Syntax—evaluating complex syntax and understanding high-level vocabulary.

Mathematics. The eighth-grade mathematics assessments addressed the following content strands: number sense, properties, and operations; measurement; geometry and spatial sense; data analysis, statistics, and probability; and pattern, algebra, and functions. The cognitive processes (conceptual, procedural, and problem solving) were assessed in each of the strands. Some of the items drew upon knowledge from more than one strand. For example, an item might require that a child apply knowledge about geometry, measurement, and number operations to answer the question correctly.

The kindergarten through eighth-grade mathematics proficiency levels include (1) Number and Shape-identifying some one-digit numerals, recognizing geometric shapes, and one-to-one counting up to 10 objects; (2) Relative Size-reading all one-digit numerals, counting beyond 10, recognizing a sequence of patterns, and using nonstandard units of length to compare the size of objects; (3) Ordinality and Sequence-reading two-digit numerals, recognizing the next number in a sequence, identifying the ordinal position of an object, and solving a simple word problem; (4) Addition and Subtraction-solving simple addition and subtraction problems; (5) Multiplication and Division-solving simple multiplication and division problems and recognizing more complex number patterns; (6) Place Value-demonstrating understanding of place value in integers to hundreds' place; (7) Rate and Measurement-using knowledge of measurement and rate to solve word problems; (8) Fractions-solving problems using fractions; and (9) Area and Volume-solving word problems involving area and volume. No new mathematics proficiency level was added at the eighth grade because it was not warranted. Previously defined proficiency levels were sufficiently "difficult" to allow for the demonstration of growth in the higher proficiency levels at eighth grade.

Science. In the eighth-grade assessment, equal emphasis was placed on life science, earth and space science, and physical science. Similar to the third- and fifth-grade science assessments, children needed to demonstrate understanding of the physical and natural world, draw inferences, and comprehend relationships. In addition, they needed to interpret scientific data, formulate hypotheses, and identify the best plan to investigate a given question. As with the third- and fifth-grade science assessments, no set of proficiency levels was developed. The subject matter content of the science assessment domain was too
diverse and the items insufficiently ranked or graded to permit the formation of a set of proficiency levels. Instead, a single score was calculated to represent each child's breadth and depth of understanding and knowledge of the world.

For additional detail on the development of the eighth-grade cognitive assessments, see the ECLS-K Psychometric Report for the Eighth Grade (NCES 2009-002) (Najarian, Pollack, and Sorongon. forthcoming).

2.1.2 Student Questionnaire

Children completed the student questionnaire after completing the routing test. The student questionnaire was timed, and children had 20 minutes to complete the questionnaire. They entered their responses to each item into the student questionnaire booklet. Topics covered by the student questionnaire included the following:

- school experiences-school safety, importance of grades, time spent on homework, peer relationships;
- activities-participation in school-sponsored and out-of-school activities;
- social-emotional development-how children thought and felt about themselves both academically and socially;
- weight and exercise-level of exercise per week, participation in physical education classes; and
- diet-what kinds of food they could buy at school and the food they had eaten in the past week.

The student questionnaire included two scales to measure their socioemotional development. The first was the self-description questionnaire (SDQ), which was used to determine how children thought and felt about themselves both academically and socially. Children rated their perceived competence and interest in reading and mathematics. They also reported on internalizing problem behaviors with which they might struggle. The Internalizing Problems scale included items on sadness, loneliness, and anxiety.

The SDQ consists of 16 statements. Children rated whether each item was "not at all true," "a little bit true," "mostly true," or "very true." Three subscales were produced from the SDQ items. The scale scores on all SDQ scales represent the mean rating of the items included in the scale.

- The SDQ Perceived Interest/Competence-Reading subscale includes four items on grades in English and the child's interest in and enjoyment of reading.
- The SDQ Perceived Interest/Competence-Math subscale includes four items on mathematics grades and the child's interest in and enjoyment of mathematics.
- The SDQ Internalizing Behavior subscale includes eight items on internalizing problem behaviors such as feeling "sad a lot of the time," feeling lonely, feeling ashamed of mistakes, feeling frustrated, and worrying about school and friendships.

The items on the first two subscales of the ECLS-K SDQ were adapted with permission from the Self Description Questionnaire (SDQ) II (Marsh 1992b). The items in the internalizing problem behavior subscale were developed specifically for the ECLS-K and used in the third- and fifth-grade rounds.

The second set of scales consisted of the Self-Concept and Locus of Control scales adapted from the National Education Longitudinal Study of 1988 (NELS:88). The Self-Concept scale comes from the Rosenberg Self-Esteem Scale (RSE) (Rosenberg 1965). These scales asked children about their perceptions about themselves and the amount of control they had of their own lives. Items were drawn from the NELS:88 student questionnaire and asked children to indicate the degree to which they agreed with 13 statements about themselves. They chose from the following responses: "strongly agree," "agree," "disagree," or "strongly disagree" for each item.

As noted earlier, to measure children's food consumption, the student questionnaire included 19 items that asked them about the kinds of food they could buy at school and the food they had eaten in the past week. The first set of questions was about foods that are high in fat, sodium, and/or added sugars (e.g., candy, salty snacks, soft drinks). Children were asked if they could buy these foods at school, and, if so, how often they bought the food in the past week and where they bought the food (vending machine, cafeteria, or somewhere else in school). In the second set of questions, children were asked about whether they ate particular key foods and beverages in the past 7 days, such as milk, sweetened beverages (e.g., soft drinks), fruits and vegetables, and fast food. They were asked to include food they ate at home, at school, at restaurants, or anywhere else.

The eighth-grade food consumption items were the same as those used at the fifth-grade round. Items tapping food consumption were taken mainly from existing surveys, although some were developed for the ECLS-K. Two main sources for questions were two surveys by the Centers for Disease Control and Prevention (CDC)/Division of Adolescent and School Health Surveys: the Youth Risk Behavior Surveillance Survey (YRBSS) and the School Health Programs and Policies Survey (SHPPS). ${ }^{14}$ The question on fast-food meals was taken from the California Children's Healthy Eating and Exercise Practices Survey (CalCheeps). Questions on soft drinks and children's at-school consumption of snack foods were developed by the U.S. Department of Agriculture (USDA), using YRBSS and CalCheeps questions as models.

2.1.3 Physical Components

Anthropometric data were collected in all seven rounds of the ECLS-K. The anthropometric data consisted of recording the children's height (in inches to the nearest quarter-inch) and weight (in pounds to the nearest half-pound) to measure their physical growth and development. The Shorr Board vertical stadiometer and a Seca digital scale were used to obtain standing height and weight measurements, which were recorded on a height and weight recording form. Height and weight were measured twice for each child and took approximately 2 minutes to complete. For additional detail on the procedures used to collect height and weight, see the ECLS-K Eighth-Grade Methodology Report (NCES 2009-003) (Tourangeau et al. forthcoming).

2.2 Parent Interview

The eighth-grade parent interview was conducted using a computer-assisted interview (CAI). The parent interview was conducted primarily in English, but provisions were made to interview parents who spoke other languages with bilingual English-Spanish interviewers or interpreters for other languages. Most of the interviews were conducted by telephone, but a small percentage (2.2 percent) were conducted in person.

Data collection for the eighth-grade parent interview started in fall 2006. The parent interview lasted on average 46 minutes and contained approximately 300 questions concerning eighth-

[^7]grade school experiences, parent characteristics, and child health. Topics covered in the eighth-grade parent interview included the following:

- parent involvement in school activities;
- family structure-demographics, household roster, marital status;
- home environment and cognitive stimulation-frequency of literacy activities, computer use, television viewing, homework, family routines;
- child's schooling;
- critical family processes, such as marital satisfaction and religiosity;
- parent/child interaction-parent discipline;
- nonresident parent - contact with child, school involvement, and child support;
- primary language spoken in home;
- child's health and well-being-physical functioning, parent ratings of child's strengths and difficulties, ${ }^{15}$ services for children with special needs, receipt of prescription for attention and/or hyperactivity disorders, family therapy;
- parent health and emotional well-being;
- parental educational expectations for the child;
- parent education;
- parent employment;
- welfare and other public assistance use;
- food security; and
- parent income and assets.

The order of preference for the respondent to the parent interview was the same as in previous rounds: (1) the respondent from the previous round (if there was one), (2) the child's mother, (3) another parent or guardian, or (4) some other adult household member. In a majority of the cases in the eighth-grade data collection (94 percent), the eighth-grade parent respondent was the same as the

[^8]respondent from the previous round. The child's mother was the respondent in 88 percent of the cases and the child's father in 9 percent. Other adults completed the parent interview in 3 percent of the cases (typically grandparents of the sampled child).

2.3 General Education Teacher Questionnaires

During the spring-eighth grade data collection, one teacher-level background and three child-level subject matter (i.e., English, mathematics, and science) questionnaires were used to collect data from the sampled children's teachers. The self-administered teacher-level background questionnaire covered a variety of topics, including views on teaching and the school, teacher demographic information, teaching experiences, and education and certification information.

The English, mathematics, and science teacher questionnaires were each organized in the same manner. Each questionnaire was divided into three sections. The first section included questions that collected data on the child's social skills, class performance, and his or her skills in relevant areas. The English teacher questionnaire asked about the child's skills in written and oral expression. The mathematics teacher questionnaire asked about the child's skills in mathematics, such as problem solving and demonstrating mathematical reasoning. The science teacher questionnaire asked about the child's skills in science, such as designing an experiment to solve a scientific question and writing up and preparing a presentation of scientific data.

The second section included questions about characteristics of the children in the classroom. The third section included questions about the instructional practices in the classroom, such as specific instructional activities and curricular focus, and assigned books and textbooks. In this last section, the items specified activities and practices that were relevant to the subject domain (i.e., English, mathematics, or science).

Two subject-matter questionnaires were completed for each sampled child. Therefore, data were gathered on each sampled child's skills in the areas of English and mathematics, or in the areas of English and science.

Topics covered in the spring-eighth grade teacher questionnaires included the following:

- race/ethnicity of children in the classroom;
- materials and resources available, such as computers;
- instructional time on different topics;
- behavior of children in classroom;
- instructional information;
- teachers' evaluation and grading practices;
- perceptions of school climate;
- teacher demographic information;
- teacher experience and education;
- job satisfaction;
- children's domain-relevant skills (i.e., written and oral expression, science, and mathematics skills); and
- children's behavior and performance in class.

In the first five rounds of data collection, each sampled child's regular classroom teacher (i.e., the teacher who taught the child for the majority of the day) completed the teacher questionnaires. In spring-fifth grade, each sampled child's reading teacher and either a mathematics or science teacher completed questionnaires. This latter approach was also used in spring-eighth grade, in which each sampled child's English teacher and either a mathematics or science teacher completed questionnaires. In some schools, the sampled children were taught reading, mathematics, and science by the same teacher in one classroom. In other schools, different teachers taught these subjects to the sampled children.

Each child's selected teacher(s) received a self-administered teacher-level background questionnaire. In addition to the teacher-level questionnaire, each teacher received at least one of the three child-level questionnaires (English, mathematics, or science, based on the subject(s) they taught) specifically about the focal child. All children were assigned to have an English teacher complete questionnaires. In fifth grade, half of the children were randomly assigned to have a mathematics teacher complete questionnaires, and the other half of the children were assigned to have a science teacher complete questionnaires. This assignment made for the mathematics or science teacher questionnaire in
fifth grade was carried forward in eighth grade so that the same children who had a mathematics teacher questionnaire in fifth grade would have a mathematics teacher questionnaire in eighth grade, and those with a science teacher questionnaire in fifth grade would have a science teacher questionnaire in eighth grade. In cases where the same eighth-grade teacher taught the sampled child English, mathematics, and science, the teacher was asked to complete an English questionnaire and either a mathematics or science questionnaire, depending upon the domain for which the child was sampled.

2.4 Special Education Teacher Questionnaires

In the spring-eighth-grade data collection, field supervisors asked the school coordinators to identify the ECLS-K children receiving special education services and the names of their special education service providers. The supervisor then listed special education staff working with each child (e.g., speech pathologists, reading instructors, and audiologists). Field supervisors determined the primary service provider of children receiving special education services from multiple service providers. The primary special education teacher/service provider was defined as follows:

- the teacher who managed the child's IEP;
- the teacher who spent the greatest amount of time providing special education services to the child; or
- the teacher who was most knowledgeable about the child's special needs and use of assistive technologies.

Special education teachers of children in the ECLS-K were asked to complete two questionnaires. The questionnaires addressed topics such as the child's disability, IEP goals, the amount and type of services used by sampled children, and communication with parents and general education teachers. Part A of the special education teacher questionnaire was designed to collect information about the special education teacher's professional background and experience, including the following:

- teacher's sex;
- teacher's race/ethnicity;
- teaching experience;
- educational background;
- special education teacher background;
- location of service provision;
- student load per week; and
- teacher's main assignment.

The special education teacher was asked to complete part B. Part B asked about the special education services provided to the child and the nature of the child's special education curriculum. Items covered such topics as the following:

- disability category;
- IEP goals for the school year;
- extent of services;
- types of services provided for the year;
- primary placement;
- teaching practices, methods, and materials;
- assistive technologies used by the child;
- general education goals, expectations, and participation in school-wide assessments;
- collaboration/communication with the child's general education teacher;
- frequency of communicating with the child's parents;
- child receipt of formal evaluations in the past year;
- when the child first had the IEP;
- likelihood that the child would have an IEP next school year;
- percentage of IEP goals that were met during this school year; and
- receipt of special education or related services because of attention deficit/ hyperactivity disorder.

The special education teacher was asked to complete part B for each sampled child for whom he or she was the primary service provider.

2.5 School Administrator Questionnaire

The principal, administrator, or headmaster at the school attended by the sampled child was asked to complete the school administrator questionnaire in the spring of 2007. This self-administered questionnaire was intended to gather information about the school, student body, teachers, school policies, and characteristics of the administrator. The school administrator questionnaire was divided into seven sections. The first five sections requested mainly factual information about each school and the programs offered at the school. Either a principal or a designee who was able to provide the requested information could complete these sections. The school's principal was asked to complete the remaining two sections concerning his or her background and evaluations of the school climate. If a designee was chosen to do the last two sections, he or she was instructed to answer the background and education questions about the school's principal or headmaster.

The school administrator was also asked questions regarding the availability at school of various foods, including those that are healthy and those that are high in fat, sodium, and/or added sugars. Questions were asked about whether children could purchase food or beverages from vending machines at the school or a school store, canteen, or snack bar. School administrators were also asked if the school offered children a la carte lunch or breakfast items that were not sold as part of the National School Lunch or the School Breakfast Program. In addition, questions were asked about whether children could buy particular foods and beverages at school, such as milk, sweetened beverages (e.g., soft drinks), fruits and vegetables, candy, and salty snacks; where these foods could be obtained in the school (e.g., a school store, a vending machine); and how full the cafeteria was at peak meal times. Questions on the availability of foods that were not part of USDA meal programs and on cafeteria crowding were taken from the School Health Policies and Programs Study (SHPPS).

The content areas addressed in this questionnaire in spring-eighth grade included the following:

- school characteristics - type of school, length of school year and start and end dates, school size, average daily attendance, highest and lowest grades;
- academic course offerings for eighth-graders;
- child population characteristics-race/ethnicity of children, participation in special services, percent Limited English Proficient (LEP);
- school facilities and resources;
- community characteristics and school safety;
- average starting salary of full-time first year teachers;
- school policies and programs-assessments and testing, free and reduced-price breakfast and lunch;
- programs for special populations-English as a Second Language (ESL) and bilingual education, special education, gifted and talented;
- principal characteristics-sex, race/ethnicity, age of principal, experience and education;
- school governance and climate-goals and objectives for teachers, school functioning and decisionmaking; and
- availability of different types of foods during school hours.

3. ASSESSMENT AND RATING SCALE SCORES USED IN THE ECLS-K

Several types of scores were used in the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K) to describe children's cognitive and social development during kindergarten through eighth grade. These scores were for the direct cognitive assessment, the teacher ratings of English, mathematics, and science skills, and the self-description questionnaire (SDQ). Descriptions of the scores for each assessment or scale follow, along with variable names, variable descriptions, and descriptive statistics from the ECLS-K data files. ${ }^{16}$ Guidelines for when and how to use each cognitive assessment score are also provided in this chapter.

3.1 Direct Cognitive Assessment

The eighth-grade direct cognitive assessment contained items in reading, mathematics, and science. In each subject area, children received a 10 -item routing test. Performance on the routing items guided the selection and administration of one of two second-stage (high and low) forms in each subject area. The second-stage forms contained items of appropriate difficulty for the level of ability indicated by the routing items. ${ }^{17}$

The eighth-grade direct cognitive assessment was built from the framework established in the previous kindergarten through fifth-grade rounds of data collection. The design and administration of the assessment instruments, and the scores derived from them, evolved over time to keep pace with children's growth and the objectives of the study. Changes in the assessments include the following:

- English language screening: In kindergarten and first grade, children who were identified as coming from a language minority background were administered a language-screening assessment, the Oral Language Development Scale (OLDS), prior to administering the direct cognitive assessments. English language screening was discontinued after spring-first grade because nearly all children in the sample had demonstrated sufficient English proficiency to participate in the full assessment by that time.

[^9]- Assessment instruments: The four rounds of data collection in kindergarten and first grade used the same set of assessment instruments in reading, mathematics, and general knowledge. Children were routed to different levels of difficulty within each assessment domain depending on their performance on a short routing test in each subject area. Because children's academic skills in the subsequent rounds could be expected to have advanced beyond the levels covered by the original forms, new sets of assessment instruments were developed for the third grade, fifth grade, and again for the eighth grade. Some of the assessment items were retained across rounds to support the development of longitudinal score scales in each subject area.
- Science assessment: The kindergarten and first grade (K-1) general knowledge assessment included basic natural science concepts as well as concepts in social studies. For third, fifth, and eighth grades, a science assessment replaced the general knowledge assessment. Thus, the longitudinal scale for measuring gains in science spans only the third- through eighth-grade rounds.
- Assessment format: The format of the eighth-grade assessment was modified from that of prior rounds to accommodate administration differences for the older sample. In all previous rounds, an assessor presented the questions to the child and entered responses into a computer for each individually administered assessment. In third grade and fifth grade, the mathematics assessment included a workbook for the questions that required computations or written responses. The reading assessment in third grade was administered in booklet format instead of on an easel to accommodate the length of the reading passages used in the assessment, while the fifth-grade reading assessment had both a booklet containing the reading passages and an easel for the presentation of questions. The individually administered easel assessments were less appropriate for the older sample in eighth grade. Therefore, the eighth-grade assessments were paper-based and were administered in groups (where possible). The passages and items were in booklet form; an answer sheet was provided for the routing test responses, while responses for the second-stage forms were entered into the assessment booklets. There were two second-stage forms for each domain.
- Item cluster scores: The K-1 assessment scores included a count of the number right on three questions related to familiarity with conventions of print. Additional cluster scores, based on small numbers of reading and science items, were reported for the third- and fifth-grade assessments. There were no cluster scores for the eighth-grade round.
- Bridge sample: Field test results after spring-first grade suggested that the growth in skills between the first- and third-grade assessments might make measurement of gain problematic. Data were collected for a small "bridge sample" of second-graders to support development of longitudinal scales in reading and mathematics. A bridge sample of fourth-graders was not necessary to bridge the gap between the third- and fifth-grade assessments, because field test results showed a sufficient amount of overlap between high achieving third-graders and low achieving fifth-graders. Similarly, a bridge sample was not done to bridge the gap between fifth- and eighthgraders.

The scores used to describe a child's performance on the direct cognitive assessment include broad-based measures that report performance in each domain as a whole, as well as targeted scores reflecting knowledge of selected content or mastery within a set of hierarchical skill levels. Some of the scores are simple counts of correct answers, while others are based on Item Response Theory (IRT), which uses patterns of correct and incorrect answers to obtain estimates that are comparable across different assessment forms. The different types of scores that are used to describe children's performance on the direct cognitive assessment are described in detail in this chapter. Number-right scores and IRT scale scores measure children's performance on a set of questions with a broad range of difficulty. Standardized scores (T-scores) report children's performance relative to their peers. Criterion-referenced proficiency scores evaluate children's performance with respect to subsets of items that mark specific skills.

Tables 3-1 through 3-9 show the types of scores, variable names, descriptions, and summary statistics for the direct cognitive assessment. The name and description for each variable in the tables begin with a "C," indicating that it is a child variable, and a data collection round number: 1 (fallkindergarten), 2 (spring-kindergarten), 3 (fall-first grade), 4 (spring-first grade), 5 (spring-third grade), 6 (spring-fifth grade), or 7 (spring-eighth grade). Weighted means in tables containing only eighth-grade scores use the round 7 cross-sectional weight, C7CW0, to represent population estimates for eighth grade. Weighted estimates in tables containing scores for all earlier rounds are based on C1_7SC0, the round 1-2-3-4-5-6-7 panel weight, while tables containing only scores for science, assessed only in third, fifth, and eighth grades, use C57CW0, the round 5-7 panel weight. Kindergarten through fifth-grade scores in this database differ somewhat from the corresponding scores in the previously released data files because they were re-estimated along with the eighth-grade scores (see section 3.1.2). In addition, all kindergarten through fifth-grade score statistics presented here differed from previous estimates because the panel weight used restricted estimates to children who participated in all seven rounds of data collection (for reading and mathematics scores), or rounds 5,6 , and 7 (science scores).

3.1.1 Number-Right Scores

Routing test number-right scores are counts of the raw number of items a child answered correctly on the routing test. Number-right scores are not comparable to one another when the assessment differs in difficulty (i.e., high vs. low second-stage form). For example, a child who took the highdifficulty mathematics second-stage form would probably have answered more questions correctly if the
easier low form had been administered. For this reason, raw number-right scores are reported in the database only for the first-stage (routing) tests, which are the same for all children being assessed in that round of data collection. The routing test in each subject area consisted of sets of items spanning a wide range of skills. For example, the K-1 reading routing test emphasized pre-reading skills, while the routing tests in fifth and eighth grade contained questions based on reading passages with progressively more difficult content. An analyst might use the routing test number-right scores to report actual performance on these particular sets of tasks. Note that, because the same routing test was used for the fallkindergarten through spring-first grade data collections, rounds 1 through 4, score comparisons may be made among these rounds. However, the routing test scores in the third, fifth, and eighth grades, which contained more difficult items, are not comparable with the kindergarten or first-grade number-right scores, nor with each other. The third-grade routing test number-right scores should be used only for comparisons within third grade, the fifth-grade scores only within fifth grade, and the eighth-grade scores only within eighth grade, not across grades.

See table 3-1 for the variable names, descriptions, ranges, weighted means, and standard deviations for the routing test number-right scores for the kindergarten and first-grade surveys. Table 3-2 has the same information for the third-grade routing tests, table 3-3 for the fifth-grade routing tests, and table 3-4 for the eighth-grade routing tests.

Table 3-1. Direct cognitive assessment: routing test number-right, kindergarten and first grade (K-1) assessments: School years 1998-99 and 1999-2000

		Range of values	Weighted mean	Standard deviation
C1R4RNOR	C1 RC4 Reading Routing \#Right - K-1 Assmt	$0-20$	5.96	3.91
C2R4RNOR	C2 RC4 Reading Routing \#Right - K-1 Assmt	$0-20$	10.02	4.05
C3R4RNOR	C3 RC4 Reading Routing \#Right - K-1 Assmt	$0-20$	11.83	4.14
C4R4RNOR	C4 RC4 Reading Routing \#Right - K-1 Assmt	$0-20$	16.41	3.70
C1R4MNOR	C1 RC4 Math Routing \#Right - K-1 Assmt	$0-16$	4.65	3.01
C2R4MNOR	C2 RC4 Math Routing \#Right - K-1 Assmt	$0-16$	7.30	3.36
C3R4MNOR	C3 RC4 Math Routing \#Right - K-1 Assmt	$0-16$	9.01	3.30
C4R4MNOR	C4 RC4 Math Routing \#Right - K-1 Assmt	$0-16$	11.87	2.84

NOTE: Table estimates based on C1_7SC0 panel weight. Table estimates may differ from those reported in earlier user's manuals and the $E C L S$ Psychometric Report for Kindergarten Through First Grade (NCES 2002-05) (Rock and Pollack 2002b) because of sample attrition. See chapter 7 , section 7.5 for variable naming conventions.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 1998, spring 1999, fall 1999, and spring 2000.

Table 3-2. Direct cognitive assessment: routing test number-right, third-grade assessment: School year 2001-02
$\left.\begin{array}{llrrr}\hline & & \begin{array}{r}\text { Range of } \\ \text { Variable }\end{array} & \text { Description } & \text { Weighted }\end{array} \begin{array}{r}\text { Standard } \\ \text { mean }\end{array}\right)$

NOTE: Table estimates based on C1_7SC0 panel weight. Table estimates may differ from those reported in earlier user's manuals and the $E C L S$ K Psychometric Report for the Third Grade (NCES 2005-062) (Pollack, Rock et al. 2005) because of sample attrition. See chapter 7, section 7.5 for variable naming conventions.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2002.

Table 3-3. Direct cognitive assessment: routing test number-right, fifth-grade assessment: School year 2003-04

		Range of Values	Weighted mean	Standard deviation
C6R4RNR5	C6 RC4 Reading Routing \#Right - Gr5 Assmt	$0-25$	11.59	5.10
C6R4MNR5	C6 RC4 Math Routing \#Right - Gr5 Assmt	$0-18$	10.02	4.80
C6R1SNR5	C6 RC1 Science Routing \#Right - Gr5 Assmt	$0-21$	13.43	4.09

NOTE Table estimates based on C1_7SC0 panel weight. Table estimates may differ from those reported in earlier user's manuals and the $E C L S$ K Psychometric Report for the Fifth Grade (NCES 2006-036rev (Pollack, Atkins-Burnett et al. 2005) because of sample attrition. See chapter 7, section 7.5 for variable naming conventions.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2004.

Table 3-4. Direct cognitive assessment: routing test number-right, eighth-grade assessment: School year 2006-07

		Range of values	Weighted mean	Standard deviation
C7R4RNR8	Description	C7 RC4 Reading Routing \#Right - Gr8 Assmt	$0-10$	5.95
C7R4MNR8	C7 RC4 Math Routing \#Right - Gr8 Assmt	$0-10$	5.88	2.53
C7R2SNR8	C7 RC2 Science Routing \#Right - Gr8 Assmt	$0-10$	6.46	2.46

NOTE: Table estimates based on C1_7SC0 panel weight. Table estimates may differ from those reported in the ECLS-K Psychometric Report for the Eighth Grade (NCES 2009-002) (Najarian, Pollack, and Sorongon, forthcoming) because of sample attrition. See chapter 7, section 7.5 for variable naming conventions.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

3.1.2 Item Response Theory Scale Scores; Standardized Scores (T-Scores)

Broad-based scores using the full set of assessment items in reading, mathematics, and science were calculated using IRT procedures. The IRT scale scores estimated children's performance on
the whole set of assessment questions, while standardized scores (T-scores) reported children's performance relative to their peers on the content domains. IRT makes it possible to calculate scores that can be compared regardless of which second-stage form a child takes. IRT uses the pattern of right, wrong, and omitted responses to the items actually administered in an assessment and the difficulty, discriminating ability, and "guess-ability" of each item to place each child on a continuous ability scale. The items in the routing tests, plus a core set of items shared among the different second-stage forms and different rounds of data collection, made it possible to establish a common scale. It is then possible to estimate the score the child would have achieved if all of the items in all of the assessment forms had been administered.

IRT has several other advantages over raw number-right scoring. By using the overall pattern of right and wrong responses and the characteristics of each item to estimate ability, IRT can compensate for the possibility of a low-ability child guessing several difficult items correctly. If answers on several easy items are wrong, the probability of a correct answer on a difficult item would be quite low. Omitted items are also less likely to cause distortion of scores, as long as enough items have been answered right and wrong to establish a consistent pattern. Unlike raw scoring, which treats omitted items as if they had been answered incorrectly, IRT procedures use the pattern of responses to estimate the probability of correct responses for all assessment questions. Finally, IRT scoring makes possible longitudinal measurement of gain in achievement over time, even though the assessments that are administered are not identical at each point. The common items present in the routing test and in overlapping second-stage forms allow the scores to be placed on the same scale, even as the two-stage design adapts to children's growth over time.

As noted earlier, kindergarten and first-grade responses were pooled with third-, fifth-, and eighth-grade data to stabilize the longitudinal estimates. In addition, the maximum values of the scale scores were extended to include the more difficult items administered in the eighth-grade assessments. The scale scores for each round of user files are defined on the basis of performance on all tasks administered up to and including the current round. The re-estimated kindergarten/first-grade, third-grade, fifth-grade, and eighth-grade IRT scores in this database differ from the IRT scores in the kindergarten/first-grade, third-grade, and fifth-grade files previously released. For example, the reading scale score in the fifth-grade file is based on test items used in kindergarten through fifth grade, while the current reading score is an estimate based on an expanded set of items, all of those used in kindergarten through eighth grade. In order to compute meaningful estimates of gains over time, scores for different
rounds must be based on comparable sets of tasks. As a result, scores for all previous rounds have been re-estimated (or recalibrated) so that comparisons can be made.

The IRT scale scores in the database represent estimates of the number of items children would have answered correctly at each point in time if they had taken all of the 212 questions in all of the first- and second-stage reading forms administered in all rounds, the 174 questions in all of the mathematics forms, and the 111 science items. These scores are not integers because they are probabilities of correct answers, summed over all items in the pools. Reading and mathematics gain scores may be obtained by subtracting the re-estimated IRT scale scores at fall-kindergarten from the IRT scale scores at spring-first grade, spring-first grade from spring-third grade, spring-third grade from spring-fifth grade, spring-fifth grade from spring-eighth grade, and so forth. For the science assessment, which was not administered in kindergarten/first grade, gain scores may be computed for third to fifth to eighth grade only. The general knowledge test administered in the earlier rounds is not on the same scale. (Note that scores for different subject areas are not comparable to each other because they are based on different numbers of questions and content that is not necessarily equivalent in difficulty, i.e., it would not be correct to assume that a child is doing better in reading than in mathematics because his or her IRT scale score in reading is higher than in mathematics).

See table 3-5 for variable names, descriptions, ranges, weighted means, and standard deviations for the IRT scale scores.

Standardized scores (T-scores) provide norm-referenced measurements of achievement, that is, estimates of achievement relative to the population as a whole. A high mean T-score for a particular subgroup indicates that the group's performance is high in comparison to other groups. It does not represent mastery of a particular set of skills, only that the subgroup's mastery level is greater than a comparison group. Similarly, a change in mean T-scores over time reflects a change in the group's status with respect to other groups. In other words, T-scores provide information on status compared with children's peers, while the IRT scale scores and proficiency scores represent status with respect to achievement on a particular criterion set of assessment items. The T-scores provide only an indicator of the extent to which an individual or a subgroup ranks higher or lower than the national average and how much this relative ranking changes over time.

Table 3-5. Direct cognitive assessment: Item Response Theory (IRT) scale scores: School year 2006-07

		Range of Values	Weighted mean	Standard deviation
C1R4RSCL	C1 RC4 Reading IRT Scale Score	$0-212$	35.47	9.86
C2R4RSCL	C2 RC4 Reading IRT Scale Score	$0-212$	46.52	13.88
C3R4RSCL	C3 RC4 Reading IRT Scale Score	$0-212$	52.73	16.93
C4R4RSCL	C4 RC4 Reading IRT Scale Score	$0-212$	77.07	23.70
C5R4RSCL	C5 RC4 Reading IRT Scale Score	$0-212$	125.70	28.57
C6R4RSCL	C6 RC4 Reading IRT Scale Score	$0-212$	148.67	26.85
C7R4RSCL	C7 RC4 Reading IRT Scale Score	$0-212$	167.24	28.03
C1R4MSCL	C1 RC4 Math IRT Scale Score	$0-174$	26.13	9.09
C2R4MSCL	C2 RC4 Math IRT Scale Score	$0-174$	36.17	12.00
C3R4MSCL	C3 RC4 Math IRT Scale Score	$0-174$	43.57	14.22
C4R4MSCL	C4 RC4 Math IRT Scale Score	$0-174$	61.50	17.66
C5R4MSCL	C5 RC4 Math IRT Scale Score	$0-174$	98.77	24.96
C6R4MSCL	C6 RC4 Math IRT Scale Score	$0-174$	122.94	25.18
C7R4MSCL	C7 RC4 Math IRT Scale Score	$0-174$	139.28	23.10
C5SR2SSCL	C5 RC4 Science IRT Scale Score	$0-111$	49.91	15.29
C6SR2SSCL	C6 RC4 Science IRT Scale Score	$0-111$	63.87	15.73
C7SR2SSCL	C7 RC2 Science IRT Scale Score	$0-111$	82.72	17.07

NOTE: Table estimates based on C1_7SC0 panel weight. Table estimates may differ from those reported in earlier user's manuals and psychometric reports because of re-estimation of scores on a longitudinal scale that includes eighth grade, and because of sample attrition. See chapter 7, section 7.5 for variable naming conventions.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

The standardized scores reported in the database are transformations of the IRT theta (ability) estimates, rescaled to a mean of 50 and standard deviation of 10 using cross-sectional sample weights for each wave of data. For example, a fifth-grade reading T-score of 45 (C6R4RTSC) represents a reading achievement level that is one-half of a standard deviation lower than the mean for the population represented by the assessed sample of ECLS-K round 6 participants. If the same child had a reading T-score of 50 in eighth grade (C7R4RTSC), this would indicate that the child had made up his or her initial deficit and was reading at a level comparable to the national average. T-scores for earlier rounds have been re-estimated using the ability estimates based on the whole longitudinal item pools. Since the T-scores represent status with respect to a peer group rather than with respect to a criterion set of items, the expansion of the item pool should result in only slight changes in the previously reported T-score estimates. In making T-score comparisons across rounds, the re-estimated scores should be used.

See table 3-6 for variable names, descriptions, and ranges for the standardized T-scores across all rounds.

Table 3-6. Direct cognitive assessment: standardized scores: School year 2006-07

Variable	Description	Range of values	Weighted mean	Standard deviation
C1R4RTSC	C1 RC4 Reading T-Score	$0-96$	50.82	9.90
C2R4RTSC	C2 RC4 Reading T-Score	$0-96$	50.76	9.79
C3R4RTSC	C3 RC4 Reading T-Score	$0-96$	50.52	9.62
C4R4RTSC	C4 RC4 Reading T-Score	$0-96$	50.55	9.77
C5R4RTSC	C5 RC4 Reading T-Score	$0-96$	50.28	10.13
C6R4RTSC	C6 RC4 Reading T-Score	$0-96$	50.56	9.76
C7R4RTSC	C7 RC4 Reading T-Score	$0-96$	50.13	9.68
C1R4MTSC	C1 RC4 Math T-Score	$0-96$	50.65	10.10
C2R4MTSC	C2 RC4 Math T-Score	$0-96$	50.50	9.95
C3R4MTSC	C3 RC4 Math T-Score	$0-96$	50.73	9.59
C4R4MTSC	C4 RC4 Math T-Score	$0-96$	50.83	9.09
C5R4MTSC	C5 RC4 Math T-Score	$0-96$	50.68	9.95
C6R4MTSC	C6 RC4 Math T-Score	$0-96$	50.92	9.79
C7R4MTSC	C7 RC4 Math T-Score	$0-96$	50.25	9.93
C5R2STSC	C5 RC2 Science T-Score	$0-96$	50.37	10.10
C6R2STSC	C6 RC2 Science T-Score	$0-96$	50.61	9.63
C7R2STSC	C7 RC2 Science T-Score	$0-96$	50.23	9.83

NOTE: Table estimates based on C1_7SC0 panel weight. Table estimates may differ from those reported in earlier user's manuals and psychometric reports because of re-estimation of scores on a longitudinal scale that includes eighth grade, and because of sample attrition. See chapter 7 , section 7.5 for variable naming conventions.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

The K-8 Full Sample Public Use data file includes the IRT theta (ability) scores for each data collection round for each domain (reading, mathematics, general knowledge, science) along with the standard error of measurement (SEM) associated with each theta score. The theta scores represent a child's ability measured at each round along a single continuous scale. The theta scores represent underlying ability (which is normally distributed at all rounds) while the IRT scale scores represent predicted performance on the ECLS-K assessments (which is not normally distributed at all rounds). The theta scores are ideally suited for measuring growth from kindergarten through the eighth grade. The theta score distribution range is approximately -3 to 3 .

3.1.3 Proficiency Levels

Proficiency levels provide a means of distinguishing status or gain in specific skills within a content area from the overall achievement measured by the IRT scale scores and T-scores. Clusters of four assessment questions having similar content and difficulty were included at 10 points along the reading and 9 points along the math score scales for the assessments. Clusters of four items provided a more reliable assessment of proficiency than did single items because of the possibility of guessing; it is very unlikely that a child who had not mastered a particular skill would be able to guess enough answers correctly to pass a four-item cluster. The following reading and mathematics proficiency levels were identified in the reading and mathematics assessments for kindergarten through eighth grade. No proficiency scores were computed for the science assessment because the questions did not follow a hierarchical pattern.

3.1.3.1

 Reading- Level 1: Letter recognition: identifying upper- and lower-case letters by name;
- Level 2: Beginning sounds: associating letters with sounds at the beginning of words;
- Level 3: Ending sounds: associating letters with sounds at the end of words;
- Level 4: Sight words: recognizing common "sight" words;
- Level 5: Comprehension of words in context: reading words in context;
- Level 6: Literal inference: making inferences using cues that are directly stated with key words in text (for example, recognizing the comparison being made in a simile);
- Level 7: Extrapolation: identifying clues used to make inferences, and using background knowledge combined with cues in a sentence to understand use of homonyms;
- Level 8: Evaluation: demonstrating understanding of author's craft (how does the author let you know...) and making connections between a problem in the narrative and similar life problems;
- Level 9: Evaluating nonfiction: critically evaluating, comparing and contrasting, and understanding the effect of features of expository and biographical texts; and
- Level 10: Evaluating complex syntax: evaluating complex syntax and understanding high-level nuanced vocabulary in biographical text.

3.1.3.2 Mathematics

- Level 1: Number and shape: identifying some one-digit numerals, recognizing geometric shapes, and one-to-one counting of up to 10 objects;
- Level 2: Relative size: reading all single-digit numerals, counting beyond 10 , recognizing a sequence of patterns, and using nonstandard units of length to compare objects;
- Level 3: Ordinality, sequence: reading two-digit numerals, recognizing the next number in a sequence, identifying the ordinal position of an object, and solving a simple word problem;
- Level 4: Addition/subtraction: solving simple addition and subtraction problems;
- Level 5: Multiplication/division: solving simple multiplication and division problems and recognizing more complex number patterns;
- Level 6: Place value: demonstrating understanding of place value in integers to the hundreds place;
- Level 7: Rate and measurement: using knowledge of measurement and rate to solve word problems;
- Level 8: Fractions: demonstrating understanding of the concept of fractional parts; and
- Level 9: Area and volume: solving word problems involving area and volume, including change of units of measurement.

The proficiency levels were assumed to follow a Guttman model, that is, a child passing a particular skill level was expected to have mastered all lower levels; a failure should be consistent with nonmastery at higher levels. Only a very small percentage of children in kindergarten through eighth grade had response patterns that did not follow the Guttman model, that is, a failing score at a lower level followed by a pass on a more difficult item cluster. For the first six rounds of data collection, less than 7 percent of reading response patterns, and about 3 percent of mathematics assessment results, failed to follow the expected hierarchical pattern; in round 7 (grade 8) these figures were 3 percent for mathematics and less than 1 percent for reading. This does not necessarily indicate a different order of learning for these children; since most of the proficiency-level items were multiple-choice, many of these reversals may be due to children guessing.

Two types of scores are reported with respect to the proficiency levels: a single indicator of highest level mastered, and a set of IRT-based probability scores, one for each proficiency level. More information on each of these types of scores is provided below. As for the other IRT-based scores (scale scores and T-scores), re-estimated values for earlier rounds should be used when making comparisons of proficiency levels across rounds.

3.1.3.3 Highest Proficiency Level Mastered

Mastery of a proficiency level was defined as answering correctly at least three of the four questions in a cluster. This definition results in a very low probability of guessing enough right answers by chance, generally less than 2 percent. At least two incorrect or "don't know" responses indicated lack of mastery of a cluster. Questions that were answered with an explicit "I don't know" were treated as
wrong, while omitted items were not counted. Since the ECLS-K direct cognitive assessment was a twostage design (where not all children were administered all items), and since more advanced assessment instruments were administered in third, fifth, and eighth grades, the data did not include all of the assessment items necessary to determine pass/fail for every proficiency level at each round of data collection. The missing information was not missing at random; it depended in part on children being routed to second-stage assessment forms of varying difficulty within each round, and in part on the range of difficulty of the assessments at the different grade levels. In order to avoid bias due to the nonrandomness of the missing proficiency level scores, imputation procedures were undertaken to fill in the missing information.

Pass or fail for each proficiency level was based on actual counts of correct or incorrect responses, if they were present. If too few items were administered or answered to determine mastery of a level, a pass/fail score was assigned based on the remaining proficiency scores only if they indicated a pattern that was unambiguous. That is, a "fail" was inferred for a missing level if there were easier cluster(s) that had been failed and no higher cluster passed; or a "pass" was assumed if harder cluster(s) were passed and no easier one failed. In the case of ambiguous patterns (e.g., pass, missing, fail, where the missing level could legitimately be either a pass or a fail), an additional imputation step was undertaken that relied on information from the children's performance on all of the domain items answered in that round of data collection. IRT-based estimates of the probability of a correct answer were computed for each missing assessment item and used to assign an imputed right or wrong answer. These imputed responses were then aggregated in the same manner as actual responses to determine mastery at each of the missing levels.

About 67 percent of the "highest level" scores in reading and 80 percent in mathematics were determined on the basis of item response data alone for the kindergarten through fifth-grade rounds. In eighth grade, the scores determined on the basis of item response data dropped to 19 percent for reading and 47 percent for math, a result of the necessary placement of the proficiency level items on either the low or high second-stage form, based on their estimated difficulty levels. The rest utilized IRTbased probabilities for some or all of the missing items, since the "missingness" is a consequence of the child's ability or grade level and requires special treatment in order to avoid misleading results. (The ECLS-K Psychometric Report for the Eighth Grade (NCES 2009-002) (Najarian, Pollack, and Sorongon forthcoming) describes this treatment in more detail.) Scores were not imputed for missing levels that included a reversal (e.g., fail, blank, pass) because no resolution of the missing data could result in a consistent hierarchical pattern.

Scores in the data file represented the highest level of proficiency mastered by each child at each round of data collection, whether this determination was made by actual item responses alone or by a combination of item responses and imputation methods. The highest proficiency level mastered implies that children demonstrated mastery of all lower levels and nonmastery of all higher levels. A zero score indicates nonmastery of the lowest proficiency level. Scores were excluded only if the actual or imputed mastery level data resulted in a reversal pattern as defined above. The highest proficiency level-mastered scores did not necessarily correspond to an interval scale, so in analyzing the data, they should be treated as ordinal. See table 3-7 for variable names, descriptions, and weighted percentages for the highest proficiency level mastered scores.

Table 3-7. Direct cognitive assessment: highest proficiency level mastered, in percent: School year 2006-07

Variable	Description	Below Level 1		$\begin{gathered} \text { evel L } \\ 2 \\ \hline \end{gathered}$			$\mathrm{vel} \mathrm{~L}^{\mathrm{s}}$	6evel	-evel	el Level Level		Level 10
										8	9	
C1R4RPF	C1 RC4 Reading Highest Prof Lvl Mastered	30	36	17	15	2	1	0	0	0	0	0
C2R4RPF	C2 RC4 Reading Highest Prof Lvl Mastered	6	17	23	40	10	3	1	0	0	0	0
C3R4RPF	C3 RC4 Reading Highest Prof Lvl Mastered	5	13	18	40	14	8	2	1	0	0	0
C4R4RPF	C4 RC4 Reading Highest Prof Lvl Mastered	0	2	4	12	33	33	12	3	1	0	0
C5R4RPF	C5 RC4 Reading Highest Prof Lvl Mastered	0	0	0	1	4	19	24	27	23	2	0
C6R4RPF	C6 RC4 Reading Highest Prof Lvl Mastered	0	0	0	0	1	7	16	34	34	7	1
C7R4RPF	C7 RC4 Reading Highest Prof Lvl Mastered	0	0	0	0	0	4	8	19	34	27	7
C1R4MPF	C1 RC4 Math Highest Prof Lvl Mastered	6	32	37	20	4	0	0	0	0	0	\dagger
C2R4MPF	C2 RC4 Math Highest Prof Lvl Mastered	1	11	27	41	17	2	0	0	0	0	\dagger
C3R4MPF	C3 RC4 Math Highest Prof Lvl Mastered	1	9	18	42	24	5	1	0	0	0	\dagger
C4R4MPF	C4 RC4 Math Highest Prof Lvl Mastered	0	1	5	20	48	22	5	0	0	0	\dagger
C5R4MPF	C5 RC4 Math Highest Prof Lvl Mastered	0	0	0	4	17	30	31	16	2	0	\dagger
C6R4MPF	C6 RC4 Math Highest Prof Lvl Mastered	0	0	0	1	5	15	33	30	14	2	+
C7R4MPF	C7 RC4 Math Highest Prof Lvl Mastered	0	0	0	1	1	7	22	31	22	17	\dagger

\dagger Not applicable.
NOTE: Table estimates based on C1_7SC0 panel weight. Table estimates may differ from those reported in earlier user's manuals and psychometric reports because of re-estimation of scores on a longitudinal scale that includes eighth grade, and because of sample attrition. See chapter 7 , section 7.5 for variable naming conventions.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

3.1.3.4 Proficiency Probability Scores

Proficiency probability scores were reported for each of the proficiency levels described above, at each round of data collection. The scores estimate the probability of mastery of each level and can take on any value from zero to one. An IRT model was employed to calculate the proficiency probability scores, which indicated the probability that a child would have passed a proficiency level, based on his or her whole set of item responses in the content domain. The item clusters were treated as single items for the purpose of IRT calibration, in order to estimate children's probabilities of mastery of each set of skills. The hierarchical nature of the skill sets justified the use of the IRT model in this way.

The proficiency probability scores differed from the highest level scores in that they could be used to measure gains over time, and from the IRT scale scores in that they targeted specific sets of skills. The proficiency probability scores can be averaged to produce estimates of mastery rates within population subgroups. These continuous measures can provide a close look at individuals' status and change over time. Gains in probability of mastery at each proficiency level allow researchers to study not only the amount of gain in total scale score points but also where along the score scale different children made their largest gains in achievement during a particular time interval. For example, subtracting the mathematics level 8 probability at round 6 (C6R4MPB8) from the level 8 probability at round 7 (C7R4MPB8) indicates whether a child advanced in mastery of the particular set of level 8 skills (i.e., fractions) during the time interval between the fifth- and eighth-grade assessments. Thus, children's school experiences can be related to improvements in specific skills.

See tables 3-8 and 3-9 for variable names, descriptions, ranges, weighted means, and standard deviations for the proficiency probability scores in reading and mathematics.

Table 3-8. Eighth-grade direct cognitive assessment: proficiency probability scores-reading: School year 2006-07

Variable	Description	Range of values	Weighted mean	Standard deviation
C1R4RPB1	C1 RC4 Prob1 - Letter Recognition	0-1	0.68	0.33
C1R4RPB2	C1 RC4 Prob2 - Beginning Sounds	0-1	0.31	0.34
C1R4RPB3	C1 RC4 Prob3 - Ending Sounds	0-1	0.18	0.26
C1R4RPB4	C1 RC4 Prob4 - Sight Words	0-1	0.03	0.14
C1R4RPB5	C1 RC4 Prob5 - Word in Context	0-1	0.02	0.09
C1R4RPB6	C1 RC4 Prob6 - Literal Inference	0-1	0.00	0.03
C1R4RPB7	C1 RC4 Prob7-Extrapolation	$0-1$	0.00	0.01
C1R4RPB8	C1 RC4 Prob8 - Evaluation	0-1	0.00	0.01
C1R4RPB9	C1 RC4 Prob9 - Evaluating Nonfiction	0-1	0.00	0.00
C1R4RPB10	C1 RC4 Prob10 - Evaluating Complex Syntax	0-1	0.00	0.00
C2R4RPB1	C2 RC4 Prob1 - Letter Recognition	0-1	0.93	0.17
C2R4RPB2	C2 RC4 Prob2 - Beginning Sounds	0-1	0.70	0.32
C2R4RPB3	C2 RC4 Prob3 - Ending Sounds	0-1	0.51	0.34
C2R4RPB4	C2 RC4 Prob4-Sight Words	0-1	0.16	0.26
C2R4RPB5	C2 RC4 Prob5 - Word in Context	0-1	0.07	0.16
C2R4RPB6	C2 RC4 Prob6 - Literal Inference	0-1	0.02	0.08
C2R4RPB7	C2 RC4 Prob7-Extrapolation	$0-1$	0.00	0.04
C2R4RPB8	C2 RC4 Prob8-Evaluation	0-1	0.00	0.02
C2R4RPB9	C2 RC4 Prob9 - Evaluating Nonfiction	0-1	0.00	0.00
C2R4RPB10	C7 RC4 Prob10 - Evaluating Complex Syntax	0-1	0.00	0.00
C3R4RPB1	C3 RC4 Prob1 - Letter Recognition	0-1	0.96	0.13
C3R4RPB2	C3 RC4 Prob2 - Beginning Sounds	0-1	0.82	0.27
C3R4RPB3	C3 RC4 Prob3 - Ending Sounds	0-1	0.67	0.32
C3R4RPB4	C3 RC4 Prob4 - Sight Words	0-1	0.28	0.32
C3R4RPB5	C3 RC4 Prob5 - Word in Context	0-1	0.13	0.22
C3R4RPB6	C3 RC4 Prob6 - Literal Inference	0-1	0.03	0.12
C3R4RPB7	C3 RC4 Prob7-Extrapolation	$0-1$	0.01	0.06
C3R4RPB8	C3 RC4 Prob8-Evaluation	0-1	0.01	0.03
C3R4RPB9	C3 RC4 Prob9 - Evaluating Nonfiction	0-1	0.00	0.00
C3R4RPB10	C3 RC4 Prob10 - Evaluating Complex Syntax	0-1	0.00	0.00
C4R4RPB1	C4 RC4 Prob1 - Letter Recognition	0-1	0.99	0.05
C4R4RPB2	C4 RC4 Prob2 - Beginning Sounds	0-1	0.97	0.12
C4R4RPB3	C4 RC4 Prob3 - Ending Sounds	$0-1$	0.92	0.19
C4R4RPB4	C4 RC4 Prob4-Sight Words	0-1	0.75	0.32
C4R4RPB5	C4 RC4 Prob5 - Word in Context	0-1	0.48	0.32
C4R4RPB6	C4 RC4 Prob6 - Literal Inference	$0-1$	0.18	0.23
C4R4RPB7	C4 RC4 Prob7-Extrapolation	$0-1$	0.06	0.13
C4R4RPB8	C4 RC4 Prob8 - Evaluation	0-1	0.03	0.06
C4R4RPB9	C4 RC4 Prob9 - Evaluating Nonfiction	0-1	0.00	0.00
C4R4RPB10	C4 RC4 Prob10 - Evaluating Complex Syntax	0-1	0.00	0.00

[^10]Table 3-8. Eighth-grade direct cognitive assessment: proficiency probability scores-reading: School year 2006-07-Continued

Variable	Description	Range of values	Weighted mean	Standard deviation
C5R4RPB1	C5 RC4 Prob1 - Letter Recognition	$0-1$	1.00	0.00
C5R4RPB2	C5 RC4 Prob2 - Beginning Sounds	$0-1$	1.00	0.00
C5R4RPB3	C5 RC4 Prob3 - Ending Sounds	$0-1$	1.00	0.01
C5R4RPB4	C5 RC4 Prob4 - Sight Words	$0-1$	0.98	0.09
C5R4RPB5	C5 RC4 Prob5 - Word in Context	$0-1$	0.90	0.17
C5R4RPB6	C5 RC4 Prob6 - Literal Inference	$0-1$	0.68	0.28
C5R4RPB7	C5 RC4 Prob7 - Extrapolation	$0-1$	0.44	0.31
C5R4RPB8	C5 RC4 Prob8 - Evaluation	$0-1$	0.25	0.21
C5R4RPB9	C5 RC4 Prob9 - Evaluating Nonfiction	$0-1$	0.01	0.03
C5R4RPB10	C5 RC4 Prob10 - Evaluating Complex Syntax	$0-1$	0.00	0.00
C6R4RPB1	C6 RC4 Prob1 - Letter Recognition	$0-1$	1.00	0.00
C6R4RPB2	C6 RC4 Prob2 - Beginning Sounds	$0-1$	1.00	0.00
C6R4RPB3	C6 RC4 Prob3 - Ending Sounds	$0-1$	1.00	0.00
C6R4RPB4	C6 RC4 Prob4 - Sight Words	$0-1$	1.00	0.01
C6R4RPB5	C6 RC4 Prob5 - Word in Context	$0-1$	0.97	0.07
C6R4RPB6	C6 RC4 Prob6 - Literal Inference	$0-1$	0.85	0.19
C6R4RPB7	C6 RC4 Prob7 - Extrapolation	$0-1$	0.67	0.29
C6R4RPB8	C6 RC4 Prob8 - Evaluation	$0-1$	0.44	0.27
C6R4RPB9	C6 RC4 Prob9 - Evaluating Nonfiction	$0-1$	0.06	0.15
C6R4RPB10	C6 RC4 Prob10 - Evaluating Complex Syntax	$0-1$	0.01	0.02
C7R4RPB1	C7 RC4 Prob1 - Letter Recognition	$0-1$	1.00	0.00
C7R4RPB2	C7 RC4 Prob2 - Beginning Sounds	$0-1$	1.00	0.00
C7R4RPB3	C7 RC4 Prob3 - Ending Sounds	$0-1$	1.00	0.00
C7R4RPB4	C7 RC4 Prob4 - Sight Words	$0-1$	1.00	0.00
C7R4RPB5	C7 RC4 Prob5 - Word in Context	$0-1$	0.98	0.03
C7R4RPB6	C7 RC4 Prob6 - Literal Inference	$0-1$	0.92	0.14
C7R4RPB7	C7 RC4 Prob7 - Extrapolation	$0-1$	0.82	0.25
C7R4RPB8	C7 RC4 Prob8 - Evaluation	$0-1$	0.64	0.30
C7R4RPB9	C7 RC4 Prob9 - Evaluating Nonfiction	$0-1$	0.26	0.34
C7R4RPB10	C7 RC4 Prob10 - Evaluating Complex Syntax	$0-1$	0.06	0.13

NOTE: Table estimates based on C1_7SC0 panel weight. Table estimates may differ from those reported in earlier user's manuals and psychometric reports because of re-estimation of scores on a longitudinal scale that includes eighth grade, and because of sample attrition. See chapter 7 , section 7.5 for variable naming conventions.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

Table 3-9. Eighth-grade direct cognitive assessment: proficiency probability scores-mathematics:
School year 2006-07

Variable	Description	Range of values	Weighted mean	Standard deviation
C1R4MPB1	C1 RC4 Prob1 - Count, Number, Shape	0-1	0.92	0.17
C1R4MPB2	C1 RC4 Prob2 - Relative Size	0-1	0.55	0.36
C1R4MPB3	C1 RC4 Prob3 - Ordinality, Sequence	0-1	0.22	0.30
C1R4MPB4	C1 RC4 Prob4 - Add/Subtract	0-1	0.04	0.12
C1R4MPB5	C1 RC4 Prob5 - Multiply/Divide	0-1	0.00	0.03
C1R4MPB6	C1 RC4 Prob6 - Place Value	0-1	0.00	0.00
C1R4MPB7	C1 RC4 Prob7 - Rate \& Measurement	0-1	0.00	0.00
C1R4MPB8	C1 RC4 Prob8 - Fractions	$0-1$	0.00	0.00
C1R4MPB9	C1 RC4 Prob9 - Area and Volume	0-1	0.00	0.00
C2R4MPB1	C2 RC4 Prob1 - Count, Number, Shape	0-1	0.99	0.05
C2R4MPB2	C2 RC4 Prob2 - Relative Size	0-1	0.84	0.24
C2R4MPB3	C2 RC4 Prob3 - Ordinality, Sequence	0-1	0.54	0.38
C2R4MPB4	C2 RC4 Prob4 - Add/Subtract	0-1	0.17	0.26
C2R4MPB5	C2 RC4 Prob5 - Multiply/Divide	$0-1$	0.02	0.08
C2R4MPB6	C2 RC4 Prob6 - Place Value	0-1	0.00	0.01
C2R4MPB7	C2 RC4 Prob7 - Rate \& Measurement	0-1	0.00	0.00
C2R4MPB8	C2 RC4 Prob8 - Fractions	0-1	0.00	0.00
C2R4MPB9	C2 RC4 Prob9 - Area and Volume	0-1	0.00	0.00
C3R4MPB1	C3 RC4 Prob1 - Count, Number, Shape	0-1	1.00	0.02
C3R4MPB2	C3 RC4 Prob2 - Relative Size	0-1	0.92	0.17
C3R4MPB3	C3 RC4 Prob3 - Ordinality, Sequence	0-1	0.73	0.33
C3R4MPB4	C3 RC4 Prob4 - Add/Subtract	0-1	0.33	0.33
C3R4MPB5	C3 RC4 Prob5 - Multiply/Divide	0-1	0.05	0.14
C3R4MPB6	C3 RC4 Prob6 - Place Value	0-1	0.00	0.03
C3R4MPB7	C3 RC4 Prob7-Rate \& Measurement	0-1	0.00	0.00
C3R4MPB8	C3 RC4 Prob8 - Fractions	0-1	0.00	0.00
C3R4MPB9	C3 RC4 Prob9 - Area and Volume	0-1	0.00	0.00
C4R4MPB1	C4 RC4 Prob1 - Count, Number, Shape	0-1	1.00	0.00
C4R4MPB2	C4 RC4 Prob2 - Relative Size	0-1	0.99	0.04
C4R4MPB3	C4 RC4 Prob3 - Ordinality, Sequence	$0-1$	0.95	0.16
C4R4MPB4	C4 RC4 Prob4-Add/Subtract	0-1	0.71	0.31
C4R4MPB5	C4 RC4 Prob5 - Multiply/Divide	0-1	0.23	0.30
C4R4MPB6	C4 RC4 Prob6 - Place Value	0-1	0.03	0.11
C4R4MPB7	C4 RC4 Prob7-Rate \& Measurement	0-1	0.00	0.02
C4R4MPB8	C4 RC4 Prob8 - Fractions	0-1	0.00	0.00
C4R4MPB9	C4 RC4 Prob9 - Area and Volume	0-1	0.00	0.00
C5R4MPB1	C5 RC4 Prob1 - Count, Number, Shape	0-1	1.00	0.00
C5R4MPB2	C5 RC4 Prob2 - Relative Size	0-1	1.00	0.00
C5R4MPB3	C5 RC4 Prob3 - Ordinality, Sequence	$0-1$	1.00	0.02
C5R4MPB4	C5 RC4 Prob4-Add/Subtract	0-1	0.97	0.10
C5R4MPB5	C5 RC4 Prob5 - Multiply/Divide	0-1	0.77	0.32

[^11]Table 3-9. Eighth-grade direct cognitive assessment: proficiency probability scores-mathematics:
School year 2006-07-Continued

Variable	Description	Range of values	Weighted mean	Standard deviation
C5R4MPB6	C5 RC4 Prob6 - Place Value	$0-1$	0.43	0.40
C5R4MPB7	C5 RC4 Prob7 - Rate \& Measurement	$0-1$	0.14	0.24
C5R4MPB8	C5 RC4 Prob8 - Fractions	$0-1$	0.01	0.06
C5R4MPB9	C5 RC4 Prob9 - Area and Volume	$0-1$	0.00	0.01
C6R4MPB1	C6 RC4 Prob1 - Count, Number, Shape	$0-1$	1.00	0.00
C6R4MPB2	C6 RC4 Prob2 - Relative Size	$0-1$	1.00	0.00
C6R4MPB3	C6 RC4 Prob3 - Ordinality, Sequence	$0-1$	1.00	0.00
C6R4MPB4	C6 RC4 Prob4 - Add/Subtract	$0-1$	1.00	0.02
C6R4MPB5	C6 RC4 Prob5 - Multiply/Divide	$0-1$	0.93	0.18
C6R4MPB6	C6 RC4 Prob6 - Place Value	$0-1$	0.75	0.35
C6R4MPB7	C6 RC4 Prob7 - Rate \& Measurement	$0-1$	0.43	0.38
C6R4MPB8	C6 RC4 Prob8 - Fractions	$0-1$	0.14	0.27
C6R4MPB9	C6 RC4 Prob9 - Area and Volume	$0-1$	0.03	0.10
C7R4MPB1	C7 RC4 Prob1 - Count, Number, Shape	$0-1$	1.00	0.00
C7R4MPB2	C7 RC4 Prob2 - Relative Size	$0-1$	1.00	0.00
C7R4MPB3	C7 RC4 Prob3 - Ordinality, Sequence	$0-1$	1.00	0.00
C7R4MPB4	C7 RC4 Prob4 - Add/Subtract	$0-1$	1.00	0.00
C7R4MPB55	C7 RC4 Prob5 - Multiply/Divide	$0-1$	0.98	0.07
C7R4MPB6	C7 RC4 Prob6 - Place Value	$0-1$	0.89	0.25
C7R4MPB77	C7 RC4 Prob7 - Rate \& Measurement	$0-1$	0.67	0.37
C7R4MPB8	C7 RC4 Prob8 - Fractions	$0-1$	0.36	0.41
C7R4MPB9	C7 RC4 Prob9 - Area and Volume	$0-1$	0.16	0.30

NOTE: Table estimates based on C1_7SC0 panel weight. Table estimates may differ from those reported in earlier user's manuals and psychometric reports because of re-estimation of scores on a longitudinal scale that includes eighth grade, and because of sample attrition. See chapter 7 , section 7.5 for variable naming conventions.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

The following are some examples of interpretation and use of the proficiency probability scores:

- Children's skills in making inferences based on cues directly stated in text (literal inference) increased dramatically between first and third grade, from 18 percent, or a mean probability $=0.18$ (C4R4RPB6), to 68 percent (C5R4RPB6). Nearly all children, 92 percent, had mastered this skill by eighth grade (C7R4RPB6).
- In spring-third grade, most children had not yet demonstrated understanding of the author's craft or making connections between a problem in the narrative and similar life problems. Only 25 percent mastered the evaluation level in third grade (C5R4RPB8), with 44 percent demonstrating mastery in fifth grade (C6R4RPB8) and 64 percent in eighth grade (C7R4RPB8).
- Twenty-six percent of eighth-graders were proficient at critical evaluation of nonfiction (C7R4RPB9), up from only 6 percent in fifth grade (C6R4RPB9).
- Only 6 percent of eighth-graders were able to evaluate complex syntax and understand high-level vocabulary in a biographical passage (C7R4RPB10).
- Fourteen percent of children understood interpretation and manipulation of simple fractions (C6R4MPB8) by the spring of fifth grade, and 36 percent by spring of eighth grade (C7R4MPB8).
- Three percent of fifth-graders could solve word problems involving area and volume (C6R4MPB9), with 16 percent of children demonstrating mastery in eighth grade (C7R4MPB9).

Comparisons of subgroups may be made by computing the mean probability for each group at a single point in time, or the mean gain for each group from one time to another. See section 3.1.5 for further discussion of measurement of gain.

3.1.4 Choosing the Appropriate Score for Analysis

Each of the types of scores described earlier measures children's achievement from a slightly different perspective. The choice of the most appropriate score for analysis purposes should be driven by the context in which it is to be used:

- a measure of overall achievement versus achievement in specific skills;
- an indicator of status at a single point in time versus growth over time; or
- a criterion-referenced versus norm-referenced interpretation.

3.1.4.1 Item Response Theory-Based Scores

The scores derived from the IRT model (IRT scale scores, T-scores, proficiency probabilities) were based on all of the child's responses to a subject area assessment. That is, the pattern of right and wrong answers, as well as the characteristics of the assessment items themselves, were used to estimate a point on an ability continuum, and this ability estimate, theta, then provided the basis for criterion-referenced and norm-referenced scores. As noted earlier, estimates of gains and comparisons of achievement across rounds that make use of the IRT-based scales should use re-estimated values for the
earlier rounds, not values found on earlier user files, if using eighth-grade scores, or data from prior rounds only, or both (see section 3.1.2).

- The IRT scale scores are overall, criterion-referenced measures of status at a point in time. They are useful in identifying cross-sectional differences among subgroups in overall achievement level and provide a summary measure of achievement useful for correlational analysis with status variables, such as demographics, school type, or behavioral measures.

The IRT scale scores may be used as longitudinal measures of overall growth. However, gains made at different points on the scale have qualitatively different interpretations. For example, children who made gains in recognizing letters and letter sounds are learning very different skills than those who are making the jump from reading words to reading sentences, although the gains in number of scale score points may be the same. Comparison of gain in scale score points is most meaningful for groups that started with similar initial statuses.

- The standardized scores (T-scores) are also overall measures of status at a point in time, but they are norm-referenced rather than criterion-referenced. They do not answer the question, "What skills do children have?" but rather "How do they compare with their peers?" The transformation to a familiar metric with a mean of 50 and standard deviation of 10 facilitates comparisons in standard deviation units. T-score means may be used longitudinally to illustrate the increase or decrease in gaps in achievement among subgroups over time. T-scores are not recommended for measuring individual gains over time. The IRT scale scores or proficiency probability scores are used for that purpose.
- Proficiency probability scores, derived from the overall IRT model, are criterionreferenced measures of proficiency in specific skills. Because proficiency scores each target a particular set of skills, they are ideal for studying the details of achievement, rather than the single summary measure provided by the IRT scale scores and T-scores. They are useful as longitudinal measures of change because they show not only the extent of gains but also where on the achievement scale the gains are taking place. Thus, they can provide information on differences in skills being learned by different groups, as well as the relationships with processes, both in and out of school, that correlate with learning specific skills. For example, high socioeconomic status (SES) kindergarten children showed very little gain in the lowest reading proficiency level, letter recognition, because they were already proficient in this skill at kindergarten entry. At the same time, low-SES children made big gains in basic skills, but most had not yet made major gains in reading words and sentences by the end of kindergarten. Similarly, the best readers in eighth grade may be working on learning to comprehend complex syntax and vocabulary and make evaluative judgments based on reading material, which would show up as large gains in reading levels 8,9 , and 10. Less skilled readers may show their largest gains between fifth and eighth grades at levels 6 or 7, literal inference and extrapolation, catching up with the skill levels achieved by many of their peers in earlier rounds. The proficiency level at which the largest change is taking place is likely to be different for children with different initial status, background, and school setting. Changes in proficiency probabilities over time
may be used to identify the process variables that are effective in promoting achievement gains in specific skills.

3.1.4.2 Scores Based on Number Right for Subsets of Items (Non-IRT Based Scores)

The routing test number-right scores do not depend on the assumptions of the IRT model. They were derived from item responses on specific subsets of assessment items, rather than estimates based on patterns of overall performance; therefore the values of these scores reported in user files for earlier rounds were not re-estimated. Highest proficiency level mastered also, in theory, was derived from item responses, although a relatively small number of IRT-based estimates were substituted for missing data.

- Routing test number-right scores for the eighth-grade reading, mathematics, and science assessments are based on 10 items in each domain. They target specific sets of skills and cover a broad range of difficulty. These scores may be of interest to researchers because they are based on a specific set of assessment items, which was the same for all children who took the assessment. However, because of the limited number of items in the routing tests, it is important to remember that these scores do not represent a comprehensive sample of the relevant domain of knowledge. The primary purpose of the routing tests was selection of appropriate second-stage forms.
- Highest proficiency level mastered is based on the same sets of items as the proficiency probability scores but consists of a series of dichotomous pass/fail scores, reported as a single highest mastery level. The highest proficiency level mastered should be treated as an ordinal variable. Pass/fail on each of the individual levels in the set is based on whether children were able to answer correctly at least three out of four actual items in each cluster. For about one-third of reading scores and 20 percent of mathematics scores in the earlier rounds, and about 80 percent for reading and 50 percent for mathematics in eighth grade, the item data was supplemented with IRTbased estimates so that the "highest level" scores would not have to be reported as missing data. The higher percentages in eighth grade are a result of the necessary placement of proficiency level items on either the low or high second-stage forms, based on their estimated difficulty levels. Therefore, analysis of missing data that is not missing at random (i.e., the "missingness" is a consequence of the child's skill level or grade level) requires special treatment in order to avoid misleading results. The ECLS-K Psychometric Report for the Eighth Grade (NCES 2009-002) (Najarian, Pollack, and Sorongon forthcoming) describes this treatment in more detail.

3.1.5 Measuring Gains

This section outlines approaches to measuring gains that rely on multiple criterionreferenced points to identify different patterns of child growth. It describes how analysts might use the
proficiency probability scores to address policy questions dealing with subgroup differences in achievement growth over time.

Traditional approaches using a total scale score to measure change may yield uninformative if not misleading results. For example, analysis of the gain in total scale score points in reading between fall- and spring-kindergarten shows an average increase of about 11 points. Subgroup analysis shows nearly identical average gains of about the same magnitude for groups broken down by sex, race/ethnicity, SES, and school type, even though the mean scores for the subgroups are quite different. Between spring-kindergarten and spring-first grade, mean reading scale scores increased by about 30 points for all subgroups, with additional 49-point gains by third grade, 23 more points by fifth grade, and 19 point gains by eighth grade. Similarly, each of these groups gained about 10 points, on average, on the mathematics scale during kindergarten, again starting from a very different initial status. Gains as of first, third, fifth, and eighth grades averaged approximately 25 points, 37 points, 24 points, and 17 points, respectively, for most subgroups. The differences among groups in gains in scale score points are relatively small, while the differences in subgroup scale score means are much larger. The ECLS-K Psychometric Report for the Eighth Grade (NCES 2009-002) (Najarian, Pollack, and Sorongon forthcoming) describes this analysis in more detail.

It would be incorrect to conclude that, because different subgroups of children are quantitatively gaining the same number of scale score points, they are learning the same things, or that these gains are qualitatively comparable in any sense. The problem is non-equivalence of scale units: children who gain 10 points at the low end of the scale, for example, by mastering letter recognition and letter sounds, are not learning the same things as more advanced children, who are achieving their 10 point gains by mastering reading comprehension skills.

The use of adaptive assessments increases the reliability of individual assessment scores by removing the sources of floor and ceiling effects. When assessment forms are matched to children's ability levels, all test-takers have an equal chance to gain on the vertical scale. Depending on how adaptive the measure is, how the scale is constructed, and how even-handed the educational treatment, one may not observe large differences in each child's respective amounts of gain in total scale score points. Individual and group differences in the amount of gain given a fairly standard treatment (e.g., a year of schooling) can be relatively trivial compared to individual and group differences in where the gains take place. It is more likely that one will see substantial subgroup differences in initial status than in gains, suggesting that the gains being made by individuals at different points on the score scale are
qualitatively different. Thus analysis of the total IRT scale score without explicitly taking into consideration where the gain takes place tells only part of the story.

The ECLS-K design utilized adaptive assessments to maximize the accuracy of measurement and minimize floor and ceiling effects, and then to develop an IRT-based vertical scale with multiple criterion-referenced points along that scale. These points, the 10 reading and 9 mathematics proficiency levels described in section 3.1.3, model critical stages in the development of skills. Criterion-referenced points serve two purposes at the individual level: (1) they provide information about changes in each child's mastery or proficiency at each level, and (2) they provide information about where on the scale the child's gain is taking place. This provides analysts with two options for analyzing achievement gains and relating them to background and process variables. First, gains in probability of proficiency at any level may be aggregated by subgroup and/or correlated with other variables. Second, the location of maximum gain may be identified for each child by comparing the gains in probability for all of the levels and focusing on the skills the child is acquiring during a particular time interval.

The probabilities of proficiency at any level may be averaged to estimate the proportion of children mastering the skills marked by that level. For example, the spring-first grade mean for mathematics level 5, "Multiply/Divide," was 0.23 , analogous to 23 percent of the first-grade population demonstrating mastery of this set of items. The mean probability at the end of third grade, 0.77 , is equivalent to a population mastery rate of 77 percent, with a mastery rate of 93 percent by the end of fifth grade and 98 percent in eighth grade. While most children were making their largest gains between first and third grades at level 5 , a small number of children were advancing their skills in solving word problems based on rate and measurement, level 7, and others were still catching up with simple addition and subtraction, level 4 . The mastery rate for level 7 rose from near zero at the end of first grade to about 14 percent at the end of third grade, 43 percent at fifth grade, and 67 percent at eighth grade. By the end of eighth grade, nearly all children (89 percent) demonstrated mastery of level 6 mathematics skills (understanding place value), while the majority had not yet shown the same level of competence at level 8 (fractions: 36 percent proficient) and level 9 (area and volume: 16 percent proficient). These proportions, and the average gains in the proportions for the various skills, would very likely be quite different for subgroups of children defined by various demographic and school-process categories. Similarly, gains at each level between one assessment round and a subsequent round may be computed for individual children and treated as outcome variables in multivariate models that include background and process measures.

Another approach entails computing differences in probabilities of proficiency between any two selected time points for all of the proficiency levels. The largest difference marks the mastery level where the largest gain for a given child is taking place: the "locus of maximum gain." The locus of maximum gain is likely to vary for different subgroups of children categorized according to variables of interest. Once having identified mutually exclusive groups of children according to the proximity of their gains to each of the critical points on the developmental scale, one can treat the different types of gains as qualitatively different outcome measures to be explained by background and process variables.

Each different analytical approach provides a different perspective with respect to understanding children's growth. While comparisons of scale score means may be used to capture information about children at a single point in time, analysis of gain in probability of proficiency is more likely to provide useful information about the contribution of background and process variables to gains in achievement over time. Examples of these approaches can be found in Rock and Pollack (2002a).

Another important issue to be considered in analyzing achievement scores and gains is assessment timing: children's age at first assessment, assessment dates, and the time interval between successive assessments. This issue is most relevant in the early years, kindergarten and first grade. Assessment dates ranged from September to November for fall data collections, and from March to June for spring rounds. At kindergarten entry, boys, on average, tend to be older than girls. Children assessed in November of their kindergarten year may be expected to have an advantage over children assessed in the first days or weeks of school. Substantial differences in intervals between assessments may also affect analysis of gain scores. Children assessed in September and June of kindergarten or first grade have more time to learn skills than children assessed in November and March. These differences in intervals may have a relatively small impact on analysis results for long time intervals, such as measuring gains from spring-fifth grade to spring-eighth grade, but may be more important within grade, especially fall- to spring-kindergarten. Analysts should also keep in mind that, as the longitudinal data collection progresses, increasing numbers of children are not in the modal grade for the sample. Children's grade levels, and the consequent differences in curriculum exposure at the time of assessment rounds, should be taken into account. In designing an analysis plan, it is important to consider whether and how differences in ages, assessment dates and intervals, and children's grade levels may affect the results, to look at relationships between these factors and other variables of interest, and to compensate for differences if necessary. Walston and West (2004) address the issue in their report on full-day and half-day kindergarten.

3.1.6 Reliability

Reliability statistics assess consistency of measurement, in other words, the extent to which test items in a set are related to each other and to the score scale as a whole. For tests of equal length, reliability estimates can be expected to be higher for sets of items that are closely related to the underlying construct than for tests with more diversity of content. Conversely, for tests with similar levels of diversity in content, reliabilities tend to be higher for longer tests compared with shorter tests. In general, the most diverse subject, science, had lower reliability coefficients than reading and mathematics. Reliabilities for scores using the greatest number of test items, the IRT ability estimates that are based on all items taken by each child, were highest. Reliabilities for scores based on the fewest items, the routing test number-right, were lowest. Reliability statistics appropriate for each type of score were computed for each subject area for each round of data collection.

For the IRT-based scores, the reliability of the overall ability estimate, theta, is based on the variance of repeated estimates of theta compared with total sample variance. These reliabilities, ranging from .84 to .92 for the three subjects in eighth grade, apply to all of the scores derived from the theta estimate, namely, the IRT scale scores, T-scores, and proficiency probabilities. Alpha coefficients for the routing test number correct ranged from .70 to .76 for the eighth-grade assessment forms. These coefficients are relatively low because the routing tests consisted of only 10 items each. Alpha coefficients for the second-stage forms in each subject ranged from .68 to .82 . The restriction of range of ability of children taking each second-stage form would tend to depress the alpha coefficients (relative to the routing test), while the greater number of items in the second stage would have the opposite effect. The alpha coefficients for individual sections of the tests are reported here although the test scores that are most useful and informative are those based on the children's complete sets of test responses.

It was not possible to apply standard measures of reliability to the "highest proficiency mastered" score, for the following reasons. The score is not a set of items replicating the same or similar tasks, so an internal consistency measure such as split-half reliability or alpha coefficient cannot be computed. Nor can the reliability be evaluated based on the variance of repeated estimates of overall ability that was appropriate for the IRT-based scores.

The definition of reliability-consistency of measurement under different circumstancessuggested an appropriate way to assess the reliability of the "highest proficiency level mastered" score. The score denoting the highest level mastered reduces the series of pass/fail scores on the hierarchical set
of proficiency levels to a single score. For example, a child demonstrating mastery of the first five reading levels but not the remaining four would be said to have a "highest proficiency mastered" score of five. The question to be answered by a reliability estimate is how likely it would be that the same highest level score would be obtained under other circumstances. In this case, the other circumstances available are not a parallel set of items, but two different methods of arriving at the score. A child's highest level mastered could be determined on the basis of actual item response data alone for only about 19 percent of the reading and 47 percent of the mathematics eighth-grade scores, because the clusters of items marking some of the proficiency levels appeared only in some of the test forms. Alternatively, IRT ability estimates and item parameters could be used to generate pass/fail scores, and the composite highest level scores, for these same children. The percent of cases for which these two different methodologies result in identical or adjacent "highest level mastered" scores can be considered to be a reliability estimate. The high level of exact-plus-adjacent agreement (albeit slightly lower in eighth grade) between the methods indicates that the IRT approach supports the use of the highest level score sufficiently well for use in aggregate statistics.

Tables 3-10 through 3-12 present the reliability statistics for all of the assessment scores in eighth grade.

Table 3-10. Reliability of Item Response Theory-based scores: IRT scale scores, T-scores, proficiency probabilities, by round of data collection and domain: School years 1998-1999, 1999-2000, 2001-02, 2003-04, and 2006-07

	Fall-	Spring- kindergarten	Fall- first grade	Spring- first grade	Spring- third grade	Spring- fifth grade	Spring- eighth grade
Domain	.92	.95	.96	.96	.94	.93	.87
Reading	.91	.93	.94	.94	.95	.95	.92
Mathematics	\dagger	\dagger	\dagger	\dagger	.87	.87	.84
Science							

\dagger Not applicable.
NOTE: Approximately 89 percent of the children interviewed were in eighth grade during the 2006-07 school year, 9 percent were in seventh grade, and 2 percent were in sixth or other grades. Table estimates may differ from those reported in earlier user's manuals, the $E C L S$ - K Psychometric Report for Kindergarten Through First Grade (NCES 2002-05) (Rock and Pollack 2002b), the ECLS-K Psychometric Report for the Third Grade (NCES 2005-062) (Pollack, Rock et al. 2005), and the ECLS-K Psychometric Report for the Fifth Grade (NCES 2006--036rev) (Pollack, Atkins-Burnett et al. 2005) because of re-estimation of scores on a longitudinal scale that includes eighth grade, and because of sample attrition.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

Table 3-11. Reliability of routing test number correct (alpha coefficient), by round of data collection and domain: School years 1998-1999, 1999-2000, 2001-02, 2003-04, and 2006-07

Domain	Fall- kindergarten	Springkindergarten	$\begin{array}{r} \text { Fall- } \\ \text { first } \\ \text { grade } \end{array}$	Springfirst grade	Springthird grade	Springfifth grade	Springeighth grade
Reading	. 86	. 88	. 88	. 86	. 75	. 88	. 73
Mathematics	. 78	. 81	. 83	. 80	. 86	. 88	. 76
Science	\dagger	\dagger	\dagger	\dagger	. 75	. 79	. 70

\dagger Not applicable.
NOTE: Approximately 89 percent of the children interviewed were in eighth grade during the 2006-07 school year, 9 percent were in seventh grade, and 2 percent were in sixth or other grades. Table estimates may differ from those reported in earlier user's manuals, the $E C L S-K$ Psychometric Report for Kindergarten Through First Grade (NCES 2002-05) (Rock and Pollack 2002b), the ECLS-K Psychometric Report for the Third Grade (NCES 2005-062) (Pollack, Rock et al. 2005), and the ECLS-K Psychometric Report for the Fifth Grade (NCES 2006-036rev) (Pollack, Atkins-Burnett et al. 2005) because of re-estimation of scores on a longitudinal scale that includes eighth grade, and because of sample attrition.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

Table 3-12. Percent agreement of highest proficiency level mastered score, by round of data collection: School years 1998-1999, 1999-2000, 2001-02, 2003-04, and 2006-07

	Fall-	Spring- kindergarten	Fall- first krade	Spring- first grade	Spring- third grade	Spring- fifth grade	Spring- eighth grade
Domain							
Reading	63	54	55	55	50	51	44
Exact Agreement	96	94	94	95	95	95	89
Exact + Off by 1							
Mathematics	54	51	52	57	56	55	61
Exact Agreement	97	95	96	97	97	97	98
Exact + Off by 1							

NOTE: Approximately 89 percent of the children interviewed were in eighth grade during the 2006-07 school year, 9 percent were in seventh grade, and 2 percent were in sixth or other grades. Table estimates may differ from those reported in earlier user's manuals, the ECLS-K Psychometric Report for Kindergarten Through First Grade (NCES 2002-05) (Rock and Pollack 2002b), the ECLS-K Psychometric Report for the Third Grade (NCES 2005-062) (Pollack, Rock et al. 2005), and the ECLS-K Psychometric Report for the Fifth Grade (NCES 2006--036rev) (Pollack, Atkins-Burnett et al. 2005) because of re-estimation of scores on a longitudinal scale that includes eighth grade, and because of sample attrition.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

3.1.7 Validity

Evidence for the validity of the direct cognitive assessments was derived from several sources. A review of national and state performance standards, comparison with state and commercial assessments, and the judgments of curriculum experts all provided input to test specifications.

The ECLS-K test specifications were derived from a variety of sources. For the thirdthrough eighth-grade assessments, national and state performance standards in each of the domains were examined. The scope and sequence of materials from state assessments, as well as from major publishers, were also considered. The resulting ECLS-K fourth- and eighth-grade frameworks are similar to the NAEP fourth- and eighth-grade frameworks, with some differences due to ECLS-K formatting and administration constraints. The NAEP fourth-grade frameworks were modified for third and fifth grades (and for the earlier K-1 forms), while the eighth-grade frameworks were used as defined in NAEP. An expert panel of secondary school educators, including curriculum specialists in the subject areas, examined the pool of items. The assessment specifications indicated target percentages for content strands within each of the subject areas. These percentages were matched as closely as possible in developing the field-test assessment item pool as well as in selecting items for the eighth-grade assessment forms. Some compromises in matching target percentages were necessary to satisfy constraints related to other issues, including linking to K-1, third-grade, and fifth-grade scales, avoiding floor and ceiling effects, and fieldtest item performance. This was especially true for the reading assessment, whose structure, (i.e., several questions based on each reading passage, placed an additional constraint on the selection of items to match content strands.)

3.2 Indirect Cognitive Assessment

English, mathematics, and science teachers were asked to rate each sampled child on his or her skills in areas relevant to the subject taught. English teachers were asked about children's skills in written and oral expression. Mathematics teachers were asked about children's skills in mathematics, such as problem solving and demonstrating mathematical reasoning. Science teachers were asked about children's skills in science, such as designing an experiment to solve a scientific question and writing a report and preparing a presentation of scientific data. In earlier grades, teachers also rated children's achievement in a fourth domain: social studies. Teachers rated each child's skills, knowledge, and behaviors as "Outstanding (5)," "Very Good (4)," "Good (3)," "Fair (2)," or "Poor (1)." If a skill, knowledge, or behavior had not been introduced into the classroom yet, or if the teacher otherwise did not have the opportunity to observe the skill, the teacher was able to code that item as "Not Applicable/Not Observed." In eighth grade, many schools are departmentalized so different teachers may be rating the child on science and mathematical thinking. All children were rated on their English skills by their English teacher. Half of the children were rated on their mathematics skills by their mathematics teacher,
and half were rated on their science skills by their science teacher. The differences between the direct and indirect cognitive assessments, and the scores available, are described here.

3.2.1 Comparison to Direct Cognitive Assessment

The teacher ratings overlap and augment the information gathered through the direct cognitive assessment battery. Although the direct and indirect instruments measure children's skills and behaviors within the same broad curricular domains with some intended overlap, several of the constructs they were designed to measure differ in significant ways. Most important, the teacher rating scales include items designed to measure both the process and products of children's learning in school, whereas the direct cognitive battery is more limited. Because of time and space limitations, the direct cognitive battery is less able to measure the process of children's thinking, including how they express their ideas, solve mathematical problems, or investigate scientific phenomena. The language and literacy teacher ratings collect information on children's oral expression and written composition, areas not assessed on the direct measure.

These criterion-referenced indirect measures are targeted to the specific grade level of the child and draw upon the daily observations made by teachers of the children in their class.

3.2.2 Scores Available for the Teacher Ratings

IRT analysis using a generalized partial credit model (Muraki 1992) was used to create measures of the reported performance of children on a hierarchy of skills, knowledge, and behavior. The generalized partial credit model, as implemented in the SSI Parscale computer program, uses the pattern of ratings on items to obtain an estimate of the difficulty of each item and to place each child on an interval scale set with a minimum score of one and a maximum score of five. The analysis showed that the reliability of the estimates of the child's ability was very high for all domains (see table 3-13).

Table 3-13. Teacher rating scale reliability statistics for the IRT-based score, by category: School year 2006-07

Category	Grade 8
Written Expression skill ratings	.96
Oral Expression skill ratings	.93
Mathematics skill ratings	.95
Science skill ratings	.95

NOTE: Approximately 89 percent of the children interviewed were in eighth grade during the 2006-07 school year, 9 percent were in seventh grade, and 2 percent were in sixth or other grades. See chapter 7, section 7.5 for variable naming conventions.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

As mentioned earlier, the teacher rating scores are scaled to have a low value of one and a high value of five to correspond to the 5-point rating scale that teachers used in rating children on these items. The item difficulties and child scores are placed on a common scale. Children had a high probability of receiving a high rating on items whose difficulty was below their scale score, and a lower probability of receiving a high rating on items above their scale score. Therefore, the scores received on the subscales should not be interpreted as mean scores, but as the child's relative probability of success with the items. Bayesian estimation techniques allow children who received maximum ratings on all the items or minimum ratings on all the items to receive a rating score.

The variable names, descriptions, value ranges, weighted means, and standard deviations for the eighth-grade (T7) teacher rating scores are shown in table 3-14. The description for each variable in the tables begins with a " T ," indicating that it is a teacher questionnaire child-level variable. The items and the metric for the eighth-grade teacher ratings are different from the Academic Rating Scale (ARS) ratings in earlier rounds of data collection, so the scores are not directly comparable to those for kindergarten, first, third, or fifth grades. The children's scores are calculated in relation to the item difficulty. With different items used across the grades and separate calibrations performed, the scale metric differs from one grade to another.

Table 3-14. Teacher rating scale range, mean, and standard deviation (weighted): School year 2006-07

Variable name	Description	Weighted mean	Standard deviation
T7ARSMAT	T7 Mathematics skills score	2.48	1.17
T7ARSSCI	T7 Science skills score	2.38	1.28
T7ARSORL	T7 English oral expression score	2.73	1.20
T7ARSWRT	T7 English writing skills score	2.40	1.30

NOTE: Table estimates based on C7CW0 weight. See chapter 7, section 7.5 for variable naming conventions.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

Tables 3-15 to 3-18 report item difficulty estimates for the eighth-grade teacher questionnaire rating scales. Higher values imply that teachers rated fewer children as proficient on those items. Children would have a greater than 50 percent probability of receiving ratings of " 5 " on items below their ability level.

Table 3-15. Spring-eighth grade Oral Expression Skills item difficulties (arranged in order of difficulty): School year 2006-07

Item difficulty	Item number and abbreviated content
2.19	Q12a. Uses Spoken English Grammar
2.61	Q12c. Expresses Creative Thinking
2.72	Q12b. Expresses Analytical or Critical Thinking

Table 3-16. Spring-eighth grade Written Expression Skills item difficulties (arranged in order of difficulty): School year 2006-07

Item difficulty	Item number and abbreviated content
2.40	Q11a. Organizes Ideas Logically and Coherently
2.46	Q11c. Gathers Information for Research Purposes
2.46	Q11b. Employs English Grammar and Usage
2.53	Q11d. Writes Various Types of Composition
2.85	Q11e. Uses Style and Rhetoric
SOURCE: U.S. Department of	
1998-99 (ECLS-K), spring 2007.	

Table 3-17. Spring-eighth grade Mathematic Skills item difficulties (arranged in order of difficulty): School year 2006-07

Item difficulty	Item number and abbreviated content
1.48	Q11f. Uses Calculator to Solve Problems
2.23	Q11g. Uses Computer to Complete Mathematics Assignments
2.68	Q11a. Applies Mathematical Concepts to Real World
2.68	Q11c. Talks about Reasoning in Solving a Problem
2.74	Q11e. Uses Representations to Model Mathematical Ideas
2.82	Q11d. Explains Reasoning in Solving a Problem in Writing
2.85	Q11b. Conducts Proofs or Demonstrates Mathematical Reasoning
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of	

Table 3-18. Spring-eighth grade Science Skills item difficulties (arranged in order of difficulty): School year 2006-07

Item difficulty	Item number and abbreviated content
2.33	Q11a. Organizes Data in Tables and Charts
2.50	Q11f. Applies Science Concepts to Solve Real World Problems
2.52	Q11c. Talks about Investigations to Solve Problems
2.57	Q11b. Writes Up Results or Presentation for Research Project
2.64	Q11d. Makes Presentation to Class about Science Analysis
2.79	Q11e. Designs Experiment to Solve Scientific Question

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

The teacher ratings scale was designed to provide information on children's abilities at a given point in time, not necessarily over time. Moreover, these teacher rating scales are placed on a different metric than the ARS scores in previous rounds. Therefore, change scores cannot be calculated between time points.

The teacher ratings do not represent a systematic national sample of teachers. Each set of teacher ratings is linked to a sampled child, and teachers were asked to rate as many ECLS-K sample children as they had in class.

3.3 Self-Description Questionnaire

Beginning in the third-grade data collection in the ECLS-K, children were asked to provide self-assessments of their academic and social skills. For the eighth-grade data collection, children rated
their perceived competence and interest in English and mathematics. Children also reported on problem behaviors with which they might struggle. The Internalizing Problems scale included items on sadness, loneliness, and anxiety. Items for the English and mathematics scales were drawn from the Self Description Questionnaire (SDQ) II, ${ }^{18}$ which was designed for children in middle and high school. Items for the eighth-grade Internalizing Problems scale were drawn from the fifth-grade Internalizing Problems scale as recommended by the Content Review Panel because these items better reflected the constructs that the study intended to measure and also allowed for comparison with previous rounds of data collection. For further description of the ECLS-K self-description questionnaire (SDQ) see chapter 2, section 2.1.2.

Children rated whether each item was "not at all true," "a little bit true," "mostly true," or "very true." Three scales were produced from the eighth-grade SDQ items. The scale scores on all eighthgrade SDQ scales represent the mean rating of the items included in the scale. Children who responded to the eighth-grade SDQ answered virtually all of the questions, so treatment of missing data was not an issue. As with most measures of social-emotional behaviors, the distributions on these scales are skewed (negatively skewed for the positive social behavior scales and positively skewed for the problem behavior scales).

Table 3-19 presents the internal consistency reliability estimates of the eighth-grade SDQ scales, as measured by Cronbach's coefficient alpha. The Cronbach's coefficient alpha for the Perceived Interest and Competence in Math is similar to that found by the scale's authors (alpha $=.89$; Ellis, Marsh, and Richards 2002). However, the coefficient for the eighth-grade Perceived Interest and Competence in English scale is lower than that found by the scale's authors (alpha $=.88$; Ellis, Marsh, and Richards). The coefficient alpha for the eighth-grade Internalizing Problem Behaviors scale is consistent with the findings from the ECLS-K fifth-grade data $($ alpha $=.79)($ Pollack, Atkins-Burnett et al. 2005).

[^12]Table 3-19. Self-description questionnaire scale reliabilities (alpha coefficient): School year 2006-07

Variable	Description	Number of items	Alpha coefficient
C7SDQRDC	C7 SDQ Prcvd Interest ${ }^{1} /$ Competence - Reading	4	.76
C7SDQMTC	C7 SDQ Prcvd Interest/Competence - Math	4	.89
C7SDQINT	C7 SDQ Internalizing Problems	8	.75

${ }^{1}$ "Prcvd Interest" $=$ Perceived Interest.
NOTE: See chapter 7, section 7.5 for variable naming conventions.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

Table 3-20 presents the variable names, scale ranges, means, and standard deviations (weighted) for the self-description questionnaire.

Table 3-20. Self-description questionnaire scale range, mean, and standard deviation (weighted): School year 2006-07

	Description	Range of values	Weighted mean	Standard deviation
C7SDQRDC	C7 SDQ Prcvd Interest ${ }^{1}$ /Competence - Reading	$1-4$	2.52	.78
C7SDQMTC	C7 SDQ Prcvd Interest/Competence - Math	$1-4$	2.62	.91
C7SDQINT	C7 SDQ Internalizing Problems	$1-4$	2.03	.57

1 "Prcvd Interest" = Perceived Interest.
NOTE: Table estimates based on C7CW0 weight. See chapter 72 section 7.5 for variable naming conventions.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

3.4 Self-Concept and Locus of Control Scale Scores

The Self-Concept and Locus of Control scales were adopted from the National Education Longitudinal Study of 1988 (NELS:88). These scales ask children about their self-perceptions and the amount of control they have over their own lives. Items were drawn from the NELS:88 student questionnaire and asked children to indicate the degree to which they agreed with 13 statements about themselves. Statements reflected perceptions children might have about themselves and about how much control they felt they had over their own lives. Children rated whether they "strongly agree," "agree," "disagree," or "strongly disagree" with each item.

In order to be as comparable as possible to NELS:88, scale scores were calculated with the same procedures as NELS:88. Some items were positively worded, and some were negatively worded. As
a result, scoring for some items was reversed to provide an appropriate score. For the Self-Concept scale, three of the seven items in the scale were reverse scored before performing computations, so that higher scores indicate more positive self- concept:

- I certainly feel useless at times.
- At times I think I am no good at all.
- I feel I do not have much to be proud of.

The seven items in the scale were then standardized separately to a mean of zero and a standard deviation of 1 . The scale score is an average of the seven standardized scores.

For the Locus of Control scale, five items were reverse scored so that higher scores indicate greater perception of control over one's own life:

- I don't have enough control over the direction my life is taking.
- In my life, good luck is more important than hard work for success.
- Every time I try to get ahead, something or somebody stops me.
- My plans hardly ever work out, so planning only makes me unhappy.
- Chance and luck are very important for what happens in my life.

The six items in the scale were then standardized separately to a mean of zero and a standard deviation of 1. The scale score is an average of the six standardized scores.

Children who responded to the Self-Concept and Locus of Control items answered virtually all of the questions, so treatment of missing data was not an issue.

Table 3-21 presents the internal consistency reliability estimates of the Self-Concept and Locus of Control scales, as measured by Cronbach's coefficient alpha. The coefficient alpha for both scales is consistent with the findings from the NELS: 88 data (alpha Self-Concept $=.79$, alpha $_{\text {Locus of Control }}=.68$) (Ingels et al. 1990).

Table 3-21. Self-Concept and the Locus of Control scale reliabilities (alpha coefficient): School year 2006-07

Variable	Description	Number of items	Alpha coefficient
C7CONCPT	C7 Self concept	7	.81
C7LOCUS	C7 Locus of control	8	.75

NOTE: See chapter 7, section 7.5 for variable naming conventions.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

The variable names, descriptions, value ranges, weighted means, and standard deviations of the Self-Concept and Locus of Control scales are shown in table 3-22.

Table 3-22. Self-Concept and the Locus of Control scale range, mean, and standard deviation (weighted): School year 2006-07

Variable	Description	Range of values	Weighted mean	Standard deviation
C7CONCPT	C7 Self concept	$-1.12-+3.06$	0.00	. 70
C7LOCUS	C7 Locus of control	$-1.53-+2.50$	0.02	64
NOTE: Items were standardized to a mean of 0 and a standard deviation of 1 . Table estimates based on C7CW0 weight. See chapter 7 , section 7.5 for variable naming conventions. SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.				

4. SAMPLE DESIGN AND IMPLEMENTATION

This chapter describes the sample design of the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), and how it was modified and implemented for each round of data collection. An overview of the sample design is given here and described in more detail in the following sections, followed by a discussion of the types of weights needed for analyses and how they were computed.

The ECLS-K employed a multistage probability sample design to select a nationally representative sample of children attending kindergarten in 1998-99. In the base year the primary sampling units (PSUs) were geographic areas consisting of counties or groups of counties. The secondstage units were schools within sampled PSUs. The third- and final-stage units were children within schools.

The first-grade data collection targeted base-year respondents, where a case was considered responding if there was a completed child assessment or parent interview in fall- or spring-kindergarten. While all base-year respondents were eligible for the spring-first grade data collection, fall-first grade was limited to a 30 percent subsample. The spring child sample was freshened to include current first-graders who had not been enrolled in kindergarten in 1998-99 and, therefore, had no chance of being included in the ECLS-K base-year kindergarten sample. For both fall- and spring-first grade, only a subsample of children who had transferred from their kindergarten schools was followed.

The third-grade data collection targeted base-year respondents and children sampled in first grade through the freshening operation in which the spring-first grade sample was freshened to include first-graders who had not been enrolled in kindergarten in 1998-99 and therefore had no chance of being included in the ECLS-K base-year kindergarten sample. As in the first-grade data collection in which only a subsample of children who had transferred from their kindergarten schools was followed, a subsampling of movers was also used in third grade. In third grade, however, the subsampling rate applied to transferred children was slightly higher; children whose home language was non-English (also known as children belonging to the language minority group) who moved for the first time between kindergarten or first grade and third grade were followed at 100 percent. In other words, children belonging to the language minority group who did not move in first grade but moved in third grade were all followed into their new third-grade schools. The higher subsampling rate allows for the preservation of this group in the
sample for analytic reasons. Children not in the language minority group continued to be subsampled for follow-up if they moved in third grade.

The fifth-grade data collection set differential sampling rates for movers in different categories. It also excluded four special groups of children, irrespective of other subsampling procedures that were implemented. The excluded children were those who became ineligible in an earlier round because they died or moved out of the country; who were subsampled out in previous rounds because they were movers; whose parents emphatically refused to cooperate (hard refusals); and who were eligible for the third-grade data collection but had neither first-grade nor third-grade data. Of the remaining children, those who moved from their original schools during fifth grade or earlier were subsampled for follow-up. Children whose home language was not English (language minority) continued to be a special domain of analytic interest and were subsampled at higher rates. Children were subsampled at different rates depending on the longitudinal data available for those children.

The eighth-grade sample included all children eligible after fifth grade regardless of their fifth-grade response status. The ineligible children were those who moved out of the country, were deceased, or moved to another school and were not subsampled for follow-up in fifth grade. There was no subsampling of movers for follow-up as in previous rounds since the vast majority of children were not in the same school from kindergarten to eighth grade (having moved out of elementary schools into middle schools), and subsampling these movers would result in substantial losses in sample size and precision of the estimates for eighth grade.

4.1 Base-Year Sample

In the base year, children were selected for the ECLS-K using a multistage probability design. The PSUs were counties or groups of counties selected with probability proportional to size (PPS). The basic PSU measure of size was the number of 5 -year-olds, but this was modified to facilitate the oversampling of Asian and Pacific Islanders (APIs) required to meet precision goals. In all, there were 100 PSUs selected for the ECLS-K. The 24 PSUs with the largest measure of size were designated selfrepresenting (SR) and were included in the sample with certainty. The remaining non-SR PSUs were partitioned into 38 strata of roughly equal size. An initial cross-classification of census region with Metropolitan Statistical Area (MSA) status created eight superstrata. These were further subdivided by percent minority, PSU measure of size (a composite count of 5-year-old children), and 1988 per capita
income. From each non-SR stratum, two PSUs were selected with PPS without replacement using Durbin's Method (Durbin 1967).

Table 4-1 summarizes the characteristics of the ECLS-K PSU sample.
Table 4-1. Distribution of the ECLS-K primary sampling unit (PSU) sample by self-representing (SR) status, Metropolitan Statistical Area (MSA) status, and census region: School year 1998-99

		Census region				
SR status	MSA status	Total	Northeast	Midwest	South	West
Total		100	18	25	34	23
SR	MSA	24	6	5	6	7
Non-SR	MSA	52	10	12	18	12
Non-SR	Non-MSA	24	2	8	10	4

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 1998 and spring 1999.

In the second stage, public and private schools offering kindergarten programs were selected. For each PSU, a frame of public and private schools offering kindergarten programs, was constructed using existing school universe files: the NCES Common Core of Data (CCD), "Public Elementary/Secondary School Universe Survey," 1995-96, and the NCES Private School Universe Survey (PSS), 1995-96. The 1995-96 Office of Indian Education Programs Education Directory was consulted in order to complete the list of Bureau of Indian Affairs (BIA) schools in the CCD file. For Department of Defense (DOD) domestic schools, a 1996 list of schools was obtained directly from the DOD. These schools constitute the original frame. A procedure was implemented to create a freshened frame by identifying kindergarten programs that would be operational at the time of ECLS-K base-year data collection but that were not included in the original frame. These were newly opened schools that were not listed in the CCD and the PSS, as well as schools that were in the CCD and the PSS but did not appear to offer kindergarten programs according to those sources. The selection of schools was systematic, with probability proportional to a weighted measure of size based on the number of kindergartners enrolled. As with the PSU sample, the measure of size was constructed taking into account the desired oversampling of APIs. Public and private schools constituted distinct sampling strata. Within each stratum, schools were sorted to ensure good sample representation across other characteristics. In total, 1,280 schools were sampled from the original frame and 133 from the freshened frame. Of these, 953 were public schools and 460 were private schools.

The characteristics of the ECLS-K school sample are presented in table 4-2. During recruitment, 136 schools were discovered to be ineligible because they did not have any kindergarten programs in the school. They are not included in table 4-2.

Table 4-2 Number of schools in the ECLS-K base-year school sample, by selected school characteristics: School year 1998-99

Characteristic	Total	Sector	
		Public	Private
Total	1,277	914	363
Region			
Northeast	243	161	82
Midwest	298	210	88
South	418	306	112
West	318	237	81
Type of locale			
Large city	245	168	77
Midsize city	248	172	76
Urban fringe of large city	382	265	117
Urban fringe of midsize city	99	78	21
Large town	33	24	9
Small town	112	76	36
Rural	158	131	27
School affiliation			
Public	914	914	\dagger
Catholic	120	\dagger	120
Non-Catholic, religious	149	\dagger	149
Nonreligious, private	94	\dagger	94
School type			
Regular ${ }^{1}$	1,162	893	269
Ungraded	4	1	3
No grade beyond kindergarten	49	19	30
Unknown	62	1	61
\dagger Not applicable. ${ }^{1}$ School offers kindergarten and at least another grade between first grade and twelfth grade. SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 1998 and spring 1999.			

The third-stage sampling units were children of kindergarten age, selected within each sampled school. The goal of the child sample design was to obtain an approximately self-weighting sample of children and, at the same time, to achieve a minimum required sample size for APIs who were
the only subgroup that needed to be oversampled to meet the study's precision goals. For each sampled school, the field staff obtained a complete list of kindergartners enrolled. Two independent sampling strata were formed within each school, one containing API children and the second, all other children. Within each stratum, children were selected using equal probability systematic sampling, using a higher rate for the API stratum. ${ }^{19}$ In general, the target number of children sampled at any one school was 24 . Once the sampled children were identified, parent contact information was obtained from the school. The information was used to locate a parent or guardian and gain parental consent for the child assessment and for the parent interview. Table 4-3 presents characteristics of children sampled and eligible for the base year.

During the fall-kindergarten data collection, a census of kindergarten teachers was taken at each school. Each sampled child was linked to his or her kindergarten teacher. In spring-kindergarten, teacher-child linkages were reviewed and updated. If new kindergarten teachers had joined the school, they were added to the census of kindergarten teachers. Special education teachers who taught one or more sampled children were included in the spring-kindergarten data collection. If a sampled child received special education services from such a teacher, the teacher was linked to that child.

While the sample of schools was the same for fall- and spring-kindergarten, the child sample was larger in spring than in fall. In spring-kindergarten, 1,426 additional children were sampled from the schools that refused to participate in fall but were converted into respondents in spring.

For a detailed description of the base-year sample, see the ECLS-K Base Year Public-Use Data Files and Electronic Codebook: User's Manual (NCES 2001-029rev) (Tourangeau, Burke et al. 2004).

[^13]Table 4-3. Number (unweighted) of children in the ECLS-K base-year sample, by selected characteristics: School year 1998-99

		Sector	
	Total	Public	Private
Total	22,666	17,777	4,889
Region	4,262	3,045	1,217
Northeast	5,628	4,292	1,336
Midwest	7,461	6,179	1,282
South	5,315	4,261	1,054
West			
Type of locale	4,550	3,365	1,185
Large city	4,728	3,569	1,159
Midsize city	6,470	4,945	1,525
Urban fringe of large city	1,644	1,434	210
Urban fringe of midsize city	714	577	137
Large town	1,905	1,485	420
Small town	2,655	2,402	253
Rural			
	17,777	17,777	
School affiliation	2,510	\dagger	2,510
Public	1,445	\dagger	1,445
Catholic	934	\dagger	934
Non-Catholic, religious			
Nonreligious, private			
School type	21,436	17,390	4,046
Regular	24	32	
Ungraded	56	338	325
No grade beyond kindergarten	663	25	486
Unknown	511		
Child race/ethnicity	1,723	8,533	3,190
White	3,204	2,800	404
Black	1,749	1,455	294
Hispanic, with race	1,983	1,741	242
Hispanic, without race	220	1,102	253
Asian	199	21	
Pacific Islander	311	416	43
Native American	1,544	1,197	95
More than one race			347
Unknown			

See notes at end of table.

Table 4-3. Number (unweighted) of children in the ECLS-K base-year sample, by selected characteristics: School year 1998-99-Continued

		Sector	
Characteristic	Total	Public	Private
Highest parent level of education			
\quad Less than high school	2,027	1,968	59
High school graduate	5,251	4,703	548
Vocational/technical	1,139	964	175
Some college	5,351	4,182	1,169
College graduate	4,004	2,568	1,436
Master's	1,429	850	579
Ph.D./professional	890	456	434
Unknown	2,575	2,086	489

\dagger Not applicable.
${ }^{1}$ School offers kindergarten and at least another grade between first grade and twelfth grade.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal
Study, Kindergarten Class of 1998-99 (ECLS-K), fall 1998 and spring 1999.

4.2 Fall-First Grade Subsample

A subsample of ECLS-K base-year PSUs was selected for fall-first grade data collection. All 24 of the SR PSUs were retained. Of the 76 non-self-representing (NSR) PSUs, 38 were retained by sampling one PSU per stratum with equal probability.

Base-year schools in the 62 fall-first grade sampled PSUs were stratified by frame source (original public, original private, freshened public, and freshened private as described in section 4.1) and arranged in their original selection order. A 30 percent equal probability subsample of schools was drawn in the 24 SR PSUs, and a 60 percent subsample of schools was drawn in the 38 NSR PSUs. In total, 311 schools that had cooperated in either fall- or spring-kindergarten were selected. The characteristics of the base-year cooperating schools selected for fall-first grade data collection are presented in table 4-4.

Table 4-4. Number of base-year cooperating schools selected for fall-first grade, by selected school characteristics: School year 1999-2000

		Sector	
Characteristic	Total	Public	Private
Total	311	228	83
Region	57	39	18
Northeast	83	59	24
Midwest	99	77	22
South	72	53	19
West			
Type of locale	62	42	20
Large city	59	45	14
Midsize city	86	61	25
Urban fringe of large city	18	14	4
Urban fringe of midsize city	15	12	3
Large town	28	19	9
Small town	43	35	8
Rural			
School affiliation	228	228	\dagger
Public	29	\dagger	29
Catholic	33	\dagger	33
Non-Catholic, religious	21	\dagger	21
Nonreligious, private			
School type	292	222	70
Regular ${ }^{1}$	1	1	0
Ungraded	18	5	13
No grade beyond kindergarten			

\dagger Not applicable.
${ }^{1}$ School offers kindergarten and at least another grade between first grade and twelfth grade.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 1999 and spring 2000.

The fall-first grade data collection consisted of the direct child assessment and the parent interview. Data collection was attempted for every eligible child found still attending the school in which he or she had been sampled during kindergarten and a subset of eligible children who had transferred from the school in which they were originally sampled. "Eligible" is defined as a base-year respondent (i.e., a child who had either a fall- or spring-kindergarten child assessment or parent interview or was excluded from assessment because of a disability or because the child belonged in the language minority, not Spanish group). To contain the costs of data collection, a random 50 percent of children were flagged to be followed for fall-first grade data collection in the event that they had transferred.

Except for children who were repeating kindergarten, all base-year children sampled in schools with a high grade of kindergarten are de facto movers. Since many of these movers may move en masse to the same first-grade school, steps were taken to follow these children at a higher rate. Using the information collected during spring-kindergarten, a list of destination schools was compiled for each such school. The destination school having the most movers was designated as primary, unless no such school had more than three movers. Children who moved en masse into a primary destination school in fall-first grade were treated as "nonmovers" and were not subsampled (that is, they continued to be followed and were part of the ECLS-K sample). In this way, movers are defined differently in this chapter (statistical movers) than in chapter 5 (operation movers).

As discussed above, a random 50 percent of children were subsampled to be followed if they moved out of the kindergarten school. Prior to sampling, children were stratified into groups of nonmovers, movers with information identifying their new schools, and movers without such identifying information. Sampling was done with equal probability within subsampling strata using the same sampling rate of 0.5 in each substratum. A flag was created for each child indicating whether the child had been sampled to be followed.

Table 4-5 shows the characteristics of the children subsampled and eligible for fall-first grade. Region, locale, school affiliation, and school type describe the school the child attended in kindergarten.

Table 4-5. Number (unweighted) of children subsampled and eligible for fall-first grade, by selected characteristics: School year 1999-2000

Characteristic	Sector		
	Total	Public	Private
Total	5,650	4,446	1,204
Region			
Northeast	1,000	759	241
Midwest	1,416	1,068	348
South	1,873	1,557	316
West	1,361	1,062	299
Type of locale			
Large city			
Midsize city	1,154	816	338
Urban fringe of large city	1,109	874	235
Urban fringe of midsize city	1,558	1,205	353 44
Large town	306	246	60
Small town	518	390	128
Rural	685	639	46
School affiliation			
Public			+
Catholic	-535	+4,	535
Non-Catholic, religious	254	+	254
Nonreligious, private	415	\dagger	415
School type			
Regular ${ }^{1}$	5,374	4,338	1,036
Ungraded	, 24	, 24	1,036
No grade beyond kindergarten	138	84	54
Unknown	114	0	114
Child's race/ethnicity			
White			
Black	3,131	2,288	843
Hispanic, with race	849	718	131
Hispanic, without race	419	345	74
Asian	522	475	47
Pacific Islander	305	243	62
Native American	137	132	$\stackrel{2}{5}$
More than one race	163	127	36
Unknown	25	21	4

[^14]Table 4-5. Number (unweighted) of children subsampled and eligible for fallfirst grade, by selected characteristics: School year 1999-2000Continued

Characteristic	Total	Sector	
Highest parent level of education			Private
\quad Less than high school	530	521	9
High school graduate	1,252	1,124	128
Vocational/technical	335	285	50
Some college	1,419	1,119	300
College graduate	1,038	680	358
Master's	398	241	157
Ph.D./professional	255	125	130
Unknown	423	351	72

\dagger Not applicable.
${ }^{1}$ School offers kindergarten and at least another grade between first grade and twelfth grade.
NOTE: School characteristics (i.e., region, locale, school affiliation, and school type) describe the school the child attended in kindergarten.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 1999 and spring 2000.

4.3 Spring-First Grade Sample

The ECLS-K spring-first grade data collection targeted all base-year respondents (i.e., respondent in fall- or spring-kindergarten). In addition, the spring child sample was freshened to include current first-graders who had not been enrolled in kindergarten in 1998-99 and, therefore, had no chance of being included in the ECLS-K base-year kindergarten sample. While all children still enrolled in their base-year schools were recontacted, only a 50 percent subsample of base-year sampled children who had transferred from their kindergarten school was followed for data collection.

4.3.1 Subsampling Movers

As noted earlier, in spring-first grade all children in a random 50 percent subsample of baseyear schools were flagged to be followed for data collection if they transferred from their base-year school. (This is in contrast to fall-first grade, where a random 50 percent of children in each of the 30 percent of schools subsampled were flagged). In order to maximize the amount of longitudinal data, care was taken during spring-first grade sampling to ensure that any child who had been flagged to be followed in fall-first grade would continue to be so.

In selecting the spring-first grade 50 percent subsample of schools where movers would be flagged for follow-up, the three primary strata were SR PSUs, NSR PSUs that had been selected for fallfirst grade, and NSR PSUs that had not been selected for fall-first grade. Within these major strata, schools were grouped by frame source (original public, original private, freshened public, and freshened private as described in section 4.1). Finally, within each frame source, schools were stratified by whether the school participated in the base-year study and were then arranged in original selection order. Schools that had been part of the 30 percent fall-first grade sample were automatically retained. Then equal probability sampling methods were employed to augment the sample to the desired 50 percent. The net result of these procedures was that every base-year selected school had on average a 50 percent chance of having its ECLS-K transfer children followed during spring-first grade, and any transfer child who had been followed in fall-first grade would still be followed in spring-first grade.

Table 4-6 shows the characteristics of the eligible children in the spring-first grade sample, excluding freshened children. Region, locale, school affiliation, and school type describe the school in which the child attended kindergarten.

Table 4-6. Number (unweighted) of eligible children in spring-first grade sample excluding freshened children, by selected characteristics: School year 1999-2000

Characteristic	Total	Sector	
		Public	Private
Total	18,084	14,248	3,836
Region			
Northeast	3,339	2,434	905
Midwest	4,578	3,474	1,104
South	6,050	5,029	1,021
West	4,117	3,311	806
Type of locale			
Large city	3,459	2,575	884
Midsize city	3,761	2,797	964
Urban fringe of large city	5,140	3,991	1,149
Urban fringe of midsize city	1,288	1,126	162
Large town	576	466	110
Small town	1,578	1,215	363
Rural	2,282	2,078	204
School affiliation			
Public	14,248	14,248	\dagger
Catholic	2,091	\dagger	2,091
Non-Catholic, religious	1,139	\dagger	1,139
Nonreligious, private	606	\dagger	606
School type			
Regular ${ }^{1}$	17,277	13,971	3,306
Ungraded	40	24	16
No grade beyond kindergarten	420	235	185
Unknown	347	18	329
Child's race/ethnicity			
White	10,208	7,472	2,736
Black	2,597	2,289	308
Hispanic, with race	1,460	1,220	240
Hispanic, without race	1,648	1,456	192
Asian	1,149	939	210
Pacific Islander	202	186	16
Native American	332	294	38
More than one race	434	347	87
Unknown	54	45	9

See notes at end of table.

Table 4-6. Number (unweighted) of eligible children in spring-first grade sample excluding freshened children, by selected characteristics: School year 1999-2000-Continued

		Sector	
Characteristic	Total	Public	Private
Highest parent level of education			
Less than high school	1,529	1,491	38
High school graduate	3,779	3,356	423
Vocational/technical	1,078	926	152
Some college	4,211	3,313	898
College graduate	3,348	2,194	1,154
Master's	1,191	719	472
Ph.D./professional	749	395	354
Unknown	2,199	1,854	345

\dagger Not applicable.
${ }^{1}$ School offers kindergarten and at least another grade between first grade and twelfth grade.
NOTE: School characteristics (i.e., region, locale, school affiliation, and school type) describe the school the child attended in kindergarten. SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 1999 and spring 2000.

4.3.2 Child Freshening

The spring-first grade child freshening used a half-open interval sampling procedure (Kish 1965). The procedure was implemented in the same 50 percent subsample of ECLS-K base-year schools in which transfer children were flagged for follow-up. Each of these schools was asked to prepare an alphabetized roster of children enrolled in first grade, and the names of ECLS-K kindergarten-sampled children were identified on this list. Beginning with the name of the first kindergarten-sampled child, school records were checked to see whether the child directly below in the sorted list attended kindergarten in the United States in fall 1998. If not, (1) that child was considered to be part of the freshened sample and (2) the record search procedure was repeated for the next listed child, and so forth. When the record search revealed that a child had been enrolled in kindergarten the previous year, that child was not considered part of the freshened sample and the procedure was begun all over again with the second base-year sampled child name, and so on. Note: the child roster was "circularized" (i.e., the first name on the roster was considered to follow the last name on the roster in the implementation of the procedure). Child freshening brought 165 first-graders into the ECLS-K sample, which increased the weighted survey estimate of the number of first-graders in the United States by about 2.6 percent.

The child freshening procedure was not entirely free of bias. A first-grader would have no chance of being in the ECLS-K first-grade sample if he or she was enrolled in a school where neither the
child nor any of his or her classmates had attended kindergarten in the United States in the fall of 1998. However, this would be a rare circumstance and is not thought to be an important source of bias. A more significant source of potential bias is nonresponse. One source of nonresponse inherent to the freshening plan was that the procedure only involved children who had not transferred from the school in which they had been sampled during the base year. A more detailed discussion of freshened child nonresponse can be found in section 5.7.2 of the ECLS-K User's Manual for the ECLS-K First Grade Public-Use Data Files and Electronic Codebook (NCES 2002-135) (Tourangeau et al. 2002).

4.4 Spring-Third Grade Sample

The sample of children for spring-third grade consists of all children who were base-year respondents and children who were brought into the sample in spring-first grade through the sample freshening procedure described in section 4.3.2. Sample freshening was not implemented in third grade, hence no new children entered the sample.

While all children still enrolled in their base-year schools were recontacted, slightly more than 50 percent of the base-year sampled children who had transferred from their kindergarten school were followed for data collection. This subsample of children was the same 50 percent subsample of base-year movers flagged for following in spring-first grade, with the addition of movers whose home language was not English (language minority children). The two special sampling procedures implemented in spring-third grade are described below.

4.4.1 Subsampling Movers

In spring-first grade, all children in a random 50 percent subsample of base-year schools were flagged to be followed for data collection if they transferred from their base-year school at any point in the future. In order to maximize the amount of longitudinal data, care was taken during spring-first grade sampling to ensure that any child who had been flagged to be followed in fall-first grade would continue to be followed. The spring-first grade sampling procedure for movers is described in section 4.3.1. In spring-third grade, children who were followed in spring-first grade were retained in the sample (i.e., the mover follow-up still targeted the same 50 percent subsample of children in the base-year
schools). In addition, language minority children who moved between first grade and third grade were followed with certainty as described below.

4.4.2 Language Minority Children

In addition to the subsample of movers to be followed described above, children whose home language was not English and who moved between spring-first grade and spring-third grade were all retained rather than being subsampled at the 50 percent rate. Operationally, this means that children whose home language was not English who were not flagged for follow-up in the previous round had their flags switched from "not to be followed" to "to be followed." This mover flag was set in first grade to specify whether a child was to be followed if he or she moved from the kindergarten school at any point in the future. This affects only language minority children who had not moved out of the original sample schools before third grade. If they had moved before third grade, then their flags were not switched and they continued not to be followed. This modification to the mover follow-up procedure provides a larger sample of children whose home language is not English. The mover follow-up activities that originally targeted a 50 percent subsample of children in base-year schools resulted in a 54 percent subsample with the addition of language minority children.

Table 4-7 shows the characteristics of eligible children in the spring-third grade sample, excluding freshened children. Region, locale, school affiliation, and school type describe the school at which the child attended kindergarten.

Table 4-7. Number (unweighted) of eligible children in spring-third grade sample excluding freshened children, by selected characteristics: School year 2001-02

Characteristic	Total	Sector	
		Public	Private
Total	16,670	13,166	3,504
Region			
Northeast	3,102	2,274	828
Midwest	4,208	3,187	1,021
South	5,522	4,607	915
West	3,838	3,098	740
Type of locale			
Large city	3,150	2,344	806
Midsize city	3,385	2,536	849
Urban fringe of large city	4,747	3,705	1,042
Urban fringe of midsize city	1,194	1,033	161
Large town	536	428	108
Small town	1,491	1,149	342
Rural	2,167	1,971	196
School affiliation			
Public	13,166	13,166	\dagger
Catholic	1,924	\dagger	1,924
Non-Catholic, religious	1,036	\dagger	1,036
Nonreligious, private	544	\dagger	544
School type			
Regular ${ }^{1}$	15,930	12,901	3,029
Ungraded	34	23	11
No grade beyond kindergarten	391	222	169
Unknown	315	20	295
Child's race/ethnicity			
White	9,348	6,853	2,495
Black	2,238	1,977	261
Hispanic, with race	1,450	1,222	228
Hispanic, without race	1,547	1,367	180
Asian	1,115	911	204
Pacific Islander	196	180	16
Native American	305	273	32
More than one race	432	351	81
Unknown	39	32	7

See notes at end of table.

Table 4-7. Number (unweighted) of eligible children in spring-third grade sample excluding freshened children, by selected characteristics: School year 2001-02-Continued

		Sector	
Characteristic	Total	Public	Private
Highest parent level of education			
Less than high school	1,586	1,543	43
High school graduate	3,536	3,196	340
Vocational/technical	935	801	134
Some college	4,500	3,621	879
College graduate	3,517	2,352	1,165
Master's	1,324	825	499
Ph.D./professional	813	429	384
Unknown	459	399	60
Home language	4,409	3,676	733
Not English	12,261	9,490	2,771
English			

\dagger Not applicable.
${ }^{1}$ School offers kindergarten and at least another grade between first grade and twelfth grade.
NOTE: School characteristics (i.e., region, locale, school affiliation, and school type) describe the school the child attended in kindergarten. SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2002.

For a detailed description of the third-grade sample, see the ECLS-K User's Manual for the ECLS-K Third Grade Public-Use Data File and Electronic Code Book (NCES 2004-001) (Tourangeau, Brick, Lê et al. 2004).

4.5 Spring-Fifth Grade Sample

In fifth grade, four groups of children were not followed, irrespective of other subsampling procedures that were implemented. They are (1) children who became ineligible in an earlier round (because they died or moved out of the country), (2) children who were subsampled out in previous rounds because they moved out of the original schools and were not subsampled to be followed, (3) children whose parents emphatically refused to cooperate (hard refusals) in any of the data collection rounds since spring-kindergarten, and (4) children eligible for the third-grade data collection for whom there were neither first-grade nor third-grade data. Among the 21,357 children who were eligible for the study after the base year, 5,214 were excluded from the fifth-grade survey, and they are distributed as shown in table 4-8.

Table 4-8. Number of children eligible after the base year but excluded from the fifth-grade data collection: School year 2003-04

Characteristics ${ }^{1}$	Total	Mover subsampled out in first or third grade ${ }^{2}$	Ineligible in first or third grade	Hard refusal	Eligible for thirdgrade sample, with no first- or third-grade data
Total	5,214	4,117	122	571	404
School affiliation					
Public	4,000	3,129	98	433	340
Catholic	485	405	7	52	21
Non-Catholic, religious	361	270	9	61	21
Nonreligious, private	352	313	7	19	13
Unknown	16	0	1	6	9
Urbanicity					
City	2,436	1,960	68	218	190
Suburb and town	2,388	1,869	45	300	174
Rural	381	288	5	51	37
Unknown	9	0	4	2	3
Race/ethnicity					
White	2,794	2,272	36	327	159
Black	1,061	867	12	88	94
Hispanic	811	584	47	82	98
Asian/Pacific Islander	313	225	20	46	22
Other	201	158	5	16	22
Unknown	34	11	2	12	9
Language minority					
Not English	1,000	684	84	124	108
English	4,214	3,433	38	447	296
Socioeconomic status quintile					
First (lowest)	975	772	29	75	99
Second	982	811	20	81	70
Third	874	707	14	89	64
Fourth	933	791	17	84	41
Fifth (highest)	948	793	36	82	37
Unknown	502	243	6	160	93

[^15]Of the remaining children, those who moved from their original schools during fifth grade or earlier were subsampled for follow-up. In order to contain the cost of data collection, the rate of subsampling was lower in fifth grade than it had been in previous years. The subsampling rates maximize the amount of longitudinal data available for key analytic groups. Children whose home language is not English (language minority) continued to be a special domain of analytic interest and were subsampled at higher rates. Children were subsampled at different rates depending on the longitudinal data available for those children.

For base-year respondents, the sampling rates for following movers were as follows:

- 0.33 for non-language minority (LM) movers with full longitudinal data;
- 0.25 for non-LM movers with third-grade but not first-grade data;
- 0.15 for non-LM movers with first-grade but not third-grade data;
- 0.75 for LM movers with full longitudinal data;
- 0.50 for LM movers with third-grade but not first-grade data; and
- 0.25 for LM movers with first-grade but not third-grade data.

For subsampling freshened children (i.e., children sampled in first grade) who are movers in fifth grade (or earlier) the rates were as follows:

- 0.33 for non-LM movers with full longitudinal data;
- 0.15 for non-LM movers with third-grade but not first-grade data;
- 0.15 for non-LM movers with first-grade but not third-grade data;
- $\quad 0.75$ for LM movers with full longitudinal data;
- 0.25 for LM movers with third-grade but not first-grade data; and
- 0.25 for LM movers with first-grade but not third-grade data.

These rates are different than those used in third grade where movers were subsampled uniformly at a rate of 0.5 , and language minority children were followed at 100 percent (unless they were already subsampled out in first grade). The mover follow-up activities that originally targeted a 50 percent subsample of children in base-year schools resulted in a 54 percent subsample with the addition of
language minority children in third grade. For fifth grade, these mover follow-up activities targeted a 42 percent subsample of movers who were eligible to be fielded in fifth grade and resulted in a 41 percent subsample.

Table 4-9 shows the characteristics of eligible children in the spring-fifth grade sample, excluding freshened children. Region, locale, school affiliation, and school type describe the school at which the child attended kindergarten.

A new feature of the fifth-grade sample was the subsampling of children for the administration of the mathematics or science questionnaires. While all children retained for the fifth-grade data collection had child-level questionnaires filled out by their reading teachers, half were subsampled to have child-level questionnaires filled out by their mathematics teachers and the other half had child-level questionnaires filled out by their science teachers.

Table 4-9. Number (unweighted) of eligible children in spring-fifth grade sample excluding freshened children, by selected characteristics: School year 2003-04

Characteristic	Total	Sector	
		Public	Private
Total	12,029	9,567	2,462
Region			
Northeast	2,254	1,705	549
Midwest	3,124	2,354	770
South	3,849	3,237	612
West	2,802	2,271	531
Type of locale			
Large city	2,208	1,631	577
Midsize city	2,370	1,698	672
Urban fringe of large city	3,419	2,764	655
Urban fringe of midsize city	833	739	94
Large town	373	295	78
Small town	1,140	884	256
Rural	1,686	1,556	130
School affiliation			
Public	9,567	9,567	\dagger
Catholic	1,477	\dagger	1,477
Non-Catholic, religious	700	\dagger	700
Nonreligious, private	285	\dagger	285
School type			
Regular ${ }^{1}$	11,611	9,404	2,207
Ungraded	26	17	9
No grade beyond kindergarten	203	141	62
Unknown	189	5	184
Child's race/ethnicity			
White	6,846	5,075	1,771
Black	1,365	1,229	136
Hispanic, with race	1,103	934	169
Hispanic, without race	1,161	1,027	134
Asian	852	703	149
Pacific Islander	156	142	14
Native American	228	204	24
More than one race	290	229	61
Unknown	28	24	4

See notes at end of table.

Table 4-9. Number (unweighted) of eligible children in spring-fifth grade sample excluding freshened children, by selected characteristics: School year 2003-04-Continued

		Sector	
Characteristic	Total	Public	Private
Highest parent level of education			
Less than high school	1,013	992	21
High school graduate	2,481	2,261	220
Vocational/technical	673	590	83
Some college	3,362	2,736	626
College graduate	2,693	1,862	831
Master's	1,076	700	376
Ph.D./professional	667	366	301
Unknown	64	60	4
Home language	3,485	2,908	577
Not English	8,544	6,659	1,885
English			

\dagger Not applicable.
${ }^{1}$ School offers kindergarten and at least another grade between first grade and twelfth grade.
NOTE: School characteristics (i.e., region, locale, school affiliation, and school type) describe the school the child attended in kindergarten. SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECSL-K), spring 2004.

4.6 Eighth-Grade Sample

The sample design for eighth grade called for including all 12,129 children eligible after fifth grade (regardless of their fifth-grade response status), and following all movers without any subsampling. In the ECLS-K first-grade to fifth-grade data collections, subsampling of movers was used to reduce data collection costs. The initial sample size was developed taking into account the reduction in sample size and increase in the variability of the weights of the respondents resulting from the subsampling. As the design was extended beyond fifth grade (the initial planning of the ECLS-K did not plan for this extension into eighth grade), a change in the methods of handling movers to avoid subsampling them was needed to achieve the major analytic goals. The vast majority of children were not in the same school from kindergarten to eighth grade (having moved out of elementary schools into middle schools), and subsampling these movers would result in substantial losses in sample size and precision of the estimates for the eighth grade.

Table 4-10 shows the characteristics of eligible children in the spring-eighth grade sample, excluding freshened children. Region, locale, school affiliation, and school type describe the school in which the child attended kindergarten.

4.7 Sample Attrition

In a longitudinal study, sample attrition due to nonresponse and change in eligibility status is expected. The sample of respondents decreases with each round of data collection. In the case of the ECLS-K, a combination of field and sampling procedures was applied that caused the sample to increase after the fall-kindergarten data collection, but then decrease in each subsequent round.

The first procedure was the school-level refusal conversion in spring-kindergarten, resulting in a number of schools that agreed to participate in the study after having refused to do so in the previous round. From these schools, 1,426 children were sampled and added to the initial sample of 21,387 kindergarten children. The second procedure was sample freshening in spring-first grade as described in section 4.3.2. This brought in 165 eligible children to add to the sample of 21,192 base-year respondents who remained eligible after the base year. A base-year responding child was defined as one with at least one direct cognitive test score in fall- or spring-kindergarten or whose parent responded to the family structure section of the parent instrument in fall- or spring-kindergarten. The third procedure-applied in first, third, and fifth grades-required that a subsample of children who moved out of their original sample schools not be followed into their new schools, as described in sections 4.3.1 and 4.4.1, resulting in a decrease in the sample. The fourth and last procedure, applied in fifth grade only, is the exclusion from the data collection of children who were difficult to field, as described in section 4.5 , also resulting in a significant decrease in the sample.

Table 4-11 shows the sample size for each round of data collection of the ECLS-K, and the response status of the children in each round. Tables 4-12 and 4-13 show the same children separately by the original sample school affiliation (public/private).

Table 4-10. Number (unweighted) of eligible children in spring-eighth grade sample excluding freshened children, by selected characteristics: School year 2006-07

Characteristic	Total	Sector	
		Public	Private
Total	11,929	9,482	2,447
Region			
Northeast	2,223	1,679	544
Midwest	3,107	2,341	766
South	3,820	3,211	609
West	2,779	2,251	528
Type of locale			
Large city	2,171	1,601	570
Midsize city	2,352	1,684	668
Urban fringe of large city	3,394	2,740	654
Urban fringe of midsize city	831	737	94
Large town	370	293	77
Small town	1,131	877	254
Rural	1,680	1,550	130
School affiliation			
Public	9,482	9,482	\dagger
Catholic	1,467	\dagger	1,467
Non-Catholic, religious	697	\dagger	697
Nonreligious, private	283	\dagger	283
School type			
Regular ${ }^{1}$	11,529	9,334	2,195
Ungraded	11	3	8
No grade beyond kindergarten	202	141	61
Unknown	187	4	183
Child's race/ethnicity			
White	6,815	5,053	1,762
Black	1,354	1,219	135
Hispanic, with race	1,092	924	168
Hispanic, without race	1,144	1,012	132
Asian	846	697	149
Pacific Islander	153	139	14
Native American	224	200	24
More than one race	285	226	59
Unknown	16	12	4

See notes at end of table.

Table 4-10. Number (unweighted) of eligible children in spring-eighth grade sample excluding freshened children, by selected characteristics: School year 2006-07-Continued

		Sector	
Characteristic	Total	Public	Private
Highest parent level of education			
Less than high school	984	964	20
High school graduate	2,379	2,164	215
Vocational/technical	677	602	75
Some college	3,333	2,721	612
College graduate	2,717	1,893	824
Master's	1,116	722	394
Ph.D./professional	679	376	303
Unknown	44	40	4
Home language		2,863	573
Not English	6,436	1,874	
English	8,493		

\dagger Not applicable.
${ }^{1}$ School offers kindergarten and at least another grade between first grade and twelfth grade.
NOTE: School characteristics (i.e., region, locale, school affiliation, and school type) describe the school the child attended in kindergarten. SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECSL-K), spring 2007.

Table 4-11. Number (unweighted) of children in the ECLS-K sample, by response status and data collection round: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07

		Response status				
	Unweighted		Unknown	Non-followed		
Data collection round	sample size	Ineligibles	eligibility	movers	Nonrespondents	Respondents
Fall-kindergarten	21,387	31	\dagger	\dagger	1,672	19,684
Spring-kindergarten	$22,813^{1}$	147	\dagger	\dagger	2,088	20,578
Fall-first grade	6,507	39	37	781	226	5,424
Spring-first grade	$21,357^{2}$	56	202	2,850	925	17,324
Spring-third grade	21,357	122	289	4,117	1,524	15,305
Spring-fifth grade	$16,143^{3}$	39	210	3,765	309	11,820
Spring-eighth grade	$12,129^{4}$	36	67	\dagger	2,301	9,725

\dagger Not applicable.
${ }^{1} 1,426$ children were sampled from refusal-converted schools.
${ }^{2} 21,192$ children remained eligible after the base year. In addition, 165 children were sampled via the sample freshening procedure.
${ }^{3} 5,214$ children were excluded from the fifth-grade data collection. They were children who became ineligible in an earlier round, movers not subsampled to be followed in previous rounds, hard-to-field cases such as hard refusals, and children with neither first-grade nor third-grade data.
${ }^{4}$ 12,129 fifth-grade respondents and eligible respondents were eligible for the eighth-grade data collection.
NOTE: Response status is defined in terms of completed child assessment OR completed family structure data of the parent interview. Children who died or moved out of the country were classified as ineligible. Children who moved and were subsampled for follow-up but could not be located were treated as belonging to the unknown eligibility category. A portion of children who moved was subsampled out and not followed into their new schools. The numbers of children in this table are different than in tables 4-3 to 4-7 and table 4-9 since the earlier tables include only eligible children.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 1998, spring 1999, fall 1999, spring 2000, spring 2002, spring 2004, and spring 2007.

Table 4-12. Number (unweighted) of public school children in the ECLS-K sample, by response status and data collection round: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07

		Response status											
	Unweighted Data collection round sample size								Ineligibles	Unknown eligibility	Non-followed movers	Nonrespondents	Respondents
Fall-kindergarten	17,003	23	\dagger	\dagger	1,324	15,656							
Spring-kindergarten	$17,894^{1}$	117	\dagger	\dagger	1,676	16,101							
Fall-first grade	5,118	35	36	601	173	4,273							
Spring-first grade	$16,784^{2}$	45	181	2,164	733	13,661							
Spring-third grade	16,784	99	250	3,129	1,236	12,070							
Spring-fifth grade	$12,771^{3}$	37	190	2,889	243	9,412							
Spring-eighth grade	$9,655^{4}$	28	60	\dagger	1,919	7,648							

\dagger Not applicable.
${ }^{1} 891$ public school children were sampled from refusal-converted schools.
${ }^{2} 16,638$ public school children remained eligible after the base year. In addition, 146 public school children were sampled via the sample freshening procedure.
${ }^{3} 4,013$ children from the original sample of public schools were excluded from the fifth-grade data collection. They were children who became ineligible in an earlier round, movers not subsampled to be followed in previous rounds, hard-to-field cases such as hard refusals, and children with neither first-grade nor third-grade data.
${ }^{4} 9,655$ fifth-grade respondents and eligible respondents from the original sample of public schools were eligible for the eighth-grade data collection.
NOTE: Response status is defined in terms of completed child assessment OR completed family structure data of the parent interview. Children who died or moved out of the country were classified as ineligible. Children who moved and were subsampled for follow-up but could not be located were treated as belonging to the unknown eligibility category. A portion of children who moved was subsampled out and not followed into their new schools. The numbers of children in this table are different than in tables 4-3 to 4-7 and table 4-9 since the earlier tables only include eligible children.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 1998, spring 1999, fall 1999, spring 2000, spring 2002, spring 2004, and spring 2007.

Table 4-13. Number (unweighted) of private school children in the ECLS-K sample, by response status and data collection round: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07

Data collection round	Unweighted sample size Ineligibles		Response status			
			Unknown eligibility	Non-followed movers	Nonrespondents	Respondents
Fall-kindergarten	4,384	8	\dagger	\dagger	348	4,028
Spring-kindergarten	4,919 ${ }^{1}$	30	\dagger	\dagger	412	4,477
Fall-first grade	1,389	4	1	180	53	1,151
Spring-first grade	4,573 ${ }^{2}$	11	21	686	192	3,663
Spring-third grade	4,573	23	39	988	288	3,235
Spring-fifth grade	3,372 ${ }^{3}$	2	20	876	66	2,408
Spring-eighth grade	2,474 ${ }^{4}$	8	7	\dagger	382	2,077

\dagger Not applicable.
${ }^{1} 535$ private school children were sampled from refusal-converted schools.
${ }^{2} 4,554$ private school children remained eligible after the base year. In addition, 19 private school children were sampled via the sample freshening procedure.
${ }^{3} 1,201$ children from the original sample of private schools were excluded from the fifth-grade data collection. They were children who became ineligible in an earlier round, movers not subsampled to be followed in previous rounds, hard-to-field cases such as hard refusals, and children with neither first-grade nor third-grade data.
${ }^{4} 2,474$ fifth-grade respondents and eligible respondents from the original sample of private schools were eligible for the eighth-grade data collection.
NOTE: Response status is defined in terms of completed child assessment OR completed family structure data of the parent interview. Children who died or moved out of the country were classified as ineligible. Children who moved and were subsampled for follow-up but could not be located were treated as belonging to the unknown eligibility category. A portion of children who moved was subsampled out and not followed into their new schools. The numbers of children in this table are different than in tables 4-3 to 4-7 and table 4-9 since the earlier tables include only eligible children.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 1998, spring 1999, fall 1999, spring 2000, spring 2002, spring 2004, and spring 2007.

The number of children who participated in all five years of the ECLS-K data collection (base year, first grade, third grade, fifth grade, and eighth grade) is 8,706 (6,911 in original public schools and 1,795 in original private schools). This represents 41 percent of the base-year respondents or 38 percent of children sampled for the base year.

4.8 Calculation and Use of Sample Weights

As in previous years, the ECLS-K data were weighted to compensate for differential probabilities of selection at each sampling stage and to adjust for the effects of nonresponse. In the ECLS-K base year, weights were computed at the child, school, and teacher levels. Estimates using the base-year weights are representative of all kindergarten children, all schools with kindergarten programs and all kindergarten teachers. After the base year, only child-level weights were computed. The use of these weights is essential to produce estimates that are representative of the cohort of children who were in kindergarten in 1998-99 or in first grade in 1999-2000. Since the sample was not freshened after the
first-grade year with third-, fifth- or eighth-graders who did not have a chance to be sampled in kindergarten or first grade (as was done in first grade), estimates from the ECLS-K third-, fifth-, and eighth-grade data are representative of the population cohort rather than all third-graders in 2001-02 or all fifth-graders in 2003-04 or all eighth-graders in 2006-07. The estimated number of third-graders from the third-grade ECLS-K data collection is approximately 86 percent of all third-graders. From the fifth-grade data collection, the estimated number of fifth-graders is approximately 83 percent of all fifth-graders. From the eighth-grade data collection, the estimated number of eighth-graders is approximately 80 percent of all eighth-graders. While the vast majority of children in third grade in the 2001-02 school year, in fifth grade in the 2003-04 school year, and in the eighth grade in the 2006-07 school year are members of the cohort, third-graders who repeated second or third grade, fifth-graders who repeated third or fourth grade, eighth-graders who repeated fifth, sixth, or seventh grade, and recent immigrants are not covered. Data were collected from teachers and schools to provide important contextual information about the environment for the sampled children. The teachers and schools are not representative of thirdgrade teachers and schools in 2001-02, of fifth-grade teachers and schools in 2003-04, nor of eighthgrade teachers and schools in 2006-07. For this reason, the weights produced from the study after the kindergarten year are for making statements about children, including statements about the teachers and schools of those children.

Several sets of weights were computed for eighth grade. As in previous years, there are several survey instruments administered to sampled children and their parents, teachers and schools: cognitive and physical assessments for children; student questionnaires (third, fifth and eighth grade only); parent instruments; several types of teacher instruments completed by reading or English, mathematics, science, and special education teachers; and school instruments. The stages of base-year sampling in conjunction with differential nonresponse at each stage and the diversity of survey instruments require that multiple eighth-grade cross-sectional sampling weights be computed for use in analyzing the eighth-grade ECLS-K data, as was the case with previous rounds of data collection. Several combinations of kindergarten through eighth-grade longitudinal weights were also computed. Details on these longitudinal weights are available in chapter 9 and in chapter 10 for users of the K-8 full sample public-use data file. This section describes the different types of eighth-grade cross-sectional weights, how they were calculated, how they should be used, and their statistical characteristics.

4.8.1 Types of Cross-Sectional Sample Weights

As in fifth grade, five sets of cross-sectional weights were computed for children in the eighth-grade sample. These weights are defined as follows:

- C7CW0 is nonzero if assessment data or student questionnaire data are present (or the child was excluded from direct assessment due to a disability).
- C7PW0 is nonzero if parent interview data are present.
- C7CPTE0 is nonzero if assessment data or student questionnaire data are present (or the child was excluded from direct assessment due to a disability), and parent interview data, and teacher-level data from the English teacher are present.
- C7CPTM0 is nonzero if the child was sampled to have a child-level questionnaire completed by the mathematics teacher, and assessment data or student questionnaire data are present (or the child was excluded from direct assessment due to a disability), and parent interview data, and teacher-level data (either from the English teacher or the mathematics teacher) are present.
- C7CPTS0 is nonzero if the child was sampled to have a child-level questionnaire completed by the science teacher, and assessment data or student questionnaire data are present (or the child was excluded from direct assessment due to a disability), and parent interview data, and teacher-level data (either from the English teacher or the science teacher) are present.

If the child has only subject-specific child-level data from the teacher (English, mathematics, or science) but no data from the teacher-level questionnaire, then the child is considered a nonrespondent for the CPT weights, and hence has none of the CPT weights.

Prior to the fifth-grade data collection, only one child-parent-teacher weight was computed based on the presence of the teacher questionnaire B (teacher-level). With the addition beginning in fifth grade of the subject-specific questionnaires filled out by teachers for each child in the ECLS-K sample, and the subsampling of children for the administration of the mathematics and science teacher questionnaires, three child-parent-teacher weights were computed. They are used to analyze direct child assessment data combined with parent interview data and data provided by the subject-specific teacher (child- and/or teacher-level data) with or without school-level data, as described below.

Careful consideration should be given to the choice of a weight for a specific analysis since it depends on the type of data analyzed. Each set of weights is appropriate for a different set of data or
combination of sets of data. Exhibit 4-1 summarizes how the different types of cross-sectional weights should be used. Cross-sectional weights are used to provide estimates for the eighth-grade data collection. Details under "to be used for analysis of . . ." provide guidance based on whether the data to be used with the weights were collected through the child assessments, parent interviews, or different types of teacher questionnaire.

Exhibit 4-1. ECLS-K eighth-grade cross-sectional weights: School year 2006-07

Weight	To be used for analysis of ...
C7CW0	child direct assessment or student questionnaire data from spring-eighth grade, alone or in combination with (a) a limited set of child characteristics (e.g., age, sex, and race/ethnicity), (b) data from any spring-eighth grade teacher questionnaire (teacherlevel or child-level), or (c) data from the spring-eighth grade school administrator questionnaire.
C7PW0	parent interview data from spring-eighth grade, alone or in combination with (a) springeighth grade child assessment or student questionnaire data, (b) data from any springeighth grade teacher questionnaire (teacher-level or child-level), or (c) data from the spring-eighth grade school administrator questionnaire. Exception: If data from the parent interview AND child assessments AND teacher-level (with or without child-level teacher) questionnaires are used together, then C7CPTE0, C7CPTM0, or C7CPTS0 should be used.
C7CPTE0	child direct assessment or student questionnaire data from spring-eighth grade with spring-eighth grade parent interview data and spring-eighth grade English teacher-level data with or without child-level data from the English teacher, alone or in combination with data from the spring-eighth grade school administrator questionnaire.
C7CPTM0	child direct assessment or student questionnaire data from spring-eighth grade with spring-eighth grade parent interview data and spring-eighth grade English or mathematics teacher-level data with or without child-level data from the mathematics teacher, alone or in combination with data from the spring-eighth grade school administrator questionnaire. This weight is to be used only if the analytic sample is restricted to the subset of children who were sampled to have a mathematics teacher questionnaire.
C7CPTS0	child direct assessment or student questionnaire data from spring-eighth grade with spring-eighth grade parent interview data and spring-eighth grade English or science teacher-level data with or without child-level data from the science teacher, alone or in combination with data from the spring-eighth grade school administrator questionnaire. This weight is to be used only if the analytic sample is restricted to the subset of children who were sampled to have a science teacher questionnaire.

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

Weight C7CW0 is used to estimate child-level characteristics or assessment scores for eighth grade. Examples of such estimates are the percent of children who are in private schools, the percent of children who are API, the percent of children who are 15 years old at the beginning of the eighth-grade
data collection, and the mean reading score of children in the eighth-grade data collection. These weights exist not only for children who had assessment data but also for children who completed the student questionnaire or who could not be assessed due to a disability. ${ }^{20}$ Their background characteristics such as age, sex, race/ethnicity, and characteristics of their parents, teachers, classrooms, and schools are available from the parent interviews, the teacher questionnaires, and the school administrator questionnaire. Rating scale scores from teachers on children's skills in language and literacy (oral and written expression), science, and mathematical thinking (see chapter 3) are also available for these children, regardless of whether they completed the direct child assessment.

C7PW0 is used for child-level estimates associated with data collected through the parent interview. Examples are the percent of children whose mothers are currently employed, the percent of children who have child care, and the percent of children whose parents were concerned about their child's weight. These weights should not be used for estimates solely using direct child assessment data but should be used when analyzing parent and child assessment data together. For example, they should be used when exploring the relationship between home literacy behaviors and children's reading skills.

When analyzing child assessment data in conjunction with teacher data and parent data, one of the three child-parent-teacher weights should be used. C7CPTE0 should be used if teacher-level data from the English teacher are analyzed with or without child-level data from the English teacher. Note that the teacher-level questionnaire can be completed by more than one teacher (English and/or mathematics; or, English and/or science). Therefore, C7CPTM0 should be used if teacher-level data from the English or mathematics teacher are analyzed with or without child-level data from the mathematics teacher. Likewise, C7CPTS0 should be used if teacher-level data from the English or science teacher are analyzed with or without child-level data from the science teacher. Weight C7CW0 may be used when analyzing child assessment data in conjunction with English teacher-level data alone. In this case, some data may be missing because some teachers did not complete the questionnaire, but these are the most appropriate weights for this type of analysis.

Here are some examples of how the child-parent-teacher weights may be used. C7CPTE0 is used when child direct assessment or student questionnaire data and parent data and English teacher-level data with or without child-level data from English teachers are combined in an analysis; for example, in the analysis of the relationship between parent education, teacher education, and children's reading

[^16]knowledge and skills. If it is the children's mathematics knowledge and skills as reported by the teacher that are analyzed, then C7CPTM0 should be used. Likewise, C7CPTS0 should be used if children's science knowledge and skills as reported by the teacher are combined with direct assessment, parent, and teacher-level data. These weights should not be used for estimates using only direct child assessment data or only parent interview data.

Careful consideration should be given to which set of weights is appropriate for the desired analysis. Using the wrong weights will result in more biased or inefficient estimates (because the weighting adjustments were not correctly accounted for in the estimates). For example, if C7CPTE0 were used in an analysis of child- and teacher-level data only, then the resulting estimates will be inefficient compared to estimates using C7CW0. The lower parent response causes C7CPTE0 to result in a smaller sample with positive weights. If using C7CPTE0 with child-level data from the questionnaire filled out by the mathematics teacher, then there will be missing mathematics-related data for approximately half of the children. There may be combinations of data for which no weights were specifically developed, but all analyses should incorporate whichever weight that matches most closely.

4.8.2 Weighting Procedures

Two features of the eighth-grade sample design that are different from previous grades are that (1) only fifth-grade respondents and eligible nonrespondents were included in the eighth-grade sample and (2) children who changed schools between fifth and eighth grade were not subsampled out but were all followed into their new school. However, a feature of the fifth-grade sample whereby children were subsampled for the administration of the mathematics or science questionnaires as discussed in section 4.5 was retained for eighth grade. The mathematics and science teacher questionnaires were administered to the same halves of the sample as was done in fifth grade. This is to allow for longitudinal analyses of data from the mathematics and science teacher questionnaires. The same subsamples of children selected for these two instruments in the fifth grade were maintained for eighth grade, i.e., children who had been assigned to have mathematics teacher questionnaires in fifth grade had mathematics teacher questionnaires in eighth grade, and likewise for the science teacher questionnaire.

These features of the design are taken into account in the weighting. The weighting procedures were divided into three main stages.

The starting point for the eighth-grade child weight is the fifth-grade child weight before adjustment for fifth-grade child nonresponse. It includes the following:

- adjustment of the school base weight for base-year school-level nonresponse;
- adjustment of the child weights for base-year child-level nonresponse;
- adjustment of the base-year child weight for subsampling of schools for freshening in first grade (for children sampled in first grade only);
- adjustment for fifth-grade mover subsampling; and
- adjustment for fifth-grade unknown eligibility status.

Except for the last two adjustments, this starting weight is the same in all rounds of data collection after the base year because the same sample of children (base-year respondents and children sampled in first grade) was eligible for subsequent rounds of data collection. The starting weight was extracted from the first-grade weighting file to be used in eighth grade. The procedures used for computing these weights are described again in section 4.8.3 for completeness.

The second stage of weighting was to adjust the initial child weight computed in the first stage for the following:

- eighth-grade unknown eligibility status; and
- eighth-grade child-level nonresponse.

For the mathematics and science child-parent-teacher weights, an additional adjustment was necessary (before the second-stage adjustment for nonresponse) to adjust for the subsampling of children for whom mathematics or science teacher data questionnaires were administered.

The third and last stage was to rake the weights adjusted in the second stage to sample-based control totals. Raking is a multivariate poststratification of the weights, explained in section 4.8.4.2.

The computation of the initial child weights is described in section 4.8.3. The subsequent weight adjustments are described in section 4.8.4. Section 4.8 .5 describes the different types of weights computed for spring-eighth grade.

In general, in each adjustment to the weight, the adjustment factor is multiplied by the weight in the prior step to get the adjusted weight. This fact is not repeated in the discussions of the weight adjustments in the following sections; only the computation of the adjustment factor is discussed.

4.8.3 Computation of Spring-Eighth Grade Initial Child Weights

As mentioned earlier, the first stage of weighting was to compute an initial child weight that reflects: (1) the adjustment of the school base weight for base-year school-level nonresponse (school-level weights), (2) the adjustment of the child weights for base-year child-level nonresponse (child-level weights), (3) the adjustment of the base-year child weight for subsampling of schools for freshening in first grade (child-level weights, for children sampled in first grade only), (4) the adjustment for fifth-grade mover subsampling, and (5) the adjustment for fifth-grade unknown eligibility status. These weights were already computed for spring-fifth grade. For completeness, they are described below, in section 4.8.3.1 for the school-level weights, and in section 4.8.3.2 for the child-level weights.

4.8.3.1 Base-Year Nonresponse-Adjusted School Weights

This weight is the same as that computed for the first-grade data collection. It was computed as the school base weight adjusted for base-year school-level nonresponse. The base weight for each school was the inverse of the probability of selecting the PSU (county or group of counties), multiplied by the inverse of the probability of selecting the school within the PSU. For schools selected in the base year through the frame freshening procedure, an additional factor equal to the inverse of the selection probability of the district or diocese was included in the base weight. See section 4.1 for a description of how schools were selected as part of the frame freshening procedure.

A base-year responding school was an original sample school with at least one child with a positive C1CW0, C2CW0, C1PW0, or C2PW0 weight. C1CW0 is positive for $\mathrm{LM} /$ not Spanish children, children with disabilities, and children with at least one direct cognitive test score in fall-kindergarten. C1PW0 is positive for children whose parents completed the family structure questions of the parent interview in fall-kindergarten. C2CW0 and C2PW0 weights are positive under similar circumstances except for spring-kindergarten. Schools that did not meet this condition are nonrespondents and their weights distributed across responding units (at the school level) in this stage. The base-year school weight
was adjusted within nonresponse weighting classes created in the base year using the Chi-Squared Automatic Interaction Detector (CHAID) and variables with known values for both respondents and nonrespondents. School characteristics used for constructing nonresponse cells were the school affiliation (public, Catholic, non-Catholic religious, or nonreligious private), the school locale (large city, midsize city, suburb of large city, suburb of midsize city, large town, small town, or rural area), the region where the school was located (Northeast, Midwest, South, or West), and the size classification of the school in terms of school enrollment. Once the weighted nonresponse cells were determined, the nonresponse adjustment factors are the reciprocals of the response rates within the selected nonresponse cells.

4.8.3.2 Base-Year Child Weights

As mentioned earlier, two groups of children were fielded in spring-third grade: base-year respondents and eligible children who were sampled in first grade as part of the sampling freshening procedure. The base-year child weights for the two groups were the same as those computed for the firstgrade year. A description of them follows.

Base-year child weights for base-year respondents. As previously described, a base-year respondent was defined as one with at least one direct cognitive test score in fall- or spring-kindergarten (or who was excluded from assessment because of a disability or because the child belonged in the language minority/not Spanish group), or whose parent responded to the family structure section of the parent instrument in fall- or spring-kindergarten. In terms of weights, a base-year respondent is a sampled child with a positive fall- or spring-kindergarten weight (i.e., C1CW0, C2CW0, C1PW0 or C2PW0 weights). The base-year child weight is the product of the base-year nonresponse-adjusted school weight and the inverse of the within-school selection probability of the child, adjusted for child-level nonresponse. The nonresponse weighting classes included school characteristics from the school nonresponse adjustments such as school affiliation, locale, region, school enrollment class, and child characteristics such as age group, sex, and race/ethnicity. These weighting classes are similar to those used for the original child weights in fall- and spring-kindergarten. For a description of the computation of child weights in fall- and spring-kindergarten, see chapter 4, section 4.3.4 of the ECLS-K Base Year Public-Use Data Files and Electronic Codebook: User's Manual (NCES 2001-029rev) (Tourangeau, Burke et al. 2004).

Base-year child weights for eligible children sampled in first grade. Since each child sampled in first grade was directly linked to a child sampled in kindergarten, the first step was to compute a weight for the children who were sampled in kindergarten that reflected the school freshening subsampling and the school freshening nonresponse (some schools refused to provide information needed for freshening). This weight was then assigned to the child sampled in first grade and further adjusted for nonresponse due to not obtaining the data from the sample of freshened children (i.e., children sampled in first grade).

Part 1: School weight adjusted for subsampling of schools for freshening. First the school base-year weight adjusted for school nonresponse (as described in section 4.8.3.1) was adjusted for the subsampling of schools for freshening. Child freshening was done in the same 50 percent subsample of schools that were flagged for following movers in spring-first grade. The school freshening subsampling adjustment factor was computed as follows:

- 0 if the school was not in the set of schools subsampled for freshening; ${ }^{21}$ and
- the sum of base-year nonresponse-adjusted school weights for all schools over the sum of base-year nonresponse-adjusted school weights for schools subsampled for freshening, if the school was in the set of schools subsampled for freshening.

This adjustment was done within cells defined by school affiliation and census region.

Part 2: School weight adjusted for freshening nonresponse. The freshening procedure could not be applied in all designated schools because some schools did not provide the information needed for freshening. These schools are considered freshening nonrespondents. The school weight adjusted for freshening subsampling was then adjusted for this type of nonresponse. The school freshening nonresponse adjustment factor was calculated as the sum of weights of the freshening-adjusted school weights for all schools designated for freshening over the sum of weights of the freshening-adjusted school weights for schools that responded to freshening. In both the numerator and denominator of this factor, the school measure of size was incorporated; the school measure of size is relevant because the weights will be used for child-level estimates, not school-level estimates. The nonresponse cells for this adjustment were created using school affiliation and urbanicity.

[^17]Part 3: Base-year child weight. The school-adjusted weight was multiplied by the inverse of the within-school selection probability of the child in the base year to obtain a base-year child weight. The base-year child weight was then adjusted for base-year child nonresponse because children who did not respond in the base year could not be linked to children in first grade in spring 2000. The adjustment factor was computed as the sum of the base-year child weights of all base-year children over the sum of the base-year child weights of base-year respondents within each nonresponse cell. The nonresponse cells were created using school characteristics such as school affiliation, locale, region, school enrollment class, and child characteristics such as age group, sex, and race/ethnicity.

Part 4: Base-year child weight adjusted for movers. Only children who did not move from their original schools were designated as links to children in the freshening procedure. The children who moved and were followed into their new schools were not identified to participate in the freshening process in their new schools. As a result, all the children who moved were considered nonrespondents to the freshening process. Additionally, nonmovers and movers who were not in first grade were not eligible for freshening (e.g., if a child was in kindergarten in spring 2000, he or she would be linked only to other kindergarten children and thus was not eligible for the freshening of first-graders). Adjustment was necessary to account for these two groups of children and was done in two steps.

In the first step, adjustment was done for movers whose grade was unknown. A portion of the movers was assumed to be in first grade. In the second step, the weights were adjusted for children who were in first grade but who were not identified to participate in the freshening process because they had moved into a new school. For this two-step adjustment, each child was classified as: (a) mover in first grade, (b) mover in another grade, (c) mover with unknown grade, (d) nonmover in first grade, and (e) nonmover in another grade.

The first-step adjustment for movers whose grade was unknown was computed as follows:

- 0 if the child was a mover with unknown grade (group c);
- $\quad 1$ if the child was a nonmover, in first grade or in another grade (group d or e); and
- the sum of the nonresponse-adjusted base-year child weights (computed in part 3) of all movers (group a, b, or c) over the sum of the nonresponse-adjusted base-year child weights of movers with known grade (group a or b), if the child was a mover with known grade (group a or b).

The second-step adjustment for movers who could not be used as links for freshening was computed as follows:

- 0 if the child was a first-grade mover (group a);
- $\quad 1$ if the child was in a grade other than first grade (group b or e); and
- the sum of the weights adjusted in the first step of part 4 of all first-graders (group a or d) over the sum of the weights adjusted in the first step of part 4 of nonmovers in first grade (group d), if the child was a nonmover in first grade (group d).

This two-step adjustment was done within cells defined by school affiliation and census region.

The weights thus created for children sampled in kindergarten were then linked to the children who were brought into the sample in first grade through sample freshening. In other words, the weight of the child sampled in first grade was defined at this point to be the weight computed for the child sampled in kindergarten that was responsible for bringing the first-grader into the sample.

For the next step in the computation of the spring-first grade child weights, the two groups of children-base-year respondents and children sampled in first grade through sample freshening-were put together, and a common variable and label were used to designate the initial child weight. This is the base-year child weight as computed above for each group of children.

Base-year child weights adjusted for fifth-grade mover subsampling and fifth-grade

unknown eligibility. First, the base-year child weights were adjusted to reflect the subsampling of movers in fifth grade. In the ECLS-K, a child could move more than once and at different times. For example, a child could move out of his or her original sample school because the school did not have grades higher than kindergarten. Then he or she could move again between first and third grade, first and fifth grade, or third and fifth grade. Once a child was identified as a mover, he or she stayed a mover unless he moved back to the original sample school. For example, a child who moved between kindergarten and third grade, but stayed in that same school between third and fifth grade, was considered a mover for the fifth grade.

Each mover in the fifth grade had a flag indicating whether he or she was followed into the new school. These flags were set according to the mover subsampling plan described in section 4.5 .

Children who were excluded from the fifth-grade data collection because they moved out of the original schools and were subsampled out for follow-up in previous rounds had their flag set to "not followed." In fifth grade, children were fielded as described in exhibit 4-2.

Exhibit 4-2. Movers and nonmovers by retention status: School year 2003-04

Child moved out of original school		Child subsampled for follow-up		Child fielded in fifth grade
Before fifth grade	During fifth grade	Before fifth grade	During fifth grade	
No	No	\dagger	\dagger	Yes
No	Yes	\dagger	No	No
No	Yes	\dagger	Yes	Yes
Yes	No, did not move again	No	\dagger	No
Yes	No, did not move again	Yes	No	No
Yes	No, did not move again	Yes	Yes	Yes
Yes	Back in original school	\dagger	\dagger	Yes

The base-year child weight was adjusted to reflect the subsampling of fifth-grade movers. The adjustment factor for subsampling movers (who moved before or during fifth grade) was computed as follows:

- $\quad 1$ if the child was not a mover;
- $\quad 0$ if the child was a mover and the value of the follow flag was 0 (i.e., not to follow); and
- the sum of initial child weights of children who were movers over the sum of initial child weights of children who were movers and whose follow flags have value 1 , if the child was a mover whose follow flag has value 1 .

For the third category, the adjustment factor was computed within cells created using the following characteristics: whether children were sampled in kindergarten or first grade, and whether they were language minority children. Note that for the computation of the fifth-grade final weights, large mover adjusted weights for 12 children were trimmed by 40 percent, and the excess weight was not redistributed at this step since the total sum of weights was re-established later at the raking step of the fifth-grade final weights. For eighth grade, it was the untrimmed mover-adjusted weight that was used, so that the excess weight was not discarded at this point.

After the adjustment for subsampling movers, the child weights were adjusted for fifth-grade children whose eligibility was unknown (since subsampled out movers and children of unknown eligibility in fifth grade were not included in the eighth-grade sample). In fifth grade, a portion of children of unknown eligibility was assumed to be ineligible, equal to the proportion of children of known eligibility who were ineligible. To carry out this adjustment, each fifth-grade child was classified as (a) an eligible respondent, (b) an eligible nonrespondent, (c) ineligible (out of the country or deceased) or (d) of unknown eligibility (mover who could not be located). The adjustment factor for children of unknown eligibility) was computed as follows:

- 0 if the child was of unknown eligibility (group d); and
- the sum of the mover adjusted weights of all children (any group) over the sum of the mover adjusted weights of children who were eligible respondents, eligible nonrespondents, or ineligible (group a, b, or c), if the child was not of unknown eligibility.

4.8.4 Computation of Spring-Eighth Grade Child Weights

4.8.4.1 Adjustment for Unknown Eligibility and Nonresponse

The initial child weights described in section 4.8 .3 were adjusted for nonresponse in eighth grade, and raked to sampled-based control totals to obtain the final spring-eighth grade child weights.

The eighth-grade initial child weights described in section 4.8 .3 were adjusted for eighthgrade nonresponse. As in previous years, the nonresponse adjustment was done in two steps. In the first step, the adjustment was for children whose eligibility was not determined (unknown eligibility). A portion of children of unknown eligibility was assumed to be ineligible, equal to the proportion of children of known eligibility who were ineligible. In the second step, the adjustment was for eligible nonrespondents. To carry out these adjustments, each child was classified as (a) an eligible respondent, (b) an eligible nonrespondent, (c) ineligible (children who were out of the country or deceased), or (d) of
unknown eligibility (children who could not be located for assessment). The first adjustment factor (for children of unknown eligibility) was computed as follows:

- $\quad 0$ if the child was of unknown eligibility (group d); and
- the sum of the initial weights of all children (any group) over the sum of the initial weights of children who were eligible respondents, eligible nonrespondents, or ineligible (group a, b, or c), if the child was not of unknown eligibility.

The second adjustment factor (for eligible nonrespondents) was computed as follows:

- 0 if the child was an eligible nonrespondent (group b); and
- the sum of the weights adjusted in the first step of eligible children (group a or b) over the sum of the weights adjusted in the first step of eligible responding children (group a), if the child was an eligible respondent.

In both steps of the adjustment, separate nonresponse classes were created using fifth-grade moving status (all cross-sectional weights); response status of the child assessment and parent interview in the previous rounds (C7CW0 and C7PW0); the race/ethnicity of the child (C7CW0 and C7PW0); whether the child belonged to the language minority group (all cross-sectional weights); the type of household collected from the parent interviews (all cross-sectional weights except C7CW0); and the school affiliation including whether the child was homeschooled (C7CPTE0, C7CPTM0 and C7CPTS0 only). After nonresponse adjustment and prior to raking, very large weights were trimmed but not redistributed because the sum of weights was re-established after raking, described in section 4.8.4.2 below.

4.8.4.2 Raking to Sample-Based Control Totals

To reduce the variability due to the subsampling of schools and movers in fifth grade, the child weights were then raked to sample-based control totals computed using the initial child weights computed as described in section 4.8.3. The child records included in the file used for computing the control totals are records of fifth-grade respondents, eligible nonrespondents, and ineligible children. Records of fifth-grade ineligibles were part of raking in fifth grade, and needed to be included in the file for computing control totals for eighth grade (even though they were not eligible for eighth grade) in order for the sum of weights to be the estimated number of children who were in kindergarten in 1998-99 or in first grade in 1999-2000.

In the nonresponse adjustment step, the weights of the eighth-grade nonresponding children were distributed to the eighth-grade responding children while the weights of the eighth-grade ineligible children were not affected. At the end of raking, the weights of the ineligible children are nonzero, but will be set to zero because these children are not included in the analysis of the spring-eighth grade data. The reason for including the ineligible children in the raking step is that these children were included in the sample-based control totals.

The raking factor was computed separately within raking cells as the sample-based control total for the raking cell over the sum of the nonresponse-adjusted weights for children in the same cell. Raking cells (also known as raking dimensions) were created using school and child characteristics collected in the base year or first-grade year: school affiliation, census region, urbanicity, sex, age, race/ethnicity, socioeconomic status (SES), language minority status, whether sampled in kindergarten or first grade, and, if sampled in kindergarten, mover status.

4.8.4.3 Additional Adjustment for Child-Parent-Teacher Cross-Sectional Weights

In all three child-parent-teacher weights described in section 4.8.1, the presence of at least one completed teacher-level questionnaire is the factor that determines whether the child would have a positive child-parent-teacher weight in the two subjects to which he or she was assigned (i.e., English and mathematics, or English and science). A child could have one teacher who taught all subjects, in which case the teacher was asked to fill out both the English questionnaire and the mathematics questionnaire (if the child was selected for mathematics) or science questionnaire (if the child was selected for science). A child could also have different teachers teaching different subjects, in which case the child might have an English teacher filling out the English questionnaire and a mathematics teacher filling out the mathematics questionnaire, and both teachers could have filled out the teacher-level questionnaire. Because of the subsampling, no children had teachers who completed both the mathematics and the science questionnaires.

Table 4-14 shows the distribution of children who have direct child assessment data, parent interview data, and child-level data from the mathematics teacher by the number of teachers they had who filled out the teacher-level questionnaire. The first column in this table shows the number of teachers that each child had: only one teacher who taught both English and mathematics, or two teachers, one teaching English and the other teaching mathematics. The second column shows the type of teacher who filled out
the teacher-level questionnaire. If the child had only one teacher, then it was this teacher-identified in the table as the English teacher-who filled out the teacher-level questionnaire (132 cases out of 4,114 or 3 percent). This is very different from fifth grade where a much larger number of children had only one teacher who taught both reading and mathematics. In eighth grade, the teaching structure changes for middle schools and almost all children have different teachers for different subjects. If the child had two teachers, then in the majority of cases, both teachers filled out the teacher-level questionnaire (3,810 cases out of 4,114 or 93 percent). There are very few cases where only one of the two teachers filled out the teacher-level questionnaire.

Table 4-14. Number of children with direct child assessment, parent interview, and child-level data from mathematics teacher, by number of teachers who filled out teacher-level questionnaire: School year 2006-07

Number of teachers that each child had	Teachers who completed teacher-level questionnaire	Number of children with child-parent-mathematics data from the child-level mathematics questionnaire
Total		4,114
	English	132
1	English	89
2	Mathematics	83
2	English and Mathematics	3,810

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

Table 4-15 shows the same information for science. Since C7CPTM0 and C7CPTS0 are used for the analysis of child and parent data with data from mathematics and science teachers, another option to define these weights is to use the presence of child-level data from the mathematics/science teachers. However, tables 4-14 and 4-15 show that, by considering the presence of teacher-level data in constructing the child-parent-teacher weights, there are more records with positive weights for analysis (4,130 as shown in table $4-17$ compared with 4,114 in table $4-14$ for C7CPTM0; and 4,164 as shown in table 4-17 compared with 4,151 in table 4-15 for C7CPTS0). Using teacher-level data to define the child-parent-teacher weights is also consistent with previous years' practice.

Table 4-15. Number of children with direct child assessment, parent interview, and child-level data from science teacher, by number of teachers who filled out teacher-level questionnaire: School year 2006-07

Number of teachers that each child had	Teachers who completed teacher-level questionnaire	Number of children with child-parent-science data from the child-level science questionnaire
Total		4,151
1	English	114
2	English	106
2	Science	82
2	English and Science	3,849

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

An additional adjustment is necessary to adjust for the subsampling of children for whom mathematics or science teacher data questionnaires were administered. For the child-parent-mathematics teacher weight, this adjustment (before adjustment for movers and nonresponse adjustments, described in sections 4.8.4.1 and 4.8.4.2, respectively) was computed as follows:

- 0 if the child was sampled for science rather than mathematics; and
- the sum of the initial child weights of all children over the sum of the initial child weights of children who were sampled for mathematics questionnaires.

Similarly, for the child-parent-science teacher weight, this adjustment was computed as follows:

- 0 if the child was sampled for mathematics rather than science; and
- the sum of the initial child weights of all children over the sum of the initial child weights of children who were sampled for science questionnaires.

4.8.5 Types of Cross-Sectional Weights and Their Use

The different types of cross-sectional weights are described in section 4.8.1 and their use is summarized in exhibit 4-1. They were all created as described in section 4.8.2, but the definition of which children were eligible respondents varied for the different weights. Each weight was adjusted for
unknown eligibility and nonresponse and raked separately. There was no eighth-grade mover adjustment since all movers were followed into their new schools.

4.8.5.1 Cross-Sectional Weights To Be Used With Direct Child Assessment Data (C7CW0)

In spring-eighth grade, responding children for this type of weight were eligible children who had spring-eighth grade scorable direct child cognitive assessment data or student questionnaire data, or children with disabilities who, according to specifications in their Individualized Education Programs (IEPs), could not participate in the assessments. A child was eligible if he or she was a fifth-grade respondent or a fifth-grade eligible nonrespondent.

Table 4-16 shows the number of children who were not assessed in eighth grade due to the following special situations: children with disabilities, children who could not be located, children who had moved outside of the country or who were deceased, children whose parents refused consent, or children whose parents could not be located for consent. Of these, only children with disabilities had weights included in the eighth-grade data file.

Table 4-16. Number of children who were not assessed in spring-eighth grade, by special situations: School year 2006-07

	Number of children	
Special situation	Unweighted	Weighted
Spring-eighth grade		
Children with disabilities ${ }^{1}$	45	14,132
Ineligible (moved out of the country or deceased)	36	13,170
Not located	254	114,816
Parent refused consent	44	18,963
Parent not located for consent	744	323,230

${ }^{1}$ These children's Individualized Education Plans (IEPs) specifically prohibited assessments.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

4.8.5.2 Cross-Sectional Weights To Be Used With Parent Data (C7PW0)

The weight C7PW0 is to be used with parent interview data. In spring-eighth grade, a respondent was defined as a child for whom the family structure section (FSQ) in that child's parent
interview for the corresponding round was completed. Note that this weight is at the child level even though the data were collected from the parents; they sum to eighth-grade children, not to the parents of eighth-grade children.

4.8.5.3 Cross-Sectional Weights To Be Used With a Combination of Child Direct Assessment Data and Parent Interview Data and Teacher Data for Children With English Teacher Questionnaire (C7CPTE0)

The weight C7CPTE0 is to be used for analysis involving all children with child assessment, parent, and teacher-level data. If child-level data from English teachers are included in the analysis, then the same weight C7CPTE0 should be used. A respondent for this type of weight was defined as a child who had scorable cognitive assessment data or student questionnaire data for spring-eighth grade (or was excluded from direct assessment due to a disability), whose parent completed the FSQ section of the parent interview for spring-eighth grade, and who had completed teacher-level data from either the English teacher and/or the mathematics/science teacher.

4.8.5.4 Cross-Sectional Weights To Be Used With a Combination of Child Direct Assessment Data and Parent Interview Data and Teacher Data for Children With Mathematics Teacher Questionnaire (C7CPTM0)

The weight C7CPTM0 is to be used for analysis involving children who were subsampled to have a mathematics teacher questionnaire and who had child assessment, parent, and child-level data from mathematics teachers (with or without teacher-level data). A respondent for this type of weight was defined as a child who had scorable cognitive assessment data or student questionnaire data for springeighth grade (or was excluded from direct assessment due to a disability), whose parent completed the FSQ section of the parent interview for spring-eighth grade, and who had completed teacher-level data from either the English teacher or the mathematics teacher. If there were mathematics data but no teacherlevel data, then C7CPTM0 is zero, and such a case would not be included in the analysis. See section 4.8.1 for how the child-parent-teacher weights were defined.

4.8.5.5 Cross-Sectional Weights To Be Used With a Combination of Child Direct Assessment Data and Parent Interview Data and Teacher Data for Children With Science Teacher Questionnaire (C7CPTSO)

The weight C7CPTS0 is to be used for analysis involving children who were subsampled to have a science teacher questionnaire and who had child assessment, parent, and child-level data from science teachers (with or without teacher-level data). A respondent for this type of weight was defined as a child who had scorable cognitive assessment data or student questionnaire data for spring-eighth grade (or was excluded from direct assessment due to a disability), whose parent completed the FSQ section of the parent interview for spring-eighth grade, and who had completed teacher-level data from either the English teacher or the science teacher. If there were science data but no teacher-level data, then C7CPTS0 is zero, and such a case would not be included in the analysis. See section 4.8.1 for how the child-parentteacher weights were defined.

4.8.6 Replicate Weights

For each weight included in the data file, a set of replicate weights was calculated. Replicate weights are used in the jackknife replication method to estimate the standard errors of survey estimates. All adjustments to the full sample weights were repeated for the replicate weights.

For spring-eighth grade, there are 90 replicate weights. Each set of replicate weights has the same prefix in the variable name as the full sample weight. For example, the replicate weights for C7CW0 are C7CW1 through C7CW90. The methods used to compute the replicate weights and how they are used to compute the sampling errors of the estimates are described in section 4.9.3.

4.8.7 Characteristics of Cross-Sectional Sample Weights

The statistical characteristics of the sample weights are presented in table 4-17. For each type of weight, the number of cases with nonzero weights is presented together with the mean weight, the standard deviation, the coefficient of variation (i.e., the standard deviation as a percentage of the mean weight), the minimum weight, the maximum weight, the skewness, the kurtosis, and the sum of weights.

Table 4-17. Characteristics of the eighth-grade cross-sectional child-level weights: School year 2006-07

	Number of cases	Mean	Standard deviation	CV $(\times 100)$	Minimum	Maximum	Skewness	Kurtosis	Sum
Sample	9,358	421.44	546.25	129.62	2.19	5479.19	3.44	13.93	$3,943,827$
C7CW0	8,809	447.74	579.18	129.36	1.91	5626.11	3.52	15.23	$3,944,166$
C7PW0	8,294	475.44	631.93	132.91	2.42	7716.63	3.41	13.91	$3,943,318$
C7CPTE0	4,130	955.24	$1,227.71$	128.52	5.30	$10,632.36$	3.20	11.46	$3,945,141$
C7CPTM0	4,164	946.51	$1,227.76$	129.71	6.88	9919.15	3.16	10.87	$3,941,257$
C7CPTS0	C7								

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

The difference in the estimate of the population of children (sum of weights) between rounds of data collection and between types of weight is due a combination of factors, among them: (1) the number of children in previous rounds of data collection who became ineligible in eighth grade (due to death or leaving the country) and (2) the adjustment of the weights for the children of unknown eligibility.

4.9 Variance Estimation

The precision of the sample estimates derived from a survey can be evaluated by estimating the variances of these estimates. For a complex sample design such as the one employed in the ECLS-K, replication and Taylor Series methods have been developed. These methods take into account the clustered, multistaged characteristics of sampling and the use of differential sampling rates to oversample targeted subpopulations. For the ECLS-K, in which the first-stage self-representing sampling units, (i.e., PSUs) were selected with certainty and the first-stage non-self-representing sampling units were selected with two units per stratum, the paired jackknife replication method (JK2) is recommended. This section describes the JK2 and the Taylor Series estimation methods.

4.9.1 Paired Jackknife Replication Method

In this method, a survey estimate of interest is calculated from the full sample. Subsamples of the full sample are then selected to calculate subsample estimates of the same parameter. The subsamples are called replicates, and the subsample estimates are called replicate estimates. The variability of the replicate estimates about the full sample estimate is used to estimate the variance of the full sample estimate. The variance estimator is computed as the sum of the squared deviations of the replicate estimates from the full sample estimate (Wolter 1985):

$$
v(\hat{\theta})=\sum_{g=1}^{G}\left(\hat{\theta}_{(g)}-\hat{\theta}\right)^{2}
$$

where
$\theta \quad$ is the survey estimate of interest;
$\hat{\theta} \quad$ is the estimate of θ based on the full sample;
$G \quad$ is the number of replicates formed; and
$\hat{\theta}_{(g)}$ is the $g^{\text {th }}$ replicate estimate of θ based on the observations included in the $g^{\text {th }}$ replicate.

The variance estimates of selected survey items presented in section 4.10 .2 were produced using WesVar and JK2 (Westat 2001).

Replicate weights were created to be used in the calculation of variance estimates. Each replicate weight was calculated using the same adjustment steps as the full sample weight but using only the subsample of cases that constitute each replicate. For the original ECLS-K design in the base year, replicate weights were created taking into account the Durbin method of PSU selection. The Durbin method selects two first-stage units per stratum without replacement, with probability proportional to size and a known joint probability of inclusion (Durbin 1967).

In the ECLS-K PSU sample design, there were 24 self-representing (SR) strata and 38 non-self-representing (NSR) strata. Among the 38 NSR strata, 11 strata were identified as Durbin strata ${ }^{22}$ and were treated as SR strata for variance estimation. The purpose of the Durbin strata is to allow variances to be estimated as if the first-stage units were selected with replacement. This brings the number of SR PSUs to 46 (24 original SR PSUs and 22 Durbin PSUs from the 11 Durbin strata). The remaining 54 NSR PSUs are in 27 NSR strata; thus 27 replicates were formed, each corresponding to one NSR stratum. For the SR strata, 63 replicates were formed. The 90 replicates will yield about 76 degrees of freedom for calculating confidence intervals for many survey estimates.

As stated earlier, the sample of PSUs was divided into 90 replicates or variance strata. The 27 NSR strata formed 27 variance strata of two PSUs each; each PSU formed a variance unit within a

[^18]variance stratum. All schools within an NSR PSU were assigned to the same variance unit and variance stratum. Sampled schools in the 46 SR PSUs were grouped into 63 variance strata. In the SR PSUs, schools were directly sampled and constituted PSUs. Public schools were sampled from within PSU while private schools were pooled into one sampling stratum and selected systematically (except in the SR PSUs identified through the Durbin method in which private schools were treated as if they were sampled from within PSU). Schools were sorted by sampling stratum, school affiliation (from the original sample or newly selected as part of freshening), type of frame (for new schools only), and their original order of selection (within stratum). From this sorted list, they were grouped into pairs within each sampling stratum; the last pair in the stratum may be a triplet if the number of schools in the stratum is odd. This operation resulted in a number of ordered preliminary variance strata of two or three units each. The first ordered 63 strata were then numbered sequentially from 1 to 63 ; the next ordered 63 strata were similarly numbered, and so on until the list was exhausted, thus forming the desired 63 variance strata.

In strata with two units, a unit being a PSU in the case of NSR PSUs and a school in the case of SR PSUs, the base weight of the first unit was doubled to form the replicate weight, while the base weight of the second unit was multiplied by zero. In strata with three units, two variance strata were created: in the first variance stratum, the base weight of two of the three units was multiplied by 1.5 to form the replicate weight and the base weight of the last unit was multiplied by zero; in the second variance stratum, the base weight of a different group of two units was multiplied by 1.5 , and the base weight of the third unit was multiplied by zero. Multiplying the base weight in a unit by zero is equivalent to dropping one unit as required by the jackknife method. All adjustments to the full sample weights were repeated for the replicate weights. For each full sample weight, there are 90 replicate weights with the same weight prefix.

A child sampled in first grade through the freshening process was assigned to the same replicate as the originally sampled child to whom the child was linked. When the child sampled in first grade was assigned a full sample weight (see section 4.8.3.2), he or she was assigned the replicate weights in the same manner.

To reflect the variability of the control totals in the sample-based raking, a set of replicate control totals was created. Each replicate was then raked to the corresponding replicate-based control totals. This resulted in each replicate retaining the variability associated with the original sample estimates of the control totals.

The replicate weights can be used with software such as WesVar (http://www.westat.com/ wesvar/), SUDAAN (SUDAAN Language Manual, Release 9.0 [Research Triangle Institute 2004 or http://www.rti.org/sudaan/], and AM (http://am.air.org).

4.9.2 Taylor Series Method

The Taylor Series method produces a linear approximation of the survey estimate of interest; then the variance of the linear approximation can be estimated by standard variance formulas (Wolter 1985). The stratum and first-stage unit (i.e., PSU) identifiers needed to use the Taylor Series method were assigned, taking care to ensure that there were at least two responding units in each stratum. A stratum that did not have at least two responding units was combined with an adjacent stratum. For the ECLS-K, the method of stratifying first-stage units was the same for each type of cross-sectional weight. For each type of weight, the sample size was examined, and then strata were combined when the sample size was not adequate. The sequential numbering of strata and first-stage units was done separately for each weight. Consequently, there is a different set of stratum and first-stage unit identifiers for each set of weights.

Stratum and first-stage unit identifiers are provided as part of the ECLS-K data file and can be used with software such as SUDAAN, Stata, SAS, SPSS, or AM. They are described in exhibit 4-3.

Exhibit 4-3. ECLS-K Taylor Series stratum and first-stage unit identifiers: School year 2006-07

Variable name	Description
C7TCWSTR	Sampling stratum-spring-eighth grade C-weights
C7TCWPSU	First-stage sampling unit within stratum-spring-eighth grade C-weights
C7TPWSTR	Sampling stratum-spring-eighth grade P-weights
C7TPWPSU	First-stage sampling unit within stratum - spring-eighth grade P-weights
C7CPTEST	Sampling stratum - spring-eighth grade CPTE-weights
C7CPTEPS	First-stage sampling unit within stratum-spring-eighth grade CPTE-weights
C7CPTMST	Sampling stratum-spring-eighth grade CPTM-weights
C7CPTMPS	First-stage sampling unit within stratum-spring-eighth grade CPTM-weights
C7CPTSST	Sampling stratum-spring-eighth grade CPTS-weights
C7CPTSPS	First-stage sampling unit within stratum-spring-eighth grade CPTS-weights
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of	
1998-99 (ECLS-K), spring 2007.	

4.9.3 Specifications for Computing Standard Errors

Specifications for computing standard errors (SEs) are given in table 4-18. For each type of analysis described in the table, users can choose the replication method or the Taylor Series method for computing SEs.

For the replication method, the full sample weight, the replicate weights, and the method of replication are required parameters. All analyses of the ECLS-K data should be done using JK2. As an example, to compute spring-eighth grade child-level estimates (e.g., mean reading scores) and their SEs, users need to specify CHILDID in the ID box of the WesVar data file screen, C7CW0 as the full sample weight, C7CW1 to C7CW90 as the replicate weights, and JK2 as the method of replication.

Table 4-18. Specifications for computing standard errors, spring-eighth grade: School year 2006-07

Type of analysis	Full sample weight	Computing standard errors					$\left.\begin{array}{r}\text { Approximating } \\ \text { sampling errors }\end{array}\right\}$DEFT (Average root design effect)
		Replication method (WesVar, SUDAAN or AM)			Taylor Series method (SUDAAN, Stata, SAS, SPSS or AM)		
		ID	Replicate weights	Jackknife method	Sample design ${ }^{1}$	Nesting variables	
Spring-eighth gradecross-sectional							1.829
	C7CW0	CHILDID	C7CW1-C7CW90	JK2	WR	C7TCWSTR C7TCWPSU	
	C7PW0	CHILDID	C7PW1-C7PW90	JK2	WR	C7TPWSTR C7TPWPSU	
	C7CPTE0	CHILDID	C7CPTE1-C7CPTE90	JK2	WR	C7CPTEST C7CPTEPS	
	C7CPTM0	CHILDID	C7CPTM1-C7CPTM90	JK2	WR	C7CPTMST C7CPTMPS	
	C7CPTS0	CHILDID	C7CPTS1-C7CPTS90	JK2	WR	C7CPTSST C7CPTSPS	

${ }^{T}$ WR = with replacement, specified only if using SUDAAN. WR is the only option available if using SAS, Stata, SPSS, or AM.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

For the Taylor Series method using SUDAAN, Stata, SAS, SPSS, or AM, the full sample weight, the sample design, the nesting stratum, and PSU variables are required. For the same example above, the full sample weight (C7CW0), the stratum variable (C7TCWSTR), and the PSU variable (C7TCWPSU) must be specified. The "with replacement" sample design option, WR, must also be specified if using SUDAAN.

The next to last column in table 4-19 gives the average root design effect (DEFT) that can be used to approximate the SEs for each type of analysis. For a discussion of the use of design effects, see section 4.10.1.

4.10 Design Effects

An important analytic device is to compare the statistical efficiency of survey estimates from a complex sample survey such as the ECLS-K, with what would have been obtained in a hypothetical and usually impractical simple random sample (SRS) of the same size. In a stratified clustered design like the ECLS-K, stratification generally leads to a gain in efficiency over simple random sampling, but clustering has the opposite effect because of the positive intracluster correlation of the units in the cluster. The basic measure of the relative efficiency of the sample is the design effect, defined as the ratio, for a given statistic, of the variance estimate under the actual sample design to the variance estimate that would be obtained with an SRS of the same sample size:

$$
D E F F=\frac{\operatorname{Var}_{\text {DESIGN }}}{V r_{S R S}} .
$$

The root design effect, $D E F T$, is defined as

$$
D E F T=\sqrt{D E F F}=\frac{S E_{D E S I G N}}{S E_{S R S}},
$$

where $S E$ is the standard error of the estimate.

4.10.1 Use of Design Effects

Methods of computing SEs for the ECLS-K are jackknife replication and Taylor Series linearization. If statistical analyses are conducted using software packages that assume the data were collected using simple random sampling, the SEs will be calculated under this assumption and should be corrected using DEFT. ${ }^{23}$ The SE of an estimate under the actual sample design can be approximated as follows:

$$
S E_{D E S I G N}=\sqrt{D E F F \times V_{S A}^{S R S}}=D E F T \times S E_{S R S} .
$$

Packages such as SAS or SPSS can be used to obtain $\operatorname{Var}_{S R S}$ and $S E_{S R S}$. Alternatively, $\operatorname{Var}_{S R S}$ and $S E_{S R S}$ can be computed using the formulas below for means and proportions.

Means:

$$
\operatorname{Var}_{S R S}=\frac{1}{n} \frac{\sum_{l}^{n} w_{i}\left(x_{i}-\overline{x_{w}}\right)^{2}}{\sum_{l}^{n} w_{i}}=S E_{S R S}^{2},
$$

where w_{i} are the sampling weights, n is the number of respondents in the sample, and the sample mean \bar{x}_{w} is calculated as follows:

$$
\bar{x}_{w}=\frac{\sum_{1}^{n} w_{i} x_{i}}{\sum_{1}^{n} w_{i}} .
$$

Proportions: $\quad V a r_{s r s}=\frac{p(1-p)}{n}=S E_{S R S}^{2}$,
where p is the weighted estimate of proportion for the characteristic of interest and n is the number of cases in the sample.

[^19]In both cases of means and proportions, the SE assuming SRS should be multiplied by $D E F T$ to get the approximate standard error of the estimate under the actual design.

4.10.2 Median Design Effects for the ECLS-K

In the ECLS-K, a large number of data items were collected from children, parents, teachers, and schools. Each item has its own design effect that can be estimated from the survey data. Typically, standard errors and design effects are presented for selected items from the study to allow analysts to see the range of standard errors and design effects that can be expected. Another way to produce design effects for analysts' use is to produce median design effects for the same set of selected items, at the overall level and for selected subgroups.

Table 4-19 shows estimates, SEs, and design effects for 52 means and proportions that were selected from the ECLS-K eighth-grade child assessment, student questionnaire, parent interview, and child-level teacher questionnaires. It is from this set of selected items that median design effects were computed for subgroups and presented in table 4-20.

For each survey item, table 4-19 presents the number of cases for which data are nonmissing, the estimate, the standard error taking into account the actual sample design (Design SE), the standard error assuming SRS (SRS SE), the root design effect (DEFT), and the design effect (DEFF). Standard errors (Design SE) were produced in WesVar using JK2 based on the actual ECLS-K complex design. For each survey item, the variable name as it appears in the ECLS-K fifth-grade Electronic Codebook (ECB) is also provided in the table. For more information on the variables used in this section, refer to chapter 3, which describes the assessment and academic rating scale scores used in the ECLS-K, and chapter 7 , which has a detailed discussion of the other variables.

The survey items were selected so that there was a mix of items from the various questionnaires. They include the different scale scores from the direct child assessment, Academic Rating Scale scores from the teachers, characteristics of the children as they reported themselves in the student questionnaires, characteristics of the parents, and characteristics of the students as reported by the parents and teachers. In general, the design effects are lower than in previous years. The median design effect is 3.1 (compared with 4.0 in fifth grade). This is due to a smaller sample size that clustered in a smaller
number of schools; there were fewer middle schools for children to attend when they moved up from elementary schools.

Table 4-19. ECLS-K standard errors and design effects by selected child and parent variables, for the full sample-child assessment, student questionnaire, parent interview, and child-level teacher questionnaire data: School year 2006-07

Survey item	Variable name	Number of cases	Estimate	Design SE^{1}	$\begin{gathered} \mathrm{SRS} \\ \mathrm{SE}^{2} \end{gathered}$	DEFT^{3}	DEFF ${ }^{4}$
Scores (mean)							
Reading scale score	C7R4RSCL	9,225	166.51	0.773	0.304	2.539	6.449
Mathematics scale score	C7R4MSCL	9,285	138.70	0.575	0.244	2.352	5.532
Science scale score	C7R2SSCL	9,304	82.24	0.406	0.179	2.270	5.152
Math score by teacher	T7ARSMAT	4,430	2.98	0.025	0.014	1.758	3.089
Oral score by teacher	T7ARSORL	8,908	3.18	0.020	0.010	1.956	3.825
Science score by teacher	T7ARSSCI	4,416	2.90	0.024	0.016	1.534	2.353
Writing score by teacher	T7ARSWRT	8,900	2.92	0.020	0.011	1.797	3.228
Characteristics from student questionnaire (percent)							
Participated in school sports	C7SPORTS	9,212	58.16	1.004	0.514	1.954	3.818
Described as overweight/slightly overweight	C7DESCWT	9,132	29.04	0.810	0.475	1.705	2.906
Tried to change weight	C7TRYWT	9,121	41.52	0.785	0.516	1.522	2.317
Home alone at least once a week	C7HOME	9,187	51.99	0.875	0.521	1.679	2.820
Angry when had trouble learning	C7ANGRY	9,226	79.44	0.685	0.421	1.628	2.649
Liked reading	C7LIKRD	9,186	77.62	0.814	0.435	1.872	3.506
Often felt lonely	C7LONLY	9,166	32.54	0.643	0.490	1.313	1.725
Felt good about self	C7FLGOOD	9,221	93.94	0.455	0.248	1.831	3.354
Parents helped with school work	C7SCHLPA	9,151	57.27	0.941	0.517	1.820	3.313
Parents advised on important decisions	C7ADVIPA	9,166	71.25	0.791	0.473	1.673	2.799
Characteristics from parent interview (percent)							
Lived in single parent family	P7HFAMIL	8,809	26.13	0.875	0.468	1.870	3.496
Lived in two-parent family	P7HFAMIL	8,809	71.01	0.957	0.484	1.979	3.915
Mom worked 35 hours+/week	P7HMEMP	6,765	68.39	1.171	0.565	2.072	4.293
Parents had high school or less	W8PARED	8,809	28.61	0.957	0.482	1.987	3.948
Household income	W8INCCAT	8,809	50.46	1.163	0.533	2.184	4.768
Parent attended PTA	P7ATTENP	6,012	33.38	1.074	0.608	1.765	3.116
Had family TV rule	P7TVRULE	8,679	87.74	0.630	0.352	1.789	3.200
Have someone help with reading homework	P7HELPR	8,531	94.61	0.377	0.245	1.540	2.373
Talk to child about day at school everyday	P7OFTTLK	8,688	78.11	0.756	0.444	1.704	2.902
Talk to child about smoking $3+$ times a year	P7TLKSMK	8,679	76.87	0.794	0.453	1.754	3.076
Talk to child about alcohol 3+ times a year	P7TLKALC	8,681	76.47	0.875	0.455	1.921	3.691
Took away privilege when child angry	P7HITPRV	8,646	87.24	0.636	0.359	1.773	3.145
Self-reported in very good health	P7HEALTH	8,491	86.74	0.650	0.368	1.767	3.123
Received food stamps in last 12 months	P7FSTAMP	8,590	15.43	1.136	0.390	2.914	8.492

[^20]Table 4-19. ECLS-K standard errors and design effects by selected child and parent variables, for the full sample-child assessment, student questionnaire, parent interview, and child-level teacher questionnaire data: School year 2006-07-Continued

Survey item	Variable name	Number of cases	Estimate	Design SE^{1}	$\begin{array}{r} \mathrm{SRS} \\ \mathrm{SE}^{2} \\ \hline \end{array}$	DEFT^{3}	DEFF ${ }^{4}$
Characteristics from teacher questionnaire (percent)							
Child in eighth grade	T7GLVL	9,358	85.66	0.822	0.362	2.268	5.142
Worked hard for grades-English	G7WRKHRD	8,921	70.04	0.861	0.485	1.775	3.149
Attentive in class-English	G7ATTENT	8,923	73.45	0.736	0.468	1.574	2.479
Was able to organize thoughts-English	G7ORGANZ	8,879	67.37	0.825	0.497	1.659	2.752
Worked hard for grades-Math	M7WRKHRD	3,994	72.42	1.122	0.707	1.586	2.515
Attentive in class-Math	M7ATTENT	3,984	73.84	1.100	0.697	1.579	2.493
Worked hard for grades-Science	N7WRKHRD	4,011	71.07	0.972	0.716	1.358	1.843
Attentive in class-Science	N7ATTENT	4,000	75.22	0.798	0.683	1.169	1.367
Other characteristics (mean)							
Age of child in months	R7AGE	9,351	171.53	0.104	0.049	2.115	4.474
Child's BMI	C7BMI	8,829	23.14	0.098	0.063	1.550	2.403
Hours spent in school activities	C7HRSCLB	8,976	4.80	0.112	0.071	1.586	2.515
Hours spent on non-school reading	C7HRSRD	8,938	3.87	0.176	0.087	2.013	4.052
Hours spent watching TV on weekdays	C7TVWKDY	9,128	3.19	0.049	0.033	1.487	2.211
Hours spent watching TV on weekend	C7TVWKEN	9,101	4.67	0.072	0.043	1.659	2.753
Hours spent playing videogames on weekdays	C7VIDWKD	9,116	1.52	0.042	0.025	1.689	2.854
Hours spent playing videogames on weekend	C7VIDWKN	9,137	2.75	0.077	0.038	2.007	4.027
Hours spent on the internet on weekdays	C7INTWKD	9,060	2.16	0.043	0.025	1.700	2.889
Hours spent on the internet on weekend	C7INTWKN	9,065	3.01	0.061	0.035	1.751	3.067
Child's household size	P7HTOTAL	8,809	4.49	0.030	0.015	2.048	4.193
Number of children <18 in child's HH	P7LESS18	8,809	2.41	0.028	0.013	2.226	4.953
Number of siblings in HH	P7NUMSIB	8,809	1.53	0.026	0.013	2.071	4.288
Median						1.770	3.134
Mean						1.829	3.438
Standard deviation						0.310	1.232
Coefficient of variation						0.170	0.358
Minimum						1.169	1.367
Maximum						2.914	8.492

${ }^{1}$ Design SE is the standard error under the ECLS-K sample design. For an explanation of this statistic, see section 4.10.
${ }^{2}$ SRS SE is the standard error assuming simple random sample. For an explanation of this statistic, see section 4.10.
${ }^{3}$ DEFT is the root design effect. For an explanation of DEFT, see section 4.10.
${ }^{4}$ DEFF is the design effect. For an explanation of DEFF, see section 4.10.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

Table 4-20 presents the median design effects from the same survey items for subgroups based on school affiliation, child's sex and race/ethnicity, geographic region, level of urbanicity, and the socioeconomic scale quintile of the parents. Design effects are highest for children in the Midwest and lowest for American Indians. American Indians are the smallest group of children, and they are highly clustered.

Table 4-20. ECLS-K median design effects for subgroups: School year 2006-07

	Spring-eighth grade	
Subgroups	DEFT 1	DEFF 2
All children	1.770	3.134
School affiliation		
Public		
Private	1.780	3.168
\quad Catholic private	1.859	3.456
\quad Other private	1.943	3.776
Sex	1.680	2.820
Male		
Female	1.680	2.824
Race/ethnicity	1.717	2.946
White		
Black	1.805	3.256
Hispanic	1.515	2.294
Asian	1.402	1.965
Pacific Islander	1.424	2.027
American Indian	1.337	1.787
Other	1.158	1.387
Region	1.600	2.561
\quad Northeast		
Midwest	1.743	3.040
South	2.036	4.147
West	1.767	3.122
Urbanicity	1.667	2.779
Central city		
Urban fringe and large town	1.759	3.093
Small town and rural area	1.711	2.929
Socioeconomic quintile	1.927	3.711
First (lowest)		
Second	1.520	2.309
Third	1.651	2.725
Fourth	1.627	2.646
Fifth (highest)	1.809	3.270

[^21]In spring-eighth grade, as in first, third, and fifth grades, design effects are not computed for items from the teacher-level and school administrator's questionnaires since there are no teacher or school weights computed for any of the ECLS-K years after kindergarten. Although SEs and design effects may also be calculated for the teacher and school administrator's questionnaires at the child level, they are quite large compared to those typically found for the ECLS-K data. Design effects for teacher and school items are large because the intraclass correlation is 100 percent for children in the same school and very high for children in the same class; children attending the same school have the same school data, and children in the same class have the same teacher data.

This page is intentionally left blank.

5. DATA COLLECTION METHODS AND RESPONSE RATES

The following sections discuss the data collection procedures and response rates in the eighth-grade data collection phase of the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K). Section 5.1 gives an overview of the data collection methods. Detailed information is provided on study training procedures (section 5.2); spring, summer, and fall 2006 data collection activities (section 5.3); tracing activities (section 5.4); spring-eighth grade (spring 2007) data collection (section 5.5); and quality control procedures (section 5.6). Spring-eighth grade completion rates are presented and discussed in section 5.7.

5.1 Overview of Data Collection Methods

The ECLS-K eighth-grade data collection activities began in spring 2006 and continued through spring 2007. Spring 2006 data collection was conducted to obtain consent from parents of sampled children for continued participation in the ECLS-K study and to identify the school their child attended. Fall data collection included conducting parent interviews, obtaining parent consent for outstanding cases, and recruiting schools. Schools were contacted to set appointments to conduct the child assessments in the spring of the 2006-07 school year, link children to teachers, identify children who had withdrawn from the school, and obtain locating information about their new schools. Spring data collection included the direct child assessments, and collection of student, teacher, and school questionnaires. Activities to locate children and confirm or obtain the name of the school in which they were enrolled continued throughout the entire data collection period. The content and timeline of the eighth-grade data collection are shown in exhibit 5-1.

The modes of data collection for obtaining consent and conducting the parent interview was telephone and in-person computer-assisted interviewing (CAI) and mailed, hard-copy consent forms; the child assessments were timed and group-administered using hard-copy assessment booklets; selfadministered questionnaires were used to gather information from teachers, school administrators, and children.

Exhibit 5-1. Timeline of eighth-grade data collection: 2006-07

Seventh grade $(2005-06)$		Eighth grade $(2006-07)$	Summer

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99, spring 2007.

5.2 Field Staff Training

Several in-person training sessions were conducted to prepare staff for the eighth-grade data collection. In spring 2006, field supervisors and interviewers were trained to contact parents to obtain consent and to identify the school their child would attend in the 2006-2007 school year. In fall 2006, two trainings were held: one to train supervisors and interviewers to conduct the parent interview and one to train supervisors to contact original schools and recruit transfer schools. In spring 2007, two trainings on the administration of the direct child assessments were held: one for field supervisors and one for test administrators. The following sections discuss each specific type of training.

5.2.1 Obtaining Parent Consent Training

Field supervisors and interviewers were trained on obtaining parent consent in May 2006. Prior to the May in-person training session, supervisors and interviewers completed 16 hours of home study training that included reading materials and written exercises on the study design and field procedures as well as extensive individual and role-play practice in refusal aversion techniques to better answer respondent questions and address respondent concerns. The home study practice included role plays on answering respondent concerns and questions over the telephone with another interviewer as well as with a field supervisor.

Field supervisor training. The topics covered in the field supervisor training included debriefing interviewers on the home study exercises that supervisors completed with interviewers, principles of supervision, establishing and monitoring production goals, field management issues, using the automated Field Management System (FMS), and administrative issues.

The FMS was used throughout all phases of data collection to enter information about the sampled children, parents, teachers, and schools and to monitor production on all data collection activities. Field supervisors entered information into the FMS during training presentations, thus acquiring hands-on experience with the FMS and all field procedures prior to data collection. Field supervisor training for the parent consent phase of the study preceded the interviewer training and lasted for one day. Seven field supervisors completed training.

Interviewer training. The topics covered included an overview of study activities to date, a review of the parent folder that included parent contact information, an introductory script for obtaining consent, the CAI parent consent recording application, interactive lectures and role plays on answering respondent's questions or concerns about the study, and the procedures for recording parents' spoken consent on the telephone. A major goal of this training was to train interviewers to be able to respond immediately, directly, and in a fluid and natural way to respondent concerns in order to build consent response rates. The obtaining parent consent training was $11 / 2$ days long. A total of 113 interviewers completed training.

5.2.2 Parent Interview Training

Field supervisors and interviewers were trained on conducting the parent interview in August 2006. Prior to the August in-person training session, supervisors and interviewers completed 4 hours of home study training that included reading materials on basic features of the parent interview, CAI, and general interviewing techniques as well as written exercises on the procedures for conducting the parent interview.

Field supervisor training. The field supervisor training preceded the interviewer training and lasted for a half-day. The same seven field supervisors who managed the interviewers who obtained parent consent continued to manage interviewers as they conducted parent interviews. The supervisor training included establishing and monitoring production goals, field management issues, and using the FMS to organize and track production.

Interviewer training. The training sessions included an overview of the content of the parent interview and all of its sections and all procedures associated with conducting the interview. Interviewers practiced using the CAI system on laptop computers during interactive lectures and role plays. Interviewer training was $11 / 2$ days long. A total of 108 interviewers completed parent interview training. Ninety-two of the 108 interviewers (85 percent) were continuing from the training on obtaining parent consent. Sixteen interviewers were new hires to fill staffing needs as a result of staff attrition and were trained on obtaining parent consent by their supervisors, outside of the in-person training session. Fifteen of the 108 interviewers (14 percent) were certified as Spanish bilingual interviewers and attended a half-day bilingual training after the parent interview training ended. The bilingual training consisted of interactive lectures and role-plays on conducting the parent interview in Spanish.

5.2.3 Advance School Contact and Recruitment Training

Field supervisors were trained for $21 / 2$ days in August 2006 to contact original sampled schools and transfer schools to set up the data collection in the spring. A total of 63 field supervisors and three field managers completed training. Topics included an overview of study activities to date, a review of parent consent procedures, identifying and locating children who had moved from the schools they attended in the fifth grade, identifying the teachers of ECLS-K children and linking them to those children, and exercises on scheduling schools efficiently within an assignment. Prior to in-person training, field supervisors completed 8 hours of home study training that included watching a DVD called "Tips from Experienced Recruiters," reading materials, written exercises, and active practice answering respondent questions and addressing concerns in both written exercises and role-plays with a colleague.

As in the fifth-grade training, advance contact and recruitment training were conducted using the FMS. As noted earlier, the FMS was used during all phases of data collection to enter information about the sampled children, teachers, and schools and to monitor production on all data collection activities. The field supervisors entered information into the FMS during training presentations, thus acquiring hands-on experience with the FMS and all field procedures prior to beginning data collection, in addition to completing role plays and exercises that involved entering information into the FMS.

5.2.4 Spring-Eighth Grade Direct Child Assessment Training

Field supervisors and test administrators were trained for the spring-eighth grade data collection in March 2007.

Field supervisor training. Field supervisor training preceded the test administrator training and lasted for one day. The topics covered in the field supervisor training session included an overview of study activities to date, a review of assignments, and interactive lectures on labeling and shipping school and teacher questionnaires to newly identified schools and teachers. As in earlier trainings, field supervisors were trained to use the FMS, and they practiced entering information into the FMS during training presentations. Twelve field supervisors completed training.

Test administrator training. The test administrator training sessions included an overview of study activities to date, interactive lectures based on the child assessments, practice scoring the child
assessment routing forms, reviewing materials from the fall school recruitment, role plays to practice contacting school coordinators, identifying and locating children who had moved from their eighth-grade schools identified in the fall, identifying the regular and special education teachers of ECLS-K children and linking them to those children, and distributing and following up on teacher questionnaires and school administrator questionnaires. A major goal of the test administrator training was to train field staff to properly conduct the assessments. This included reading the script word for word, correctly scoring the assessment routing forms, and identifying the appropriate second-stage form and labeling it correctly. Test administrators had multiple sessions to practice scoring the assessment routing forms, and identifying and labeling the second-stage form. The sessions provided trainees with hands-on experience with all the child assessment materials and procedures prior to data collection. Trainees practiced entering information into the FMS on laptop computers during training presentations. Test administrator training lasted 2 days. Field supervisors were also trained to perform all test administrator activities. A total of 217 test administrators and 12 field supervisors completed training.

5.3 2006 Eighth-Grade Data Collection Activities

Data collection activities in 2006 included obtaining parents' consent for their children to continue participating in the study and the schools they would attend, tracing households with outdated address information, conducting the parent interview, and contacting schools to recruit them into the study and arrange the spring data collection. The following sections discuss each of these data collection activities.

5.3.1 Obtaining Parent Consent

In mid-April 2006, advance packages were mailed to the 11,924 households eligible to participate in this round of the study. The package included a letter to the parents on ECLS-K stationery, a parent consent form that asked permission for continued participation in the study and asked the parent to confirm or provide school contact information for the school their sampled child would be attending in the upcoming school year (2006-07), and a parent newsletter with study results from elementary school years. Three weeks after mailing the parent advance package, a reminder postcard was mailed to all parents. By the second week in May, hard-copy consent forms had been received from 36 percent $(4,265)$ of the eligible households.

Beginning the second week in May and continuing through the end of December, interviewers telephoned all parents who had not responded to the advance mailing, obtained parent consent, and confirmed or updated school contact information. During this data collection period, parent consent was obtained either by the parent signing and returning the consent form or by recording spoken consent on the interviewer's laptop. Spoken consent was obtained by reading the permission form to the parent and asking her for consent to record her response to the request. If the parent agreed to give spoken consent, the interviewer read a statement from her laptop that identified the parent and child and stated that the parent had given permission to record her spoken consent. All consent recordings were verified by home office staff who listened to the recordings and, when verified, generated a hard-copy parent consent form with a proxy auto-signature of the verifier. For those parents from whom consent was not received and who did not have a telephone, in-person visits to the home were made to obtain their consent. By the end of December 2006, consent had been obtained from approximately 83 percent $(9,835)$ of eligible households.

5.3.2 Conducting the Parent Interview

Parent interview procedures mirrored those of previous rounds of data collection. The parent interview was conducted in the fall and winter of 2006 in order to first obtain parent consent and school information for the sampled child for any outstanding cases.

The parent interview was administered, primarily as a CAI telephone interview, from September 2006 through January 2007. For cases with parent consent still needed, interviewers attempted to obtain consent and complete a parent interview during the same call. Slightly over 34 percent of the parent interviews were completed in September, 34 percent in October, 18 percent in November, and over 6 percent in December and January. The parent interview averaged 45 minutes. As in previous rounds of data collection, the parent interview was conducted in person if the respondent did not have a telephone. Table 5-1 presents the number of parent interviews completed by mode and language. In eighth grade, slightly over 2 percent of all completed parent interviews were conducted in person; 9 percent of all completed parent interviews were conducted in a language other than English; and 89.4 percent of the latter were conducted in Spanish.

Table 5-1. Number and percent of completed parent interviews by data collection mode and language: School year 2006-07

	Spring-eighth grade	
Parent interviews	Number	Percent
Total interviews	8,809	100.0
\quad Complete	8,610	97.7
Partial	199	2.3
Mode of data collection	193	2.2
In person	8,417	95.6
By telephone	199	2.3
Mode unknown		
		88.9
Language of parent interview	7,827	8.0
English	701	0.9
Spanish	82	2.3
Other language	199	
Language unknown		

NOTE: Cases where mode and language of parent interview are unknown are cases that did not complete the parent interview. Since the mode and language of parent interview is the last question of the parent interview, cases that terminate early do not have these data recorded. SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

5.3.3 Fall Preassessment Contact

Beginning in September 2006, all schools confirmed or identified by parents while obtaining consent were contacted by telephone to prepare for the spring data collection. When children were identified as having transferred to another school, the child's new school (and district, if necessary) was recruited.

Advance mailings. In September 2006, an advance package was mailed via Federal Express to all identified schools asking them to prepare for the fall preassessment telephone call. The schools were asked to identify a school staff coordinator to serve as a liaison with the study. (In returning schools, this person was usually the coordinator from previous rounds of data collection.) The advance package contained study findings from previous rounds and an overview of eighth-grade data collection activities. The school coordinators were asked to complete an information form about the ECLS-K sampled children prior to the telephone call.

Preassessment contact. The fall preassessment contact was made by telephone between September and December 2006. The fall preassessment school contact was successful in meeting two important goals: (1) contacting original sampled schools to set up the spring assessment, and (2) identifying children who had withdrawn from their parent-reported schools and entered eighth-grade transfer schools. Schools were determined to be ineligible for eighth-grade data collection if no ECLS-K sampled children were currently enrolled. More original schools were determined to be ineligible as children transferred out of them into other schools. During the preassessment contact, the field supervisor contacted the school coordinator to schedule the dates of the assessment visits, identify ECLS-K sampled children who were no longer enrolled at the school, collect locating information for those children, identify each enrolled child's English teacher and mathematics or science teacher, and special education teacher, obtain information on special accommodations ${ }^{24}$ during assessment for the enrolled sampled child, and answer any questions that the school coordinator might have about the study.

Identifying ECLS-K sampled children who withdrew from the school. Field supervisors asked the school coordinators to identify ECLS-K children who had transferred out of the school. If the school records indicated where the children had transferred, then the field supervisor asked the school coordinator to provide the names, addresses, and telephone numbers of these transfer schools. Field supervisors entered this information into the FMS and the updated information was distributed to parent interviewers if the parent interview was not completed. Parent interviewers also contacted field supervisors when they were unable to locate a sampled child's parent/guardian after having exhausted all leads and asked the supervisor for any leads they may have received during the school recruitment phase. All children who transferred were followed to their new school and not subsampled as in previous years. (Refer to the ECLS-K Fifth-Grade Methodology Report (NCES 2006-037) (Tourangeau, Lê, and Nord 2005) for additional details on how transfer children were subsampled in prior rounds.) If the new school belonged to a district that was new to the study, the district was contacted and recruited before any contact was made with the school. If the district was already cooperating, the new school was contacted and recruited directly.

Reviewing information about ECLS-K sampled children. Field supervisors collected information from the school coordinators about the ECLS-K sampled children still enrolled in the school, including the child's current grade; the name and classroom for the child's English teacher and mathematics or science teacher; and whether or not the child had an Individualized Education Plan (IEP).

[^22]If the child had an IEP, then the name and classroom of the child's special education teacher was collected, along with whether the child required any accommodations to participate in the direct cognitive assessment. The accommodations in the eighth-grade direct cognitive assessment included all of those for the kindergarten, first-grade, third-grade, and fifth-grade direct cognitive assessments, with the addition of large print. Field supervisors contacted the teachers of the ECLS-K children as necessary for any of this information.

Contacting families of homeschooled children. As part of obtaining parent consent, the status of homeschooled children who were identified in rounds 1 through 6 was confirmed with their parents and updated as necessary. As parents of these children were contacted to obtain consent, they were asked to confirm that the child was still homeschooled or if the child had enrolled in a school. If the child had enrolled in a school, the new school was contacted and recruited into the study. Parents of children who were still schooled at home were notified about the next round of data collection in the spring.

Identifying the key child in classrooms with multiple study children. In fifth grade, the design of the child-level teacher questionnaire was changed to include collecting data about the child's reading class and mathematics or science class. The design of the eighth-grade child-level teacher questionnaire followed this model although English teachers rather that reading teachers were contacted. In elementary schools, children were primarily taught in intact classrooms, and teachers only reported classroom level information once for the classroom. Due to the design change in fifth grade, the teacherchild links were broadened to include the domain (reading, mathematics, or science) as well as information to identify the English, mathematics, or science classroom. In order to reduce data collection burden for teachers who were linked to multiple sampled children in the same class, a "Key Domain Child" was identified for each separate subject and class that each teacher taught. The teachers would be asked to report classroom-level information only once in the questionnaire for the key domain child and child-level information for all sampled children in that class. Field supervisors collected the teacher-child-domain-classroom link information about each child and entered the information into the FMS. The information was used to generate the hard-copy teacher questionnaires (see section 5.5.3 for more information on teacher questionnaire data collection). Refer to the ECLS-K Fifth-Grade Methodology Report (NCES 2006-037) (Tourangeau, Lê, and Nord 2005) for additional detail on the Key Child concept.

5.4 Tracing Activities During the Eighth-Grade Data Collection

In order to ensure that as many of the sampled children as possible were contacted for eighth-grade data collection, tracing activities were ongoing through all phases of data collection. Tracing began in April of 2006 when the parent consent packages were mailed and continued through the spring data collection. If the parent advance package was returned as undeliverable but had new address information, it was remailed to the parent at the new address and the updated address was added the ECLS-K tracking database. If the package was returned as undeliverable with no updated address information, this information was entered into the tracking database and appeared on the parent locating form generated for each case. Interviewers used the parent locating form to attempt to obtain updated telephone numbers and addresses while prompting for consent and conducting the parent interview. Locating efforts included calling all contacts identified on the locating form, using directory assistance and the Internet resources, and in person-visits to the last known address of the case to attempt to collect updated address information from neighbors.

$5.5 \quad$ Spring-Eighth Grade Data Collection

All children who were assessed during the base year or for whom a parent interview was completed in the base year were eligible to be assessed in the spring-eighth grade data collection, with four exceptions. They are (1) children who became ineligible in an earlier round (because they died or moved out of the country), (2) children who were subsampled out in previous rounds because they moved out of the original schools and were not subsampled to be followed, (3) children whose parents emphatically refused to cooperate (hard refusals) in any of the data collection rounds since springkindergarten, and (4) children in the eighth-grade sample for whom there were neither third-grade nor fifth-grade data. Eligibility for the study was not dependent on the child's current grade, that is, children were eligible whether they had been promoted to eighth grade or had been retained.

Test administrators received school assignments with a set of schools in or around a particular geographic area. An average assignment consisted of 13 schools. Each test administrator was responsible for all data collection activities in his or her assignment; they conducted the direct child assessments and collected all school and teacher questionnaires. A majority of the field staff hired for eighth-grade assessments were continuing from fall school recruiting or had worked on previous rounds
of ECLS-K data collection. Any staff hired with no prior experience on the study had experience on the National Assessment of Educational Progress (NAEP) in conducting group assessments.

5.5.1 Preassessment School Contact

Based on the information collected in the fall of 2006, packets of hard-copy teacher and school administrator questionnaires and instructions were assembled and mailed to schools beginning in January 2006, along with letters confirming the scheduled visits to the school. Teachers and school administrators were asked to complete the questionnaires and turn them in to the school coordinator for pickup by test administrators on assessment day.

Test administrators conducted preassessment activities by telephone starting in March 2007. The preassessment activities for these schools were similar to those conducted in previous rounds of data collection and included confirming the assessment date, the school's receipt of the hard-copy questionnaires, and arranging for space to conduct the assessments.

5.5.2 Conducting the Direct Child Assessments

The direct child assessments were conducted from March through early June 2007, the same time of year as in prior spring data collections. About 81 percent of the assessments were completed in March and April, about 18 percent were completed in May, and less than one percent were completed in June. In year-round schools, multiple assessment visits to the school were done, as needed, to assess all of the sampled children in each track.

The direct child assessments were usually conducted in a school classroom or library. Before conducting the assessments, test administrators set up the room for the assessments. The test administrator followed procedures for meeting the child(ren) at the test area as agreed upon during the preassessment contact with the school. In scheduling schools in the fall, attempts were made to schedule the direct child assessments at about the same point in time between the beginning and the end of the school year, to increase the likelihood that exposure to instruction would be about the same for all children. As noted earlier, the eighth-grade direct child assessments for reading, mathematics, and science were timed, two-stage, group-administered assessments. Test administrators read from a script for each
component of the assessment. The assessment routing forms were administered first in the following order: reading, mathematics, and science, and were timed for a total of 29 minutes. While the test administrators scored the assessment routing forms and identified and labeled the appropriate secondstage form for each domain, children were given 20 minutes to complete the student questionnaire. The second-stage assessments were administered in the following order: reading, mathematics and science, and were timed for a total of 51 minutes. The assessment session also included measurements of the sampled children's height and weight. The total time to complete all activities in an assessment session averaged slightly less than 2 hours. Participating children received a $\$ 15$ honorarium.

Table 5-2 displays the total number of completed child assessments during spring-eighth grade data collection. All of the assessments were completed in reading: 94.6 percent of assessments were completed with no accommodations required; 4.9 percent completed the assessment with some accommodation, and less than 0.5 percent were excluded from participating in the assessments.

Table 5-2. Completed child assessments, by accommodation, spring-eighth grade data collection: School year 2006-07

	Spring-eighth grade	
Characteristic	Number	Percent
Child assessments completed	9,358	100.0
No accommodation		
With accommodation	8,853	94.6
Excluded	460	4.9

${ }^{\text {I }}$ The term accommodation in this table is the field operational definition of accommodation, which includes the wearing of glasses and hearing aids. These types of aids were systematically tracked to ensure that every child had the same chance at a successful assessment. With this information, assessors could prompt a child (e.g., to get her glasses before being assessed). "Excluded" is a subcategory in this table because the assessment status of these children is a result of their IEP requirements and not due to a refusal or failure to locate. NOTE: This table does not include children who were subsampled out in fall- and spring-first grade and spring-third grade. These numbers should not be used to estimate child mobility.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

Accommodations and exclusions. Less than 1 percent of participating children in eighth grade were excluded from the direct child assessments. Children were excluded from the direct assessments if they had a disability (e.g., blindness or deafness), that could not be accommodated by the ECLS-K direct assessments, if their IEP prevented their participation in assessments, or they required an accommodation not offered by the ECLS-K assessments. Less than 5 percent of participating children required accommodations. Accommodations offered by the ECLS-K assessments in this round were as follows: alternative setting (e.g., special lighting, adaptive chair), scheduling, or timing; health care aide
present; the use of a personal assistive device, and large print. Table 5-3 presents the number of children excluded from or requiring an accommodation to the direct child assessment in the spring of eighth grade.

Table 5-3. Number of children excluded from or accommodated in the spring-eighth grade assessments: School year 2006-07

Category	Number of children
Exclusions	
Excluded for disability	41
Accommodation ${ }^{1}$	
Alternative setting accommodation	116
Scheduling/timing accommodation	150
Health care aide present	7
Personal assistive device	7
Large print	3
The term accommodation in this table includes only those accommodations offered during the assessment such as an alternative setting.	
SOURE: U.S. Department of Edducation, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of	
1998-99 (ECLS-K), spring 2007.	

5.5.3 Teacher and School Data Collection

Data were collected from school administrators, regular classroom teachers, and special education teachers from March through June 2007.

The school and teacher questionnaires were mailed to the school coordinators beginning in late January 2007 on a flow basis, depending on the school's scheduled assessment date. Using the teacher-child-domain-classroom linkage information collected in the fall, a packet of questionnaires was assembled for each English, mathematics, science, and special education teacher. The customized teacher questionnaire materials included a cover letter and a $\$ 25$ check attached to the teacher questionnaire, instruction sheets attached to the child-level questionnaires for each separate class, and a special education instruction sheet attached to the special education questionnaires (if appropriate). A packet of materials was also assembled for the school administrator. Packets were bundled together by school and mailed to the school coordinator for distribution. If the school or teacher and school administrator were not identified in the fall preassessment contact, then the field supervisor gathered the relevant information during the spring preassessment call and mailed the packets.

All teachers, including special education/service providers, received $\$ 25$ for completing child-level instruments for sampled children in their classrooms. Teachers completing questionnaires for more than 10 children in their classes received remunerations of up to $\$ 55$. Over 97 percent of teachers had fewer than 10 ECLS-K children.

On assessment day, after collecting completed questionnaires, the test administrator (TA) scanned the questionnaires to ensure that there were no missing critical items. During the field period, the TAs followed up with the school coordinator by making an in-person visit to the school or prompting by telephone to review the status of the incomplete or missing questionnaires.

5.6 Data Collection Quality Control

Continuous quality assurance procedures were employed during all data collection activities, with a particular focus on the assessments. The procedures were incorporated throughout all stages of the study (i.e., during instrument development, in the staff training program, and through parent validations).

Data collection quality control efforts began with the additional development and testing of redesigned sections of the CAI/CAPI applications and the FMS. As sections of these applications were reprogrammed, extensive testing of the entire system was conducted to verify that the systems were working properly from all perspectives. This testing included review by project design staff, statistical staff, and the programmers themselves. Quality control processes continued with the development of field procedures that maximized cooperation and thereby reduced the potential for nonresponse bias.

Quality control activities continued during training and data collection. During assessor training, field staff practiced conducting the parent interview in pairs and practiced multiple exercises on scoring the first stage of each assessment and affixing labels to the second stage of each assessment. When the fieldwork began, field supervisors made telephone calls to parents to validate the interview. The teacher and school questionnaire packages were reviewed for accuracy at 100 percent to ensure the correct questionnaires were sent to the schools for distribution and completion.

5.6.1 Quality Control on the Child Assessment

The mode of assessment administration changed in eighth-grade from a one-on-one, CAI-with-easels assessment administration to a group-administered, timed, hard-copy assessment. The hardcopy assessment was a two-stage assessment with a routing assessment for each of three domains, reading, mathematics, and science, and two levels of the second-stage assessment for each domain. TAs had to administer the routing assessment, score the three domains, and identify the appropriate secondstage assessment by domain and affix a label with a child's name and identification number. In the training session, TAs practiced this process multiple times to be able to quickly and accurately score and label assessment forms in the field. All trainees were proficient on the process after completing training.

TAs accuracy in identifying the appropriate assessment forms was examined during the field period by comparing the child's' routing test score and the assessment form the TA labeled for the child. TAs identified the appropriate second-stage assessment with over 99 percent accuracy for each assessment domain: 99.2 percent accuracy for the reading assessment; 99.3 percent accuracy for the science assessment; and 99.5 percent accuracy for the mathematics assessment.

5.6.2 Validation of Parent Interviews

Approximately 10 percent of the respondents who completed parent interviews were selected for a short re-interview conducted by a field supervisor (i.e., a "validation" interview). The first parent interview completed by an interviewer was always selected for validation. Over the course of the field period, a running count of an interviewer's completed parent interviews was maintained, and each tenth completed parent interview was selected for validation, thus ensuring that 10 percent of each interviewer's cases were selected for validation. The parent validation was approximately 5 minutes long and was conducted by telephone. In spring-eighth grade, a total of 834 parent interviews were validated with 75.8 percent reporting the same answers as in the original interview. Field supervisors used a standardized parent validation script to make validation calls to parents. The script covered the following topics:

- verification of the child's full name, date of birth, and sex; and
- seven questions repeated from the parent interview.

Field supervisors noted if the validation check was completed with no changes, with "minor" changes, or with "major" changes. "Minor" changes include spelling of parent name, child's name, parent's address or telephone number, child's date of birth, or child's gender. "Major" changes include any changes to the question responses.

Table 5-4 shows the results of parent interview validations. Discrepancies between parents' responses during the original parent interview and those during the validation may reflect differences in respondent recall, respondent interpretation of the question, or actual change in the data, rather than a validation issue. Feedback from supervisors indicated that two validation items may reflect some of these differences, rather than true validation issues. As a result, the results for major changes may be overreported.

Table 5-4. Results of parent interview validations: School year 2006-07

Parent interview	September		October		November		December		January	
	Number	Percent								
Total complete	2,727	100.0	5,621	100.1	7,610	100.0	7,973	100.0	8,681	100.0
Validation cases generated	272		593	10.5	763	10.0	807	10.1	898	10.3
Validation cases receipted	93	34.2	388	65.4	677	88.7	734	91.0	834	92.9
No changes	83	89.2	31	80.7	516	76.2	556	75.7	632	75.8
Minor changes	3		26	6.7	44	6.5	44	6.0	45	5.4
Major changes	7		49	12.6	117	17.3	134	18.3	157	18.8
Other (specify)	0		0	0.0	0	0.0	0	0.0	0	0.0
Cases pending	179	65.8	20	34.6	86	11.3	73	9.0	64	7.1

[^23]
5.7 Spring-Eighth Grade Completion Rates

Since data were collected from schools, parents, teachers, and children, there were many opportunities for sources to contribute differentially to nonresponse, and this is reflected in the varying completion rates in the tables in this section. These completion rates differ not only by survey instruments, but within each survey instrument they differ also by school and child characteristics.

In this section, eighth-grade completion rates are presented for three groups of children: (1) children sampled in kindergarten, (2) children sampled in first grade through the freshening procedure, and (3) both groups combined. Completion rates for the eighth-grade data collection were computed with the same procedures used for spring-first grade, spring-third grade, and spring-fifth grade to allow for comparisons of completion rates for the four rounds of data collection following the base year. For spring-first grade and spring-third grade, the sample of children is the same: base-year respondents (i.e., children who had either a fall- or spring-kindergarten child assessment or parent interview) and children sampled in spring-first grade as part of sample freshening as described in section 4.3.2. For spring-fifth grade, the sample of children was reduced to exclude base-year respondents who belonged in the following special groups: (1) children who became ineligible in an earlier round (because they died or moved out of the country), (2) children who were subsampled out in previous rounds because they moved out of the original schools and were not subsampled to be followed, (3) children whose parents emphatically refused to cooperate (hard refusals) in any of the data collection rounds since springkindergarten, and (4) children eligible for the third-grade sample for whom there are neither first-grade nor third-grade data. Among the 21,357 children who were eligible for the study after the base year, 16,143 were part of the fifth-grade data collection. For spring-eighth grade, only the 12,129 children who were still eligible after the fifth-grade data collection were fielded; they included both fifth grade respondents and eligible nonrespondents. Weighted completion rates were computed using the eighthgrade base weight (i.e., inverse of selection probabilities) adjusted for previous round movers, but not adjusted for nonresponse.

5.7.1 Children Sampled in Kindergarten

Tables 5-5 to 5-7 present weighted and unweighted child-level completion rates for springeighth grade data collection, broken out by school characteristics. ${ }^{25}$ These rates pertain to children who were sampled as part of the kindergarten cohort in the base year. For the ECLS-K, a completion rate is a response rate conditioned on the results of an earlier stage of data collection. For the group of children sampled in kindergarten, all completion rates are conditioned on the case having been a base-year respondent and retained in the eighth-grade data collection.

In general, completion rates for eighth grade are lower than in previous year. Even though hard-to-field cases ${ }^{26}$ from the fifth-grade collection were excluded, the completion rates are lower for three main reasons: (1) the eighth-grade data collection occurred three years after the fifth-grade data collection, making it harder to find respondents, (2) the children were older and could refuse to cooperate at a much higher rate than younger children, and (3) the change in the field procedure in which explicit parent consent had to be obtained before the children could be approached.

Table 5-5 shows that the completion rates for the child assessment are higher in public schools than in private schools. Within the private school category, the difference in the rates is not as large. Excluding the "unknown" category, the complete for the child assessment rates range from 82.7 percent for children in non-Catholic private schools to 97.1 percent for children in schools in small towns. The pattern of completion rates is similar or the parent interviews, ranging from 76.5 percent for children in non-Catholic private schools to 89.2 percent for children in schools in large towns, excluding the "unknown" category. The "unknown" category includes children who were unlocatable as their whereabouts were unknown. The category "unknown" also includes 48 children who were homeschooled and thus had no information concerning schools.

Table 5-6 shows that the overall weighted completion rates are 75.3 for the student questionnaire, 73.3 percent for the school administrator questionnaire, and 74.5 for the teacher-level questionnaire. Excluding the "unknown" category, the completion rates for the student questionnaire follow the same pattern of the rates for child assessment with the lowest rate for children in non-Catholic schools (82.0 percent) to the highest rate for children who were not in schools in cities or their surrounding areas (in this case 96.2 percent in the rural area outside the Metropolitan Statistical Areas).

[^24]The pattern of completion rates for the school and teacher instruments is somewhat different. For the school administrator questionnaire, the rates range from 80.4 percent for schools with the highest minority enrollment to 97.0 percent for schools with the lowest minority enrollment. This is a phenomenon observed in previous rounds for the school administrator questionnaire.

Table 5-7 shows that the rates for the child-level teacher questionnaires. All three of these subject-specific teacher questionnaires were completed at an overall rate of 72 or 73 percent. Excluding the "unknown" category, the completion rates for the child-level teacher questionnaires are as follows: 80.4 percent (large city) to 97.3 percent (small town) for English; 77.2 percent (large city) to 97.3 percent (small town) for mathematics, and 79.2 percent (non-Catholic private or large city) to 93.7 percent (high total enrollment) for science. These rates are not as high as in fifth grade but higher than in third grade, most likely due to the higher incentives employed in fifth grade and carried on to eighth grade.

Table 5-5. Number of completed child-level cases and child-level completion rates for the child assessment and parent interview for children sampled in the base year, by school characteristics: School year 2006-07

School characteristic ${ }^{1}$	Child assessment			Parent interview		
	Completes ${ }^{2}$	Completion rate		Completes ${ }^{3}$	Completion rate	
		Weighted	Unweighted		Weighted	Unweighted
All schools	9,296	75.7	77.9	8,755	71.7	73.4
School affiliation						
Public	7,662	93.6	93.9	6,968	85.2	85.4
Private	1,576	83.9	85.6	1,483	77.8	80.5
Catholic	963	85.0	84.4	911	78.9	79.8
Other private	613	82.7	87.4	572	76.5	81.6
Unknown	58	3.1	3.0	304	16.8	15.8
Type of locale						
Large city	1,250	88.0	87.4	1,105	78.4	77.3
Mid-size city	1,434	93.5	92.0	1,327	85.9	85.1
Urban fringe of large city	2,291	89.3	90.1	2,106	82.9	82.8
Urban fringe of mid-size city	938	94.6	95.0	869	84.2	88.0
Large town	212	95.5	95.5	201	89.2	90.5
Small town	903	97.1	96.6	812	88.3	86.8
Rural-outside MSA	1,040	95.0	94.4	966	86.6	87.7
Rural—inside MSA	984	94.8	95.6	905	87.3	87.9
Unknown	244	9.6	11.5	464	21.3	21.9
School size (total enrollment)						
1 to 299	1,470	89.8	88.9	1,377	83.1	83.3
300 to 499	1,816	90.8	89.9	1,661	82.3	82.3
500 to 749	2,326	92.6	92.5	2,134	84.3	84.9
750 or more	1,883	95.4	96.5	1,708	86.5	87.5
Unknown	1,801	44.3	47.5	1,875	48.2	49.5

Table 5-5. Number of completed child-level cases and child-level completion rates for the child assessment and parent interview for children sampled in the base year, by school characteristics: School year 2006-07-Continued

School characteristic ${ }^{1}$	Child assessment			Parent interview		
	Completes ${ }^{2}$	Completion rate		Completes ${ }^{3}$	Completion rate	
		Weighted	Unweighted		Weighted	Unweighted
Percent non-White enrolled						
0-10	2,654	94.3	93.7	2,475	86.9	87.4
11-49	3,573	93.5	93.5	3,338	86.9	87.3
50-89	1,672	92.7	92.1	1,492	83.7	82.2
90-100	1,320	90.0	89.4	1,128	76.7	76.4
Unknown	77	3.5	3.9	322	17.2	16.2
Region						
Northeast	1,710	92.3	91.3	1,560	83.0	83.3
Midwest	2,590	93.6	93.1	2,443	87.7	87.8
South	3,022	91.6	92.4	2,734	82.4	83.6
West	1,941	93.1	92.2	1,734	85.1	82.3
Unknown	33	1.8	1.7	284	16.2	15.0

${ }^{1}$ School characteristics are for schools attended by children in the ECLS-K eighth-grade sample and are based on ECLS-K survey data, not data from the sampling frame.
${ }^{2}$ English, mathematics, or science assessment was scorable, or child was disabled and could not be assessed, or child had student questionnaire data or height and weight data.
${ }^{3}$ Family structure portion of parent interview was completed.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

Table 5-6. Number of completed child-level cases and child-level completion rates for the student questionnaire, school administrator questionnaire, and teacher-level questionnaire for children sampled in the base year, by school characteristics: School year 2006-07

School characteristic ${ }^{1}$	Student questionnaire			School administrator questionnaire			Teacher-level questionnaire		
	Completes ${ }^{2}$	Completion rate		Completes ${ }^{2}$	Completion rate		Completes ${ }^{2}$	Completion rate	
		Weighted	Unweighted		Weighted	Unweighted		Weighted	Unweighted
All schools	9,244	75.3	77.5	9,200	73.3	77.0	9,147	74.5	77.0
School affiliation									
Public	7,617	93.2	93.3	7,434	90.0	90.9	7,560	92.1	92.6
Private	1,569	83.6	85.2	1,749	90.4	95.0	1,563	83.1	84.9
Catholic	961	84.9	84.2	1,086	92.9	95.2	960	84.7	84.1
Other private	608	82.0	86.7	663	87.6	94.6	603	81.3	86.0
Unknown	58	3.1	3.0	17	0.8	0.9	24	1.3	1.3
Type of locale									
Large city	1,241	87.5	86.8	1,258	81.4	87.1	1,194	83.0	83.5
Mid-size city	1,429	93.3	91.7	1,455	92.8	93.3	1,419	92.2	91.0
Urban fringe of large city	2,276	88.9	89.5	2,280	87.4	89.6	2,256	87.6	88.7
Urban fringe of mid-size city	937	94.5	94.9	940	93.6	95.2	932	93.6	94.4
Large town	211	95.2	95.0	216	96.3	97.3	212	95.5	95.5
Small town	895	96.2	95.7	854	92.6	91.3	904	97.9	96.7
Rural-outside MSA	1,031	94.1	93.6	1,030	93.6	93.5	1,042	94.9	94.6
Rural-inside MSA	980	94.7	95.2	959	91.7	93.2	978	93.6	95.0
Unknown	244	9.6	11.5	208	7.7	9.8	210	8.2	10.1
School size (total enrollment)									
1 to 299	1,463	89.4	88.5	1,586	93.7	95.9	1,456	88.4	88.0
300 to 499	1,805	90.3	89.4	1,864	89.5	91.7	1,798	89.5	89.1
500 to 749	2,312	92.2	92.0	2,298	91.1	91.4	2,301	91.7	91.5
750 or more	1,870	94.9	95.8	1,805	90.7	92.5	1,883	95.2	96.5
Unknown	1,794	44.2	47.3	1,647	40.2	43.5	1,709	42.2	45.7

See notes at end of table.

Table 5-6. Number of completed child-level cases and child-level completion rates for the student questionnaire, school administrator questionnaire, and the teacher-level questionnaire for children sampled in the base year, by school characteristics: School year 2006-07-Continued

School characteristic ${ }^{1}$	Student questionnaire			School administrator questionnaire			Teacher-level questionnaire		
	Completes ${ }^{2}$	Completion rate		Completes ${ }^{2}$	Completion rate		Completes ${ }^{2}$	Completion rate	
		Weighted	Unweighted		Weighted	Unweighted		Weighted	Unweighted
Percent non-White enrolled									
0-10	2,642	93.9	93.3	2,754	97.0	97.2	2,649	94.3	93.5
11-49	3,548	93.0	92.8	3,601	91.9	93.8	3,562	92.9	93.2
50-89	1,664	92.3	91.6	1,607	87.0	88.5	1,630	89.5	89.8
90-100	1,315	89.8	89.1	1,209	80.4	81.9	1,270	86.2	86.0
Unknown	75	3.5	3.8	29	1.2	1.5	36	1.6	1.9
Region									
Northeast	1,705	92.1	91.1	1,729	90.1	91.7	1,677	89.7	89.6
Midwest	2,569	93.0	92.3	2,677	94.8	96.2	2,583	93.1	92.8
South	3,004	91.2	91.8	2,935	87.9	89.7	2,995	90.4	91.6
West	1,933	92.9	91.8	1,859	88.0	88.3	1,892	90.9	89.8
Unknown	33	1.8	1.7	0	0.0	0.0	0	0.0	0.0

${ }^{1}$ School characteristics are for schools attended by children in the ECLS-K third-grade sample and are based on ECLS-K survey data, not data from the sampling frame.
${ }^{2}$ A completed questionnaire was defined as one that was not completely left blank.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of $1998-99$ (ECLS-K), spring 2007.

Table 5-7. Number of completed child-level cases and child-level completion rates for the child-level teacher questionnaires for children sampled in the base year, by school characteristics: School year 2006-07

School characteristic ${ }^{1}$	Child-level English teacher questionnaire			Child-level mathematics teacher questionnaire			Child-level science teacher questionnaire		
	Completes ${ }^{2}$	Completion rate		Completes ${ }^{2}$	Completion rate		Completes ${ }^{2}$	Completion rate	
		Weighted	Unweighted		Weighted	Unweighted		Weighted	Unweighted
All schools	8,957	73.2	75.4	4,449	71.6	75.2	4,459	73.3	74.8
School affiliation									
Public	7,394	90.5	90.6	3,670	89.4	90.0	3,664	89.1	89.7
Private	1,539	81.5	83.6	769	82.6	84.0	781	82.1	84.3
Catholic	935	81.7	81.9	459	83.6	82.1	489	84.6	84.0
Other private	604	81.3	86.2	310	81.6	86.8	292	79.2	84.9
Unknown	24	1.3	1.3	10	0.9	1.1	14	1.8	1.5
Type of locale									
Large city	1,158	80.4	81.0	557	77.2	79.9	582	79.2	79.4
Mid-size city	1,391	90.8	89.2	710	90.1	88.9	685	91.6	90.1
Urban fringe of large city	2,228	86.8	87.6	1,097	84.2	86.0	1,105	86.8	87.2
Urban fringe of mid-size city	894	90.1	90.6	448	90.3	91.2	453	88.5	91.3
Large town	200	88.1	90.1	109	96.2	94.8	99	84.9	92.5
Small town	894	97.3	95.6	427	97.3	94.7	451	91.7	93.2
Rural—outside MSA	1,025	93.6	93.0	519	93.8	93.5	498	91.6	91.0
Rural-inside MSA	959	92.3	93.2	483	92.1	93.2	477	92.9	93.3
Unknown	208	8.1	10.1	99	6.9	9.7	109	9.4	10.4
School size (total enrollment)									
1 to 299	1,429	86.1	86.4	709	87.0	87.0	721	85.3	85.9
300 to 499	1,774	88.2	87.9	890	87.8	88.1	882	87.9	87.4
500 to 749	2,247	90.0	89.4	1,077	88.1	86.7	1,134	87.6	89.2
750 or more	1,848	94.1	94.7	944	93.7	95.4	903	93.7	93.8
Unknown	1,659	41.4	44.4	829	38.7	44.5	819	42.9	43.7

See notes at end of table.

Table 5-7. Number of completed child-level cases and child-level completion rates for the child-level teacher questionnaires for children sampled in the base year, by school characteristics: School year 2006-07-Continued

School characteristic ${ }^{1}$	Child-level English teacher questionnaire			Child-level mathematics teacher questionnaire			Child-level science teacher questionnaire		
	Completes ${ }^{2}$	Completion rate		Completes ${ }^{2}$	Completion rate		Completes ${ }^{2}$	Completion rate	
		Weighted	Unweighted		Weighted	Unweighted		Weighted	Unweighted
Percent non-White enrolled									
0-10	2,640	94.1	93.2	1,295	93.8	92.5	1,324	91.9	92.5
11-49	3,477	90.9	91.0	1,759	90.7	91.7	1,730	91.1	90.9
50-89	1,599	88.3	88.1	784	85.0	85.3	785	87.5	87.5
90-100	1,206	82.4	81.7	592	81.3	81.7	603	79.5	80.3
Unknown	35	1.6	1.8	19	1.7	2.0	17	1.6	1.7
Region									
Northeast	1,651	88.5	88.2	825	89.3	88.6	840	88.5	89.3
Midwest	2,539	91.6	91.3	1,233	90.3	90.9	1,308	92.9	91.8
South	2,956	89.5	90.4	1,486	88.9	90.0	1,430	86.9	88.3
West	1,811	87.3	86.0	905	85.1	85.0	881	85.0	84.6
Unknown	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0

[^25]Tables $5-8$ to $5-10$ show the completion rates by mover status. Unlike previous years in which only a subsample of movers was followed into their new schools, the eighth-grade data collection followed all movers. The number of movers is larger than the number of nonmovers as children left their elementary schools for middle schools. Because of these changes, the rates are no longer comparable to rates in earlier years. In earlier years, nonmovers responded at a higher rate than movers. This is not the case for eighth grade. Not only the number of nonmovers is much smaller, but they also responded at a lower rate, 73.4 percent compared with 81 percent for movers, in the case of the child assessment. Since all movers were followed and highly successfully located, the difference between the completion rates of located movers and unlocated movers was not as large as shown in previous years. Of those who moved, 97 percent were located. There are cases whose mover status was unknown. These are children whose parents refused consent for their children to be approached for data collection, and the whereabouts of the children were not traced. The parent interview completion rates are 67.8 percent for nonmovers and 76.6 percent for movers. The difference in the rates between located movers and all movers is minimal, again because almost all movers were successfully located. There is the peculiar case of a high completion rate of unlocated movers. Even though children could not be located for the child assessment, a parent interview was conducted by telephone, leading to the 91 percent response rate for this category. The same is true for the cases of children with unknown mover status; 43 cases had parent interviews that apparently did not have information about where their children went to school. The pattern of completion rates by mover status is the same for the student questionnaire and the teacher questionnaires. The school administrator questionnaire is the only one where the completion rate for nonmovers is higher than for movers, a 10 percent difference. This can be explained by the fact that movers were not always assessed in schools so that the school administrator questionnaire could be administered; schools where nonmovers attended had been in the sample for a long time and tend to cooperate more than schools that were new to the sample, had a lower level of commitment to the ECLS-K, and often refused to complete the school administrator questionnaire.

Table 5-8. Number of completed child-level cases and child-level completion rates for the child assessment and parent interview for children sampled in the base year, by mover's status: School year 2006-07

Mover status	Child assessment			Parent interview		
	Completes ${ }^{1}$	Completion rate		Completes ${ }^{2}$	Completion rate	
		Weighted	Unweighted		Weighted	Unweighted
All children	9,296	75.7	77.9	8,755	71.7	73.4
Mover status						
Mover	7,868	81.0	88.4	7,385	76.6	83.0
Located	7,868	83.3	90.6	7,204	76.2	82.9
Not located	0	0.0	0.0	181	91.2	85.8
Nonmover	1,428	73.4	75.7	1,327	67.8	70.3
Unknown	0	0.0	0.0	43	3.7	3.8

${ }^{1}$ English, mathematics, or science assessment was scorable, or child was disabled and could not be assessed, or child had student questionnaire data or height and weight data.
${ }^{2}$ Family structure portion of parent interview was completed.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

Table 5-9. Number of completed child-level cases and child-level completion rates for the student questionnaire, school administrator questionnaire, and the teacher-level questionnaire for children sampled in the base year, by mover's status: School year 2006-07

Mover status	Student questionnaire			School administrator questionnaire			Teacher-level questionnaire		
	Completes ${ }^{1}$	Completion rate		Completes ${ }^{1}$	Completion rate		Completes ${ }^{1}$	Completion rate	
		Weighted	Unweighted		Weighted	Unweighted		Weighted	Unweighted
All children	9,244	75.3	77.5	9,200	73.3	77.0	9,147	74.5	77.0
Mover status									
Mover	7,824	80.7	87.9	7,498	77.1	84.3	7,719	79.8	87.3
Located	7,824	83.0	90.1	7,498	79.6	86.6	7,719	82.1	89.4
Not located	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
Nonmover	1,420	72.9	75.3	1,702	87.1	90.2	1,428	73.4	75.7

[^26]Table 5-10. Number of completed child-level cases and child-level completion rates for the child-level teacher questionnaires for children sampled in the base year, by child's mover status: School year 2006-07

Mover status	Child-level English teacher questionnaire			Child-level mathematics teacher questionnaire			Child-level science teacher questionnaire		
	Completes ${ }^{1}$	Completion rate		Completes ${ }^{1}$	Completion rate		Completes ${ }^{1}$	Completion rate	
		Weighted	Unweighted		Weighted	Unweighted		Weighted	Unweighted
All children	8,957	73.2	75.4	4,449	71.6	75.2	4,459	73.3	74.8
Mover status									
Mover	7,542	78.3	85.3	3,753	76.2	84.6	3,746	78.6	85.0
Located	7,542	80.6	87.4	3,753	78.5	86.6	3,746	80.8	87.2
Not located	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0
Nonmover	1,415	72.7	75.0	696	72.3	74.4	713	72.6	74.9
Unknown	0	0.0	0.0	0	0.0	0.0	0	0.0	0.0

[^27]SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

Table 5-11. Number of completed child-level cases and child-level completion rates for the child assessment and parent interview for children sampled in the base year, by child characteristics: School year 2006-07

Child characteristics ${ }^{1}$	Child assessment			Parent interview		
	Completes ${ }^{2}$	Completion rate		Completes ${ }^{3}$	Completion rate	
		Weighted	Unweighted		Weighted	Unweighted
All children	9,296	75.7	77.9	8,755	71.7	73.4
Sex						
Male	4,684	75.6	77.5	4,434	72.1	73.4
Female	4,612	75.7	78.3	4,321	71.2	73.4
Race/ethnicity						
White, non-Hispanic	5,719	80.9	83.9	5,480	78.0	80.4
Black, non-Hispanic	951	66.6	70.2	834	59.4	61.5
Hispanic	1,602	71.0	71.6	1,486	65.8	66.5
Asian	516	59.9	61.0	474	55.6	56.0
Pacific Islander	107	73.1	69.9	90	59.3	58.8
American Indian or Alaska Native	183	80.1	81.7	184	82.7	82.1
Other	210	71.9	74.2	198	69.8	70.0
Unknown	8	50.0	47.1	9	71.2	52.9
Year of birth						
1992	2,733	74.3	78.0	2,586	71.0	73.8
1993	6,513	76.3	77.9	6,122	72.0	73.2
Other/unknown	50	70.1	78.1	47	65.8	73.4

[^28]${ }^{2}$ English, mathematics, or science assessment was scorable, or child was disabled and could not be assessed, or child had student questionnaire data or height and weight data.
${ }^{3}$ Family structure portion of parent interview was completed.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

Table 5-12. Number of completed child-level cases and child-level completion rates for the student questionnaire, school administrator questionnaire, and teacher-level questionnaire for children sampled in the base year, by child characteristics: School year 2006-07

Child characteristic ${ }^{1}$	Student questionnaire			School administrator questionnaire			Teacher-level questionnaire		
	Completes ${ }^{2}$	Completion rate		Completes ${ }^{2}$	Completion rate		Completes ${ }^{2}$	Completion rate	
		Weighted	Unweighted		Weighted	Unweighted		Weighted	Unweighted
All children	9,244	75.3	77.5	9,200	73.3	77.0	9,147	74.5	77.0
Sex									
Male	4,653	75.3	77.0	4,622	72.7	76.7	4,608	74.5	76.8
Female	4,591	75.4	78.0	4,578	74.0	77.6	4,539	74.6	77.3
Race/ethnicity									
White, non-Hispanic	5,684	80.5	83.4	5,798	80.5	85.2	5,673	80.5	83.6
Black, non-Hispanic	947	66.4	69.9	873	60.1	64.3	924	64.6	68.4
Hispanic	1,595	70.7	71.3	1,526	66.7	68.1	1,549	68.8	69.6
Asian	512	59.6	60.5	514	58.7	60.8	503	59.1	59.7
Pacific Islander	107	73.1	69.9	91	63.5	59.1	108	74.2	71.1
American Indian or Alaska									
Native	181	79.2	80.8	184	79.8	81.8	180	78.1	80.7
Other	210	71.9	74.2	208	69.3	73.2	204	70.3	72.3
Unknown	8	50.0	47.1	6	22.9	20.7	6	36.3	35.3
Year of birth									
1992	2,708	73.8	77.3	2,756	73.0	78.8	2,696	73.5	77.4
1993	6,490	76.1	77.6	6,393	73.5	76.4	6,404	75.1	76.9
Other/unknown	46	65.6	71.9	51	55.1	68.9	47	63.2	74.6

[^29]${ }^{2}$ A completed questionnaire was defined as one that was not completely left blank.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99
(ECLS-K), spring 2007.

Table 5-13. Number of completed child-level cases and child-level completion rates for the teacher-level questionnaires for children sampled in the base year, by child's mover status: School year 2006-07

Child characteristic ${ }^{1}$	Child-level English teacher questionnaire			Child-level mathematics teacher questionnaire			Child-level science teacher questionnaire		
	Completion rate			Completes ${ }^{2}$	Completion rate		Completes ${ }^{2}$	Completion rate	
	Completes ${ }^{2}$	Weighted	Unweighted		Weighted	Unweighted		Weighted	Unweighted
All children	8,957	73.2	75.4	4,449	71.6	75.2	4,459	73.3	74.8
Sex									
Male	4,511	73.1	75.1	2,240	71.9	75.3	2,255	73.2	74.5
Female	4,446	73.3	75.7	2,209	71.4	75.1	2,204	73.3	75.2
Race/ethnicity									
White, non-Hispanic	5,600	79.6	82.6	2,787	78.7	82.4	2,792	79.5	82.1
Black, non-Hispanic	912	64.1	67.6	435	58.0	65.8	449	65.2	65.2
Hispanic	1,485	66.0	66.7	730	65.5	66.1	748	65.4	66.7
Asian	489	57.8	58.0	247	59.2	59.1	238	55.1	56.0
Pacific Islander	102	70.4	67.1	60	73.3	69.0	46	73.5	70.8
American Indian or Alaska									
Native	164	71.9	73.5	94	75.2	79.0	78	74.9	75.0
Other	199	69.2	70.6	93	64.2	66.9	105	69.7	73.4
Unknown	6	36.3	35.3	3	51.5	37.5	3	18.9	33.3
Year of birth									
1992	2,656	72.2	76.3	1,315	71.0	76.8	1,331	73.1	75.3
1993	6,256	73.8	75.1	3,114	72.0	74.6	3,105	73.4	74.7
Other/unknown	45	60.8	71.4	20	48.5	69.0	23	63.9	67.6

[^30]${ }^{2}$ A completed questionnaire was defined as one that was not completely left blank.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

Tables 5-11 to 5-13 present child-level weighted and unweighted completion rates for the spring-eighth grade data collection for children who were sampled as part of the kindergarten cohort in the base year, this time broken out by child characteristics. When the "unknown" categories are not included, the differences in completion rates by sex and by year of birth are within 2 percentage points, but for race and ethnicity they are more substantial. Table 5-11 shows that the child assessment completion rate was highest for Whites (80.9 percent) and lowest for Asians (59.9 percent), a reverse in the trend of earlier years. The low response rate for Asians persists for other instruments as well. The unweighted sample of Asians is about 8 percent, about the same proportion as in earlier years. Their moving pattern is the same as in previous years; their relative moving rate is about 50 percent higher compared with fifth grade, the same as their minority counterparts (Hispanics and American Indians ${ }^{27}$). Therefore, the drop in the completion rates cannot be attributed to a change in the sample. The highest completion rate is for White, uniform across all instruments. American Indians have a higher completion rate for the parent interview, but the sample size for this group is so small that it should not be compared with Whites.

In addition to the child assessment, parent interview, student questionnaire, school administrator questionnaire, and teacher questionnaires (for which completion rates have been summarized in the preceding paragraphs), data were also collected in eighth grade from special education teacher questionnaires for children who had special education teachers. Table 5-14 presents counts of completes and weighted and unweighted completion rates at the overall child level for the special education teacher questionnaires A and B . Although the number of special education teacher questionnaires is small, its completion rates are high, 93.9 percent for part A , which captures teacher information, and 94.7 percent for part B, which relates to children who receive individualized special education services. These rates are not broken down by school and child characteristics because of the small sample sizes.

Table 5-14. Number of completed instruments and child-level completion rates for the special education teacher questionnaires for children sampled in the base year: School year 2006-07

		Completion rates	
Category	Completes	Weighted	Unweighted
Special education part A^{1}	812	93.9	94.5
Special education part B^{1}	820	94.7	95.5

${ }^{1}$ A completed instrument was defined as one that was not completely left blank.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 199899 (ECLS-K), spring 2007.

[^31]
5.7.2 Children Sampled in First Grade

In spring-first grade the child sample was freshened to include first-graders who had no chance of selection in the base year because they had not attended kindergarten in the United States or had been in first grade in the fall of 1998. (For a detailed description of the freshening procedure see section 4.3.2.) This same group of children was followed into spring-eighth grade, unless they belonged in the fifth-grade excluded groups or they became ineligible after fifth grade. Nonresponse in the freshened child sample could occur at two stages: during the procedure for sampling schools for freshening and identifying children to be used as freshening links in spring-first grade (first component) and then during data collection from the freshened children in spring-eighth grade (second component). The first component alone can further be decomposed into two sources: attrition due to the refusal of entire schools to implement the freshening procedure (the school term), and attrition because ECLS-K sampled children had moved to other schools (the child term). To contain costs, children who transferred from schools targeted for freshening were not used as links to identify freshened children, even when they were otherwise followed for data collection. These movers were considered freshening nonrespondents in the child term.

Table 5-15 presents weighted and unweighted completion rates for freshened children. The two components of the completion rates are presented separately in table 5-15. The overall completion rates (i.e., the third set of rates in the table) are the products of the two components. The first component is separated into a school term and a child term as described earlier. For this component, the completion rate is defined as the freshening completion rates, as opposed to the survey instrument completion rates found in the second component. The weighted freshening completion rate for children in schools targeted for freshening (the school term) is 77.6 percent. As part of the freshening process, schools were asked to prepare an alphabetic roster of children enrolled in first grade. These schools were also requested to identify which children did not attend kindergarten the previous year. Schools did not participate in the freshening process because they either refused or were unable to provide the requested information. Within the schools that agreed to freshen, the freshening completion rate is 99.2 percent, the slight loss due to children who transferred to other schools (the child term). Multiplying these two terms together gives a first component completion rate of 77 percent. Note that the first component rate for spring-eighth grade is not identical to the first component rate for earlier grades because of the exclusion of children in special groups as explained in section 4.7.

Table 5-15. Number of completed child-level cases and child-level completion rates for children sampled in first grade: School year 2006-07

Category	Completes	Completion rate ${ }^{1}$	
		Weighted	Unweighted
First component (first-grade sample freshening)	5,384	77.0	85.9
School term ${ }^{2}$	5,405	77.6	86.2
Child term ${ }^{3}$	5,384	99.2	99.6
Second component (eighth-grade data collection)			
Child assessment ${ }^{4}$	62	60.9	63.9
Parent interview ${ }^{5}$	54	51.5	55.7
Student questionnaire ${ }^{6}$	62	60.9	63.9
School administrator questionnaire ${ }^{6}$	62	54.4	62.6
Teacher-level questionnaire ${ }^{6}$	63	60.1	64.9
English teacher questionnaire (child level) ${ }^{6}$	61	58.6	62.9
Mathematics teacher questionnaire (child level) ${ }^{6}$	33	56.8	66.0
Science teacher questionnaire (child level) ${ }^{6}$	27	54.5	57.4
Special education part A^{6}	10	86.1	83.3
Special education part B^{6}	10	86.1	83.3
Overall completion rate			
Child assessment ${ }^{4}$	62	46.9	54.9
Parent interview ${ }^{5}$	54	39.6	47.8
Student questionnaire ${ }^{6}$	62	46.9	54.9
School administrator questionnaire ${ }^{6}$	62	41.9	53.7
Teacher-level questionnaire ${ }^{6}$	63	46.3	55.7
English teacher questionnaire (child level) ${ }^{6}$	61	45.1	54.0
Mathematics teacher questionnaire (child level) ${ }^{6}$	33	43.7	56.7
Science teacher questionnaire (child level) ${ }^{6}$	27	42.0	49.3
Special education part A^{6}	10	66.3	71.5
Special education part B^{6}	10	66.3	71.5

${ }^{1}$ In the first component, this is the completion rate for freshening. In the second component, this is the completion rate for the survey instruments.
The product of the two components is the overall completion rate for the survey instruments.
${ }^{2}$ The freshening completes and completion rates for children in schools targeted for freshening.
${ }^{3}$ The freshening completes and completion rates for children in schools that agreed to the freshening procedure.
${ }^{4}$ English, mathematics, or science assessment was scorable, or child was disabled and could not be assessed.
${ }^{5}$ Family structure portion of parent interview was completed.
${ }^{6} \mathrm{~A}$ completed questionnaire was defined as one that was not completely left blank.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-
99 (ECLS-K), spring 2007.

The second component varies by survey instrument, and is much lower than in previous years. As discussed before, the completion rates dropped in general due to the time gap between the fifthgrade and eighth-grade data collections and the introduction of the explicit parent consent into eighth grade. Also, the number of children sampled is much smaller than in the past, a drop of 40 percent; there were 165 children sampled in first grade in the fifth-grade data collection; there were 100 of such children in the eighth-grade data collection. The rates for the paper-and-pencil instruments range from 54.5 percent for the child-level science teacher questionnaire to 86.1 percent for the special education questionnaire part A or B. The rate for the child assessment, at 60.9 percent, is almost 15 points lower than for the kindergarten sample, and the parent interview, at 51.5 percent, is about 20 points lower. The rates for the school instrument and the teacher instruments are all lower between 14 and 19 points, except for the special education teacher questionnaires where the difference is about 8 percentage points. The final completion rate for each instrument is the product of the two components. Because of the low rates at the first stage, these range from a high of 66.3 percent for the special education questionnaire part A or B to a low of 39.6 percent for the parent interview.

5.7.3 Spring-Eighth Grade Completion Rates—All Children

Table 5-16 presents final spring-eighth grade completion rates for children sampled in kindergarten, children sampled in first grade, and all children combined. Because children sampled in first grade represent such a small fraction of the total population of children, their inclusion in the computation of the completion rate brings down the rates for all children by less than half a percent relative to the rates for children sampled in kindergarten, even though the completion rates for children sampled in first grade are much lower than the kindergarten rates. The spring-eighth grade overall completion rates for the child assessment and the parent interview are 75 percent and 70.9 percent, respectively.

The unweighted completion rates are almost always higher than the weighted completion rates, by as much as 13 percent at the overall level. Where there is a large difference, it is due to fifthgrade movers who have larger weights than fifth-grade nonmovers. The weights of the fifth-grade movers had been increased in fifth grade to account for the subsampling of movers in fifth grade. This difference is not as large as in fifth grade, because movers in eighth grade were not subsampled out and no mover adjustment was applied to the weight. The fifth-grade mover adjustment, however, did apply to the eighth grade as explained in chapter 7 .

Table $5-17$ shows the completion rates for the child assessment, the parent interview, the student questionnaire, and the school and teacher instruments for children who have nonzero child weights (C7CW0>0). These are children whose spring-eighth grade English, mathematics, or science assessments were scorable, children who could not be assessed because of disabilities, or children who completed a student questionnaire. These conditioned completion rates are useful to analysts who want to assess the relationship between the different instruments in term of participation. The completion rates from the different instruments are dependent in that if data from one instrument are missing (e.g., parent instrument) it is likely that data from other instruments are also missing. (e.g., school administrator questionnaire). The conditioned completion rate for the child assessment is by definition 100 percent. The rate slightly less than 100 percent, shown when children sampled in kindergarten are combined with children sampled in first grade, is due to the school freshening nonresponse for children sampled in first grade.

When the completion rates are conditioned on the presence of the child weight, they are at least 17.5 points higher than the unconditional completion rates for all instruments but the special education questionnaires. For these last two instruments, the difference between the number of completes for the conditional and unconditional rates is very small; hence the conditional rates are not affected as much as for the other instruments. For all other instruments, the conditional completion rates are higher by 16.9 points for the parent interview, and as high as 21.2 points for the teacher-level questionnaire. The rate for the student questionnaire is not part of this comparison because almost all children who were assessed also completed the student questionnaire.

Table 5-16. Number of completed child-level cases and child-level completion rates, for children sampled in kindergarten and first grade, by survey instruments: School year 2006-07

Survey instrument	Children sampled in kindergarten			Children sampled in first grade			All children		
	Completes	Completion rate		Completes	Completion rate		Completes	Completion rate	
		Weighted	Unweighted		Weighted	Unweighted		Weighted	Unweighted
Child assessment ${ }^{1}$	9,296	75.7	77.9	62	46.9	54.9	9,358	75.0	77.7
Parent interview ${ }^{2}$	8,755	71.7	73.4	54	39.6	47.8	8,809	70.9	73.2
Student questionnaire ${ }^{3}$	9,244	75.3	77.5	62	46.9	54.9	9,306	74.6	77.4
School administrator questionnaire ${ }^{3}$	9,200	73.3	77.0	62	41.9	53.7	9,262	72.5	76.8
Teacher-level questionnaire ${ }^{3}$	9,147	74.5	77.0	63	46.3	55.7	9,210	73.8	76.9
English teacher questionnaire (child level) ${ }^{3}$	8,957	73.2	75.4	61	45.1	54.0	9,018	72.5	75.3
Mathematics teacher questionnaire (child level) ${ }^{3}$	4,449	71.6	75.2	33	43.7	56.7	4,482	70.9	75.1
Science teacher questionnaire (child level) ${ }^{3}$	4,459	73.3	74.8	27	42.0	49.3	4,486	72.5	74.6
Special education part A^{3}	812	93.9	94.5	10	66.3	71.5	822	93.2	94.3
Special education part B^{3}	820	94.7	95.5	10	66.3	71.5	830	94.0	95.3

[^32]${ }^{2}$ Family structure portion of parent interview was completed.
${ }^{3} \mathrm{~A}$ completed questionnaire was defined as one that was not completely left blank.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

Table 5-17. Number of completed child-level cases and child-level completion rates, for children with scorable reading, mathematics, or science assessment or children not assessed due to disabilities, by survey instruments: School year 2006-07

Survey instrument	Children sampled in kindergarten			Children sampled in first grade			All children		
	Completes	Completion rate		Completes	Completion rate		Completes	Completion rate	
		Weighted	Unweighted		Weighted	Unweighted		Weighted	Unweighted
Child assessment ${ }^{1}$	9,296	100	100	62	78.7	86.7	9,358	99.5	99.9
Parent interview ${ }^{2}$	8391	89.8	90.3	51	63.6	71.4	8,442	89.1	90.2
Student questionnaire ${ }^{3}$	9244	99.6	99.4	62	78.7	86.7	9,306	99.1	99.3
School administrator questionnaire ${ }^{3}$	8741	94.1	94.4	58	70.4	81.1	8,799	93.5	94.3
Teacher-level questionnaire ${ }^{3}$	9090	97.8	98.1	61	76.8	85.4	9,151	97.3	98.0
English teacher questionnaire (child level) ${ }^{3}$	8914	96.2	96.2	59	74.8	82.6	8,973	95.7	96.1
Mathematics teacher questionnaire (child level) ${ }^{3}$	4426	95.5	95.8	31	76.4	84.1	4,457	95.0	95.7
Science teacher questionnaire (child level) ${ }^{3}$	4444	94.9	95.7	27	66.1	78.1	4,471	94.2	95.6
Special education part A^{3}	803	94.2	95.0	9	67.6	71.0	812	93.5	94.8
Special education part ${ }^{3}$	811	95.0	96.0	9	67.6	71.0	820	94.3	95.8

${ }^{1}$ Reading, mathematics, or science assessment was scorable, or child was disabled and could not be assessed.
${ }^{2}$ Family structure portion of parent interview was completed.
${ }^{3} \mathrm{~A}$ completed questionnaire was defined as one that was not completely left blank.
AOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007

5.7.4 Overall Response Rates

The ECLS-K overall response rate can be computed by the product of the school-level response rate from the base year and the completion rates from each round of data collection after the base year. Table 5-18 presents the overall response rate after data collection for 5 school years: base year, first grade, third grade, fifth grade, and eighth grade, and for each study instrument that is common to all rounds of data collection: child assessment, parent interview, school administrator questionnaire, teacherlevel questionnaires A and B (replaced by one single teacher-level questionnaire in fifth and eighth grade), child-level teacher questionnaire part C (replaced by the reading/English child-level questionnaire in fifth and eighth grade), and the two special education questionnaires A and B.

The instrument-specific overall response rates are driven by the school-level response rate in the base year. Since the overall school response rate is low at 74 percent, overall response rates for all instruments cannot be higher than 74 percent. In fact, they range between 62 and 70 percent in the base year, and steadily drop each year until they range only between 17 and 38 percent in eighth grade. Leaving aside the special education questionnaires that were administered to a small selected sample, the instrument with the highest overall response rate by the end of the study in eighth grade is the child assessment, followed by the parent interview. The school and teacher questionnaires have about the same overall response rates. The drop in the overall response rate from year to year is natural in a longitudinal study.

Table 5-18. Kindergarten to eighth grade overall response rate: School year 2006-07

Data collection	Completes ${ }^{2}$	Completion rate		Overall response rate	
		Weighted	Unweighted	Weighted	Unweighted
Kindergarten, school level	1,014	74.0	73.7	74.0	73.7
Kindergarten, child level					
Child assessment ${ }^{1}$	19,967	88.0	88.3	65.1	65.1
Parent interview ${ }^{2}$	18,950	83.9	83.8	62.1	61.8
School administrator questionnaire ${ }^{3}$	19,282	85.9	85.4	63.6	62.9
Teacher questionnaire part A^{3}	15,389	86.9	86.9	64.3	64.0
Teacher questionnaire part B^{3}	15,880	89.7	89.6	66.4	66.0
Teacher questionnaire part C^{3}	15,233	85.9	86.0	63.6	63.4
Special education part A^{3}	737	94.1	92.2	69.6	68.0
Special education part ${ }^{3}$	698	87.2	87.4	64.5	64.4
First grade, child level					
Child assessment ${ }^{1}$	16,727	87.2	91.6	56.8	59.6
Parent interview ${ }^{2}$	15,626	83.5	85.6	51.8	52.9
School administrator questionnaire ${ }^{3}$	14,764	75.9	81.3	48.2	51.2
Teacher questionnaire part A^{3}	15,166	77.6	83.5	49.9	53.5
Teacher questionnaire part B^{3}	15,022	77.0	82.7	51.1	54.6
Teacher questionnaire part C	15,123	77.4	83.3	49.2	52.8
Special education part A^{3}	708	88.1	88.4	61.3	60.1
Special education part ${ }^{3}$	664	82.4	82.9	53.2	53.4

See notes at end of table.

Table 5-18. Kindergarten to eighth grade overall response rate: School year 2006-07—Continued

Data collection	Completes ${ }^{2}$	Completion rate		Overall response rate	
		Weighted	Unweighted	Weighted	Unweighted
Third grade, child level					
Child assessment ${ }^{1}$	14,470	80.1	85.9	45.5	51.2
Parent interview ${ }^{2}$	13,489	76.9	80.1	39.9	42.3
School administrator questionnaire ${ }^{3}$	12,463	65.5	73.1	31.6	37.4
Teacher questionnaire part A^{3}	11,856	61.7	69.6	30.8	37.2
Teacher questionnaire part B^{3}	11,826	61.6	69.4	31.5	37.9
Teacher questionnaire part C^{3}	11,884	62.0	69.7	30.5	36.8
Special education part A^{3}	887	72.3	74.8	44.4	44.9
Special education part ${ }^{3}$	883	72.2	74.5	38.4	39.8
Fifth grade, child level					
Child assessment ${ }^{1}$	11,346	83.9	93.4	38.2	47.8
Parent interview ${ }^{2}$	10,996	88.3	90.5	35.2	38.3
School administrator questionnaire ${ }^{3}$	11,023	76.4	89.4	24.1	33.4
Teacher-level questionnaire ${ }^{3,4}$	10,959	79.3	90.4	25.0	34.3
English teacher questionnaire (child level) ${ }^{3,5}$	10,877	78.7	89.8	24.0	33.0
Special education part A^{3}	975	91.6	93.7	40.6	42.1
Special education part B^{3}	981	92.9	94.2	35.7	37.5

[^33]Table 5-18. Kindergarten to eighth grade overall response rate: School year 2006-07—Continued

Data collection	Completes ${ }^{2}$	Completion rate		Overall response rate	
		Weighted	Unweighted	Weighted	Unweighted
Eighth grade, child level					
Child assessment ${ }^{1}$	9,358	75.0	77.7	28.6	37.2
Parent interview ${ }^{2}$	8,809	70.9	73.2	25.0	28.1
School administrator questionnaire ${ }^{3}$	9,262	72.5	76.8	17.5	25.7
Teacher-level questionnaire ${ }^{3,4}$	9,210	73.8	76.9	18.4	26.3
English teacher questionnaire (child level) ${ }^{3,5}$	9,018	72.5	75.3	17.4	24.9
Special education part A^{3}	822	93.2	94.3	37.9	39.7
Special education part B^{3}	830	94.0	95.3	33.5	35.7

[^34]${ }^{2}$ Family structure portion of parent interview was completed.
${ }^{3}$ A completed questionnaire was defined as one that was not completely left blank.
${ }^{4}$ Teacher questionnaires part A and part B were replaced by the teacher-level questionnaire in fifth and eighth grade.
${ }^{5}$ Teacher questionnaire part C was replaced by the subject-specific teacher questionnaire in fifth and eighth grade.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

5.7.5 Nonresponse Bias Analysis

Estimates from nearly all surveys are potentially subject to bias due to nonresponse. Two aspects of the ECLS-K that increased the concern about nonresponse bias were its longitudinal design and the use of multiple sources for acquiring data about the sampled children. In the ECLS-K, nonresponse occurred in the initial base year of collecting data, and then attrition occurred in subsequent rounds of data collection. As in most longitudinal surveys, nonresponse in the ECLS-K generally increased as the sample aged. The use of multiple sources in the ECLS-K (e.g., direct child assessment, parent interview, teacher interview) provided the opportunity to obtain valuable data about the child, but it also presented multiple chances for nonresponse. For example, even if the child could be assessed, the parent might decline to be interviewed, and estimates using the parent data were subject to nonresponse. Chapter 6 of the ECLS-K Methodology Report for the Eighth Grade (NCES 2009-003) (Tourangeau et al. forthcoming) includes an examination of the potential for nonresponse bias using three methods: (1) comparison of respondents and nonrespondents using the available sample frame, (2) multivariate analysis to identify the characteristics of cases most likely to respond, and (3) analysis of attrition bias applicable to longitudinal studies. Nonresponse bias of the estimates from the eighth grade was present but small. In most cases, the use of a mover status category in the fifth-grade nonresponse adjustment weighting helped reduce the bias, and the sample-based raking to the characteristics of the base-year children further reduced the nonresponse bias and variance of the estimates. The proper use of the ECLSK weights in data analysis will minimize the effect of nonresponse bias.

6. DATA PREPARATION

As described in chapter 5, two types of data collection instruments were used for the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K) data collection in spring-eighth grade: computer-assisted interviews (CAI) and self-administered paper forms (hard copy). The data preparation approach differed with the mode of data collection. The parent interview was conducted using CAI techniques. Editing specifications were built into the computer programs used by interviewers to collect these data. The child assessments and student questionnaires were administered as hard-copy forms and were completed in a group setting. The teacher and school administrator questionnaires were self-administered on hard-copy forms. When the field supervisors returned these forms, coders recorded the receipt of these forms into a project-specific forms tracking system. The forms were then sent to a scanning subcontractor for transfer into an electronic format. After the data were scanned, upcoding was conducted, and the data were reviewed for range and logic consistency. The following sections describe the data preparation activities for both modes of data collection in more detail.

6.1 Coding and Editing Specifications for Computer-Assisted Interviews (CAI)

The very nature of designing a computer-assisted interview forces decisions about edit specifications to be made up front. Both acceptable ranges and logic consistency checks were preprogrammed into the electronic questionnaire. The following sections describe the coding and editing that were conducted on the CAI parent interview.

6.1.1 Range Specifications

Within the CAI parent interview instruments, respondent answers were subjected to both "hard" and "soft" range edits during the interviewing process. A "soft range" is one that represents the reasonable expected range of values but does not include all possible values. Responses outside the soft range were confirmed with the respondent and entered a second time. For example, the number of times a child changed from one school to another since spring 2004 had a soft range of 0 to 3 . A value outside this range could be entered and confirmed as correct by the interviewer as long as it was within the hard range of values (0 to 5).
"Hard ranges" are those that have a finite set of parameters for the values that can be entered into the computer, for example, " $0-5$ times" for the number of times the child, in the previous 5 days, ate a breakfast that was not school provided. Out-of-range values for closed-ended questions were not accepted. If the respondent insisted that a response outside the hard range was correct, the assessor or interviewer could enter the information in a comments data file. Data preparation and project staff reviewed these comments. Out-of-range values were accepted and entered into the data file if the comments supported the response.

Parent interview items on house value. No hard coding range was specified for items asking about the remaining principal on the house (PAQ020). In 82 cases, the remaining principal on the house (PAQ200) was greater than the house value (PAQ150). For some of these cases, the difference between the principal and value was less than $\$ 10,000$; however, in other cases the discrepancy seemed unusually high. For example, 48 cases had principal values that exceeded the home value by at least $\$ 50,000$. Therefore, analysts are advised to scrutinize those cases having remaining principal on the house greater than the house value and use judgment when working with these cases.

6.1.2 Consistency Checks (Logical Edits)

Consistency checks, or logical edits, examine the relationship between and among responses to ensure that they do not conflict with one another or that the response to one item does not make the response to another item unlikely. For example, in the household roster, one could not be recorded as both a sister and male. When a logical error such as this occurred during a session, a message appeared requesting verification of the last response and a resolution of the discrepancy. In some instances, if the verified response still resulted in a logical error, the interviewer recorded the problem either in a comment or on a problem report.

6.1.3 Additional Coding

Additional coding was required for some of the items collected in the CAI instrument. These items included "Other, specify" text responses, occupation, and race/ethnicity. Interviewers keyed verbatim responses to these items. Once the data were keyed, staff were trained to code these data using
coding manuals designed by Westat and the National Center for Education Statistics (NCES) to support the coding process.

Review of "Other, specify" items. The "Other, specify" open-ended parent interview responses were reviewed to determine if they should be coded into one of the existing response categories. During data collection, when a respondent selected an "other" response in the parent interview, the interviewer entered the text into a "specify" overlay that appeared on the screen. The data preparation staff reviewed these text "specify" responses and, where appropriate, coded them into one of the existing response categories. In some cases, the post-data collection "Other, specify" text upcoding resulted in a routing question being set to a category that would route to another item that was correctly skipped during the interview. In those cases, the skipped item was set to -9 . Users should be aware that in these cases, the values of -9 are due to the post-data collection "Other, specify" text upcoding and not due to early termination of the telephone interview.

Other cases of which users should be aware in which a value of -9 was set during the postdata collection editing are in twin households where a non-English language was spoken in the home $($ PLQ020 $=1)$. There are 12 records on the data file in which PLQ083 $=-9$ and PLQ090 $=-9$ for the second child of a set of twins. The Blaise CAPI program did not collect child-level language data for the twins in households speaking any language other than English. As a result, the child-level PLQ variables were set to -9 (Not Ascertained) for the 12 twins.

Parent involvement. In the eighth-grade data collection, parent data was collected in the fall rather than in the spring, as was the method in previous rounds. Because the data were collected at the beginning of the school year, items tapping parent involvement (PIQ020) in various school functions were followed by a question asking whether parents had yet had an opportunity to be involved in those functions. When indicated, responses were treated as "Other, specify" items and upcoded to "No opportunity yet" for PIQ020 in the data set.

Parent occupation coding. As in the kindergarten, first-grade, third-grade, and fifth-grade data collections, occupations were coded using the Industry and Occupation Coding Manual (NCES 2000-077) (U.S. Department of Education, National Center for Education Statistics 1999). This coding manual was created for the Adult Education Survey of the National Household Education Surveys Program (AE-NHES:1999) and used an aggregated version of industry and occupation codes. The industry and occupation codes used by NHES were originally developed for the 1989-90 National

Postsecondary Student Aid Study (NPSAS:1990) and contained one to four digits. Analysis of the NPSAS categories revealed that some categories had very small numbers of cases and some categories that are similar had similar participation rates, suggesting that the separate codes could be collapsed without significant loss of information. The NHES industry and occupation code categories use a twodigit code, the highest level of aggregation, to have sufficient numbers of cases to support analysis without collapsing categories. There are 13 industry codes and 22 occupation codes in the NHES coding scheme. If an industry or occupation could not be coded using this manual, the Index of Industries and Occupations-1980 (U.S. Department of Commerce, Bureau of the Census 1982) and Standard Occupational Classification Manual-1980 (U.S. Department of Commerce, Office of Federal Statistical Policy and Planning 1980) were used. Both of these manuals use an expanded coding system and, at the same time, are directly related to the much more condensed NHES coding scheme. These manuals were used as references in cases where the NHES coding scheme did not adequately cover a particular situation. (See chapter 7 , section 7.6 .7 for an expanded description of the industry and occupation codes.)

Occupation coding began with an autocoding procedure using a computer string match program developed for the NHES. The program searched the responses for strings of text for each record/case and assigned an appropriate code. A little over a third of the cases were autocoded (36.8 percent).

Cases that could not be coded using the autocoding system were coded manually using a customized coding utility program designed for coding occupations. The customized coding utility program brought up each case for coders to assign the most appropriate codes. In addition to the text strings, other information, such as main duties, highest level of education, and name of the employer, was available for the coders. The coders used this information to ensure that the occupation code assigned to each case was appropriate. Over half the cases (63.2 percent) were manually coded.

The cases were then verified. Verification of coding is an important tool for ensuring quality control and extending coder training. As a verification step, two coders independently assigned codes (i.e., a double-blind coding process) to industry and occupation cases. Coders also independently assigned a second code for autocoded cases. A coding supervisor adjudicated disagreements between the initial code and the verification code. The adjudication by the supervisor served to further train coders by presenting concrete examples of appropriate coding. Of the cases that were autocoded, 16.6 percent required adjudication because the verifier disagreed with the autocoding. Of the cases that were manually coded, 28.3 percent required adjudication because the manual coder and the verifier disagreed. After
coding, verification, and adjudication were completed, all of the data were sorted by job title and code to check the coding one last time for consistency and to catch any coding errors that may have been overlooked.

Race/ethnicity coding. The same coding rules used since the kindergarten year were used to code all race/ethnicity variables for children, resident parents, and nonresident parents. (See chapter 7, sections 7.6.1.4 and 7.6.2.9 for details on how the race and ethnicity variables were coded and how the race/ethnicity composite was created.)

Partially complete parent interviews. All "completed" parent instruments (i.e., had completed all sections of the parent interview) were retained in the final data file. A small number of interviews in eighth grade (199, less than 3 percent) terminated the parent interview after the Family Structure (FSQ) section but before the end of the instrument. These interviews were considered as "partially complete" cases and were also included in the data file. All instrument items after the interview termination point were set to -9 for "Not Ascertained."

Parent interviews in which the respondent terminated the interview prior to the FSQ section were considered "incomplete" and not retained on the data file.

Household roster in the parent interview. Several tests were run on the household roster to identify missing or inaccurate information. These tests are the same tests run on the first-grade, thirdgrade, and fifth-grade files. One flag was used to identify cases that were edited for any of the reasons described below. The flag is P7EDIT; the flag was set to " 1 " if the case was edited in the given wave. There were 347 cases requiring edits in eighth grade.

There were essentially three general types of roster tests performed to determine which cases required editing. First, the relationship of an individual to the focal child was compared to the individual's listed age and sex. Problems found were corrected on the basis of data from prior data collections wherever possible. Second, households with more than one mother or more than one father were scrutinized for errors. While it is possible to have more than one mother in a household-for example, a household could contain one biological and one foster mother of the focal child-such cases warranted closer inspection. Corrections were made whenever clear errors and a clear resolution existed. The relationship of an individual to both the focal child and the reference person was also examined, as there were cases in which the relationship of an individual to the focal child conflicted with his or her status as
the spouse/partner of the reference person. For example, in a household containing a child's grandparents but not his or her parents, the grandmother may be designated the "mother" figure, and the grandfather thus becomes the "father" (for the purposes of some questions in the interview) by virtue of his marriage to the grandmother. These cases were examined but left unchanged. Both the original-and correct (grandfather)-relationship data and the new "parent-figure" designation (father) that had been constructed were kept.

In addition, the number of household roster errors by the interviewer was counted. For example, a household roster error would occur if an interviewer entered the same sibling into the household roster twice. In that instance, the interviewer would set the duplicate entry to "no longer in the household," and the reason departed would be set to "roster error." In the eighth-grade data, there are 14 cases with these types of errors after the roster tests were run; the cases can be identified by the flag "P7ERRFLG."

Teacher responses to key child items. Teachers of sampled children were asked to respond to child-level questionnaires for the reading, mathematics, and science domains. In many cases, teachers had more than one sampled child in a class. The items in the child-level questionnaire that collected information about classroom characteristics were redundant under these circumstances. The key child approach was designed to minimize the burden on the teachers by designating one questionnaire in which the classroom characteristics items were to be completed. See chapter 5, section 5.3.3 for a description of the key child design and procedures.

Once the child-level questionnaires were keyed and loaded into the editing system, a review was conducted to identify cases in which teachers reported classroom characteristics on a different questionnaire than the one designated as the key child instrument for the given class. This process involved three steps: the review of missing data for classroom characteristics items within each domain (reading, mathematics, and science) for key child records, a detailed review of all data records in classes with multiple children and missing values for selected classroom characteristics items, and the updating of appropriate records.

In the first step, data records for key children in all classrooms with more than one sampled child were selected. Frequency distributions of the classroom items were examined for the level of missing data within each domain. All classroom characteristics items were included in this review. The
results of this initial review indicated that missingness was largely confined to the items concerning the race composition of the classroom and the percent of instructional time devoted to various subjects.

In the second step, all returned instruments were selected for classrooms with multiple children that had missing data for the race and percent of instructional time items. These cases were reviewed to ascertain whether the teacher had mistakenly reported the classroom characteristics items on a questionnaire other than that designated for the key child.

In the third step, update specifications were prepared, directing data preparation staff to apply the classroom characteristics data to the key child record for the classroom. Updates were made to 30 English records, 13 mathematics records, and 20 science records as a result of this review.

A review was also conducted to identify classrooms with multiple sampled children for which no key child instrument was returned. There were 14 such cases for English, 5 such cases for mathematics, and 10 such cases for science. In some cases, the teacher had reported the classroom characteristic items on a questionnaire other than that designated for the key child, and those data were used for that classroom.

6.2 Coding and Editing Specifications for Hard-Copy Questionnaires and Assessments

6.2.1 Receipt Control

In order to monitor the almost 96,000 documents that were to be received in the eighth-grade year, the project-specific receipt and document control system developed in the kindergarten year was used, with modifications to track hard-copy questionnaires sent to and received from the scanning subcontractor. The receipt and document control system was initially loaded with the identifying information, such as identification numbers for schools, teachers, and children; the links between teachers and children; and the questionnaires that were expected from each school and teacher for each cooperating school in the sample. As data were collected in the field, field supervisors completed transmittal forms for each school to indicate which questionnaires were being mailed to the home office.

Once data collection started, receipt control clerks reviewed the questionnaires returned from the field for accuracy and completeness. The identification number on each form was matched against the
identification numbers in the tracking system to verify that the appropriate number of forms for each school was returned. When the clerks verified that the correct questionnaires were returned, they were logged into the receipt and document control system. Once forms were logged in, they were sorted by instrument type and ID number. Batch forms were generated and included in the batch to indicate which questionnaires were included in the batch. The child assessment forms, the student questionnaire, the teacher questionnaires, and the school administrator questionnaires were batched and sent to the scanning subcontractor to be scanned into electronic form. When these instruments were returned from the scanning subcontractor, the identification number on each form was matched against the identification numbers in the tracking system to verify that the appropriate number of forms for each batch was returned. When the clerks verified that the correct questionnaires were returned, they were logged into the receipt and document control system.

Data from two hard-copy forms, the English Stage 1 Routing test and the Mathematics/ Science Stage 1 Routing test, were keyed into electronic format by Westat data entry staff. The data were rekeyed by more senior data entry operators at a rate of 100 percent to verify the data entry. The results of the two data entry passes were compared and differences identified. In the case of differences, the hardcopy form was pulled and examined to determine what corrections had to be made to the keyed data. These corrections were rekeyed, resulting in an accuracy rate exceeding 99 percent. The verified batches were then transmitted electronically to Westat's study staff and loaded into the computer system for data editing. When these instruments were returned from the Westat data entry staff, the identification number on each form was also matched against the identification number in the tracking system to verify that the appropriate number of forms for each batch was returned. When the clerks verified that the correct forms were returned, they were logged into the receipt and document control system.

The following sections describe the coding and editing processes for hard-copy questionnaires.

6.2.2 Coding

6.2.2.1 Coding of Questionnaires

The hard-copy questionnaires required coding of race/ethnicity for teachers, review of "Other, specify" text responses, and a quick visual review of particular questions in each questionnaire.

The quick visual review was to ensure that the questionnaire values were accurate, complete, and consistent across variables, and that the numbers were converted to the appropriate unit of measurement prior to converting data to an electronic format. The coding staff were trained on the coding procedures and had coding manuals to support the process. This staff also edited the data after scanning and the data were loaded into the system. Senior coders verified coding.

Review of "Other, specify" items. The "Other, specify" text responses were reviewed by the data editing staff and, where appropriate, upcoded into one of the existing response categories. The small number of text responses that remained after upcoding did not fit into any preexisting category.

6.2.2.2 Coding of Reading and Mathematics Assessment Forms

The hard-copy assessments required coding of open-ended items on the reading and mathematics assessment forms (the science forms had only multiple choice items that were scored programmatically). The coding staff were trained on the coding procedures and had coding manuals to support the process. All open-ended items were coded twice by different coding staff members and compared for agreement. Percent agreement for the open-ended reading items, across the Red and Orange Reading forms, was 95 percent. Percent agreement for the open-ended mathematics items, across the Blue and Green Math forms, was 98 percent. Discrepancies were adjudicated by a senior coder.

6.2.3 Data Editing

The data editing process consisted of running range edits for soft and hard ranges, running consistency edits, and reviewing frequencies of the results.

Range specifications. Hard-copy range specifications set the parameters for high and low acceptable values for a question. Where values were printed on the forms, these were used as the range parameters. For open-ended questions, such as, "Counting this school year, how many years have you taught in your current school including part-time teaching?", high and low ranges were established as acceptable values. Data frequencies were run on the range of values to identify any errors. Values outside the range were identified as errors and were printed on hard copy for a data editor to review. Cases identified with range errors were identified, and the original response was updated. In some cases, range
violations were retained in the data because the value was checked and found to be the value reported by the teacher or school. These were marked as "keep as is" cases. Data frequencies were then rerun and reviewed. This iterative process was repeated until no further range errors were found.

Consistency checks (logical edits). By programming logical edits between variables, consistency between variables not involved in a skip pattern was confirmed. For example, in the school administrator questionnaire, the number of children eligible for free breakfast could not exceed the total number of children enrolled in the school. These logical edits were run on the whole database after range edits were complete. The logical edits were run separately for each form. All batches of data were combined into one large data file, and data frequencies were produced. The frequencies were reviewed to ensure the data remained logically consistent within the form. When an inconsistency was found, the case was identified, and the inconsistency was printed on paper for an editor to review. The original value was corrected (or checked and marked "keep as is"), and the case was then rerun through the consistency edits. Once the case passed the consistency edits, it was appended back into the main dataset. The frequencies were then rerun and reviewed. This was an iterative process; it was repeated until no further inconsistencies were found.

School participation in breakfast program (school administrator questionnaire). Item data on the school administrator questionnaire (SAQ) tapping school participation in the U.S. Department of Agriculture (USDA) School Breakfast Program were edited to enforce a skip pattern that was not clearly marked in the questionnaire. Based on their response to S7USDABR (q13: Does your school participate in USDA's School Breakfast Program?), respondents were to be routed to different sets of items. If S7USDABR $=1$ (yes), respondents were supposed to skip S7FEWSTD, S7COSTLY, S7LATEST, S7NOFACL, S7NOSTAF, and S7OTHER (i.e., q14). If S7USDABR $=2$ (no), respondents were supposed to skip S7BRKSTR, S7BRKEND, S7BRKLOC, S7BRKCLR, S7PRABRK, S7ELIBRK, S7PARBRK, S7ELRPBK, and S7PARPBK (i.e., q15-q18). This skip was enforced in post-collection data editing.

Frequency and cross-tabulation review. Frequencies and cross-tabulations were run to determine consistency and accuracy across the various forms and matched against the data in the field management system. If discrepancies could not be explained, no changes were made to the data.

7. DATA FILE CONTENTS AND COMPOSITE VARIABLES

This chapter describes the contents of the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K) eighth-grade data files and focuses largely on the composite variables that have been created. The eighth-grade data file can be used for longitudinal analysis in combination with the files from the base year (kindergarten year), first grade, third grade, and fifth grade. See chapter 9 for details about longitudinal analyses. The composites listed in this chapter refer to those created for eighthgrade only. In most instances, the composite specifications are identical to those created for the previous data collection rounds. Any changes from previous specifications are highlighted in this chapter. For reference, the base-year, first-, third-, and fifth-grade user's manuals are included in appendix C of the eighth-grade electronic codebook (ECB).

As noted in chapter 1, there is one child-level eighth-grade data file or catalog on the eighthgrade restricted-use file. Each child record contains data from the various respondents associated with the child (the child herself/himself, a parent, one or more teachers, and a school administrator) and the Field Management System (FMS).

The eighth-grade child catalog contains one record for each of the 9,725 participating children in spring-eighth grade. Included in the file are cases with a child assessment (conducted in spring 2007), a parent interview (conducted in fall 2006), or both. Eighth-grade school- and teacher-level data, including composites, are also stored in the child catalog. The file, named child8r.dat for the restricteduse data file, is stored in the root directory of the CD-ROM as an ASCII file. However, it is strongly recommended that users access the data using the ECB software available on the CD-ROM rather than access the ASCII file directly. Appendix B on the CD-ROM contains the record layout for the child catalog. The eighth-grade restricted-use data file can be used for longitudinal analysis in combination with the files from the base year (kindergarten year), first grade, third grade, and fifth grade. See chapter 9 for details about longitudinal analyses.

The child catalog on the K-8 full sample public-use data file is named childk8p.dat. It contains one record for each of the 21,409 children who have data for at least one of the rounds of the ECLS-K (fall-kindergarten, spring-kindergarten, first, third, fifth grade, or eighth grade). As with the eighth grade file, childk8p.dat is stored in the root directory of the CD-ROM as an ASCII file, but it is strongly recommended that users access the data using the ECB software available on the CD-ROM
rather than access the ASCII file directly. Appendix B on the CD-ROM contains the record layout for the child catalog. See chapter 10 for more information on the K-8 full sample public-use data file.

This chapter is divided into 10 sections. Sections 7.1 through 7.5 focus on the conventions used in the study and describe identification variables, the structure of the teacher variables, child assessment flags, missing values, and variable names. Section 7.6 provides details about the creation of composite variables on the eighth-grade data file. Section 7.7 focuses on the methodological variables. Section 7.8 discusses variables used to identify children who changed schools. Section 7.9 contains a table of the composite variables. Finally, section 7.10 describes masked variables.

7.1 Identification Variables

The eighth-grade data files (child8r.dat and childk8p.dat) contain a child identification (ID) variable (CHILDID) that uniquely identifies each record. Teachers on the child records are identified with the ID variables J71T_ID (English teacher ID, called the "reading" teacher ID in previous rounds) and J72T_ID (mathematics or science teacher ID). The structure of the teacher data in springeighth grade is similar to the data in spring-fifth grade because English/reading and mathematics or science teachers were asked to provide data, rather than one main teacher as was done prior to fifth grade. Information about how to use these data and how they are stored is provided in section 7.2. In addition to teacher identification numbers, there are also identification numbers that indicate a child's particular class (English and mathematics/science). For English, the ID variable name is J71CLASS. For mathematics/science, it is J72CLASS.

Schools are identified by the ID variable S7_ID (spring-eighth grade). The ID variable S7_ID indicates the school the child attended at the time of the spring-eighth grade data collection. Schools that joined the ECLS-K in the fifth grade have an "A" as the first character. Schools that joined the ECLS-K in the eighth grade have a "C," "D," or "E" as the first character. If it was not known where the child was at the beginning or the end of the round, the scheme shown in table 7-1 for assigning ID numbers was used. Section 7.8 provides further details on identifying children who changed schools.

Table 7-1. Case status and school ID numbers for children not followed or located, spring-eighth grade: School year 2006-07

Case status	S7 ID
School not assigned. The child did not have any school information at the start of the round when cooperation was sought, and continued not to have school information or parent consent for assessment or parent interview.	9991
Not in the United States. The child now lives outside the U.S.	9993
Deceased. Information about the child indicates that he/she is deceased.	9994
Unlocatable. Field staff were unable to locate a transfer student in his/her new school.	9995

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

Each type of respondent (child, parent, English teacher, mathematics or science teacher, special education teacher, and school) has a unique ID number. The original school ID number (S_ID) is the base for all the subsequent ID numbers as children, parents, and teachers were sampled from schools during the base year. The school ID number is a four-digit number assigned sequentially to sampled schools. The number has a series of ranges: 0001-1299 for originally sampled schools; 2000 series for new schools added to the sample during the first grade sample freshening process; 3000 series for substitute schools that replaced nonresponding original sample schools; and 4000 through 6000 series for transfer schools, which were assigned during processing at the home office. (See chapter 4 for a complete description of the ECLS-K sample.) There is also a 9000 series of S_ID numbers that refers to children who do not attend regular school because they are schooled at home (S_ID numbers 9101 through 9499). There are also several specific 9000 series codes for children who were not located or not followed at the end of a round. The school ID numbers start with 999 for these cases.

The child ID number (CHILDID) is a concatenation of the school ID where the child was sampled, a three-digit student number, and the letter "C." For example, 0001010C is the ID number of the tenth child sampled in school 0001. The teacher ID numbers (J71T_ID and J72T_ID) are a concatenation of the school ID where the teacher was sampled, the letter "T," and a two-digit teacher number. In rounds of the study prior to spring-fifth grade, the numbering for the two-digit teacher number started with 01 , such that 0001 T 01 was the ID number for the first teacher sampled in school 0001. In spring-fifth grade, the numbering for the two-digit teacher numbers started with T60 so that teachers could be identified easily. In spring-eighth grade, the two-digit teacher numbers started with E01. Thus, in spring-eighth
grade 0002 E 01 is the ID number for the first teacher sampled in school 0002 . The parent ID number (PARENTID) is linked to the child ID number and is a concatenation of the four-digit school ID, the three-digit student number, and the letter "P." It is the same number as the child ID with a letter "P" instead of a letter "C" at the end. For example, 0001010P is the ID number of the parent of the tenth child sampled in school 0001. If twins are sampled, the ID of the first child sampled is used to generate the parent ID. For twins, there are two child-level records with the same parent ID. Children with the same teacher can be identified by finding all children on the child file with the same teacher ID.

It should be noted that there is a difference in the variable names between the base-year and the first-, third-, fifth-, and eighth-grade special education teacher IDs. In the base year of the study, information from special education teachers was included in a separate file and was not part of the child or teacher catalogs. The ID number for special education teachers in the base-year special education file was T_ID. In the eighth-grade data file (and the first-, third-, and fifth-grade data files), the special education teacher information is included with the rest of the data, necessitating ID numbers to distinguish special education teachers from regular education teachers. In the eighth-grade file, J71T_ID and J72T_ID are used to identify regular education teachers, and D7T_ID is used to identify special education teachers.

If there is no special education teacher, D7T_ID will be missing. If there is a special education teacher, D7T_ID will be filled whether or not the special education teacher responded. In either case, it should be noted that there could be missing data for special education data in the part B questionnaire. It is left to users to determine how they would like to set "Not Applicable" versus "Not Ascertained" codes for such combinations. Users interested in links to special education services, regardless of whether the source of the information was the starting or ending school, can use the composite variable F7SPECS that is based on information from the FMS system rather than the receipt of particular special education questionnaires.

7.2 Using Teacher Variables

In the eighth grade, children were expected to have different teachers for English, mathematics, and science, and the teacher questionnaires were specific to each subject to reflect this. (In fifth grade, there were also separate teacher questionnaires for reading, mathematics, and science; however, in previous rounds there was one teacher questionnaire for all subjects.) For the spring-eighth
grade data collection, all children were assigned to have an English teacher complete questionnaires. Half the children were assigned to have a mathematics teacher complete questionnaires, and the other half were assigned to have a science teacher complete questionnaires. Thus, each child was linked to a maximum of two teachers: one for English, and one for either mathematics or science. However, a teacher could be linked to any number of children. In addition, although each child was linked for only two subjects, a teacher could be linked for three subjects (e.g., linked to child 1 for English/ mathematics, and linked to child 2 for English/science).

There are two types of data collected from teachers, taken from four questionnaires. The first type is data about the teacher's background and topics such as instructional level and time, child characteristics, textbooks, homework assignments, and criteria for grades, collected in the teacher questionnaire (one per each teacher linked to a responding ECLS-K child). The second type is data about the child, as reported by the English, mathematics, and science teacher.

As discussed in section 7.1, teachers on the child records are identified with the ID variables J71T_ID (English teacher ID) and J72T_ID (mathematics or science teacher ID). These ID variables indicate the teacher ID that links to the child regardless of whether there were data received from that teacher. To determine whether data were receipted from a teacher, flag variables must be used. These flags are described below.

7.2.1 Teacher Flags (J71TQUEX, J72TQUEX, F7MTHSCI, T7SAMTCH)

There are three teacher flags on the file (J71TQUEX, J72TQUEX, F7MTHSCI) that identify the presence or absence of teacher data and indicate if the data are from the English, mathematics, or science teacher. There is also a flag (T7SAMTCH) that indicates if the teacher linked to the child for English and mathematics/science was the same. In the base year of the study, and in the rounds for first and third grades, there was only one teacher (other than a special education teacher, if applicable) assigned to answer questions about the child, and there were flags corresponding to each of the three teacher questionnaires (parts A, B, and C) given to this teacher. In spring-fifth and eighth grades, the flags also corresponded to different teacher questionnaires but the data were collected from English (referred to as reading in spring-fifth grade), mathematics, and science teachers.

The flag J71TQUEX indicates whether there were English teacher data collected ($0=$ False; $1=$ True), and the flag J72TQUEX indicates whether there were mathematics or science teacher data collected ($0=$ False; $1=$ True). To determine whether the child was linked to a mathematics or science teacher, the flag F7MTHSCI should be used ($1=$ Math, $2=$ Science $)$.

Using the flags J7TQUEX and F7MTHSCI together will indicate the presence or absence of data and whether the data were for mathematics or science. For example, if a user sought to examine science teacher data, he or she would first determine whether mathematics or science teacher data had been collected $(J 72 T Q U E X=1)$ and, if so, examine data for children who were linked to a science teacher $($ F7MTHSCI $=2)$ rather than a mathematics teacher $(F 7 M T H S C I=1)$. If the child had science teacher data, the user would look at science questionnaire variables (all of which begin with the prefix N7). Mathematics teacher data (variables beginning with the prefix M7) would be missing for that child. Further information on variable prefixes is in section 7.5.

There is also a flag (T7SAMTCH) that indicates if the same teacher was linked to the child for both English and mathematics/science. If the value of the flag is 1 (True), then the teacher linked to the child for English and mathematics/science was the same person. If the value of the flag is 0 (False), then the teachers linked to the child for English and mathematics/science were different.

7.3 Child Assessment Flags (C7ENGFLG, C7MTHFLG, C7SCIFLG, C7STUDAT)

There are three flags that indicate the presence or absence of child assessment data. C7ENGFLG indicates the presence or absence of an English assessment; C7MTHFLG indicates the presence or absence of a mathematics assessment; and C7SCIFLG indicates the presence or absence of a science assessment. In addition, there is a flag, C7STUDAT, which indicates the presence or absence of student questionnaire data.

7.4 Missing Values

All variables in the ECLS-K data use a standard scheme for missing values. Codes are used to indicate item nonresponse, legitimate skips, and unit nonresponse (see exhibit 7-1).

Exhibit 7-1. Missing values codes, School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07

Value	Description
-1	Not applicable, including legitimate skips
-7	Refused (a type of item nonresponse)
-8	Don't know (a type of item nonresponse)
-9	Not ascertained (a type of item nonresponse)
(blank)	System missing, including unit nonresponse
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of	

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 1998, spring 1999, fall 1999, spring 2000, spring 2002, spring 2004, and spring 2007.

The "Not Applicable" code (-1) has two purposes. Its primary purpose is to indicate that a respondent did not answer the question due to skip instructions within the instrument or external reasons that led a respondent not to participate. In the parent interview, where the parent or guardian was a respondent, "Not Applicable" is coded for questions that were not asked of the respondent because of a previous answer given. For example, a question about a sibling's age is not asked when the respondent has indicated that the child has no siblings. For the teacher and school data where the instruments are selfadministered, "Not Applicable" is coded for questions that the respondent left blank because the written directions instructed them to skip the question due to a certain response on a previous question.

Another use of the "Not Applicable" code is the circumstance in which it is not known whether a respondent would have answered a question series following a lead question. One example of this use of "Not Applicable" is school administrator questionnaire question 13. Question 13 asks whether the school participates in USDA's school breakfast program. If the answer to question 13 is "Yes," the questionnaire skips to question 15 about what time breakfast is served (regardless of whether the breakfast is part of the USDA program). If the answer to question 13 is "No," the questionnaire skips to question 14 about why the school does not participate in USDA's school breakfast program. If question 13 was left blank by the respondent, question 14 is coded "Not Applicable."

The "Refused" code (-7) indicates that the respondent specifically told the interviewer that he or she would not answer the question. This, along with the "Don't Know" code (-8) and the "Not Ascertained" code (-9), indicates item nonresponse. The "Refused" code rarely appears in the school and teacher data because it indicates that the respondent specifically wrote something on the questionnaire indicating an unwillingness to answer the question.

The "Don't Know" code (-8) indicates that the respondent specifically told the interviewer that he or she did not know the answer to the question (or in rare cases on the self-administered
questionnaires, "I don't know" was written in for the question). For questions where "Don't Know" is one of the options explicitly provided, a "-8" will not be coded for those that choose this option; instead the "Don't Know" response will be coded as indicated in the value label information for that question.

The "Not Ascertained" code (-9) indicates that the respondent left a question blank that he or she should have answered. For the school and teacher self-administered questionnaires, this is the primary code for item nonresponse. For data outside the self-administered questionnaires (e.g., direct assessment scores), a "- 9 " means that a value was not ascertained or could not be calculated due to nonresponse.
"System Missing" appears as a blank when viewing codebook frequencies and in the ASCII data file. System Missing codes (blanks) in the eighth-grade data file indicate that an entire instrument or assessment is missing due to unit nonresponse. (Note that in the first grade, System Missing also indicated that some questions were not asked in the school administrator questionnaire for returning schools but were asked in another form of a questionnaire for new schools. This issue does not apply to the third-, fifth-, or eighth-grade files because only one form of the school administrator questionnaire was used.) An example of System Missing is nonparticipation in the parent interview by a child's parent. In this case, all questions from the parent interview will be blank (system missing). These may be translated to another value when the data are extracted into specific processing packages. For instance, SAS will translate these blanks into periods (".") for numeric variables.

Depending on the research question being addressed, cases with missing values (e.g., $-1,-7$, $-8,-9$, and system missing) may need to be recoded. It is advised that users cross-tabulate all lead questions (e.g., whether the child has ever been evaluated by a professional in response to his or her ability to pay attention or learn) and follow-up questions (e.g., whether there was a diagnosis of a problem from a professional) before proceeding with any recodes or use of the data.

Missing values for composite variables were coded using the same general coding rules as those used for other variables. If a particular composite was inappropriate for a given household-as the variable P7MOMID was for a household with no resident mother-that variable was given a value of "- 1 " (Not Applicable). In instances where a variable was appropriate, but complete information to construct the composite was not available, the composite was given a value of -9 (Not Ascertained). The "Refused"
and "Don't Know" codes were not used for the composites except in the calculations of the height, weight, and body mass index (BMI) composites for spring-eighth grade. ${ }^{28}$

The ECLS-K eighth-grade restricted-use data file is provided on a CD-ROM and is accessible through an ECB that allows data users to view variable frequencies, tag variables for extraction, and create the SAS, SPSS for Windows, or Stata code needed to create an extract file for analysis. The child data file on the ECB is referred to as a "catalog." Instructions for using the CD-ROM and ECB are provided in chapter 8 .

7.5 Variable Naming Conventions

Variables were named according to the data source (e.g., parent interview, teacher questionnaire) and the data collection point. (A number is used to indicate in which round of data collection the variable was obtained, as follows: 7 for eighth grade [both fall and spring measures], 6 for spring-fifth grade, 5 for spring-third grade, 4 for spring-first grade, 3 for fall-first grade, 2 for springkindergarten, and 1 for fall-kindergarten. This numbering system is used for all variables except those beginning with "W." For those variables, 8 indicates eighth grade; 5, fifth grade; 3, third grade; 1, first grade; and K, kindergarten.) These variable names are used consistently throughout the catalog. The prefixes listed here are in two categories: (1) eighth-grade variables and (2) cross-sectional and crossround longitudinal weights (exhibit 7-2). In general, variable names start with the prefixes listed in exhibit 7-2. For a discussion of the weights, see section 4.8 for cross-sectional weights and section 9.3 for longitudinal weights.

[^35]Exhibit 7-2. Prefixes for eighth-grade variables and cross-sectional and cross-round longitudinal weights: School year 2006-07

Category Description
Eighth-grade variables
C7 Data/scores collected/derived from spring-eighth grade direct child assessment or student questionnaire data and spring-eighth grade weight variables
D7 Data collected from spring-eighth grade special education teacher questionnaire A
E7 Data collected from spring-eighth grade special education teacher questionnaire B
F7 Data from spring-eighth grade Field Management System (FMS)
G7 Data collected/derived from spring-eighth grade English teacher child-level questionnaire
IF Imputation flags
J7 Data collected/derived from spring-eighth grade teacher questionnaire
Data collected/derived from spring-eighth grade mathematics teacher child-level questionnaire
N7 Data collected/derived from spring-eighth grade science teacher child-level questionnaire
P7 Data/scores collected/derived from fall-eighth grade parent interview
R7 Derived child demographic or child status variables for spring-eighth grade
S7 Data collected/derived from spring-eighth grade school administrator questionnaire
W8 Eighth-grade parent composite variables

Cross-Sectional and Cross-Round Longitudinal Weights

C7C Child-level panel weight variable from spring-eighth grade
C7P Child-level panel weight for parent data from fall-eighth grade
C7CPTE Child-level panel weight for combined parent, child, and teacher data from spring-eighth grade
C7CPTM Child-level panel weight for combined parent, child, and teacher data from spring-eighth grade, if using data from mathematics teacher
C7CPTS Child-level panel weight for combined parent, child, and teacher data from spring-eighth grade, if using data from science teacher
C67C Child-level panel weight variable from spring-fifth and spring-eighth grade

Exhibit 7-2. Prefixes for eighth-grade variables and cross-sectional and cross-round longitudinal weights: School year 2006-07-Continued

Category	Description
Cross-Sectional and Cross-Round Longitudinal Weights -Continued	
C67P	Child-level panel weights for parent data from spring-fifth grade and fall-eighth grade
C567C	Child-level panel weight variable from spring-third grade, spring-fifth, and spring-eighth grade
C567P	Child-level panel weights for parent data from spring-third grade, spring-fifth and fall-eighth grade
C4_7C	Child-level panel weight variable from spring-first grade, spring-third grade, spring-fifth, and spring-eighth grade
C4_7P	Child-level panel weights for parent data from spring-first grade, spring-third grade, spring- fifth and fall-eighth grade
C2_7FC	Child-level panel weight variable from spring-kindergarten, spring-first grade, spring-third grade, spring-fifth, and spring-eighth grade
C2_7FP	Child-level panel weights for parent data from spring-kindergarten, spring-first grade, spring- third grade, spring-fifth, and fall-eighth grade
C1_7FP	Child-level panel weight variable from fall-kindergarten, spring-kindergarten, spring-first grade, spring-third grade, spring-fifth, and spring-eighth grade
C1_7SC	Child-level panel weights for parent data from fall-kindergarten, spring-kindergarten, spring- first grade, spring-third grade, spring-fifth, and fall-eighth grade Child-level panel weight variable from fall-kindergarten, spring-kindergarten, fall-first grade, spring-first grade, spring-third grade, spring-fifth, and spring-fifth grade
C1_7SP	Child-level panel weights for parent data from fall-kindergarten, spring-kindergarten, fall-first grade, spring-first grade, spring-third grade, spring-fifth, and fall-eighth grade

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 1998, spring 1999, fall 1999, spring 2000, spring 2002, spring 2004, and spring 2007.

A few exceptions that do not follow the prefix convention below are as follows: ${ }^{29}$

- The identifiers CHILDID, PARENTID, and S7_ID.
- The composite T7GLVL. This variable indicates the grade level of the child.
- The composite variable R7R6SCHG. This variable indicates change in school between spring-fifth grade and spring-eighth grade. Source variables and other details for this and all other composite variables can be found in table 7-15.

[^36]
7.6 Composite Variables

To facilitate analysis of the survey data, composite variables were created and added to the child data file. Most composite variables were created using two or more variables, each of which is named in the text that explains the composite variable. Other composite variables are recodes of single variables. Variables based on the child assessment include height, weight, and BMI. Variables based on the teacher data include child grade level and the percentage of minority children in the class. Variables constructed from the school data include the percentage of minority children in the school, school type, and the highest and lowest grade levels in the school. Variables constructed from the parent interview data include parent identifiers, parent demographics, household composition, household income, and poverty, and child demographics. Certain composites were created using data from the Field Management System (FMS).

Table 7-15 lists all the composite variables for the eighth grade. All basic child demographic variables are presented first, followed by variables for household composition. Imputed variables are listed next, followed by demographics for parents (resident father and mother characteristics are followed by characteristics of nonresident biological parents and nonresident adoptive parents). Teacher, classroom, and school variables are listed last. Once the user identifies the composites of interest, he or she can refer to exhibit 8-8 for instructions on accessing the variables from the ECB.

It should be noted that some composite variables in the eighth-grade file have changed from prior rounds. Some changes were due to differences in source variables (e.g., there were changes in the school administrator and teacher questionnaires, and the student records abstract and school facilities checklist were not used in spring-eighth grade), and other changes were due to content area deletions (e.g., there are no longer variables in the parent questionnaire about child care, nor variables in the teacher questionnaires about the percentage of limited-English-proficient children in the English, mathematics, and science classes).

7.6.1 Child Composite Variables

There are many child-level composite variables on the child catalog. Table 7-15 describes all of the composites. Some of these variables are described in further detail here.

7.6.1.1 Child's Age at Assessment (R7AGE)

The child's age was calculated by determining the number of days between the date when the child completed the ECLS-K direct child assessment and the child's date of birth (R7DOBMM, R7DOBDD, R7DOBYY). The total number of days was then divided by 30 to calculate the age in months. The child assessment date was tested for the appropriate range (March to July 2007). If the assessment date fell outside these ranges, the modal assessment date for the child's school was used.

7.6.1.2 Gender (R7GENDER)

The eighth-grade gender composite was taken from the fifth-grade gender composite, if it was not missing. If it was missing, the third-grade composite was used. The third-grade gender composite was derived using the gender indicated in the parent interview (INQ.016), child report (AIQ.050), and the FMS. Because of the discrepancies found in the third-grade reports of a child's sex, the most frequently reported gender was used for the child. If there were an equal number of reports for male and female from these sources, the following hierarchy of rules was used: if the data were from the parent interview in previous rounds, then the third-grade gender composite, R5GENDER, was equal to gender from that parent data. Otherwise, gender was updated from the third-grade parent interview question. If the parent interview data were missing, gender was updated from the child report. Otherwise, the third-grade gender composite was equal to the composite GENDER from a previous round (because GENDER in previous rounds incorporated the FMS, this last step meant that the FMS was used as the final source of data).

If the third-grade gender composite was missing, R7GENDER was decided based on the most frequently reported gender from all sources of data, across all rounds of data collection. (The composite variable for R7GENDER is on the file but not the source variables). For most of the cases the data were collected in the base year. Gender was not asked in the eighth-grade parent interview.

7.6.1.3 Child's Date of Birth (R7DOBYY, R7DOBMM, and R7DOBDD)

In the eighth grade, the child's date of birth was derived from the fifth-grade date of birth composites if they were not missing. If the fifth-grade composite was missing, the third-grade composite was used. The third-grade date of birth composites were derived from one of three sources: the parent
report (CHILDDOB), the child report (AIQ.040), or the FMS. If the child's date of birth had been reported in a parent interview from a previous round, that value was used. Otherwise, the value from the third-grade parent interview was used. If those data were not available or were outside the criteria for inclusion (June 1, 1990 to March 31, 1995), the date of birth from the child interview was used. Finally, if the child report was not available or was outside the criteria for inclusion, the FMS value was used. If the date of birth given was before June 1, 1990, or after March 31, 1995, the data were excluded from the third-grade composite.

It should be noted that in the kindergarten and first-grade files, the child date of birth composites (DOBYY, DOBMM, and DOBDD) were created using two rather than three sources of data. The two sources were parent interview data and, in cases in which the parent interview data did not exist or were outside reasonable boundaries, FMS data. In spring-third grade, a third source-the child-was added and used in the creation of the third-grade composite.

If the third-grade composite was missing, the eighth-grade composite for date of birth was taken from a previous parent interview. Otherwise, date of birth was taken from the FMS.

7.6.1.4 Race/Ethnicity (W8AMERIN, W8ASIAN, W8PACISL, W8BLACK, W8WHITE, W8HISP, W8MT1RAC, W8RACETH, and R7RACE)

In spring-eighth grade, the race of the focal child was not collected in the parent interview if a parent interview had been conducted in any of the previous rounds; thus, for these cases, race information is based on information collected in previous parent interviews and the FMS. The composites for the child's race/ethnicity are presented in the ECLS-K files in three ways: (1) as dichotomous variables for each race/ethnicity category (W8AMERIN, W8ASIAN, W8PACISL W8BLACK, W8WHITE, W8HISP, W8MT1RAC) from the parent interview data; (2) as a single race/ethnicity composite taken from the parent interview data (W8RACETH); and (3) as a race/ethnicity composite taken from either the parent data or the FMS, with FMS data used only if parent data were missing (R7RACE).

Respondents were allowed to indicate that their child belonged to more than one of the five race categories (White, Black or African American, American Indian or Alaska Native, Asian, Native Hawaiian or other Pacific Islander). From these responses, a series of five dichotomous race variables
were created that indicated separately whether the child belonged to each of the five specified race groups. In addition, one more dichotomous variable was created for those who had simply indicated that their child was biracial or multiracial without specifying a race. The retention of the dichotomous variables on the file allows users to create different composites as needed.

Data were collected on ethnicity as well. Specifically, respondents were asked whether or not their child was Hispanic. Using the six race dichotomous variables and the Hispanic ethnicity variable (e.g., from spring-third grade P5HSP_1 to P5HSP_25, depending on household size), the race/ethnicity composite variables for the child (W8RACETH and R7RACE) were created. The categories were White, non-Hispanic; Black or African American, non-Hispanic; Hispanic, race specified; Hispanic, no race specified; Asian; Native Hawaiian or other Pacific Islander; American Indian or Alaska Native, and more than one race specified, non-Hispanic. The child composites W8RACETH (race/ethnicity) and R7RACE (race/ethnicity) both share these categories; however, FMS data were used to fill in missing parent report data for the variable R7RACE, and only parent report data were used for the variable W8RACETH. A child was classified as Hispanic if a respondent indicated the child's ethnicity was Hispanic regardless of whether a race was identified and what that race was.

For W8RACETH, if the child's race/ethnicity information was available from the parent interview composite in a prior data collection (e.g., W5RACETH, W3RACETH, W1RACETH, WKRACETH), the value from the most recent year composite was used and copied forward. ${ }^{30}$ If the data were missing for a child from all of these composites, W8RACETH was -9 (Not Ascertained).

For R7RACE, responses from the parent interview composite from fifth grade (R6RACE) were copied forward. If fifth-grade data were missing, responses from the composite from third grade (R5RACE) were used. If the third-grade composite, R5RACE, was missing, then the race variable based on parent interview data in the third grade were used (W3RACETH). If the third-grade composite was missing, the first-grade composite was used (W1RACETH). If the first-grade composite was missing, the race variable based on parent interview data in kindergarten was used (WKRACETH). If the parent interview data were missing, then FMS data from a previous round were used. If previous round FMS data were missing, then FMS data on race from the eighth-grade were used.

[^37]It should be noted that for eighth-, fifth-, and third-grade variables R7RACE, R6RACE, and R5RACE, previous parent interviews were prioritized over the FMS. This is different from the method used to derive the variable RACE in the first grade. In the first grade, the composite RACE was copied forward from previous rounds and FMS data were used if parent reports were not available. Because parent reports were expected to be more accurate than school records, if new information about race was obtained in the third-grade parent interview, it was used rather than previous information obtained from the FMS. Therefore, because the third grade race information is copied into composites in later rounds, the eighth, fifth-, and third-grade variables R7RACE, R6RACE, and R5RACE are different from RACE in previous rounds for a minority of cases.

7.6.1.5 Child's Height (C7HEIGHT)

To obtain good measurements, each child's height was measured twice. An additional variable was used in spring-eighth grade to allow assessors to add one-fourth, one-half-, and three-fourths inch measurements to the primary height variable recorded in whole inches. For the height composite C7HEIGHT, if the two height values from the instrument (i.e., C7HGT1 and C7HGT2 for spring-eighth grade) were less than 2 inches apart, the average of the two height values was computed and used as the composite value. Otherwise, the value that was closest to 65 inches for boys and 63 inches for girls, which is the 50 th percentile score for 14 -year-olds, was used as the composite value. The height average was determined by the National Center for Health Statistics (NCHS) in collaboration with the National Center for Chronic Disease Prevention and Health Prevention (NCCDPHP).

7.6.1.6 Child's Weight (C7WEIGHT)

Each child's weight was also measured twice. An additional variable was used in springeighth grade to allow assessors to add half-pound measurements to the primary weight variable recorded in whole pounds. For the weight composite (C7WEIGHT), if the two weight values from the instrument (i.e., C7WGT1 and C7WGT2 for spring-eighth grade) were less than 5 pounds apart, the average of the two values was computed and used as the composite value. Otherwise, the value that was closest to 114 pounds for boys and 108 pounds for girls, the median weight for 14 -year-olds as determined by NCHS in collaboration with the NCCDPHP, was used as the composite value.

7.6.1.7 Child's Body Mass Index (C7BMI)

Composite body mass index (BMI; variable name C7BMI) was calculated by multiplying the composite weight in pounds by 703.0696261393 and dividing by the square of the child's composite height in inches.

7.6.1.8 Child's Disability Status (P7DISABL)

A composite variable was created to indicate whether a child had a disability diagnosed by a professional. Questions in the parent interview about disabilities in spring-eighth grade asked about the child's ability to pay attention and learn, overall activity level, overall behavior and relations to adults, overall emotional behavior such as anxiety or depression, ability to communicate, difficulty in hearing and understanding speech, and eyesight. For each disability or behavior, a question was asked about whether a diagnosis of a problem was obtained by a professional (CHQ.050, CHQ.110, CHQ.170, CHQ.210, CHQ.300, CHQ.335, CHQ.360). A question was also asked about receipt of therapy services or participation in a program for children with disabilities (CHQ.520).

The composite variable P7DISABL was coded 1 (Yes) if any of the source variables (CHQ.050, CHQ.110, CHQ.170, CHQ.210, CHQ.335, CHQ.360, CHQ.520) about diagnosis or therapy services were coded 1 (Yes). This was done even if data for some of the source variables were missing. In spring-fifth and spring-eighth grades, unlike previous rounds, another source variable used to code P7DISABL was CHQ. 300 for vision-related problems. If the source variable for the vision diagnosis (CHQ.300) was coded 1 (Yes) and the follow-up question (CHQ.316) was coded NOT "correctable by glasses" (i.e., either only "improvable with glasses" or "not correctable with glasses"), the composite P7DISABL was coded 1 (Yes). Also, in spring-eighth grade, as in spring-fifth grade, the composite P7DISABL was coded 1 (Yes) if the child had vision problems such that the child's best eyesight (CHQ.320) allowed him or her to see large print in books, form and/or color of objects but not detail, shadows, lights, or saw no light or had no light perception. If data for all the source variables were missing, the composite was coded -9 (Not Ascertained). Otherwise, P7DISABL was coded 2 to indicate no reported disability.

It should be noted that the spring-third, -fifth, and -eighth grade composites are somewhat different from the composites in previous rounds of the study because questions were added about overall
behavior and relations to adults and about emotional behavior such as anxiety or depression. Only diagnosed emotional or behavioral problems were included in the composite. These include the following:

- Unlike the disability composite in fall-kindergarten that included a question about children's coordination in using their arms or legs, the disability composites since spring-first grade have not included that question.
- The disability composites in spring-fifth and spring-eighth grades are different from other years of the study because they exclude children who have a diagnosis, but the diagnosis was that the child had "no problem." They also exclude children with correctable vision.
- Any answers that indicate, for children who do not have correctable vision, what a child's best eyesight allows him or her to see are also counted as having a disability. The question about what a child's best eyesight allows him or her to see asks if the child can see large print in books and form and/or color of objects, but not detail; if the child can see shadows and lights; or if the child sees no light or has no light perception.
- In both spring-fifth and spring-eighth grades, questions asked if the child ever had a disability rather than whether he or she had a disability since the last round of data collection as had been done in earlier rounds of the study. Thus, disabilities that were diagnosed before spring-fifth and spring-eighth grades are included.

7.6.2 Family and Household Composite Variables

Many composites were created to capture information about the sampled children's family and household characteristics. Several of these are described below. All of the family and household composites are listed and described in table 7-15.

7.6.2.1 Number of Siblings (P7NUMSIB)

The composite P7NUMSIB indicates the total number of siblings (full, step-, adoptive, or foster) with whom the child lived in the household (FSQ. 160 and FSQ.170). Siblings were identified through the respondents' stated relationship of the sibling to the focal child. In addition, any child that was reported to be a child of the focal child's parent/guardian was considered a sibling of the focal child.

7.6.2.2 Parent and Household Members' Age (P7LESS18, P7OVER18, P7HDAGE, and P7HMAGE)

There are several composite variables on the file that refer to the ages of adults and children in the household. These are P7LESS18 (total number of people in the household under age 18, including focal child, siblings, and other children), P7OVER18 (total number of people in the household age 18 or older, siblings, and other children), P7HDAGE (age of resident father), and P7HMAGE (age of resident mother). The ages of these persons in the household were collected during the fall-kindergarten in the household matrix. However, in subsequent years of the study, questions about age were not asked for household members who were previously in the household. In the eighth grade, ages were collected for new household members. Otherwise, ages were based on incremented increases from spring-third grade values. Ages were first incremented in spring-third grade based on the round in which the person joined the household, updated again in spring-fifth grade by adding 2 years to the age calculated in spring-third grade, and updated again in the fall-eighth grade by adding 2 more years to the spring-fifth grade value. Although round 7 was 3 years later than round 6 in terms of the child's grade level (grade 5 in round 6, and grade 8 in round 7), data collection for parents was in the fall of the year in round 7 rather than in the spring as in other rounds, so there were not 3 full years between data collections. Thus, age was increased by 2 years rather than 3 . Age changes were made to increase the ages of all household members other than the focal child and twin (the ages of the focal child, and twin, if applicable, were updated based on birth date).

The ages of all household members who were not new to the study in spring-eighth grade (other than the focal child and twin) were increased by the numbers shown in table 7-2. Ages were increased incrementally each round of the study. The numbers in table 7-2 reflect the total number of years added to the first reported age for a household member when the household joined the study. The guidelines for creating these were as follows: (1) half-years could not be included, and (2) the same number of years was added for those who entered the study during the same school year. The numbers were made to err on the side of making persons older rather than younger because this would cause fewer problems with range checks and displays in the parent interview if there was a discrepancy between actual age and imputed age.

Table 7-2. Incremented ages of previous household members based on round entered study: School year 2006-07

Round in which household member joined study	Number of years added by spring-eighth grade to first age reported when household joined study
Fall 1998	+8
Spring 1999	+8
Fall 1999	+7
Spring 2000	+7
Spring 2002	+4
Spring 2004	+2
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of	
1998-99 (ECLS-K), spring 2007.	

7.6.2.3 Food Security Status

Food security status of the children's families was assessed based on responses to the 18 food security questions (P7WORRFD through P7NOMONY) in the spring-eighth grade parent interview. The questions measured a wide range of food insecurity and reduced food intake issues. They were combined into a scale using statistical methods based on the Rasch measurement model. The items and the food security scale based on them have been validated using both ethnographic and statistical methods. For both spring-fifth and spring-eighth grades, composites were created for Household Food Security scale variables, Children’s Food Security scale variables, and Adult Food Security scale variables (for spring-kindergarten and spring-first grade, composites were created only for Household Food Security scale variables; for spring-third grade, composites were created only for Household Food Security and Children's Food Security scale variables). Calculations of the Household Food Security scale variables were carried out in accordance with the standard methods described in Guide to Measuring Household Food Security, Revised 2000 (U.S. Department of Agriculture 2000). Calculations of the Children's Food Security scale variables were carried out in accordance with the standard methods described in Measuring Children's Food Security in U.S. Households, 1995-99 (U.S. Department of Agriculture 2002). Analysis of the ECLS-K data using Rasch methods indicated that use of the standard benchmark household scores was appropriate.

When selecting a food security scale for a research application, the likely effects on the measures of the ages of children in the household should be taken into consideration. Young children in U.S. households are generally protected from disrupted diets and reduced food intake to a greater extent than are older children in the same households. The household scale combines adult and child items and, as a result, can reflect, in part, experiences of elder siblings of the sampled child. The Children's Food Security Scale refers to conditions among any/all of the children in the household, so it may also reflect the experiences of elder siblings of the sampled child. Thus, for many research applications, the adult scale may be preferred instead of the household scale or children's scale. In other applications, the household or children's scale may be used with controls for the presence and age of older children in the household. Comparisons of the food security of households over time could also be distorted by the higher probability that the sampled children will be affected by the food insecurity of the household as they grow older. Using the adult scale for such comparisons will avoid this problem.

7.6.2.4 Food Security Status: Continuous Measures (P7FSSCAL, P7FSCHSC, and P7FSADSC)

P7FSSCAL is the scale score presentation of the Household Food Security items. It is a continuous, interval-level measure of food insecurity and is appropriate for linear models. This scale score is a Rasch transformation of the raw score (P7FSRAW). Valid values range from 1.4 to 13, with higher values indicating more severe food insecurity. Under Rasch-model assumptions, the scale score for families that affirm no items (raw score $=0$) is indeterminate. It is less than the lowest measured value (1.4), but its precise value is unknown and may vary substantially among families. P7FSSCAL for such cases is assigned a value of -6. If these cases (a substantial majority of all cases) are included in linear models, appropriate methods must be used to take into account this indeterminacy.

P7FSCHSC is similar to P7FSSCAL but is the Children's Food Security scale score. This is a measure of the severity of food insecurity or hunger experienced by children in the household in the previous 12 months. Valid values range from 4.1 to 12.2 , with higher values indicating more severe food deprivation. The scale score is undefined for households that affirmed no child-referenced items (see discussion of P7FSSCAL above).

P7FSADSC is the Adult Food Security scale score. This is a measure of the severity of food insecurity or hunger experienced by adults in the household in the previous 12 months. It is a continuous,
interval-level measure based on the Rasch measurement model and is appropriate for linear models, such as correlation, regression, or analysis of variance. It is on the standard (logistic-unit) metric described in Measuring Children's Food Security in U.S. Households, 1995-99 (for households without children). Valid values range from 1.7 to 11.1, with higher values indicating more severe food deprivation. The scale score is undefined for households that affirmed no adult-referenced items (see discussion of P7FSSCAL above).

7.6.2.5 Food Security Status: Categorical Measures (P7FSSTAT, P7FSCHST, and P7FSADST)

P7FSSTAT is a categorical measure of Household Food Security status formed by dividing P7FSSCAL into three ordered categories: food secure, food insecure without hunger, food insecure with hunger. In previous rounds, the third category of "food insecure with hunger" was broken into two categories: "food insecure with hunger (moderate)" and "food insecure with hunger (severe)." In springfifth and spring-eighth grades, these categories have been collapsed into one. P7FSSTAT is appropriate for comparing prevalence rates of food insecurity and hunger across subpopulations and can be used as a categorical variable in associative models. There are few cases in the most severe category, so, for most prevalence reporting purposes, the two categories of food insecure with hunger (moderate and severe) should be collapsed and reported as a single category. When interpreting food security statistics, users should remember that food security status is a household-level characteristic. In most households classified as food insecure with hunger, the children in the household were not hungry.

P7FSCHST is a categorical measure of Children's Food Security status that identifies households with hunger among children at some time during the 12 months prior to the survey. This variable is appropriate for comparing prevalence rates of hunger among children across subpopulations. There were few households ($\mathrm{n}=39,0.5$ percent) that reported hunger among children, so the analytic utility of this variable is limited. However, for analytic purposes, other categories of children's food insecurity delineated by less severe thresholds (based on children's food security raw scores or scale scores) may be useful. For example, Nord and Bickel (2001) suggested a threshold of two or more affirmative responses as representing reduced quality and variety of children's diets. When interpreting children's food security statistics, users should remember that these variables represent conditions among all children in the household and may not reflect experiences of the child in the ECLS-K study if there are other children in the household.

P7FSADST is a categorical measure of Adults' Food Security status that identifies households as food secure, food insecure without hunger, or food insecure with hunger among adults. This variable is appropriate for comparing prevalence rates of food insecurity and hunger among adults across subpopulations.

7.6.2.6 Food Security Status: Raw Scores (P7FSRAW, P7FSCHRA, and P7FSADRA)

The Household Food Security raw score, P7FSRAW, is a count of affirmative responses to the 18 items. This is an ordinal-level measure of food insecurity. It is not recommended for direct use in analysis but can be used to identify categories of food insecurity additional to the categorical measures provided in the NCES data file. The Children's Food Security raw score, P7FSCHRA, is a count of affirmative responses to child-referenced items. Responses to items skipped because of screening are assumed to be negative. Families with no valid responses are coded as missing (-9). It ranges from 0 to 8 . P7FSADRA is the adult food security raw score, a simple count of the number of household- and adultreferenced food security items affirmed by the parent. It ranges from 0 to 10 .

7.6.2.7 Socioeconomic Status (SES) and Poverty (W8DADSCR, W8MOMSCR, W8SESL, W8SESQ5, W8INCCAT, W8POVRTY)

Socioeconomic status (SES) was computed at the household level using data for the set of parents who completed the parent interview in the fall of eighth grade. The SES variable reflects the socioeconomic status of the household at the time of data collection (fall 2006). The components used to create the SES were as follows:

- father/male guardian's education;
- mother/female guardian's education;
- father/male guardian's occupation;
- mother/female guardian's occupation; and

■ household income.

Occupation was recoded to reflect the average of the 1989 General Social Survey (GSS) prestige score. This was computed as the average of the corresponding prestige scores for the 1980 census occupational categories covered by the ECLS-K occupation. Table 7-15 provides details on the prestige score values (W8DADSCR, W8MOMSCR).

The variables were collected as follows:

- Income. The information about income was collected in the fall of eighth grade. Broad-range and detailed-range income questions were asked of all participants. The broad range classifies household income as $\$ 25,000$ and less per year, or as greater than $\$ 25,000$. The detailed range classifies household income as shown in table 7-3.

Households that were determined to meet the size and income criteria related to poverty shown in table $7-4$ were asked to report income to the nearest $\$ 1,000$. (For simplicity, this is called exact income.) Because not all households were asked to report exact income, the midpoint of the detailed income range was used to compute the SES composite variable.

- Parent's education. The information about parent's education was collected or updated in spring-eighth grade.
- Parent's occupation. The information about parent's occupation was collected or updated in spring-eighth grade.

Table 7-3. Levels of the detailed income range, fall-eighth grade: School year 2006-07

Detailed income range	Total household income
1	$\$ 5,000$ or less
2	$\$ 5,001$ to $\$ 10,000$
3	$\$ 10,001$ to $\$ 15,000$
4	$\$ 15,001$ to $\$ 20,000$
5	$\$ 20,001$ to $\$ 25,000$
6	$\$ 25,001$ to $\$ 30,000$
7	$\$ 30,001$ to $\$ 35,000$
8	$\$ 35,001$ to $\$ 40,000$
9	$\$ 40,001$ to $\$ 50,000$
10	$\$ 50,001$ to $\$ 75,000$
11	$\$ 75,001$ to $\$ 100,000$
12	$\$ 100,001$ to $\$ 200,000$
13	$\$ 200,001$ or more

[^38]Table 7-4. Households asked to report income to the nearest $\$ 1,000$, fall-eighth grade: School year 2006-07

Household size	Total household income
One	$\$ 10,000$ or less
Two	$\$ 15,000$ or less
Three or four	$\$ 20,000$ or less
Five	$\$ 25,000$ or less
Six	$\$ 30,000$ or less
Seven or eight	$\$ 35,000$ or less
Nine or more	$\$ 50,000$ or less

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 2006.

Not all parents completed the parent interview; among those who did, not all responded to every question. Therefore, there were missing values for some of the components of the SES composite variable. Only a small percentage of values for the education and occupation variables were missing; a larger proportion of households had missing values for the detailed income range (see table 7-5).

Table 7-5. Missing data for SES source variables, fall-eighth grade: School year 2006-07

Variable	Number missing	Percent
Mother's education	271	3.2
Father's education	240	3.4
Mother's occupation	236	3.4
Father's occupation	290	4.3
Detailed income range	611	7.0

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 2006.

A two-stage procedure was used to impute missing values for parent's education and occupation, while missing values of the detailed income category were imputed in only one step. The procedure used for creating the SES variable was the same as the procedure used for previous rounds of the ECLS-K with the only difference that missing values of income category were all imputed by hot deck and not filled in with data from previous rounds that were at least 3 years old. However, income data from previous rounds were used to sort the records in the imputation cells so that the imputed values are from donors with the closest income values.

First, if a parent had completed an interview in the kindergarten-, first-, third-, or fifth-grade year, missing values for the fall-eighth grade education and occupation were filled in with values from the
previous years. The rationale for this approach was that the best source of data for an individual or a household was the data from a previous year.

This first imputation stage was implemented as follows:

- Education level was brought forward from the most recent previous round. This was done only if the same person was the parent figure both in fall-eighth grade and in the earlier round.
- Occupation was brought forward only if the individual was in the labor force (i.e., was working at a paid job, on vacation from a paid job, or looking for a job). It was also required that the same person be the parent figure both in fall-eighth grade and in the earlier round. NOTE: Prestige scores were not assigned to individuals unless they were in the labor force, regardless of whether they reported an occupation.

Second, education and occupation data still missing after this initial step were imputed using a hot-deck methodology. In hot-deck imputation, the value reported by a respondent for a particular item is assigned or "donated" to a "similar" person who failed to respond to that question. Auxiliary information known for both donors and nonrespondents is used to form groups of persons having similar characteristics. These groups of similar respondents and nonrespondents are called "imputation cells." The imputed value for a case with a missing value is taken from a randomly selected donor among the respondents within the cell.

Detailed income category was brought forward from the most recent previous round, but was used only as a sort variable in the hot-deck procedure. All missing values of the detailed income category were imputed by hot deck. By using filled-in values from the previous rounds as a sort variable, the nearest neighbor was selected as donor for the missing value.

Imputation cells were defined by respondent characteristics that were the best predictors of the variables to be imputed. These relationships had been determined previously by Chi-Squared Automatic Interaction Detector (CHAID) analyses of the base-year data. Missing values for the education, occupation, and detailed income range variables were imputed by the hot-deck method for all households. Hot-deck imputation was done in a sequential order, separately, by type of household (female single parent, male single parent, and both parents present). For households with both parents present, the mother's and father's variables were imputed separately. Imputed as well as reported values were used to define imputation cells; missing values for donor characteristics were treated as a separate category. No
imputed value was used as a donor. No donor was used more than once. The order of hot-deck imputation for all the variables was education, occupation, and income category.

Occupation imputation involved two steps. First, the labor force status of the parent was imputed (i.e., whether the parent was employed). Then the parent's occupation was imputed only for those parents whose status was identified as employed either through the parent interview or the first imputation step. The detailed income range was imputed in two steps: first for cases where the broad income range was known and, second, for cases where it was unknown.

For households where both parents were present, the order of hot-deck imputation was as follows:

- mother's education;
- father's education;
- mother's labor force status;
- mother's occupation;
- father's labor force status;
- father's occupation;
- detailed income range, where the broad income range was known; and
- detailed income range, where the broad income range was unknown.

At this point, all of the missing values had been imputed. However an exact income value was still required to construct the SES composite. The midpoint of the detailed income range was assigned for this purpose to all households.

The log of the detailed income range midpoint was then used to compute the SES composite. This value does not vary widely within the levels of the detailed income range, so the midpoint was a reasonable choice. It was used only for the purpose of computing the SES composite and was not retained in the data file.

All missing values of the SES components were imputed by the process described above. Tables 7-6 through 7-9 summarize the results.

Table 7-6. Selected statistics on imputed parental education variables, fall-eighth grade: School year 2006-07

SES component	Total missing	Number of values filled from previous rounds	Number of values imputed by hot deck	Number of cases resolved
Mother's education	271	226	45	271
Father's education	240	177	63	240

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 2006.

Table 7-7. Selected statistics on imputed labor force status, fall-eighth grade: School year 2006-07

Labor force status	Number of values filled from previous rounds	Number of values imputed by hot deck	Number of cases resolved
Mother			
Total missing	147	19	207
In labor force	29	12	166
Not in labor force			41
Father	127	40	173
Total missing	4	2	167
In labor force		6	
Not in labor force			

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 2006.

Table 7-8. Selected statistics on imputed occupation variables, fall-eighth grade: School year 2006-07

Occupation	Number of values filled from previous rounds	Number of values imputed by hot deck	Number of cases resolved
Mother			
Total missing	11	225	277
Occupation	29	12	236
Not in labor force			41
Father			
Total missing	7	283	296
Occupation	4	2	290
Not in labor force 1			6

[^39]Table 7-9. Selected statistics on imputed detailed income range, fall-eighth grade: School year 2006-07

SES component	Totalmissing	Number of values filled from previous rounds Broad income range		Number of values imputed by hot deck Broad income range		Number of cases resolved
		Known	Unknown	Known	Unknown	
Detailed income range	611	0	0	294	317	611

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 2006.

Once the components of the SES variable were imputed, their corresponding z-scores or normalized values were computed. The expression of z-score $z_{h i}$ for the h-th component in the i-th household is

$$
z_{h i}=\frac{x_{h i}-\bar{x}_{w}}{\operatorname{se}\left(\bar{x}_{w}\right)},
$$

where

$$
\begin{aligned}
x_{h i} & \text { is the value of the } h \text {-th SES component for the } i \text {-th household; } \\
\bar{x}_{w} & \text { is the weighted mean of } x_{h i} ; \text { and } \\
\operatorname{se}\left(\bar{x}_{w}\right) & \text { is the standard error of } \bar{x}_{w} .
\end{aligned}
$$

Thus, each component was converted to a z-score with mean of 0 and a standard deviation of 1. For income, the component x_{i} is the logarithm of the income for i-th household. The logarithm of income was used because the distribution of the logarithm of income is less skewed than the direct income values. The SES value for the i-th household was then computed as

$$
\operatorname{SES}_{i}=\frac{\sum_{h=1}^{m_{i}} z_{h i}}{m_{i}},
$$

where m_{i} is the number of nonmissing SES components for the i-th household. W8SESL is the continuous variable for the SES composite that ranges from -2.48 to 2.54 . As described, the SES composite is the average of up to five measures, each of which was standardized to have a mean of 0 and a standard
deviation of 1, hence the negative values. For analyses that require a continuous SES measure, such as multivariate regressions, W8SESL is the variable to use. A categorical SES variable (W8SESQ5) was created that contains the quintile for the value of the composite SES for the child. Quintile 1 represents the lowest SES category and quintile 5 represents the highest SES category. The quintiles were computed at the child level using the fall-eighth grade parent weights. For categorical analyses, use W8SESQ5 and the parent weight.

Note that, for households with only one parent present, not all the components were defined. In these cases, SES was computed averaging the available components.

The imputed detailed income range variable (W8INCCAT) was also used to create a household-level poverty variable (W8POVRTY). Income was compared to census poverty thresholds for 2006, which vary by household size. Table 7-10 shows the detailed income categories used in the ECLS-K parent interview for determining whether to ask a more detailed question about income to the nearest $\$ 1,000$. For comparison, the table also shows weighted poverty thresholds from census. ${ }^{31}$ Households whose income fell below the appropriate threshold were classified as poor (see table 7-10). For example, if a household contained two members, and the household income was lower than $\$ 13,167$, then the household was considered to be below the poverty threshold.

If either the ECLS-K category or the amount from the detailed question about income would place the household in poverty, the household was flagged as poor. The categorical measure was generally the deciding factor for defining poverty status for the composite because the detailed question about income had a range check that did not allow detailed incomes much beyond the range of the categorical question; however, the range check did allow for incomes that were slightly above the categorical range. Thus, the income ranges and the exact income amounts in the poverty thresholds were not always perfectly aligned. For example, for households of 4 or more, the categorical limit was $\$ 15,000-\$ 20,000$, but a household with the exact income amount of $\$ 20,614$ (just outside the categorical limits) would still be included as poor.

[^40]Table 7-10. ECLS-K and census poverty thresholds for 2006: School year 2006-07

Household size	ECLS-K income categories	Census weighted average thresholds for 2006^{1}
2	Less than or equal to $\$ 15,000$	$\$ 13,167$
3	Less than or equal to $\$ 20,000$	$\$ 16,079$
4	Less than or equal to $\$ 20,000$	$\$ 20,614$
5	Less than or equal to $\$ 25,000$	$\$ 24,382$
6	Less than or equal to $\$ 30,000$	$\$ 27,560$
7	Less than or equal to $\$ 35,000$	$\$ 31,205$
8	Less than or equal to $\$ 35,000$	$\$ 34,774$
$9+$	Less than or equal to $\$ 50,000$	$\$ 41,499$

[^41]
7.6.2.8 Parent Education (W8PARED, W8DADED, and W8MOMED)

There are three parent education composites on the file. These are W8PARED (the highest level of education for the child's parents or nonparent guardians who reside in the household), W8DADED (father's highest level of education), and W8MOMED (mother's highest level of education). The variables include both parent (birth, adoptive, step-, and foster) and nonparent guardians. For example, if the child had no parents but had a guardian, the education of the guardian and his or her spouse was used in the creation of the composites if the guardian was specified as such in the relationship variable or if the guardian was the respondent/respondent's spouse and there were no other parent figures in the household.

In fall-eighth grade, parent education level was updated from the spring-fifth grade composite variable value for education if it was a household that had been part of the spring-fifth grade round of the study. Respondents were asked if they or their corresponding parent figures, if applicable, had completed any additional grades of school or had received any diplomas or degrees (PEQ.010). If so, PEQ. 020 asked what grade the parent had completed or what degree had been received. Another question, PEQ.021, verified whether the parent had a high school diploma or its equivalent, such as a GED. If there was no education information to update from spring-fifth grade, respondents were asked for their highest education level in PEQ.020. If this education level was less than the education level reported in a previous round, the higher education level was kept for the spring-eighth grade composite.

If both parents/guardians resided in the household, W8PARED was the highest value for education level from either the mother/guardian in W8MOMED or the father/guardian in W8DADED. If the household only had one parent or guardian, then W8PARED was equal to either W8MOMED or W8DADED depending on which parent or guardian resided with the child. If the education data for either of the parents were missing ${ }^{32}$ it was imputed, and the composite W8PARED was created based on both the reported and imputed data.

7.6.2.9 Parent Race/Ethnicity (P7HDRACE and P7HMRACE)

The composites for race/ethnicity for the parents were calculated in the same way as those for the child, except that there is not a variable that supplements parent-reported race/ethnicity with FMS data similar to the variable R7RACE for children. All data on parent race/ethnicity are derived from the parent interview. Race/ethnicity for parents is presented in the spring-eighth grade data file as a categorical race/ethnicity composite (for the father/male guardian it is P7HDRACE, and for the mother/female guardian it is P7HMRACE).

Respondents were allowed to indicate that they belonged to more than one of the five race categories (White, Black or African American, American Indian or Alaska Native, Asian, Native Hawaiian or other Pacific Islander). From these responses, a series of five dichotomous race variables were coded that indicated separately whether the respondent belonged to each of the five specified race groups. In addition, one more variable was coded for those who had simply indicated that they were biracial or multiracial without specifying the race. ${ }^{33}$ The dichotomous codes for each of the race variables are not provided on the spring-eighth grade file, but the composite derived from the responses is provided.

Parent race/ethnicity was obtained for all parents and spouses of respondent parents but may or may not have been collected for a parent's boyfriend or girlfriend. For example, in a family with a birth mother and stepfather the race/ethnicity of both parents was obtained. However, in a family with a birth mother and her boyfriend, if he was not identified as a spouse or partner of the mother, the race/ethnicity of the mother was obtained but that of the boyfriend was not.

[^42]
7.6.3 Teacher Composite Variable

Details about how a composite from the teacher data, child grade level, was created are provided here. This composite is listed and described in table 7-15.

In spring-fifth grade, there was another teacher composite for class size. It was based on class size responses about student gender and student race. In spring-eighth grade, there is only one source of data about class size (the class size variables for race are G7TOTRA, RDG Q13G; M7TOTRA, MTH Q12G; and N7TOTRA, SCI Q13G); therefore there was no need to create a composite for class size in spring-eighth grade.

7.6.3.1 Grade-Level Composite (T7GLVL)

To create the grade-level composite (T7GLVL), two sources of grade data were used: (1) information from the special education teacher part B questionnaire (E7ENRGR (SPB Q2) with answer categories for grades 5-10 and classes that were ungraded) and (2) information from the FMS (C_GRADE with answer categories for grades 2-10). Teacher reports were prioritized over the FMS because it was assumed that teachers had the best knowledge of the child's grade and that school records (on which the FMS was based) were more apt to be in error. If the teacher report from E7ENRGR was missing, the FMS variable C_GRADE was used. If both sources of information were missing, then T7GLVL was not ascertained. It should be noted that the ungraded category was renumbered in springeighth grade to incorporate ninth and tenth grades ("ungraded" was category 9 in spring-third grade, and is category 13 in spring-eighth grade).

In spring-fifth grade, the grade-level composite was created somewhat differently because there were five possible sources of information: (1) the reading teacher questionnaire (Q1 G6GRENRL for grade level); (2) the special education teacher questionnaire, part B (Q2 E7ENRGR for grade level); (3) the child assessment introductory section (AIQ. 030 C6INGRAD); (4) the child assessment closing section (ACQ. 005 C6FIFTH and ACQ. 010 C6GRADE, completed by interviewer); and (5) FMS information about grade level. If conflicts existed among these five sources, the grade level indicated by the majority of the nonmissing sources was used for T6GLVL. If there was not a majority answer for grade level, the grade indicated in a particular source was selected, according to the hierarchy of (1) Classroom reading teacher, G6GRENRL; (2) Special education teacher, E7ENRGR; (3) Assessment
introduction, C6INGRAD; (4) Assessment closing, C6FIFTH and C6GRADE; and (5) FMS. One exception to this hierarchy was made. Because the FMS and AIQ grade-level information did not allow for ungraded classrooms, the FMS and AIQ information were not considered in any case in which at least one source indicated an "ungraded" classroom.

It should be noted that in spring-first grade, there was information about grade level from the student record abstract; however, there were no grade-level questions in the child assessment at that time. In both spring-third and spring-fifth grades, grade level was not asked in the student records abstract, but was included as part of the child assessment instead. The spring-eighth grade data collection did not include a student records abstract instrument.

7.6.4 School and Class Composite Variables

Variables on school and class characteristics were constructed from the teacher and school data and the sample frame. Details on how some of the variables were created follow.

7.6.4.1 School Type (S7SCTYP)

In spring-eighth grade, the questions in the school administrator questionnaire changed, and some variables used in spring-fifth grade were not in the questionnaire. Also, rather than using a single question to determine whether the school was public (as in spring-fifth grade), in spring-eighth grade public schools were defined by three variables (comprehensive public school, public magnet school, or public school of choice).

In spring-eighth grade, S7SCTYP was created as follows: If Question 7 in the school administrator questionnaire (which of the following characterizes your school) was answered as a comprehensive public school (not including magnet school or school of choice) (S7REGSKL); a public magnet school (S7MAGSKL); or a public school of choice (open enrollment) (S7CHCESK), the school was coded as "public." Otherwise, if the question was answered as a Catholic school (S7CATHOL), the school was coded as "Catholic." If the question was answered as other private school, religious affiliation (S7OTHREL), the school as coded as "other religious." If the question was answered as private school, no religious affiliation (S7OTHEPRI), then the school was coded as "other private." Homeschooled
children (those schooled at home instead of at school) were coded as -1 . If S7SCTYP could not be coded from the school administrator questionnaire, S6SCTYP, S5SCTYP, S4SCTYP, S3SCTYP, S2KSCTYP, and CS_TYPE2 were used. If those sources were also unavailable, a variable from the school master file was used. If S7SCTYP was missing from all sources, it was coded as -9 (Not Ascertained).

As noted above, the school type composite was created somewhat differently in previous rounds. In spring-fifth grade, S6SCTYP was created based on questions 5 (S6PUBLIC) (whether school is public) and 7 (S6CATHOL, S6OTHREL) (type of private school) from the school administrator questionnaire. If the response to question 5 (Is this a public school?) was "Yes," then S6SCTYP was coded "public." If the response to question 7.a. (S6CATHOL) (Is your school a Catholic school?) was "Yes," then the school was coded as "Catholic." Otherwise, if the response to question 7.b. (S6OTHREL) (Is your school private with another religious affiliation?) was "Yes," then S6SCTYP was coded as "private, other religious." Otherwise, because the skip pattern to question 7 was used only if the school was private, if the response to question 7.c. (S6NAISKL, private school accredited by NAIS), question 7.d. (S6OTHPRI, other private), question 7.e. (S6PVTSPD, special education school-primarily serves children with disabilities), or question 7.f. (S6PVTEAR, an early childhood center-school or center includes preschool and/or early elementary grades) was "Yes," then S6SCTYP was coded as "other private." If S6SCTYP could not be coded from the school administrator questionnaire, reports of school type from the same school in previous rounds were used (in spring-third grade, school type was taken from a questionnaire called the school fact sheet, and the variable name was S6SCTYP; in previous rounds, school type had been asked in the school administrator questionnaire, and the variable names were S4SCTYP, S3SCTYP, S2KSCTYP, and CS_TYPE2). If those sources were unavailable, a variable from the school master file was used. If S6SCTYP could not be coded, S6SCTYP was coded as -9 (Not Ascertained). If the child was schooled at home, the composite was coded as -1 (Not Applicable).

7.6.4.2 Public or Private School (S7PUPRI)

S7PUPRI is a less detailed version of school type (with only two categories-public and private) and is derived from the school type composite S7SCTYP described above. In spring-eighth grade, and in previous rounds of the study, it was created as follows. If S7SCTYP was 4 (public), then S7PUPRI was coded as "public" (1). If S7SCTYP was 1-3 (Catholic, other religious, other private), then S7PUPRI was coded as "private" (2). If S7SCTYP was coded as Not Ascertained (-9), then S7PUPRI
was -9 (Not Ascertained). If S7SCTYP was coded "Not Applicable," then S7PUPRI was coded "Not Applicable."

7.6.4.3 School and Grade-Level Enrollment (S7ENRLS, S7ENRL8)

There are two composite enrollment variables on the eighth-grade file: total school enrollment (S7ENRLS) and eighth-grade enrollment (S7ENRL8). Total school enrollment was created using the school enrollment variable from the school administrator questionnaire (S7ANUMCH). If this variable was missing, data for private schools were taken from the 2005-2006 Private School Universe Survey (PSS) and data for public schools were taken from the 2005-2006 CCD (Common Core of Data) public school universe. If these were also missing, the variable was coded -9 (Not Ascertained). If the child was schooled at home, the composites were coded -1 (Not Applicable).

The composite was created in the same way in previous rounds of the study; however, the highest category in spring-fifth grade was for 750 or more students. In spring-eighth grade, categories 5 and 6 have been changed to " $750-999$ students" and " 1,000 and above students," respectively, to reflect the larger size of middle schools.

Eighth-grade enrollment was not obtained during data collection. The eighth-grade enrollment data for private schools came from the 2005-2006 PSS data. The enrollment data for public schools came from the 2005-2006 CCD public school universe data.

7.6.4.4 Percent Minority Students in the School (S7MINOR)

The composite variable S7MINOR indicates the percentage of minority students in a school in spring-eighth grade. The composite is based on a question in the school administrator questionnaire (Q11) that was used to ask about the number or percentage of students in the following categories: Asian or Pacific Islander; Hispanic, regardless of race; Black, not of Hispanic origin; White, not of Hispanic origin; American Indian or Alaska Native; and other. The composite was based on the sum of percentages for all categories except White, not of Hispanic origin. In some cases, the composite could not be obtained from the data because of missing data or errors. If the composite could not be derived from the data, percent minority was obtained from the CCD (for public schools) or the PSS (for private schools). If
these data were missing, the composite was coded -9 (Not Ascertained). If the child was schooled at home, the composite was coded as -1 (Not Applicable).

In all rounds of the study since the first grade, school administrators were allowed to report their answers to the student racial composition questions as either numbers or percents, whereas in springkindergarten they were asked to report those answers as percents. All answers recorded as numbers in spring-eighth grade were converted to percentages for the composite variable. The sum of the answers across all categories was allowed to add within $+/-5$ percent of the reported total. In a few cases, this produced answers slightly over 100 percent. These were topcoded to 100 percent.

A flag for each individual race/ethnicity variable indicates whether the answer was reported as a number or a percent. ${ }^{34}$ Because the composite is calculated as a percent, these flags will not be needed by users unless the analyst is interested in examining how answers were reported. If the flags (S7ASNFL, S7HSPFL, S7BLKFL, S7WHTFL, S7INDFL, and S7OTHFL) were equal to 1 for each of the race variables S7ASNPCT, S7HISPPCT, S7BLKPCT, S7WHTPCT, S7INDPCT, S7OTHPCT, these six race/ethnicity variables were reported by the respondent as percentages.

It should be noted that the composite for percent minority has been created in the same way since first grade. However, the composites from first grade forward are slightly different from the one used in spring-kindergarten (S2MINOR) because the school administrator questionnaire item that asked about the percent of minority students in the school had different response options. In springkindergarten, the percent of minority students was derived from answers to the school administrator questionnaire by determining the percentage of children who were of either Hispanic or Latino origin (question 14) and the percentage of children who were American Indian or Alaska Native, Asian, Black or African American, or Native Hawaiian or Other Pacific Islander (question 15) to create the percent minority composite. In spring-first, -third,-fifth, and-eighth grades, ethnicity and race were included in the same question.

[^43]
7.6.4.5 Highest and Lowest Grade at the School (S7HIGGRD, S7LOWGRD)

In spring-eighth grade, there were two composite variables that indicate the highest grade level in the school (S7HIGGRD) and the lowest grade level at the school (S7LOWGRD). Both variables were created by first coding answers of ungraded in question 6 of the school administrator questionnaire (What are the lowest and highest grade levels in your school?), and then coding the highest grade in the school and the lowest grade in the school, respectively. In previous rounds of the study, there was a composite for school instructional level (e.g., S6SCLVL) that had categories of less than first grade, primary school, elementary school, and combined school. However, because the study children were by then in schools that might be connected with grades higher than elementary school, the "combined" category is less useful than knowing the highest and lowest grade in the school, so the instructional level composite was not created for spring-eighth grade. The school-level composite from past rounds was used, though, if data from the spring-eighth grade school administrator questionnaire were missing about highest and lowest grades. If these data were also missing, a School Master file variable derived from PSS/CCD (not on file) was used for the composites.

7.6.4.6 School Lunch Composites (S7FLCH_I, S7RLCH_I)

The school lunch composites were computed at the school level for the set of public schools that have at least one child or parent respondent (i.e., the child had nonzero child weight, C7CW0, or nonzero child-level parent weight, C7PW0) in spring-eighth grade. There are two school lunch composites as follows:

- Percent of children eligible for free school lunch; and
- Percent of children eligible for reduced-price lunch.

The data that are used to create the school lunch composites were collected in the school administrator questionnaire. Specifically, school principals were asked to report on the total enrollment in the school (S7ANUMCH), the number of children in the school who were eligible for free school lunch (S7ELILNC), and the number of children who were eligible for reduced-price school lunch (S7ELIRED). The percent of children eligible for free school lunch is computed as the ratio of S7ELILNC over S7ANUMCH. Likewise, the percent of children eligible for reduced-price school lunch is the ratio of S7ELIRED over S7ANUMCH.

Not all schools completed the school administrator questionnaire, and among those who did, not all responded to all three questions needed to compute the school lunch composites. Therefore, there were missing values for some of the components of the school lunch composite variables. Prior to fifth grade, if the source variables have missing value, then the composites were filled in with values computed using the most recent CCD if they are not missing from the CCD, or left missing if they are missing from the CCD. In fifth and eighth grades, the composites were computed as they had been in the past, but if they had missing values, they were imputed. The source variables, however, were not imputed. Table 711 shows the level of missing data for the school lunch composite variables among the 2,266 public schools that had child or parent respondents in the eighth grade of the ECLS-K.

Table 7-11. Public schools with missing values of the school lunch composites, spring-eighth grade: School year 2006-07

School lunch composite	Number missing	Percent missing
Free lunch	247	10.9
Reduced-price lunch	256	11.3

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

A two-stage procedure was used to impute missing values for each school lunch composite variable. First, if a school had a nonmissing value for the school lunch composite in the kindergarten, first-grade, third- or fifth-grade year, missing values for the spring-eighth grade school lunch composites were filled in with values from the previous years. The rationale for this approach was that the best source of data for a school was the data from a previous year.

Second, data still missing after this initial step were imputed using a hot-deck methodology. Imputation cells were created using the Title I status of the school and the school latitude and longitude. In fifth grade, the information used to derive this variable was from S6TT1 ("whether school received Title I funds") and S6TT1TA ("whether Title I funds are targeted or school wide"), both from the school administrator questionnaire. If these two variables had missing values for fifth grade, then data from third grade or first grade (if third-grade data were also missing) or kindergarten (if third-grade and first-grade data were also missing) were used. If these data were missing from the school administrator questionnaire for all rounds, then the information from the most recent Common Core of Data (CCD 2002-03) was used. In eighth grade, these variables were dropped from the school administrator questionnaire. Consequently, the imputation process used the information from the CCD 2005-06. If these variables were missing from the CCD, then information from the school administrator questionnaire available from
the most recent round (fifth grade, third grade, first grade or kindergarten) was used. The values from these different sources are for the exact same schools participating in eighth grade and previous rounds.

The resolution of cases having missing data is shown for each school lunch composite in table 7-12 (for schools) and table 7-13 (for children). Schools that were imputed by hot deck are generally transfer schools with few sample children in those schools. This is reflected in tables 7-11 and 7-12 where the percent of children with hot-deck values of the school composites is much smaller than the percent of schools with hot-deck values of the school composites.

Table 7-12. Imputation of school lunch composites at the school level, spring-eighth grade: School year 2006-07

School lunch composite	Number missing	Values from previous round		Imputed by hot deck	
		n	Percent	n	Percent
Free lunch	247	25	10.1	222	89.9
Reduced-price lunch	256	27	10.5	229	89.5

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

Table 7-13. Results of imputation of school lunch composites at the child level, spring-eighth grade: School year 2006-07

School lunch composite	Number missing	Values from previous round		Imputed by Hot deck	
		n	Percent	n	Percent
Free lunch	751	88	11.7	663	88.3
Reduced-price lunch	779	108	13.9	671	86.1

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

Since children were designated as eligible for either free lunch or reduced-price lunch but not for both services, the two school lunch composites should sum to no more than 100 percent. A very small number of schools (less than 4 percent) had imputed values of the two school lunch composites summing to more than 100 percent. These values came from two sources: (1) from values reported by the school in another year or (2) from the hot-deck imputation. The reporting error has been present in all rounds of the ECLS-K, and the decision was to keep the reported values in the data file. If the erroneous
values came from the hot-deck imputation, then they were corrected so that the two school lunch composites do not add to more than 100 percent.

7.6.4.7 School Year Start and End Dates (S7SCHBDD, S7SCHBMM, S7SCHBYY, S7SCHEDD, S7SCHEMM, S7SCHEYY)

The composite for school year start and end dates was taken from the school administrator questionnaire (Q3, S7SYRSMM, S7SYRSDD, S7SYRSYY, S7SYREMM, S7SYREDD, S7SYREYY). If those data were missing, the values were taken from the FMS. In spring-fifth and spring-eighth grades, the answers for the starting date, year (S7SCHBYY) and the ending date, year (S7SCHEYY) had already been filled in for the school administrator when he or she received them. For this reason, the starting date, year was always 2006 and the ending date year was always 2007. This was done to prevent errors.

S7SCHBDD	S7 School Year Starting Date, Day
S7SCHBMM	S7 School Year Starting Date, Month
S7SCHBYY	S7 School Year Starting Date, Year
S7SCHEDD	S7 School Year Ending Date, Day
S7SCHEMM	S7 School Year Ending Date, Month
S7SCHEYY	S7 School Year Ending Date, Year

It should be noted that in spring-third grade, the question about school year starting and ending dates was in the school fact sheet. Also, in spring-first grade and spring-kindergarten the composites for school year start and end dates were created differently because they were based on different questions. The question was in the student record abstract rather than in the school fact sheet and was based on responses to multiple questions about start and end dates for school terms (e.g., semesters, trimesters). Composite variable names in past rounds started with an "L" prefix in spring-third grade (this was the prefix for the school fact sheet), and a "U" prefix in spring-first grade and spring-kindergarten (this was the prefix for the student record abstract). If the start and end dates varied for children in the same school, the composite was created by using the school start and end dates reported for the majority of children in a school.

7.6.5 FMS Composite Variables

The composite variables created from FMS data follow.

7.6.5.1 \quad Year-Round Schools (F7YRRND)

This composite was created using data from the FMS. The FMS flag was "1" if the child was in a year-round school. The values for the year-round school composite variable are 1 (Year-round school) and 2 (Not year-round school). If the child was schooled at home, the composite was coded as -1 (Not Applicable).

7.6.5.2 Indicator of Whether Child Received Special Education Services (F7SPECS)

The composite variable F7SPECS indicates whether or not the child received special education services in the spring of eighth grade, based on the presence or absence of a link to a special education teacher in the FMS. The values are 1 if the child received special education services, 2 if the child did not receive special education services, and -9 if the link was missing between the child and his or her teacher in the FMS.

7.6.5.3 Indicator of Whether Child Has an Individualized Education Plan (IEP) on Record at School (F7RIEP)

The variable F7RIEP indicates whether or not the child had an IEP or Individualized Family Service Plan (IFSP) on record at his or her school or another school in the spring of eighth grade. This information was recorded on the student work grid in the FMS in spring-eighth grade rather than in the student records abstract as was done in spring-fifth grade. For this reason, the prefix had changed from "U" for the student record abstract to "F" for the FMS. The values for the variable are 1 (child has an IEP/IFSP on record at his or her school or at another school) and 2 (child does not have an IEP/IFSP on record at his or her school). If the information was missing, F7RIEP was coded as -9 (Not Ascertained).

7.6.6 Parent Identifiers and Household Composition (P7DADID, P7MOMID, P7HPARNT, P7HDAD, P7HMOM, P7HFAMIL, P7MOMTYP, P7DADTYP)

The construction of parent identifiers and the household composition variables from the parent interview data was a two-step process. First, individuals identifying themselves as the child's mother/father were located within the household roster, and the type of their relationship to the child (biological, adoptive, foster, step-, partner of parent, or unknown) was established. For households containing more than one father or mother, a hierarchy was used to designate the "current," or residential, parent of each gender. The biological parent, if present, was always the current mother or father. In the absence of a biological parent, the current mother/father designation was assigned to the adoptive, step-, foster/guardian, partner, or "unknown-type" parent. If there were more than one father or mother of the same type, the parent with the lower person number on the household roster was selected. Person number refers to the number each household member has on the roster list. Household members are listed in the order they are reported by the respondent. Information about parents in the household, along with household size and presence or absence of grandparents, siblings, and other relatives was used to construct the household composition variables P7HPARNT, P7HDAD, P7HMOM, and P7HFAMIL and parent-type variables P7MOMTYP, and P7DADTYP.

After the residential parents were identified and the composite variables were constructed, in any household without a parent, the household respondent (and his or her spouse/partner, if applicable) was assigned as a "parent figure." Parent demographic variables (including age, race/ethnicity, and education) were then constructed for all parents/parent figures. It should be noted, however, that these parent figures were not defined as parents (meaning biological, step-, adoptive, or foster) in the construction of the household composition composite variables described earlier. For example, for P7HFAMIL, composite values are as follows:

- $\quad 1=$ two parents and sibling(s);
- 2 = two parents, no siblings;
- $\quad 3=$ one parent and sibling(s);
- 4 = one parent, no siblings; and
- $\quad 5=$ other.

Parent figures were placed in the "other" category for this composite. Likewise, for the composite P7HPARNT, parent figures were placed in categories 8 or 9 for related and unrelated guardians, respectively. Similarly, parent figures were included in the category "no resident mother" for P7HMOM and "no resident father" for P7HDAD. Thus, although persons reported as children's parent/guardians and the spouses/partners of the parent/guardians are included in the definitions of all the household composites, individuals later identified as parent figures in households in which no parents are present are not considered to be parents in the coding of the household composites.

Some parent-specific variables do include persons who were later identified as parent figures. These are as follows (variables for fathers are listed below but those for mothers are created in the same way):

- P7DADID (household roster number of resident father, male guardian, or father figure);
- P7HDAGE (age of resident father, male guardian, or father figure);
- P7HDRACE (race and ethnicity of the father, male guardian, or father figure in the household);
- P7HDEMP (the employment status of the father, male guardian, or father figure in the household);
- P7DADOCC (father, male guardian, or father figure's occupation);
- W8DADED (father, male guardian, or father figure's highest level of education); and
- W8DADSCR (father, male guardian, or father figure's occupation prestige score).

It should be noted that, because the composite construction identifies only one resident mother or one resident father, same-sex parents are not readily identified in the composites themselves. Two approaches can be used to identify these couples. First, the user should search the relationship variables (P7REL_1, etc.) to identify households in which more than one person is identified as a father/mother to the focal child. Second, since not all same-sex partners identify themselves as "mother" or "father" to the focal child, the user should also search for households in which the respondent (identified by P7PER_1, etc.) is the child's parent, and the respondent's spouse/partner (identified from P7SPOUSE) is the same sex as the respondent.

There are two sections in the parent interview that asked questions specific to the parent figure:

- PEQ, Parent education; and
- EMQ, Employment.

Each of these sections was completed during the parent interview for up to two parents or parent figures. To indicate which household member or members were the subject of each section, "pointer" variables that hold the original number of the household member on the household roster were used. To illustrate how the pointer variables work, suppose there is a household with both a mother and a father who were listed third and fourth in the household roster. If household member \#3, the mother, was the first person to receive the PEQ education section, then the pointer variable P7EDUP1 will equal " 3 ." The answers to the education questions for the mother will be contained in interview items in this section that end with the suffix "_1" (e.g., P7NDEG_1, P7DEGT_1, P7ENR_1, etc.). The suffix "_1" indicates that the data are for the first subject of the questions. Similarly, if household member \#4, the father, was the second person to receive the PEQ education section, then the pointer variable P7EDUP2 will equal " 4 ." The answers to the education questions for the father will be contained in interview items in this section that end with the suffix "_2" (e.g., P7NDEG_2, P7DEGT_2, P7ENR_2, etc.). The suffix "_2" indicates that the data are for the second subject of the questions. Table 7-14 identifies the pointer variables.

Table 7-14. Pointers to parent figure questions, spring-eighth grade: School year 2006-07

Person pointer		Interview item	
P7EDUP1	P7 PEQ010-060	P7NDEG_1	P7 PEQ010 PERS 1 COMPLETED NEW DEGREE
	HH PERSON	P7DEGT_1	P7 PEQ020 PERS 1 DEGREE TYPE COMPLETED
	POINTER 1	P7HIS_1	P7 PEQ021 IF PERS 1 HIGH SCHOOL DIPLOMA
P7EDUP2	P7 PEQ010-060	P7NDEG_2	P7 PEQ010 PERS 2 COMPLETED NEW DEGREE
	HH PERSON	P7DEGT_2	P7 PEQ020 PERS 2 DEGREE TYPE COMPLETED
	POINTER 2	P7HIS_2	P7 PEQ021 IF PERS 2 HIGH SCHOOL DIPLOMA
P7EMPP1	P7 EMQ010-150 HH PERSON POINTER 1	P7CHJB_1	P7 EMQ010 PERS 1 CHNGD JOB SNC SPR 2002
		P7PAY_1	P7 EMQ020 PERS 1 HAD PAID JOB LAST WEEK
		P7VAC_1	P7 EMQ030 IF PERS 1 ON LEAVE PAST WEEK
		P7JOB_1	P7 EMQ040 PERSON 1 NUMBER OF ALL JOBS
		P7HRS_1	P7 EMQ050 PERSON 1 HOURS/WK AT ALL JOBS
		P7LOK_1	P7 EMQ060 PERS 1 SOUGHT JOB LAST 4 WEEKS
		P7DO1_1	P7 EMQ070 PERS 1 CHKD W/PUB EMPL AGENCY
		P7DO2_1	P7 EMQ070 PERS 1 CHKD W/PRIV EMP AGENCY
		P7DO3_1	P7 EMQ070 PERS 1 CHKD W/EMPLOYER DIRECTLY
		P7DO4_1	P7 EMQ070 PERS 1 CHKD W/FRIENDS \& REL
		P7DO5_1	P7 EMQ070 PERS 1 PLACED OR ANSWERED ADS
		P7DO6_1	P7 EMQ070 PERS 1 READ WANT ADS
		P7D07_1	P7 EMQ070 PERS 1 DID SOMETHING ELSE
		P7TAK_1	P7 EMQ100 PERS 1 JOB AVAILABLE LAST WEEK
		P7CHJB_2	P7 EMQ010 PERS 2 CHNGD JOB SNC SPRING 2002
		P7PAY_2	P7 EMQ020 PERS 2 HAD PAID JOB LAST WEEK
		P7VAC_2	P7 EMQ030 IF PERS 2 ON LEAVE PAST WEEK
P7EMPP2	P7EMQ010-150 HH PERSON POINTER 2	P7JOB_2	P7 EMQ040 PERSON 2 NUMBER OF ALL JOBS
		P7HRS_2	P7 EMQ050 PERSON 2 HOURS/WK AT ALL JOBS
		P7LOK_2	P7 EMQ060 PERS 2 SOUGHT JOB LAST 4 WEEKS
		P7DO1_2	P7 EMQ070 PERS 2 CHKD W/PUB EMPL AGENCY
		P7DO2_2	P7 EMQ070 PERS 2 CHKD W/PRIV EMP AGENCY
		P7DO3_2	P7 EMQ070 PERS 2 CHKD W/EMPLOYER DIRECTLY
		P7DO4_2	P7 EMQ070 PERS 2 CHKD W/FRIENDS \& REL
		P7DO5_2	P7 EMQ070 PERS 2 PLACED OR ANSWERED ADS
		P7DO6_2	P7 EMQ070 PERS 2 READ WANT ADS
		P7DO7_2	P7 EMQ070 PERS 2 DID SOMETHING ELSE
		P7TAK 2	P7 EMQ100 PERS 2 JOB AVAILABLE LAST WEEK

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 199899 (ECLS-K), spring 2007.

7.6.7 Industry and Occupation Codes Used in the ECLS-K

This section describes the aggregated categories that were used for coding occupation in the ECLS-K.

1. Executive, Administrative, and Managerial Occupations

This category includes senior-level and middle management occupations and occupations that directly support management. Senior-level managers are persons concerned with policymaking, planning, staffing, directing, and/or controlling activities. Middle managers include persons who plan, organize, or direct and/or control activities at the operational level. Workers in this category are not directly concerned with the fabrication of products or with the provision of services. Other officials and administrators include consultants, library directors, custom house builders, and location managers. Legislators are also included in this category.

2. Engineers, Surveyors, and Architects

This category includes occupations concerned with applying principles of architecture and engineering in the design and construction of buildings, equipment and processing systems, highways and roads, and land utilization.

3. Natural Scientists and Mathematicians

This category includes those engaged primarily in the application of scientific principles to research and development. Natural scientists are those in the physical sciences (e.g., chemistry, physics) and the life sciences (e.g., biology, agriculture, medicine). In addition, this category includes those in computer science, mathematics (including statistics), and operations research.

4. Social Scientists, Social Workers, Religious Workers, and Lawyers

This category includes occupations concerned with the social needs of people and with basic and applied research in the social sciences.

5. Teachers: College, University, and Other Postsecondary Institution; Counselors, Librarians, and Archivists

This category includes those who teach at higher education institutions and at other postsecondary (after high school) institutions, such as vocational institutes. In addition, vocational and educational counselors, librarians, and archivists are included here.

6. Teachers, except Postsecondary Institution

This category includes prekindergarten and kindergarten teachers, elementary and secondary teachers, special education teachers, instructional coordinators, and adult education teachers (outside postsecondary).

7. Physicians, Dentists, and Veterinarians

This category includes health care professionals who diagnose and treat patients. In addition to physicians, dentists, and veterinarians, this category includes optometrists, podiatrists, and other diagnosing and treating professionals, such as chiropractors, hypnotherapists, and acupuncturists.

8. Registered Nurses, Pharmacists, Dieticians, Therapists, and Physician's Assistants

This category includes occupations concerned with the maintenance of health, the prevention of illness and the care of the ill through the provision and supervision of nursing care; compounding drugs, planning food service or nutritional programs; providing assistance to physicians; and the provision of therapy and treatment as directed by physicians.

9. Writers, Artists, Entertainers, and Athletes

This category includes occupations concerned with creating and executing artistic works in a personally interpreted manner by painting, sculpturing, drawing, engraving, etching, and other methods; creating designs for products and interior decorations; designing and illustrating books, magazines, and other publications; writing; still, motion picture, and television photography/filming; producing, directing, staging, acting, dancing, singing in entertainment; and participating in sports and athletics as a competitor or player and administering and directing athletic programs.

10. Health Technologists and Technicians

This category includes occupations concerned with providing technical assistance in the provision of health care. For example, clinical laboratory technologists and technicians, dental hygienists, radiologic technicians, licensed practical nurses (LPNs), and other health technologists are included here.

11. Technologists and Technicians, except Health

This category includes those providing technical assistance in engineering and scientific research, development, testing, and related activities, as well as operating and programming technical equipment and systems.

12. Marketing and Sales Occupations

This category includes occupations involving selling goods or services, purchasing commodities and property for resale, and conducting wholesale or retail business.

13. Administrative Support Occupations, including Clerks

This category includes occupations involving preparing, transcribing, transferring, systematizing, and preserving written communications and records; collecting accounts; gathering and distributing information; operating office machines and data processing equipment; operating switchboards; distributing mail and messages; and other support and clerical duties such as bank teller, data entry keyer, etc.

14. Service Occupations

This category includes occupations providing personal and protective services to individuals, and current maintenance and cleaning for building and residences. Some examples include food service, health service (e.g., aides or assistants), cleaning services other than household, and personal services.

15. Agricultural, Forestry, and Fishing Occupations

This category is concerned with the production, propagation (breeding/growing), gathering, and catching of animals, animal products, and plant products (timber, crop, and ornamental); the provision of services associated with agricultural production; and game farms, fisheries, and wildlife conservation. "Other agricultural and related occupations" include occupations concerned with the production and propagation of animals, animal products, plants, and products (crops and ornamental).

16. Mechanics and Repairers

Mechanics and repairers are persons who do adjustment, maintenance, part replacement, and repair of tools, equipment, and machines. Installation may be included if it is usually done in conjunction with other duties of the repairers.

17. Construction and Extractive Occupations

This category includes occupations that normally are performed at a specific site, which will change over time, in contrast to production workers, where the work is usually at a fixed location. Construction workers include those in overall construction, brickmasons, stonemasons, carpenters, electricians, drywall installers, paperhangers and painters, etc. Extractive occupations include oil well drillers, mining machine operators, and so on.

18. Precision Production Occupations

Precision production includes occupations concerned with performing production tasks that require a high degree of precision or attainment of rigid specification and operating plants or large systems. Included in this category are tool and die makers, pattern and model makers, machinists, jewelers, engravers, and so on. Also included are some food-related workers including butchers and bakers. Plant and system operators include water and sewage, gas, power, chemical, petroleum, and other plant or system operators.

19. Production Working Occupations

This category includes occupations concerned with setting up, operating, and tending of machines and hand production work, usually in a factory or other fixed place of business.

20. Transportation and Material Moving Occupations

This category includes occupations concerned with operating and controlling equipment used to facilitate the movement of people or materials and the supervising of those workers.

21. Handlers, Equipment Cleaners, Helpers, and Laborers

This category includes occupations that involve helping other workers and performing routine nonmachine tasks. A wide variety of helpers, handlers, etc., are included in this category. Examples include construction laborers, freight, stock, and material movers, garage and service station-related occupations, parking lot attendants, and vehicle washers and equipment cleaners.

22. Unemployed, Retired, Disabled, or Unclassified Workers

This category includes persons who are unemployed, have retired from the work force, or are disabled. It also includes unclassified occupations that do not fit into the categories above (e.g., occupations that are strictly military, such as "tank crew member" and "infantryman").

7.7 Methodological Variables

To facilitate methodological research, 11 variables are included on the eighth-grade data file. The identifiers for parent interview work area (F7PWKARE), parent interviewer (F7PINTVR), and child assessment work area (F7CWKARE) were extracted from the FMS.

Finally, an indicator variable (F7PREFCV, Parent Interview Refusal Conversion) was created to flag cases that had, at any time, refused to respond to the parent interview but later agreed to participate. The values for F7PREFCV are $1=\mathrm{YES}$ (refused but were converted to be a participant) and $2=\mathrm{NO}$ (did not refuse).

7.8

 Children Who Changed SchoolsThere are several variables in the file that can be used to determine if a child moved to a different school between rounds of data collection.

7.8.1 Children Who Changed Schools Between Rounds (R7R6SCHG)

A variable on the file that will be of interest to users examining school change is R7R6SCHG (school type change between spring-fifth grade and spring-eighth grade). It indicates whether the child changed schools and, if so, the school type of the previous and the new school (e.g., whether the change was from public to private school, private to private school, etc.). R7R6SCHG is created by comparing the school IDs from spring-fifth grade and spring-eighth grade for children who were in the spring-fifth grade data collection. A difference in IDs indicated a change. If there was no difference in IDs, R7R6SCHG was coded 1 (child did not change schools). For children who changed schools, the spring-fifth grade school type variable S6SCTYP was compared to the spring-eighth grade school type variable S7SCTYP. Categories were assigned as appropriate $(2=$ child transferred from public to public; $3=$ child transferred from private to private; $4=$ child transferred from public to private; $5=$ child transferred from private to public; and $6=$ child transferred, other). Category 6 was used for those children who transferred schools, but school type was unknown. Children who were not in the spring-fifth grade data collection were coded -9 , "Not Ascertained," on R7R6SCHG. Children who were homeschooled in spring-fifth grade or spring-eighth grade were coded -1, "Not Applicable," for R7R6SCHG.

In previous rounds of the study, there was also a variable that indicated whether a student moved to a "destination school" (e.g., R6DEST in spring-fifth grade). Destination schools were schools for which it was determined before data collection that at least four ECLS-K children would move into them from a school that ended before a particular grade or a school that had closed. In spring-eighth grade, the majority of students would have moved from elementary to middle/junior high schools, so this variable was less useful and it was not used in spring-eighth grade.

[^44]
Composite Table

Table 7-15 describes the composite and derived variables that are on the ECLS-K child catalog. Note that a few of the variables specified in the "derived from" column are intermediary variables that were not included in the final data set. An example of an intermediary variable is the child gender variable from parent questionnaires prior to spring-eighth grade, CHILDGEN. If this variable was missing, or had conflicting information across rounds of the study, information about gender was used from the FMS or child report. The variable CHILDGEN is not included in the final dataset, but the composite R7GENDER is included. Other intermediary variables are taken from either the FMS or the school master file and are not included on the data file.

The "derived from" column also contains the item numbers from the questionnaire, which help in identifying the items used in the creation of these composites. This information allows a user to decide whether to use the composite based on how it was defined.

Some variables in table 7-15 have been recoded or suppressed. Reasons for these data changes are discussed in section 7.10. All values for variables in the K-8 full sample public-use file are shown in the last column of table $7-15$, including those that were recoded.

- Please note that the following section (7.10) applies to the K-8 full sample public-use file. It does not apply to the eighth-grade restricted-use file.

$7.10 \quad$ Masked Variables

For some of the variables on the K-8 full sample public-use file, certain categories were modified. The value labels for those masked variables were updated from the restricted-use variables to reflect the new categories that were created during the masking process.

There are three types of modifications on the K-8 full sample public-use data file.

- Outliers are top- or bottom- coded to prevent identification of unique schools, teachers, parents, and children without affecting overall data quality.
- Variables with too few cases and a sparse distribution are suppressed in the public-use data file. The values for these variables were set to -2 and labeled "suppressed" in the ECB.
- Certain continuous variables are modified into categorical variables, and certain categorical variables have their categories collapsed in the public-use data file. While this protects the cases from a disclosure risk, these variables can still be used in all different kinds of analysis such as logistic regression analysis.

In addition to these modifications, other procedures were used in both data files (restricteduse and K-8 full sample public-use) to modify data based on the disclosure analysis NCES conducted in order to protect the identity of the respondents and children. Certain schools identified as at risk for disclosure had a 5 to 10 percent noise introduced in those variables that posed a risk for disclosure. Also, for one group of variables values were modified by "data swapping." This process removes a reported value and replaces it with a reported value from a different respondent for a subset of the records.

There is a comment field in the variable frequency distribution view screen of the electronic codebook that displays a comment for each masked variable indicating whether the variable from the restricted-use file has been recoded or suppressed in the K-8 full sample public-use file. Variables that were recoded in any way during the data masking process display the comment, "These data recoded for respondent confidentiality." Variables that were suppressed on the K-8 full sample public-use file for protection of the respondent or child from identification display the comment, "These data suppressed for respondent confidentiality," and all values for the variable are set to equal -2 for that variable.

Table 7-16 presents the list of the masked variables. The table displays the variable name, variable label, and the comment displayed in the electronic codebook indicating if the variable was recoded or suppressed. The table is sorted sequentially by the variable Field ID (see section 8.3.1.1 for how to use the variable Field ID.)

All variables from the special education teacher questionnaire part A (i.e., all variables with the prefix D7) and from the special education teacher questionnaire part B (i.e., all variables with the prefix E7) have been suppressed in the eighth-grade public-use file. Included in this group of suppressed variables are all teacher and school identifiers, which have last two characters "ID" and prefix D7 or E7.

Table 7-15. Spring-eighth grade composite variables: School year 2006-07

Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

ID	Variable name	Category	Description	Derived from	Eighth-grade restricteduse file values	K-8 full sample public-use file values
6	W8RACETH	Child	Race and ethnicity of the focal child	W5RACETH, W3RACETH, W1RACETH, WKRACETH (composites)	1=White, 2=Black or African American, 3=Hispanic, race specified, $4=$ Hispanic, no race specified, $5=$ Asian, 6=Native Hawaiian or other Pacific Islander, 7=American Indian or Alaska Native, $8=$ More than 1 race, non-Hispanic	1=White, 2=Black or African American, 3=Hispanic, race specified, $4=$ Hispanic, no race specified, $5=$ Asian, 6=Native Hawaiian or other Pacific Islander, 7=American Indian or Alaska Native, $8=$ More than 1 race, non-Hispanic
7	R7RACE	Child	Race and ethnicity of the focal child	W3RACETH, W1RACETH, WKRACETH, RACE from previous round (composites), C_RACE (FMS, not delivered), HI_PSU (FMS, not delivered)	1=White, 2=Black or African American, $3=$ Hispanic, race specified, $4=$ Hispanic, no race specified, $5=$ Asian, 6=Native Hawaiian or other Pacific Islander, $7=$ American Indian or Alaska Native, 8=More than 1 race, non-Hispanic	1=White, 2=Black or African American, 3=Hispanic, race specified, $4=$ Hispanic, no race specified, $5=$ Asian, 6=Native Hawaiian or other Pacific Islander, $7=$ American Indian or Alaska Native, $8=$ More than 1 race, non-Hispanic
8	W8AMERIN	Child	Child is American Indian or Alaska Native	W5AMERIN, W3AMERIN, W1AMERIN, WKAMERIN (composites)	$1=\mathrm{Yes}, 2=\mathrm{No}$	$1=\mathrm{Yes}, 2=$ No
9	W8ASIAN	Child	Child is Asian	W5ASIAN, W3ASIAN, W1ASIAN, WKASIAN (composites)	$1=\mathrm{Yes}, 2=\mathrm{No}$	$1=\mathrm{Yes}, 2=$ No
10	W8BLACK	Child	Child is African American	W5BLACK, W3BLACK, W1BLACK, WKBLACK (composites).	$1=$ Yes, $2=$ No	$1=\mathrm{Yes}, 2=\mathrm{No}$

[^45]Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

ID	Variable name	Category	Description	Derived from	Eighth-grade restricteduse file values	K-8 full sample public-use file values
11	W8PACISL	Child	Child is Native Hawaiian or other Pacific Islander	W5PACISL, W3PACISL, W1PACISL, WKPACISL (composites)	$1=Y e s, 2=$ No	$1=$ Yes, $2=$ No
12	W8WHITE	Child	Child is White	W5WHITE, W3WHITE, W1WHITE, WKWHITE (composites)	$1=$ Yes, $2=$ No	$1=\mathrm{Yes}, 2=$ No
13	W8MT1RAC	Child	Child is more than one race	W5MT1RAC, W3MT1RAC, W1MT1RAC, WKMT1RAC (composites)	$1=$ Yes, $2=$ No	$1=\mathrm{Yes}, 2=$ No
14	W8HISP	Child	Child is Hispanic	W5HISP, W3HISP, W1HISP, WKHISP (composites)	$1=$ Yes, $2=$ No	$1=\mathrm{Yes}, 2=$ No
15	C7BMI	Child	Child's spring-eighth grade body mass index	C7HEIGHT, C7WEIGHT (composites)	Continuous	Continuous
16	C7HEIGHT	Child	Child's spring-eighth grade composite height	C7HGT1, C7HGT1A, C7HGT2, C7HGT2A	Continuous	Continuous
17	C7WEIGHT	Child	Child's spring-eighth grade composite weight	C7WGT1, C7WGT1A, C7WGT2, C7WGT2A	Continuous	Continuous
18	P7DISABL	Child	Child has a disability	P7DIAGNO (CHQ050), P7PROFFD (CHQ110), P7COMMU2 (CHQ170), P7DIFFH3 (CHQ210), P7VISIO2 (CHQ300), P7CORREC (CHQ316), P7RSVTSY (CHQ520), P7DIABEH (CHQ335), P7DIAEMO (CHQ360) P7DGNATT (CHQ.060) P7DGNACT (CHQ.120) P7DGNBEH (CHQ.337) P7DGNEMO (CHQ.365) P7BESTEY (CHQ.320)	$1=$ Yes, $2=$ No	$1=\mathrm{Yes}, 2=\mathrm{No}$

[^46]Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

	Variable name	Category	Description	Derived from

[^47]Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

ID	Variable name	Category	Description	Derived from	Eighth-grade restricteduse file values	K-8 full sample public-use file values
22	R7ELIG	Child	Eligibility status of child	Child raw assessment status, ASSESSME (not on file)	1=Eligible $2=$ Ineligible, out of scope $3=$ Ineligible, moved out of the country 4=Ineligible, deceased $5=$ Category 5 not in use in round 7	1=Eligible $2=$ Ineligible, out of scope 3=Ineligible, moved out of the country 4=Ineligible, deceased $5=$ Category 5 not in use in round 7
23	C7ASMTST	Child	Child assessment status	C7ENGFLG, C7MTHFLG, C7SCIFLG, statistical flag SCORE_FG (not on file), presence or absence of height/weight or student questionnaire data	1=Completely scorable assessment data $2=$ Partially completed scorable assessment data $3=$ Category not in use in round 7 $4=$ Child with disability, not assessed 5=Nonrespondent	1=Completely scorable assessment data, $2=$ Partially completed scorable assessment data, $3=$ Category not in use in round 7 $4=$ Child with disability, not assessed 5=Nonrespondent
24	C7ENGFLG	Child	Presence of completed English assessment data	Presence or absence of English assessment	$0=$ False, $1=$ True	$0=$ False, $1=$ True
25	C7MTHFLG	Child	Presence of completed math assessment data	Presence or absence of math assessment	$0=$ False, $1=$ True	$0=$ False, $1=$ True
26	C7SCIFLG	Child	Presence of completed science assessment data	Presence or absence of science assessment	$0=$ False, $1=$ True	$0=$ False, $1=$ True

[^48]Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

ID	Variable name	Category	Description	Derived from	Eighth-grade restricteduse file values	K-8 full sample public-use file values
27	C7STUDAT	Child	Presence of completed student questionnaire data	Presence or absence of student questionnaire	$0=$ False, 1 = True	$0=$ False, 1 = True
28	P7MOMID	Family/ household (HH)	Household roster number of resident mother, female guardian, or mother figure	P7REL_1 to P7REL_25 (FSQ.130), P7UNR_1 to P7UNR_25 (FSQ.180), P7SPOUSE (FSQ.120), P7MOM_1 through P7MOM_25 (FSQ.140)	1-25	1-25
29	P7DADID	Family/HH	Household roster number of resident father, male guardian or father figure	P7REL_1 to P7REL_25 (FSQ.130), P7UNR_1 to P7UNR_25 (FSQ.180), P7SPOUSE (FSQ.120), P7DAD_1 through P7DAD_25 (FSQ.150)	1-25	1-25
30	P7HPARNT	Family/HH	Classification of the focal child's parents who reside in the household	P7REL_1 through P7REL_25 (FSQ.130), P7UNR_1 through P7UNR_25 (FSQ.180), P7HMOM, P7HDAD (composites)	1=Biological mother and biological father, $2=$ Biological mother and other father (step-, adoptive, foster), $3=$ Biological father and other mother (step-, adoptive, foster), 4=Biological mother only, 5=Biological father only, 6=Two adoptive parents, $7=$ Single adoptive parent or adoptive parent and stepparent, $8=$ Related guardian(s), $9=$ Unrelated guardian(s)	$1=$ Biological mother and biological father, 2=Biological mother and other father (step-, adoptive, foster), $3=$ Biological father and other mother (step-, adoptive, foster), 4=Biological mother only, 5=Biological father only, 6=Two adoptive parents, 7=Single adoptive parent or adoptive parent and stepparent, $8=$ Related guardian(s), $9=$ Unrelated guardian(s)

Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

[^49]Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

ID	Variable name	Category	Description	Derived from	Eighth-grade restricteduse file values	K-8 full sample public-use file values
36	P7TWIN	Family/HH	Household has sampled twins	P7PER_1 to P7PER_25 (person type in Family Structure section (FSQ) roster)	$0=$ No twin in HH , $1=$ Twin in HH	$0=$ No twin in HH , $1=$ Twin in HH
37	W8POVRTY	Family/HH	Poverty indicator	P7HILOW (PAQ.100), P7INCCAT(PAQ.110), W8INCCAT, P7HTOTAL (composites), and censusdefined thresholds	1=Below poverty threshold 2=At or above poverty threshold	1=Below poverty threshold 2=At or above poverty threshold
38	W8INCCAT	Family/HH	Household income	P7INCCAT(PAQ.110)	$1=\$ 5,000$ or less	$1=\$ 5,000$ or less
					$2=\$ 5,001$ to \$10,000	$2=\$ 5,001$ to \$10,000
					$3=\$ 10,001$ to \$15,000	$3=\$ 10,001$ to \$15,000
					$4=\$ 15,001$ to \$20,000	$4=\$ 15,001$ to $\$ 20,000$
					$5=\$ 20,001$ to \$25,000	$5=\$ 20,001$ to \$25,000
					6=\$25,001 to \$30,000	6=\$25,001 to \$30,000
					$7=\$ 30,001$ to \$35,000	7=\$30,001 to \$35,000
					$8=\$ 35,001$ to $\$ 40,000$	$8=\$ 35,001$ to \$40,000
					$9=\$ 40,001$ to $\$ 50,000$	$9=\$ 40,001$ to $\$ 50,000$
					$10=\$ 50,001$ to \$75,000	$10=\$ 50,001$ to $\$ 75,000$
					$11=\$ 75,001$ to \$100,000	$11=\$ 75,001$ to \$100,000
					12=\$100,001 to \$200,000	$12=\$ 100,001$ to \$200,000
					$13=\$ 200,001$ or more	$13=\$ 200,001$ or more

[^50]Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

ID	Variable name	Category	Description	Derived from	Eighth-grade restricteduse file values	K-8 full sample public-use file values
39	W8SESL	Family/HH	Socioeconomic scale	W8INCCAT, W8MOMED, W8DADED, W8MOMSCR, W8DADSCR (all composites)	Continuous	Continuous
40	W8SESQ5	Family/HH	Quintile indicator for W8SESL	W8SESL (composite)	$1=$ First quintile (lowest), $2=$ Second quintile, $3=$ Third quintile, 4=Fourth quintile, $5=$ Fifth quintile (highest)	$1=$ First quintile (lowest), $2=$ Second quintile, $3=$ Third quintile, 4=Fourth quintile, $5=$ Fifth quintile (highest)
41	W8PARED	Family/HH	Highest level of education for the child's parents or nonparental guardians who reside in the household. If only one parent or guardian resides in the household, W8PARED reflects that parent's education level.	W8MOMED, W8DADED (composites)	$1=8$ th grade or below, $2=9$ th to 12 th grades, 3=High school diploma/equivalent, $4=$ Voc/tech program, 5=Some college, 6=Bachelor's degree, 7=Graduate/professional school/no degree, $8=$ Master's degree, $9=$ Doctorate or professional degree	$1=8$ th grade or below, $2=9$ th to 12 th grades, $3=$ High school diploma/equivalent, $4=$ Voc/tech program, 5=Some college, 6=Bachelor's degree, 7=Graduate/professional school/no degree, $8=$ Master's degree, $9=$ Doctorate or professional degree

[^51]Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

ID	Variable name	Category	Description	Derived from	Eighth-grade restricteduse file values	K-8 full sample public-use file values
42	W8MOMSCR	Family/HH	Mother, female guardian, or mother figure's occupation GSS prestige score	1989 GSS prestige scores, EMQ. 120 (not on file), EMQ. 130 (not on file), and EMQ. 140 (not on file).	29.6 Handler, Equip, Cleaner, Helpers, Labor; 33.42 Production Working Occupation; 34.95 Service Occupations; 35.63 Agriculture, Forestry, Fishing Occupations; 35.78 Marketing \& Sales Occupation; 35.92 Transportation, Material Moving; 37.67 Precision Production Occupation; 38.18 Administrative Support, Including Clerk; Repairs; 39.2 Construction \& Extractive Occupations; 48.69 Technologists, Except Health; 52.54 Writers, Artists, Entertainers, Athletes; 53.5 Executive, Admin, Managerial Occupation; 57.83 Health Technicians; 59 Social Scientist/Workers, Lawyers; 61.56 Registered Nurses, Pharmacists; 62.87 Mathematicians; 63.43.	29.6 Handler, Equip, Cleaner, Helpers, Labor; 33.42 Production Working Occupation; 34.95 Service Occupations; 35.63 Agriculture, Forestry, Fishing Occupations; 35.78 Marketing \& Sales Occupation; 35.92 Transportation, Material Moving; 37.67 Precision Production Occupation; 38.18 Administrative Support, Including Clerk; Repairs; 39.2 Construction \& Extractive Occupations; 48.69 Technologists, Except Health; 52.54 Writers, Artists, Entertainers, Athletes; 53.5 Executive, Admin, Managerial Occupation; 57.83 Health Technicians; 59 Social Scientist/Workers, Lawyers; 61.56 Registered Nurses, Pharmacists; 62.87 Mathematicians; 63.43.

Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

ID	Variable name	Category	Description	Derived from	Eighth grade restricteduse file values	K-8 full sample public-use file values
42	W8MOMSCR -Continued	Family/HH	Mother, female guardian, or mother figure's occupation GSS prestige score	1989 GSS prestige scores, EMQ. 120 (not on file), EMQ. 130 (not on file), and EMQ. 140 (not on file)	Teacher, Except Postsecondary; 64.89 Engineers, Surveyors, \& Architects; 72.1 Teachers; College, Postsecondary Counselors, Librarians; 77.5 Physicians, Dentists, Veterinarians	Teacher, Except Postsecondary; 64.89 Engineers, Surveyors, \& Architects; 72.1 Teachers; College, Postsecondary Counselors, Librarians; 77.5 Physicians, Dentists, Veterinarians
43	P7HDAD	Family/HH	Indicates whether the birth, adoptive, step or foster father of the focal child resides in the household with the focal child	P7REL_1 through P7REL_25(FSQ.130), P7DAD_1 through P7DAD_25 (FSQ.150), P7UNR_1 through P7UNR_25 (FSQ̄.180), P7PARTNR (FSQ. 110), P7SPOUSE (FSQ.120)	1=Biological, $2=$ Adoptive, $3=$ Step, 4=Foster, 5=Partner, 6=Don't know type, $7=$ No resident father	1=Biological, $2=$ Adoptive, $3=$ Step, 4=Foster, $5=$ Partner, 6=Don't know type, $7=$ No resident father
44	P7HDAGE	Family/HH	Age of resident father, male guardian or father figure	P7AGE_1 through P7AGE_25 (FSQ.030), P7DADID	Continuous	Continuous
45	P7HDRACE	Family/HH	Race and ethnicity of the father, male guardian, or father figure in the household	RACE1, RACE2, RACE3, RACE4, RACE5, RACE6 (variables coded in parent interview based on P7RC1_1 through P7RC6_1 up to P7RC1_25 through P7RC6_25 (FSQ.195), and P7HSP_1 through P7HSP_25 (FSQ.190))	$1=$ White, $2=$ Black or African American, 3=Hispanic, race specified, $4=$ Hispanic, no race specified, $5=$ Asian, 6=Native Hawaiian or other Pacific Islander, 7=American Indian or Alaska Native, $8=$ More than one race, nonHispanic	1=White, 2=Black or African American, $3=$ Hispanic, race specified, $4=$ Hispanic, no race specified, $5=$ Asian, $6=$ Native Hawaiian or other Pacific Islander, 7=American Indian or Alaska Native, $8=$ More than one race, nonHispanic

[^52]Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

ID	Variable name	Category	Description	Derived from	Eighth-grade restricteduse file values	K-8 full sample public-use file values
46	W8DADSCR	Family/HH	Father, male guardian, or father figure's occupation GSS prestige score	1989 GSS prestige scores, EMQ.120, EMQ.130, and EMQ. 140 (not on file)	29.6 Handler, Equip, Cleaner, Helpers, Labor; 33.42 Production Working Occupation; 34.95 Service Occupations; 35.63 Agriculture, Forestry, Fishing Occupations; 35.78 Marketing \& Sales Occupation; 35.92 Transportation, Material Moving; 37.67 Precision Production Occupation; 38.18 Administrative Support, Including Clerk; Repairs; 39.2 Construction \& Extractive Occupations; 48.69 Technologists, Except Health; 52.54 Writers, Artists, Entertainers, Athletes; 53.5 Executive, Admin, Managerial Occupation; 57.83 Health Technicians; 59 Social Scientist/Workers, Lawyers; 61.56 Registered Nurses, Pharmacists; 62.87 Mathematicians; 63.43.	29.6 Handler, Equip, Cleaner, Helpers, Labor; 33.42 Production Working Occupation; 34.95 Service Occupations; 35.63 Agriculture, Forestry, Fishing Occupations; 35.78 Marketing \& Sales Occupation; 35.92 Transportation, Material Moving; 37.67 Precision Production Occupation; 38.18 Administrative Repairs; 39.2 Construction \& Extractive Occupations; 48.69 Technologists, Except Health; 52.54 Writers, Artists, Entertainers, Athletes; 53.5 Executive, Admin, Managerial Occupation; 57.83 Health Technicians; 59 Social Scientist/Workers, Lawyers; 61.56 Registered Nurses, Pharmacists; 62.87 Mathematicians; 63.43.

Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

ID	Variable name	Category	Description	Derived from	Eighth-grade restricteduse file values	K-8 full sample public-use file values
46	W8DADSCR -Continued	Family/HH	Father, male guardian, or father figure's occupation GSS prestige score	1989 GSS prestige scores, EMQ.120, EMQ.130, and EMQ. 140 (not on file).	Teacher, Except Postsecondary; 64.89 Engineers, Surveyors, \& Architects; 72.1 Teachers; College, Postsecondary Counselors, Librarians; 77.5 Physicians, Dentists, Veterinarians	Teacher, Except Postsecondary; 64.89 Engineers, Surveyors, \& Architects; 72.1 Teachers; College, Postsecondary Counselors, Librarians; 77.5 Physicians, Dentists, Veterinarians
47	W8DADED	Family/HH	The father, male guardian, or father figure's highest level of education	P7NDEG_1 through P7NDEG_2 (PEQ.010), P7DEGT 1 through P7DEGT 2 (PEQ.020), P7HSD_1 through P7HSD_2 (PEQ.021)	$1=8$ th grade or below, $2=9$ th to 12th grades, $3=$ High school diploma/equivalent, $4=$ Voc/Tech program, 5=Some college, 6=Bachelor's Degree, 7=Graduate/professional school/no degree, 8=Master's degree, 9=Doctorate or professional degree	$1=8$ th grade or below, $2=9$ th to 12 th grades, $3=$ High school diploma/equivalent, $4=$ Voc/Tech program, 5=Some college, 6=Bachelor's Degree, 7=Graduate/professional school/no degree, 8=Master's degree, $9=$ Doctorate or professional degree
48	P7HDEMP	Family/HH	The work status of the father, male guardian or father figure in the household.	P7HRS_1, 2 (EMQ.050), P7PAY_1,_2 (EMQ.020), P7VAC_1,_2 (EMQ 030), P7LOK_1,_2 (EMQ.060), P7DO1_1, 2 (EMQ.070), P7DO2_1, 2 (EMQ.070), P7DO3_1, 2 (EMQ.070), P7DO4_1, 2 (EMQ.070), P7DO5_1,_2 (EMQ.070), P7DO6_1,_2 (EMQ.070), P7DO7_1,_2 (EMQ.070), P7CHJB_1,_2 (EMQ.010)	$1=35$ hours or more per week, $2=$ Less than 35 hours per week, $3=$ Looking for work, $4=$ Not in the labor force	$1=35$ hours or more per week, $2=$ Less than 35 hours per week, $3=$ Looking for work, $4=$ Not in the labor force

Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

See note at end of table.

Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

	ID	Variable name	Category	Description	Derived from	Eighth-grade restricteduse file values	K-8 full sample public-use file values
	49	P7DADOCC -Continued	Family/HH	Father, male guardian, or father figure's occupation	Combination of P7CHJB_1, _2 (EMQ.010), EMQ.120, EMQ.130, and EMQ. 140 (not on file)	16 Mechanics \& Repairs Extractive Occupations 18 Precision Production Occupation 19 Production Working Occupation 20 Transportation, Material Moving 21 Handler, Equip, Cleaner, Helpers, Labor 22 Unemployed or Retired	16 Mechanics \& Repairs Extractive Occupations 18 Precision Production Occupation 19 Production Working Occupation 20 Transportation, Material Moving 21 Handler, Equip, Cleaner, Helpers, Labor 22 Unemployed or Retired
$\stackrel{\rightharpoonup}{2}$	50	P7HMOM	Family/HH	Indicates whether the birth, adoptive, step-, or foster mother of the focal child resides in the household with the focal child	P7REL_1 through P7REL_25 (FSQ.130), P7MOM_1 through P7MOM_25 (FSQ.140), P7UNR_1 through P7UNR_25 (FSQ.180), P7PARTNR (FSQ.110), P7SPOUSE (FSQ.120)	1=Biological, $2=$ Adoptive, $3=$ Step, $4=$ Foster, $5=$ Partner, 6=Don't know type, $7=$ No resident mother	1=Biological, $2=$ Adoptive, 3=Step, $4=$ Foster, 5=Partner, 6=Don't know type, $7=$ No resident mother
	51	P7HMAGE	Family/HH	Age of resident mother, female guardian or mother figure	P7AGE_1 through P7AGE_25 (FSQ.030), P7MOMID	Continuous	Continuous

Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

[^53]Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

See note at end of table.

Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

ID	Variable name	Category	Description	Derived from	Eighth-grade restricteduse file values	K-8 full sample public-use file values
58	P7FSRAW	Family/HH	Household food security raw score, a simple count of the number of food security items affirmed by the parent	P7WORRFD (FDQ.130A), P7FDLAST (FDQ.130B), P7BLMEAL (FDQ.130C), P7LOWCST (FDQ.130D), P7NOBAL (FDQ.130E), P7CANTAF (FDQ.130F), P7EVCUT2 (FDQ.140), P7EVCUT (FDQ.150), P7EATLES (FDQ.160), P7HUNGRY (FDQ.170), P7LOSEWT (FDQ.180), P7NOTEAT (FDQ.190), P7NOTEA2 (FDQ.200), P7CUTML (FDQ.210), P7CHSKIP (FDQ.220), P7OFTCUT (FDQ.230), P7CHIEVR (FDQ.240), P7NOMONY (FDQ.250)	Continuous	Continuous
59	P7FSSCAL	Family/HH	Household food security scale score. This is a measure of the severity of food insecurity or hunger experienced in the household in the previous 12 months.	P7WORRFD (FDQ.130A), P7FDLAST (FDQ.130B), P7BLMEAL (FDQ.130C), P7LOWCST (FDQ.130D), P7NOBAL (FDQ.130E), P7CANTAF (FDQ.130F), P7EVCUT2 (FDQ.140), P7EVCUT (FDQ.150), P7EATLES (FDQ.160), P7HUNGRY (FDQ.170), P7LOSEWT (FDQ.180), P7NOTEAT (FDQ.190), P7NOTEA2 (FDQ.200), P7CUTML (FDQ.210), P7CHSKIP (FDQ.220), P7OFTCUT (FDQ.230), P7CHIEVR (FDQ.240), P7NOMONY (FDQ.250)	Continuous	Continuous
60	P7FSSTAT	Family/HH	A categorical measure of household food security status that identifies households as food secure, food insecure without hunger, food insecure with hunger (moderate), and food insecure with hunger (severe)	P7WORRFD (FDQ.130A), P7FDLAST (FDQ.130B), P7BLMEAL (FDQ.130C), P7LOWCST (FDQ.130D), P7NOBAL (FDQ.130E), P7CANTAF (FDQ.130F), P7EVCUT2 (FDQ.140), P7EVCUT (FDQ.150), P7EATLES (FDQ.160), P7HUNGRY (FDQ.170), P7LOSEWT (FDQ.180), P7NOTEAT (FDQ.190), P7NOTEA2 (FDQ.200), P7CUTML (FDQ.210), P7CHSKIP (FDQ.220), P7OFTCUT (FDQ.230), P7CHIEVR (FDQ.240), P7NOMONY (FDQ.250)	$1=$ Food secure; $2=$ Food insecure without hunger; $3=$ Food insecure with hunger (moderate); 4=Food insecure with hunger (severe)	1=Food secure; $2=$ Food insecure without hunger; $3=$ Food insecure with hunger (moderate); 4=Food insecure with hunger (severe)

[^54]Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

ID	Variable name	Category	Description	Derived from	Eighth-grade restricteduse file values	K-8 full sample public-use file values
61	P7FSCHRA	Family/HH	Children's food security raw score, a simple count of the number of childreferenced food security items affirmed by the parent	P7LOWCST (FDQ.130D), P7NOBAL (FDQ.130E), P7CANTAF (FDQ.130F), P7CUTML (FDQ.210), P7CHSKIP (FDQ.220), P7OFTCUT (FDQ.230), P7CHIEVR (FDQ.240), P7NOMONY (FDQ.250)	Continuous	Continuous
62	P7FSCHSC	Family/HH	Children's food security scale score. This is a measure of the severity of food insecurity or hunger experienced by children in the household in the previous 12 months	P7LOWCST (FDQ.130D), P7NOBAL (FDQ.130E), P7CANTAF (FDQ.130F), P7CUTML (FDQ.210), P7CHSKIP (FDQ.220), P7OFTCUT (FDQ.230), P7CHIEVR (FDQ.240), P7NOMONY (FDQ.250)	Continuous	Continuous
63	P7FSCHST	Family/HH	A categorical measure of children's food security status that identifies households with hunger among children at some time during the 12 months prior to the survey	P7LOWCST (FDQ.130D), P7NOBAL (FDQ.130E), P7CANTAF (FDQ.130F), P7CUTML (FDQ.210), P7CHSKIP (FDQ.220), P7OFTCUT (FDQ.230), P7CHIEVR (FDQ.240), P7NOMONY (FDQ.250)	1=Food secure or food insecure without hunger among children; $2=$ Food insecure with hunger among children	1=Food secure or food insecure without hunger among children; $2=$ Food insecure with hunger among children
64	P7FSADRA	Family/HH	Adult food security raw score, a simple count of the number of householdand adult-referenced food security items affirmed by the parent	P7WORRFD (FDQ130A), P7FDLAST (FDQ130B), P7BLMEAL (FDQ130C), P7EVCUT2 (FDQ140), P7EVCUT (FDQ150), P7EATLES (FDQ160), P7HUNGRY (FDQ170), P7LOSEWT (FDQ180), P7NOTEAT (FDQ190), P7NOTEA2 (FDQ200)	Continuous	Continuous

Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

ID	Variable name	Category	Description	Derived from	Eighth-grade restricteduse file values	K-8 full sample public-use file values
65	P7FSADSC	Family/HH	Adult food security scale score. This is a measure of the severity of food insecurity or hunger experienced by adults in the household in the previous 12 months	P7WORRFD (FDQ130A), P7FDLAST (FDQ130B), P7BLMEAL (FDQ130C), P7EVCUT2 (FDQ140), P7EVCUT (FDQ150), P7EATLES (FDQ160), P7HUNGRY (FDQ170), P7LOSEWT (FDQ180), P7NOTEAT (FDQ190), P7NOTEA2 (FDQ200)	Continuous	Continuous
66	P7FSADST	Family/HH	A categorical measure of adult's food security status that identifies households as food secure, food insecure without hunger, and food insecure with hunger among adults.	P7WORRFD (FDQ130A), P7FDLAST (FDQ130B), P7BLMEAL (FDQ130C), P7EVCUT2 (FDQ140), P7EVCUT (FDQ150), P7EATLES (FDQ160), P7HUNGRY (FDQ170), P7LOSEWT (FDQ180), P7NOTEAT (FDQ190), P7NOTEA2 (FDQ200)	1=Food secure 2=Food insecure without hunger $3=$ Food insecure with hunger	1=Food secure $2=$ Food insecure without hunger $3=$ Food insecure with hunger
67	P7RESID	Family/HH	Household roster number of respondent	P7PER_1 to P7PER_25 (parent interview household roster person type)	1-25	1-25
68	P7RESREL	Family/HH	Respondent relationship to focal child	P7REL_1 through P7REL_25 (FSQ.130), P7UNR_1 through P7UNR_25 (FSQ.180), P7MOM_1 through P7MOM_25 (FSQ.140), P7DAD_1 through P7DAD_25 (FSQ.150)	1=Biological mother $2=$ Other mother type 3=Biological father $4=$ Other father type $5=$ Nonparent relative 6=Nonrelative	1=Biological mother $2=$ Other mother type $3=$ Biological father $4=$ Other father type 5=Nonparent relative 6=Nonrelative
69	P7CHLDID	Family/HH	Household roster number of child	P7PER_1 to P7PER_25 (parent interview household roster person type)	1-25	1-25

[^55]Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

ID	Variable name	Category	Description	Derived from	Eighth-grade restricteduse file values	K-8 full sample public-use file values
70	P7ERRFLG	Family/ HH flag	Household roster has clear errors	P7REL 1 to P7REL 25 (FSQ.130), P7UNR 1 to P7UNR_25 (FSQ.180), P7JOI_1 to P7JOI_25 (round joined study), P7RDP_1 to P7RDP_25 (round departed study), P7REASL1 to P7REAS25 (reason left household)	$0=$ False, $1=$ True	$0=$ False, $1=$ True
71	P7EDIT	Family/ HH flag	Parent household matrix was edited	HOLDINGS (parent interview editing flag - not on file)	$0=$ False, $1=$ True	$0=$ False, $1=$ True
72	P7SHCHG	Family/ HH flag	Household roster had a change between rounds.	P7JOI 1 to P7JOI 25 (round joined study), P7RDP 1 to P7RDP 25 (round departed study), P7REASL1 to P7REAS25 (reason left household)	$0=$ False, $1=$ True	$0=$ False, $1=$ True
73	P7PARDAT	Family/ HH flag	Presence of parent data	Presence or absence of parent interview	$0=$ False, $1=$ True	$0=$ False, $1=$ True
74	T7GLVL	Teacher	Grade level of child	E7ENRGR (SPB Q2), C_GRADE (from FMS), Note: In round 7, grade level was collected as part of the school recruitment process and is in the FMS and the Special Education B questionnaire. Also, the ungraded category (category 9 in round 6) has been renumbered in round 7 to incorporate grades 9 and 10.	5=Fifth grade $6=$ Sixth grade $7=$ Seventh grade $8=$ Eighth grade, $9=$ Ninth grade $10=$ Tenth grade 13=Ungraded classroom	5=Fifth grade 6=Sixth grade $7=$ Seventh grade $8=$ Eighth grade $9=$ Ninth grade $10=$ Tenth grade 13=Ungraded classroom

[^56]Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

ID	Variable name	Category	Description	Derived from	Eighth-grade restricteduse file values	K-8 full sample public-use file values
75	G7PBLK	Class	Percent of Blacks in English class-childlevel data	G7BLACK (RDG Q13c), G7TOTRA (RDG Q13G) Note: In round 6, G6CLSZ, a composite, was the source variable rather than G6TOTRA. However, the class size variable is no longer a composite in round 7 . In round 6 , it was a composite because it was compared to class size based on gender. In round 7 , the gender composition of the class was no longer collected. Because the composite would be identical to the class size variable for race, there was no need to create a composite.	0-100	Recoded to the following: $1=$ Less than 1%, $2=1 \%$ to less than 5%, $3=5 \%$ to less than 10%, $4=10 \%$ to less than 25%, $5=25 \%$ or more
76	M7PBLK	Class	Percent of Blacks in math class-child-level data	M7BLACK (MTH Q12c), M7TOTRA (MTH Q12G) Note: In round 6, M6CLSZ, a composite, was the source variable rather than M6TOTRA. However, for the reasons described above for G7PBLK, the class size variable is no longer a composite in round 7.	0-100	Recoded to the following: $1=$ Less than 1%, $2=1 \%$ to less than 5%, $3=5 \%$ to less than 10%, $4=10 \%$ to less than 25%, $5=25 \%$ or more
77	N7PBLK	Class	Percent of Blacks in science class-child-level data	N7BLACK (SCI Q12c), N7TOTRA (SCI Q13G) Note: In round 6, N6CLSZ, a composite, was the source variable rather than N6TOTRA However, for the reasons described above for G7PBLK, the class size variable is no longer a composite in round 7 .	0-100	Recoded to the following: $1=$ Less than 1%, $2=1 \%$ to less than 5%, $3=5 \%$ to less than 10%, $4=10 \%$ to less than 25%, $5=25 \%$ or more
78	G7PHIS	Class	Percent of Hispanics in English class-childlevel data	G7HISP (RDG Q13b), G7TOTRA (RDG Q13G) Note: In round 6, G6CLSZ, a composite, was the source variable rather than G6TOTRA. However, for the reasons described above for G7PBLK, the class size variable is no longer a composite in round 7.	0-100	Recoded to the following: $1=$ Less than 1%, $2=1 \%$ to less than 5%, $3=5 \%$ to less than 10%, $4=10 \%$ to less than 25%, $5=25 \%$ or more

[^57]Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

[^58]Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

ID	Variable name	Category	Description	Derived from	Eighth-grade restricteduse file values	K-8 full sample public-use file values
83	N7PMIN	Class	Percent of minorities in science class-child-level data	N7ASIAN, N7HISP, N7BLACK, N7AMRIN, N7RACEO (SCI Q12), N7TOTRA (SCI Q13G) Note: In round 6, N6CLSZ, a composite, was the source variable rather than N6TOTRA However, for the reasons described above for G7PBLK, the class size variable is no longer a composite in round 7.	0-100	Recoded to the following: $1=$ Less than 10%, $2=10 \%$ to less than 25%, $3=25 \%$ to less than 50%, $4=50 \%$ to less than 75%, $5=75 \%$ or more
84	J71TQUEX	Teacher flag	Presence of spring-eighth grade English teacher data	Receipted English teacher questionnaires in the FTS	$0=$ False, $1=$ True	$0=$ False, $1=$ True
85	J72TQUEX	Teacher flag	Presence of spring-eighth grade math or science teacher data	Receipted math or science teacher questionnaires in the FTS	$0=$ False, $1=$ True	$0=$ False, $1=$ True
86	F7MTHSCI	Teacher flag	Whether child is linked to a math or science teacher	Receipted math or science teacher questionnaires in the FTS	$1=$ Math, $2=$ Science	$1=$ Math, $2=$ Science
87	T7SAMTCH	Teacher flag	Whether English and math or science teacher linked to the child is the same person	J71T_ID (English teacher ID) and J72T_ID (math or science teacher ID)	$0=$ False, $1=$ True	$0=$ False, $1=$ True

[^59]Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

ID	Variable name	Category	Description	Derived from	Eighth-grade restricteduse file values	K-8 full sample public-use file values
88	G7TQUEX	Teacher flag	Presence of child-level spring-eighth grade English teacher data	Receipted English teacher questionnaires in the FTS	$0=$ False, $1=$ True	$0=$ False, $1=$ True
89	M7TQUEX	Teacher flag	Presence of child-level spring-eighth grade math teacher data	Receipted math teacher questionnaires in the FTS	$0=$ False, $1=$ True	$0=$ False, $1=$ True
90	N7TQUEX	Teacher flag	Presence of child-level spring-eighth grade science teacher data	Receipted science teacher questionnaires in the FTS	$0=$ False, $1=$ True	$0=$ False, $1=$ True
91	D7SETQA	Teacher flag	Presence or absence of Special Ed A data	Receipted special education instrument A in the FTS	$0=$ False, $1=$ True	Suppressed variable
92	E7SETQB	Teacher flag	Presence or absence of Special Ed B data	Receipted special education instrument B in the FTS	$0=$ False, $1=$ True	Suppressed variable
93	R7REGION	School	Indicates the geographic region of the child's school	CREGION, R3REGION, R4REGION, R5REGION, R6REGION (composites), CCD and PSS files	1=Northeast: CT, ME, MA, NH, RI, VT, NJ, NY, PA; 2=Midwest: IL, IN, MI, OH, WI, IA, KS, MN, MO, NE, ND, SD; 3=South: DE, DC, FL, GA, MD, NC, SC, VA, WV, AL, KY, MS, TN, AR, LA, OK, TX; 4=West: AZ, CO, ID, MT, NV, NM, UT, WY, AK, CA, HA, OR, WA	1=Northeast: CT, ME, MA, NH, RI, VT, NJ, NY, PA; 2=Midwest: IL, IN, MI, OH, WI, IA, KS, MN, MO, NE, ND, SD; 3=South: DE, DC, FL, GA, MD, NC, SC, VA, WV, AL, KY, MS, TN, AR, LA, OK, TX; 4=West: AZ, CO, ID, MT, NV, NM, UT, WY, AK, CA, HA, OR, WA

Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

	Variable			Eighth-grade restricted- ID name
94	R7URBAN	Category full sample public-use		
use file values				

Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

[^60]Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

ID	Variable name	Category	Description	Derived from	Eighth-grade restricteduse file values	K-8 full sample public-use file values
95	R7LOCALE -Continued	School	Location type for school-8 category version	R3LOCALE, R4LOCALE, R5LOCALE, R6LOCALE (composites), PSS and CCD files	Census Bureau; $4=$ Midsize suburb; urban fringe of mid-size city - any incorporated place, Census Designated Place, or nonplace territory within a CMSA or MSA of a mid-size city and defined as urban by the U.S. Census Bureau; 5= Large town - an incorporated place or Census Designated Place with a pop. Greater than or equal to 25,000 and located outside a CMSA or MSA; 6=Small town an incorporated place or Census Designated Place with a pop. Less than 25,000 and greater than 2,500 - located outside a CMSA or MSA; $7=$ nonMSA Rural - any incorporated place, Census Designated Place, or nonplace territory designated as rural by the U.S. Census Bureau that is not within a MSA; $8=$ MSA Rural - any incorporated place, Census Designated Place,	Suppressed variable

Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

ID	Variable name	Category	Description	Derived from	Eighth-grade restricteduse file values	K-8 full sample public-use file values
95	R7LOCALE -Continued	School	Location type for school-8 category version	R3LOCALE, R4LOCALE, R5LOCALE, R6LOCALE (composites), PSS and CCD files	or nonplace territory designated as rural by the U.S. Census Bureau that is within a MSA	Suppressed variable
96	S7SCTYP	School	School type from the school administrator questionnaire	S7REGSKL, S7MAGSKL, S7CHCESK, S7CATHOL, S7OTHREL, S7OTHPRI, (all SAQ Q7), CS_TYPE2, S6SCTYP, S5SCTYP, S4SCTYP, S3SCTYP, S2KSCTYP (composites), SCHL_TYP (School Master file variable derived from PSS/CCD, not on file)	1=Catholic, $2=$ Other Religious, $3=$ Other Private, $4=$ Public	1=Catholic, $2=$ Other Religious, $3=$ Other Private, 4=Public
				Note: The questions about school type changed in SAQ in round 7, but the composite can still be created from the questions that are asked.		
97	S7PUPRI	School	Public or private school	S7SCTYP (composite)	1=Public, 2=Private	1=Public, 2=Private
98	S7ENRL8	School	Total school eighth-grade enrollment	PSS and CCD data	Continuous	Recoded to the following: $\begin{aligned} & 1=0-20, \\ & 2=21-40, \\ & 3=41-60, \\ & 4=61-80, \\ & 5=81-100, \\ & 6=101-120, \\ & 7=121-140, \\ & 8=141-160 \\ & 9=161-180, \\ & 10=181 \text { or more } \end{aligned}$

See note at end of table.

Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

ID	Variable name	Category	Description	Derived from	Eighth-grade restricteduse file values	$\mathrm{K}-8$ full sample public-use file values
104	IFS7RLCH	School	Whether the percentage of students eligible for reduced price lunch in school was imputed	S7RLCH_I	$0=$ False, 1=True	
105	S7HIGGRD	School	Highest grade at the school	S7PRKNDR, S7KINDER, S7GRADE1, S7SECOND,	$1=$ Pre-K	$1=$ Pre-K
				S7THIRD, S7FOURTH, S7FIFTH, S7SIXTH, S77TH,	$2=\mathrm{K}$	$2=\mathrm{K}$
				S78TH, S7NINTH, S7TENTH, S711TH, S712TH,	$3=1$	$3=1$
				S7UNGRAD (all from SAQ Q6, not on file);	$4=2$	$4=2$
				S6SCLVL, S5SCLVL, S4SCLVL, S2SCLVL,	$5=3$	$5=3$
				GRSPAN (School Master file variable derived from	$6=4$	$6=4$
				PSS/CCD, not on file)	$7=5$	$7=5$
					$8=6$	$8=6$
				Note: This is a new composite in round 7.	$9=7$	$9=7$
					$10=8$	$10=8$
					$11=9$	$11=9$
					$12=10$	$12=10$
					$13=11$	$13=11$
					$14=12$	$14=12$
					$15=$ Ungraded	$15=$ Ungraded
106	S7LOWGRD	School	Lowest grade at the school	S7PRKNDR, S7KINDER, S7GRADE1, S7SECOND, S7THIRD, S7FOURTH, S7FIFTH, S7SIXTH, S77TH, S78TH, S7NINTH, S7TENTH, S711TH, S712TH, S7UNGRAD (all from SAQ Q6, not on file); S6SCLVL, S5SCLVL, S4SCLVL, S2SCLVL, GRSPAN (School Master file variable derived from PSS/CCD, not on file)	$\begin{aligned} & 1=\text { Pre-K } \\ & 2=\mathrm{K} \end{aligned}$	$\begin{aligned} & 1=\text { Pre }-\mathrm{K} \\ & 2=\mathrm{K} \end{aligned}$
					$3=1$	$3=1$
					$4=2$	$4=2$
					$5=3$	$5=3$
					$6=4$	$6=4$
					$7=5$	$7=5$
					$8=6$	$8=6$
				Note: This is a new composite in round 7.	$9=7$	$9=7$
					$10=8$	$10=8$
					$11=9$	$11=9$
					$12=10$	$12=10$
					$13=11$	$13=11$
					$14=12$	$14=12$
					$15=$ Ungraded	$15=$ Ungraded

[^61]Table 7-15. Spring-eighth grade composite variables: School year 2006-07-Continued

	Variable name	Category	Description	Derived from	Eighth-grade restricteduse file values	K-8 full sample public-use file values
107	S7SCHBDD	School	School year starting date, day	S7SYRSDD (SAQ Q3), FMS (variable not on file)	1-31	Suppressed variable
108	S7SCHBMM	School	School year starting date, month	S7SYRSMM (SAQ Q3), FMS (variable not on file)	1-12	Suppressed variable
109	S7SCHBYY	School	School year starting date, year	Hard coded to 2006 in the questionnaire	2006	Suppressed variable
110	S7SCHEDD	School	School year ending date, day	S7SYREDD (SAQ Q4), FMS (variable not on file)	1-31	Suppressed variable
111	S7SCHEMM	School	School year ending date, month	S7SYREMM (SAQ Q4), FMS (variable not on file)	1-12	Suppressed variable
112	S7SCHEYY	School	School year ending date, year	Hard coded to 2007 in the questionnaire	2007	2007
113	F7YRRND	School	Year-round school	S_YRRNDFLG (FMS variable not on file)	1=Year-round school $2=$ Not year-round school	1=Year-round school $2=$ Not year-round school
114	S7INSAQ	School flag	Presence or absence of school administrator questionnaire data	Receipted school administrator questionnaires in the FTS	$0=$ False, $1=$ True	$0=$ False, $1=$ True

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of $1998-99$ (ECLS-K), spring 2007.

Table 7-16. Recoded and suppressed data on the ECLS-K Eighth-Grade Public-Use Data File

Field ID	Variable	Field label	Comment
	C7HRSCLB	C7 ATQ011 HOURS IN SCHOOL ACTIVITIES	These data recoded to a maximum value of 15 for respondent confidentiality
	R7CENBLK	R7 SCHOOL CENSUS BLOCK CODE	These data suppressed for respondent confidentiality
	R7CENTRC	R7 SCHOOL CENSUS TRACT CODE	These data suppressed for respondent confidentiality
	R7FIPSCT	R7 SCHOOL FIPS COUNTY CODE	These data suppressed for respondent confidentiality
	R7FIPSST	R7 SCHOOL FIPS STATE CODE	These data suppressed for respondent confidentiality
	R7SCLAT	R7 SCHOOL LATITUDE	These data suppressed for respondent confidentiality
	R7SCLNG	R7 SCHOOL LONGITUDE	These data suppressed for respondent confidentiality
	R7SCHZIP	R7 SCHOOL ZIP CODE	These data suppressed for respondent confidentiality
	R7AGE	R7 COMPOSITE CHILD ASSESSMENT	These data recoded for respondent confidentiality
	R7REGION	R7 CENSUS REGION	These data recoded for respondent confidentiality
	R7DOBYY	R7 CHILD COMPOSITE DOB YEAR	These data recoded to a maximum value of 1993 and a minimum value of 1992 for respondent confidentiality
	R7URBAN	R7 LOCATION TYPE - 7 CATEGORIES	These data recoded for respondent confidentiality
	R7LOCALE	R7 LOCATION TYPE - 8 CATEGORIES	These data recoded for respondent confidentiality
	CS_TYPE2	TYPE OF SCHOOL IN BASE YEAR SAMPLE	These data recoded for respondent confidentiality
	F7RIEP	F7 CHILD HAS IEP ON RECORD AT SCHOOLS	These data suppressed for respondent confidentiality
	R7CCDLEA	R7 CCD LEAlSCHOOL DIST ID (PUBLIC)	These data suppressed for respondent confidentiality
	R7CCDSID	R7 CCD SCHOOL ID (PUBLIC)	These data suppressed for respondent confidentiality
	R7SCHPIN	R7 SCHOOL PIN (PRIVATE)	These data suppressed for respondent confidentiality
	R7STSID	R7 STATE SCHOOL ID (PUBLIC)	These data suppressed for respondent confidentiality
	D7T_ID	SPRING 2007 SPECIAL ED TEACHER ID NUMBER	These data suppressed for respondent confidentiality
	P7DGNATT	P7 CHQ060 1ST DIAGNOSIS-LEARNING ABILITY	These data suppressed for respondent confidentiality
	P7YYDIAG	P7 CHQ075 YR AT 1ST DIAGNOSIS-LRN ABLTY	These data suppressed for respondent confidentiality
	P7DIAG02	P7 CHQ076 DIAGNOSIS MADE BEFORE 2004	These data suppressed for respondent confidentiality
	P7PROFFD	P7 CHQ110 IF ACTIVITY PROBLEM DIAGNOSED	These data suppressed for respondent confidentiality
	P7DGNACT	P7 CHQ120 WHAT 1ST DIAGNOSIS - ACTIVITY	These data suppressed for respondent confidentiality
	P7YYDIA2	P7 CHQ135 YR AT 1ST DIAGNOSIS-ACTIVITY	These data suppressed for respondent confidentiality
	P7DGN02	P7 CHQ136 WAS THE DIAGNOSIS BEFORE 2004	These data suppressed for respondent confidentiality
	P7YYDIA4	P7 CHQ185 YEAR AT 1ST DIAGNOSIS-SPEECH	These data suppressed for respondent confidentiality
	P702DIAG	P7 CHQ186 DIAGNOSIS MADE BEFORE 04	These data suppressed for respondent confidentiality
	P7DIFFH3	P7 CHQ210 IF HEAR DIFFICULTY DIAGNOSED	These data suppressed for respondent confidentiality
	P7YYDIA5	P7 CHQ225 YR AT 1ST DIAGNOSIS-HEARING	These data suppressed for respondent confidentiality
	P702DGN	P7 CHQ226 DIAGNOSIS MADE BEFORE YEAR 04	These data suppressed for respondent confidentiality
	P7HEARS	P7 CHQ230 DEGREE OF CHILD'S DEAFNESS	These data suppressed for respondent confidentiality
	P7HEARAI	P7 CHQ240 IF CHILD WEARS HEARING AID	These data suppressed for respondent confidentiality
	P7COCHLE	P7 CHQ250 IF CHILD HAS COCHLEAR IMPLANTS	These data suppressed for respondent confidentiality
	P7IMPLNT	P7 CHQ251 YEAR OF IMPLANT	These data suppressed for respondent confidentiality
	P7IMPT02	P7 CHQ252 WAS IT BEFORE 2004	These data suppressed for respondent confidentiality
	P7CLRUSE	P7 CHQ254 USE OF COCHLEAR IMPLANT IN SCH	These data suppressed for respondent confidentiality
	P7HEARS2	P7 CHQ260 DEVICE EFFECT ON CHD'S HEARING	These data suppressed for respondent confidentiality
	P7VISIO2	P7 CHQ300 IF VISION DIFFICULTY DIAGNOSED	These data suppressed for respondent confidentiality
	P7DIA6YY	P7 CHQ313 YR AT 1ST DIAGNOSIS-VISION	These data suppressed for respondent confidentiality
	P7DGBF02	P7 CHQ314 DIAGNOSIS MADE BEFORE YR 2004	These data suppressed for respondent confidentiality
	P7CORREC	P7 CHQ316 IF CHD'S VISION IS CORRECTABLE	These data suppressed for respondent confidentiality
	P7BESTEY	P7 CHQ320 WHAT CAN CHILD BEST SEE	These data suppressed for respondent confidentiality
	P7DIABEH	P7 CHQ335 BEHAVIOR PROBLEM DIAGNOSED	These data suppressed for respondent confidentiality
	P7DGNBEH	P7 CHQ337 1ST DIAGNOSIS-BEHAVIOR	These data suppressed for respondent confidentiality
	P7DGBEYY	P7 CHQ345 YR AT 1ST DIAGNOSIS-BEHAVIOR	These data suppressed for respondent confidentiality
	P7DNBF02	P7 CHQ346 WAS DIAGNOSIS MADE BFORE 2004	These data suppressed for respondent confidentiality

[^62]Table 7-16. Recoded and suppressed data on the ECLS-K Eighth-Grade Public-Use Data FileContinued

Field ID	Variable	Field label	Comment
	P7DIAEMO	P7 CHQ360 EMOTIONAL BEH PROB DIAGNOSED	These data suppressed for respondent confidentiality
	P7DGNEMO	P7 CHQ365 1ST DIAGNOSIS-EMOTIONAL BEH	These data suppressed for respondent confidentiality
	P7CHDMED	P7 CHQ370 CHD TAKES MEDS FOR DEPRESSION	These data suppressed for respondent confidentiality
	P7DGEMYY	P7 CHQ375 YR AT 1ST DIAGNS-EMOTIONAL BEH	These data suppressed for respondent confidentiality
	P7DGSYR	P7 CHQ376 WAS DIAGNOSIS MADE BFORE YR 04	These data suppressed for respondent confidentiality
	P7ANOREX	P7 CHQ410 ANOREXIA	These data suppressed for respondent confidentiality
	P7BULIMI	P7 CHQ410 BULIMIA	These data suppressed for respondent confidentiality
	P7APRNCE	P7 CHQ410 CONCERN ABOUT APPEARANCE	These data suppressed for respondent confidentiality
	P7OTHWGT	P7 CHQ410 OTHER	These data suppressed for respondent confidentiality
	P7BINGE	P7 CHQ410 OVEREATING/BINGE EATING	These data suppressed for respondent confidentiality
	P7PHYPRB	P7 CHQ410 PHYS PROB RELATED TO DIET/WGT	These data suppressed for respondent confidentiality
	P7PRDIET	P7 CHQ410 POOR DIET	These data suppressed for respondent confidentiality
	P7SPECIL	P7 CHQ510 IF CHD USES SPECIAL EQUIPMENT	These data suppressed for respondent confidentiality
	P7LRSRVY	P7 CHQ535 YR LAST RECEIVED SERVICES	These data suppressed for respondent confidentiality
	P7SERVRV	P7 CHQ 536 WERE SERVICES RCVD BFORE 2004	These data suppressed for respondent confidentiality
	P7SRVRCV	P7 CHQ537 SRVCS RCVD BEFORE ELEM SCHOOL	These data suppressed for respondent confidentiality
	P7SPECND	P7 CHQ545 CHILD SPECIAL NEEDS/EDUCATION	These data suppressed for respondent confidentiality
	P7SVNEED	P7 CHQ546A NO LONGER NEEDS OF SEVICES	These data suppressed for respondent confidentiality
	P7SVELGB	P7 CHQ546B NO LNGR ELIGIBLE FOR SRVCS	These data suppressed for respondent confidentiality
	P7SVREF	P7 CHQ546C SRVCS REFUSED BY PARNT/GRDIAN	These data suppressed for respondent confidentiality
	P7SVNSCH	P7 CHQ 546D CHILD MOVED TO NEW SCHOOL	These data suppressed for respondent confidentiality
	P7SVSOME	P7 CHQ546E SOMETHING ELSE	These data suppressed for respondent confidentiality
	P7WHYTHR	P7 CHQ764 WHY CHILD RECEIVES THERAPY	These data suppressed for respondent confidentiality
	P7FMTHRS	P7 CHQ780 REASON FOR FAMILY THERAPY	These data suppressed for respondent confidentiality
	P7CHGSCH	P7 CMQ675 \# TIMES CHILD CHANGED SCHOOL	These data recoded to a maximum value of 3 for respondent confidentiality
	P7HOWPAY	P7 PAQ137 HOW MUCH PAID IN TUITION (\$)	These data recoded for respondent confidentiality
	P7RECFRE	P7 WPQ215 DOES CHILD REC FREE REDUCED BF	These data suppressed for respondent confidentiality
	P7FRERED	P7 WPQ216 FREE OR REDUCED BREAKFAST	These data suppressed for respondent confidentiality
	P7CENBLK	P7 HOME CENSUS BLOCK CODE	These data suppressed for respondent confidentiality
	P7CENTRC	P7 HOME CENSUS TRACT CODE	These data suppressed for respondent confidentiality
	P7FIPSCT	P7 HOME FIPS COUNTY CODE	These data suppressed for respondent confidentiality
	P7FIPSST	P7 HOME FIPS STATE CODE	These data suppressed for respondent confidentiality
	P7HOMZIP	P7 HOME ZIP CODE	These data suppressed for respondent confidentiality
	S7ADA	S7 Q2 \% AVERAGE DAILY ATTENDANCE FOR YR.	These data recoded for respondent confidentiality
	S7ADANUM	S7 Q2\# AVERAGE DAILY ATTENDANCE FOR YR.	These data recoded for respondent confidentiality
	S7HIGGRD	S7 HIGHEST GRADE AT THE SCHOOL	These data recoded for respondent confidentiality
	S7LOWGRD	S7 LOWEST GRADE AT THE SCHOOL	These data recoded for respondent confidentiality
	S7MAGSKL	S7 Q7B IS IT A MAGNET SCHOOL	These data suppressed for respondent confidentiality
	S7OTHPRI	S7 Q7F IS IT OTHER PRIVATE	These data suppressed for respondent confidentiality
	S7PARTVT	S7 Q7G IS IT A PART-TIME VOCATIONAL SCHL	These data suppressed for respondent confidentiality
	S7FULLVT	S7 Q7H IS IT A FULL-TIME VOCATIONAL SCHL	These data suppressed for respondent confidentiality
	S7OTHRVT	S7 Q7I IS IT AN OTH TYPE VOCATIONAL SCHL	These data suppressed for respondent confidentiality
	S7YROUND	S7 Q7J IS IT A YEAR-ROUND SCHOOL	These data suppressed for respondent confidentiality
	S7BOARD	S7 Q7K IS IT A BOARDING SCHOOL	These data suppressed for respondent confidentiality
	S7INDRES	S7 Q7L IS IT AN INDIAN RESERVATION SCHOOL	These data suppressed for respondent confidentiality
	S7MILACD	S7 Q7M IS IT A MILITARY ACADEMY	These data suppressed for respondent confidentiality
	S7ALTERN	S7 Q7N IS IT AN ALTERNATIVE SCHOOL	These data suppressed for respondent confidentiality
	S7CHRTER	S7 Q70 IS IT A CHARTER SCHOOL	These data suppressed for respondent confidentiality

[^63]Table 7-16. Recoded and suppressed data on the ECLS-K Eighth-Grade Public-Use Data FileContinued

Field ID	Variable	Field label	Comment
	S7SPDSCH	S7 Q7P IS IT A SPECIAL ED SCHOOL	These data suppressed for respondent confidentiality
	S7COEDSC	S7 Q8 IS SCHOOL COEDUCATIONAL	These data suppressed for respondent confidentiality
	S7TUITIN	S7 Q9 ANNUAL TUITION PRIVATE SCHOOL	These data suppressed for respondent confidentiality
	S7ANUMCH	S7 Q1 \# ENROLLED AROUND 10/1/2006	These data recoded for respondent confidentiality
	S7ENRL8	S7 TOTAL SCHOOL EIGHTH GRADE	These data recoded for respondent confidentiality
		ENROLLMENT	
	S7ENRLS	S7 TOTAL SCHOOL ENROLLMENT	These data recoded for respondent confidentiality
	S7ASNPCT	S7 Q11A PERCENT OF ASIAN STUDENTS	These data suppressed for respondent confidentiality
	S7HSPPCT	S7 Q11B PERCENT OF HISPANIC STUDENTS	These data recoded for respondent confidentiality
	S7BLKPCT	S7 Q11C PERCENT OF BLACK STUDENTS	These data recoded for respondent confidentiality
	S7WHTPCT	S7 Q11D PERCENT OF WHITE STUDENTS	These data suppressed for respondent confidentiality
	S7INDPCT	S7 Q11E PERCENT OF AMERICAN INDIANS	These data suppressed for respondent confidentiality
	S7OTHPCT	S7 Q11F PERCENT OF OTHER STUDENTS	These data recoded for respondent confidentiality
	S7MINOR	S7 PERCENT MINORITY STUDENTS	These data recoded for respondent confidentiality
	S7LEPSCH	S7 Q12A PERCENT OF LEP IN ENTIRE SCHOOL	These data recoded for respondent confidentiality
	S7LEPETH	S7 Q12B PERCENT OF LEP IN EIGHTH GRADE	These data recoded for respondent confidentiality
	S7SPDPCT	S7 Q24A \% SPECIAL ED STUDENTS	These data recoded for respondent confidentiality
	S7BILPCT	S7 Q24B \% BILINGUAL EDUCATION STUDENTS	These data recoded for respondent confidentiality
	S7ESLPCT	S7 Q24C \% ESL STUDENTS	These data recoded for respondent confidentiality
	S7RDIPCT	S7 Q24D \% STUDNT GETTING INSTRUCTION RDG	These data recoded for respondent confidentiality
	S7MTIPCT	S7 Q24E \% STUDNT GETTING INSTRUCTION MTH	These data recoded for respondent confidentiality
	S7AFTPCT	S7 Q24F \% STUDENTS IN AFT SCH SUMMER PROG	These data recoded for respondent confidentiality
	S7GIFPCT	S7 Q24G \% GIFTED-TALENTED STUDENTS	These data recoded for respondent confidentiality
	S7SYREMM	S7 Q4A SCH END MONTH	These data suppressed for respondent confidentiality
	S7SYREDD	S7 Q4B SCH END DAY	These data suppressed for respondent confidentiality
	S7SYREYY	S7 Q4C SCH END YEAR	These data suppressed for respondent confidentiality
	S7DAYSYR	S7 Q5 DAYS IN SCH YR	Perturbed by adding noise in RUF and PUF
	S7SCHBDD	S7 SCHOOL YEAR BEGINNING DATE DAY	These data suppressed for respondent confidentiality
	S7SCHBMM	S7 SCHOOL YEAR BEGINNING DATE MONTH	These data suppressed for respondent confidentiality
	S7SCHBYY	S7 SCHOOL YEAR BEGINNING DATE YEAR	These data suppressed for respondent confidentiality
	S7SCHEDD	S7 SCHOOL YEAR ENDING DATE DAY	These data suppressed for respondent confidentiality
	S7SCHEMM	S7 SCHOOL YEAR ENDING DATE MONTH	These data suppressed for respondent confidentiality
	S7SCHEYY	S7 SCHOOL YEAR ENDING DATE YEAR	These data suppressed for respondent confidentiality
	S7BRKSTR	S7 Q15A TIME BREAKFAST START	These data recoded for respondent confidentiality
	S7BRKEND	S7 Q15B TIME BREAKFAST END	These data recoded for respondent confidentiality
	S7PRABRK	S7 Q18A2 PARTICIPATE ANY SCH BREAKFAST	These data suppressed for respondent confidentiality
	S7ELIBRK	S7 Q18B1 ELIGIBLE FOR FREE BREAKFAST	These data suppressed for respondent confidentiality
	S7PARBRK	S7 Q18B2 PARTICIPATES IN BREAKFAST	These data suppressed for respondent confidentiality
	S7ELRPBK	S7 Q18C1 ELIGIBLE RED-PRICE BREAKFAST	These data suppressed for respondent confidentiality
	S7PARPBK	S7 Q18C2 PARTICIPATE RED-PRICE BREAKFAST	These data suppressed for respondent confidentiality
	S7PAALUN	S7 Q19A2 PARTICIPATE ANY SCH LUNCH	These data suppressed for respondent confidentiality
	S7ELILNC	S7 Q19B1 ELIGIBLE FOR FREE LUNCH	These data suppressed for respondent confidentiality
	S7PARLNC	S7 Q19B2 PARTICIPATES IN FREE LUNCH	These data suppressed for respondent confidentiality
	S7ELIRED	S7 Q19C1 ELIGIBLE IN REDUCED-PRICE LUNCH	These data suppressed for respondent confidentiality
	S7PARRED	S7 Q19C2 PARTICIPATES IN RED-PRICE LUNCH	These data suppressed for respondent confidentiality
	S7FLCH_I	S7 IMPUTED \% FREE LUNCH ELIGIBLE	These data recoded for respondent confidentiality
	S7RLCH_I	S7 IMPUTED \% REDUCED LUNCH ELIGIBLE	These data recoded for respondent confidentiality
	S7STRSAL	S7 Q10 AVG StARTING SALARY 1ST YR TEACHER	These data recoded to a maximum value of 50,000 and a minimum value of 14,000 for respondent confidentiality

[^64]Table 7-16. Recoded and suppressed data on the ECLS-K Eighth-Grade Public-Use Data FileContinued

Field ID	Fariable	Field label	Comment
S7PORTBL	S7 Q30 \# PORTABLE CLASSROOMS	These data recoded to a maximum value of 10 for respondent confidentiality	
		These data recoded to a maximum value of 1975 and a S7BRTHYR	S7 Q38 YEAR PRINCIPAL WAS BORN

[^65]Table 7-16. Recoded and suppressed data on the ECLS-K Eighth-Grade Public-Use Data FileContinued

Field ID	Variable	Field label	Comment
	J72HGHST	J72 Q6 HIGHEST ED LVL TEACHER ACHIEVED	These data recoded for respondent confidentiality
	G7PBLK	G7 PERCENT OF BLACKS IN CLASS	These data recoded for respondent confidentiality
	G7PHIS	G7 PERCENT OF HISPANICS IN CLASS	These data recoded for respondent confidentiality
	G7PMIN	G7 PERCENT OF MINORITIES IN CLASS	These data recoded for respondent confidentiality
	G7ASIAN	G7 Q13A \# ASIAN/PACIFIC ISLANDERS ENGL	These data recoded to a maximum value of 7 for respondent confidentiality
	G7HISP	G7 Q13B \# HISPANICS (ALL RACES) ENGL	These data recoded to a maximum value of 19 for respondent confidentiality
	G7BLACK	G7 Q13C \# NON-HISPANIC BLACKS ENGL	These data recoded to a maximum value of 14 for respondent confidentiality
	G7WHITE	G7 Q13D \# NON-HISPANIC WHITES ENGL	These data recoded to a maximum value of 31 for respondent confidentiality
	G7AMRIN	G7 Q13E \# AMERICAN INDIANS ENGL	These data recoded to a maximum value of 3 for respondent confidentiality
	G7RACEO	G7 Q13F \# OF STUDENTS OTHER RACES READ	These data recoded to a maximum value of 4 for respondent confidentiality
	G7TOTRA	G7 Q13G TOTAL ENROLLMENT (RACES) ENGL	These data recoded to a maximum value of 37 and a minimum value of 10 for respondent confidentiality
	M7PBLK	M7 PERCENT OF BLACKS IN CLASS	These data recoded for respondent confidentiality
	M7PHIS	M7 PERCENT OF HISPANICS IN CLASS	These data recoded for respondent confidentiality
	M7PMIN	M7 PERCENT OF MINORITIES IN CLASS	These data recoded for respondent confidentiality
	M7ASIAN	M7 Q12A \# ASIAN/PACIFIC ISLANDERS MATH	These data recoded to a maximum value of 7 for respondent confidentiality
	M7HISP	M7 Q12B \# HISPANICS (ALL RACES) MATH	These data recoded to a maximum value of 19 for respondent confidentiality
	M7BLACK	M7 Q12C \# NON-HISPANIC BLACKS MATH	These data recoded to a maximum value of 14 for respondent confidentiality
	M7WHITE	M7 Q12D \# NON-HISPANIC WHITES MATH	These data recoded to a maximum value of 31 for respondent confidentiality
	M7AMRIN	M7 Q12E \# AMERICAN INDIANS MATH	These data recoded to a maximum value of 3 for respondent confidentiality
	M7RACEO	M7 Q12F \# OF STUDENTS OTHER RACES MATH	These data recoded to a maximum value of 4 for respondent confidentiality
	M7TOTRA	M7 Q12G TOTAL ENROLLMENT (RACES) MATH	These data recoded to a maximum value of 37 and a minimum value of 10 for respondent confidentiality
	N7PBLK	N7 PERCENT OF BLACKS IN CLASS	These data recoded for respondent confidentiality
	N7PHIS	N7 PERCENT OF HISPANICS IN CLASS	These data recoded for respondent confidentiality
	N7PMIN	N7 PERCENT OF MINORITIES IN CLASS	These data recoded for respondent confidentiality
	N7ASIAN	N7 Q13A \# ASIAN/PACIFIC ISLANDERS SCIE	These data recoded to a maximum value of 7 for respondent confidentiality
	N7HISP	N7 Q13B \# HISPANICS (ALL RACES) SCIE	These data recoded to a maximum value of 19 for respondent confidentiality
	N7BLACK	N7 Q13C \# NON-HISPANIC BLACKS SCIE	These data recoded to a maximum value of 14 for respondent confidentiality
	N7WHITE	N7 Q13D \# NON-HISPANIC WHITES SCIE	These data recoded to a maximum value of 31 for respondent confidentiality
	N7AMRIN	N7 Q13E \# AMERICAN INDIANS SCIE	These data recoded to a maximum value of 3 for respondent confidentiality
	N7RACEO	N7 Q13F \# OF STUDENTS OTHER RACES SCIE	These data recoded to a maximum value of 4 for respondent confidentiality

[^66]Table 7-16. Recoded and suppressed data on the ECLS-K Eighth-Grade Public-Use Data FileContinued

Field ID	Variable	Field label	Comment
	N7TOTRA	N7 Q13G TOTAL ENROLLMENT (RACES) SCIE	These data recoded to a maximum value of 37 and a minimum value of 10 for respondent confidentiality
	D7GENDER	D7 Q1 TEACHER'S GENDER	These data suppressed for respondent confidentiality
	D7EMRGN	D7 Q10A EMERGENCY CREDENTIAL	These data suppressed for respondent confidentiality
	D7PRVSN	D7 Q10B PROVISIONAL CREDENTIAL	These data suppressed for respondent confidentiality
	D7DISSPE	D7 Q10C DISABILITY-SPECIFIC CREDENTIAL	These data suppressed for respondent confidentiality
	D7SPED	D7 Q10D SPECIAL EDUCATION CREDENTIAL	These data suppressed for respondent confidentiality
	D7GNED	D7 Q10E GENERAL EDUCATION CREDENTIAL	These data suppressed for respondent confidentiality
	D7SPCH	D7 Q10F SPEECH/LANGUAGE LICENSE	These data suppressed for respondent confidentiality
	D7PHYST	D7 Q10G PHYSICAL THERAPY LICENSE	These data suppressed for respondent confidentiality
	D70ССРT	D7 Q10H OCCUPATIONAL THERAPY LICENSE	These data suppressed for respondent confidentiality
	D7CTCLIN	D7 Q10I CERTIF OF CLINICAL COMPETENCE	These data suppressed for respondent confidentiality
	D7OTHPRF	D7 Q10J OTHER PROFESSIONAL LICENSE	These data suppressed for respondent confidentiality
	D7NOCRED	D7 Q10K NO CREDENTIALS/ENDORSEMENTS	These data suppressed for respondent confidentiality
	D7EXAM	D7 Q11 TAKEN NATIONAL CERTIFICATION EXM	These data suppressed for respondent confidentiality
	D7EARLY	D7 Q12A TEACHER'S EARLY EDUCATION COURSE	These data suppressed for respondent confidentiality
	D7ERLSPE	D7 Q12B EARLY CHDHD SPECIAL ED COURSE	These data suppressed for respondent confidentiality
	D7ELEM	D7 Q12C TEACHER'S ELEMENTARY ED COURSES	These data suppressed for respondent confidentiality
	D7SECED	D7 Q12D SECONDARY EDUCATION COURSE	These data suppressed for respondent confidentiality
	D7ESL	D7 Q12E TEACHER'S ESL COLLEGE COURSES	These data suppressed for respondent confidentiality
	D7BILED	D7 Q12F BILINGUAL EDUCATION COURSE	These data suppressed for respondent confidentiality
	D7SPECED	D7 Q12G TEACHER'S SPECIAL ED COURSES	These data suppressed for respondent confidentiality
	D7LRNDIS	D7 Q12H LEARNING DISABILITIES COURSE	These data suppressed for respondent confidentiality
	D7MNTL	D7 Q12I MENTAL RETARDATION COURSE	These data suppressed for respondent confidentiality
	D7ORTHPD	D7 Q12J ORTHOPEDIC IMPAIRMNTS COURSE	These data suppressed for respondent confidentiality
	D7EMTNL	D7 Q12K EMOTIONAL DISTURBAN COURSE	These data suppressed for respondent confidentiality
	D7DEAF	D7 Q12L DEAFNESS COURSE	These data suppressed for respondent confidentiality
	D7BLIND	D7 Q12M BLINDNESS COURSE	These data suppressed for respondent confidentiality
	D7COMDIS	D7 Q12N COMMNCTN DISORDERS COURSE	These data suppressed for respondent confidentiality
	D7INFNT	D7 Q12O DISABLD INFANTS/TODLRS COURSE	These data suppressed for respondent confidentiality
	D7PHYSTH	D7 Q12P PHYSICAL THERAPY COURSE	These data suppressed for respondent confidentiality
	D70CCTH	D7 Q12Q OCCUPATIONAL THERAPY COURSE	These data suppressed for respondent confidentiality
	D7SCHPSY	D7 Q12R SCHOOL PSYCHOLOGY COURSE	These data suppressed for respondent confidentiality
	D7CLMGMT	D7 Q12S CLASSROOM MANAGEMENT COURSE	These data suppressed for respondent confidentiality
	D7CRPOS2	D7 Q13 CURRENT POSITION IN SCHOOL	These data suppressed for respondent confidentiality
	D7ASSIGN	D7 Q14 TEACHER'S MAIN ASSIGNMENT	These data suppressed for respondent confidentiality
	D7GENED	D7 Q15A WORK IN GENERAL ED ROOM	These data suppressed for respondent confidentiality
	D7SPEDRM	D7 Q15B WORK IN A SPECIAL ED ROOM	These data suppressed for respondent confidentiality
	D7NCLSS	D7 Q15C WORK IN NON-CLASSROOM SPACE	These data suppressed for respondent confidentiality
	D7OTHRM	D7 Q15D WORK IN OTHER TYPE OF ROOM	These data suppressed for respondent confidentiality
	D7NODIR	D7 Q15E DON'T WORK W/STUDENT DIRECTLY	These data suppressed for respondent confidentiality
	D7ENJOY	D7 Q16A TEACHR ENJOYS PRESENT TCHNG JOB	These data suppressed for respondent confidentiality
	D7MKDIF	D7 Q16B TCHR MAKES DIFF IN CHDN LIVES	These data suppressed for respondent confidentiality
	D7TEACH	D7 Q16C TEACHR WOULD CHOOSE TCHNG AGAIN	These data suppressed for respondent confidentiality
	D7CLSzo	D7 Q16D SATISFIED WITH CLASS SIZE	These data suppressed for respondent confidentiality
	D7JOBTS	D7 Q16E JOB SECURITY STATE/LOCAL TESTS	These data suppressed for respondent confidentiality
	D7NOSTDN	D7 Q17 NUMBER OF STUDENTS W/ IEPS	These data suppressed for respondent confidentiality
	D7MMCOM	D7 Q18A MONTH QUESTIONNAIRE COMPLETED	These data suppressed for respondent confidentiality

[^67]Table 7-16. Recoded and suppressed data on the ECLS-K Eighth-Grade Public-Use Data FileContinued

Field ID	Variable	Field label	Comment
	D7DDCOM	D7 Q18B DAY QUESTIONNAIRE COMPLETED	These data suppressed for respondent confidentiality
	D7YYCOM	D7 Q18C YEAR QUESTIONNAIRE COMPLETED	These data suppressed for respondent confidentiality
	D7YRBORN	D7 Q2 TEACHER'S YEAR OF BIRTH	These data suppressed for respondent confidentiality
	D7HISP	D7 Q3 HISPANIC OR LATINO	These data suppressed for respondent confidentiality
	D7RACE1	D7 Q4 AMERICAN INDIAN OR ALASKA NATIVE	These data suppressed for respondent confidentiality
	D7RACE2	D7 Q4 ASIAN	These data suppressed for respondent confidentiality
	D7RACE3	D7 Q4 BLACK OR AFRICAN AMERICAN	These data suppressed for respondent confidentiality
	D7RACE4	D7 Q4 NATIVE HAWAIIAN OR OTHER PAC ISL	These data suppressed for respondent confidentiality
	D7RACE5	D7 Q4 WHITE	These data suppressed for respondent confidentiality
	D7HGHSTD	D7 Q5 HIGHEST ED LEVEL TEACHER ACHIEVED	These data suppressed for respondent confidentiality
	D7HGHPAR	D7 Q6 HIGHEST ED LEVEL PARENTS ACHIEVED	These data suppressed for respondent confidentiality
	D7SCHLYR	D7 Q7 YEARS AT THIS SCHOOL	These data suppressed for respondent confidentiality
	D7SPLYRS	D7 Q8 YEARS WITH SPECIAL ED STUDENTS	These data suppressed for respondent confidentiality
	D7YRSTCH	D7 Q9 TOTAL YEARS TEACHING	These data suppressed for respondent confidentiality
	D7SETQA	D7 SP ED PART A QUESTIONNAIRE COMPLETED	These data suppressed for respondent confidentiality
	E7NOTEC	E5 Q17 DID NOT USE ASSIST TECH	These data suppressed for respondent confidentiality
	E7SPEIEP	E7 Q1 CURRENT SP ED SERVICE THROUGH IEP	These data suppressed for respondent confidentiality
	E7HRSSPE	E7 Q10 HRS/WK SP ED SCHEDULED FOR CHILD	These data suppressed for respondent confidentiality
	E7ADPPE	E7 Q11A ADAPTIVE PHYSICAL EDUCATION	These data suppressed for respondent confidentiality
	E7CLSAD	E7 Q11B CLASSROOM AIDES	These data suppressed for respondent confidentiality
	E7BRAILE	E7 Q11C INSTRUCTION IN BRAILLE	These data suppressed for respondent confidentiality
	E7INTRPR	E7 Q11D INTERPRETER FOR THE DEAF	These data suppressed for respondent confidentiality
	E7SGNLNG	E7 Q11E INSTRUCTN IN AMERCN SIGN LNG	These data suppressed for respondent confidentiality
	E7MNLENG	E7 Q11F INSTRUCTN IN MANUAL ENGLISH	These data suppressed for respondent confidentiality
	E7CUEDSP	E7 Q11G INSTRUCTION IN CUED SPEECH	These data suppressed for respondent confidentiality
	E7USEBRA	E7 Q11H USE OF BRAILLE INSTRUCTION	These data suppressed for respondent confidentiality
	E7USESGN	E7 Q11I USE OF AMERCN SIGN LNG INSTRUCT	These data suppressed for respondent confidentiality
	E7USECUE	E7 Q11J USE OF MANUAL ENG INSTRUCTION	These data suppressed for respondent confidentiality
	E7USECSP	E7 Q11K USE OF CUED SPEECH INSTRUCTION	These data suppressed for respondent confidentiality
	E7PRMPLC	E7 Q12 PRIMARY PLACEMENT IN GEN ED CLSRM	These data suppressed for respondent confidentiality
	E7SPEDOT	E7 Q13 \% TIME SERV OUTSDE GN ED CLSRM	These data suppressed for respondent confidentiality
	E7ONEON1	E7 Q14A ONE-ON-ONE INSTRUCTION	These data suppressed for respondent confidentiality
	E7SMLGRP	E7 Q14B SMALL-GROUP INSTRUCTION	These data suppressed for respondent confidentiality
	E7LRGGRP	E7 Q14C LARGE-GROUP INSTRUCTION	These data suppressed for respondent confidentiality
	E7COPLRN	E7 Q14D COOPERATIVE LEARNING	These data suppressed for respondent confidentiality
	E7PEERTR	E7 Q14E PEER TUTORING	These data suppressed for respondent confidentiality
	E7CMPTR	E7 Q14F COMPUTER-BASED INSTRUCTION	These data suppressed for respondent confidentiality
	E7DIRINS	E7 Q14G DIRECT INSTRUCTION	These data suppressed for respondent confidentiality
	E7COGSTR	E7 Q14H COGNITIVE STRATEGIES	These data suppressed for respondent confidentiality
	E7SMNGT	E7 Q14I SELF-MANAGEMENT	These data suppressed for respondent confidentiality
	E7BMNGT	E7 Q14J BEHAVIOR MANAGEMENT	These data suppressed for respondent confidentiality
	E7NOINS	E7 Q14K DID NOT DELIVER INSTRUCTION	These data suppressed for respondent confidentiality
	E7SGNINT	E7 Q14L THROUGH SIGN INTERPRETER	These data suppressed for respondent confidentiality
	E7DKMTHD	E7 Q14M DON'T KNOW METHODS USED	These data suppressed for respondent confidentiality
	E7GENRL	E7 Q15A CURRICULUM GENERAL ED CLASSROOM	These data suppressed for respondent confidentiality
	E7SPECL	E7 Q15B CURRICULUM SPECIAL ED CLASSROOM	These data suppressed for respondent confidentiality
	E7ACHLVL	E7 Q16 GOALS CHILD EXPECTED TO ACHIEVE	These data suppressed for respondent confidentiality
	E7VANS	E7 Q17A VANS, VEHICLES	These data suppressed for respondent confidentiality

[^68]Table 7-16. Recoded and suppressed data on the ECLS-K Eighth-Grade Public-Use Data FileContinued

Field ID	Variable	Field label	Comment
	E7WHLCHR	E7 Q17B WHEELCHAIRS	These data suppressed for respondent confidentiality
	E7WHTCN	E7 Q17C WHITE CANES	These data suppressed for respondent confidentiality
	E7ELCTRN	E7 Q17D ELECTRONIC COMMUNICATION AID	These data suppressed for respondent confidentiality
	E7NOELC	E7 Q17E NONELECTRONIC COMMUNICATION AID	These data suppressed for respondent confidentiality
	E7HAIDS	E7 Q17F HEARING AIDS	These data suppressed for respondent confidentiality
	E7FMLOOP	E7 Q17G FM LOOPS	These data suppressed for respondent confidentiality
	E7TTYS	E7 Q17H TTYS/TDDS	These data suppressed for respondent confidentiality
	E7IMPLNT	E7 Q17I COCHLEAR IMPLANTS	These data suppressed for respondent confidentiality
	E7CPTN	E7 Q17J REAL TIME CAPTIONING	These data suppressed for respondent confidentiality
	E7BRATXT	E7 Q17K BRAILLE TEXTS	These data suppressed for respondent confidentiality
	E7ELCBRA	E7 Q17L ELECTRONIC BRAILLE DEVICES	These data suppressed for respondent confidentiality
	E7DIGTXT	E7 Q17M DIGITAL TEXTS	These data suppressed for respondent confidentiality
	E7MGNFY	E7 Q17N MAGNIFYING DEVICES	These data suppressed for respondent confidentiality
	E7CCTV	E7 Q170 CCTV	These data suppressed for respondent confidentiality
	E7TAPERC	E7 Q17P TAPE RECORDERS	These data suppressed for respondent confidentiality
	E7CALC	E7 Q17Q CALCULATORS	These data suppressed for respondent confidentiality
	E7ELCSPL	E7 Q17R ELECTRONIC SPELLING DEVICES	These data suppressed for respondent confidentiality
	E7CMPIND	E7 Q17S COMPUTER FOR SOLE USE OF CHILD	These data suppressed for respondent confidentiality
	E7CMPSHR	E7 Q17T COMPUTER SHARED W/OTHR CHILDREN	These data suppressed for respondent confidentiality
	E7CMPRDG	E7 Q17U READING SOFTWARE	These data suppressed for respondent confidentiality
	E7CMPWRT	E7 Q17V WRITING SOFTWARE	These data suppressed for respondent confidentiality
	E7CMPMTH	E7 Q17W MATHEMATICS SOFTWARE	These data suppressed for respondent confidentiality
	E7ADPOTH	E7 Q17X OTHER ASSIST TECH SPCFY	These data suppressed for respondent confidentiality
	E7CMPGEN	E7 Q17Y COMPUTER GENERAL	These data suppressed for respondent confidentiality
	E7COMPUT	E7 Q18 CHILD ASSIGNED FULL TIME COMPUTER	These data suppressed for respondent confidentiality
	E7OFTGTC	E7 Q19 FREQ MEET WITH GENERAL ED TCHRS	These data suppressed for respondent confidentiality
	E7ENROL	E7 Q2 CHILD ENROLLMENT GRADE	These data suppressed for respondent confidentiality
	E7LNGTHM	E7 Q20 LENGTH OF GENERAL ED TEACHER MTGS	These data suppressed for respondent confidentiality
	E7OFTPAR	E7 Q21 FREQ COMMUNICATION WITH PARENTS	These data suppressed for respondent confidentiality
	E7EVLPSY	E7 Q22A PSYCHOLOGICAL EVALUATION	These data suppressed for respondent confidentiality
	E7EVLSPC	E7 Q22B SPEECH/LANGUAGE EVALUATION	These data suppressed for respondent confidentiality
	E7EVLVSN	E7 Q22C VISION EVALUATION	These data suppressed for respondent confidentiality
	E7EVLHR	E7 Q22D HEARING EVALUATION	These data suppressed for respondent confidentiality
	E7EVLLD	E7 Q22E LEARNING/EDUCATIONAL EVALUATION	These data suppressed for respondent confidentiality
	E7EVLMS	E7 Q22F MOTOR SKILLS EVALUATION	These data suppressed for respondent confidentiality
	E7EVLAC	E7 Q22G ACADEMICS EVALUATION	These data suppressed for respondent confidentiality
	E7EVLOTH	E7 Q22H OTHER EVALUATION	These data suppressed for respondent confidentiality
	E7GOAL	E7 Q23 PERCENT OF IEP GOALS MET	These data suppressed for respondent confidentiality
	E7IEPNXY	E7 Q24 IEP NEXT YEAR	These data suppressed for respondent confidentiality
	E7STUTST	E7 Q25 STUDENT IN SCHL ASSESSMENT PROG	These data suppressed for respondent confidentiality
	E7MMCOM	E7 Q26A MONTH QUESTIONNAIRE COMPLETED	These data suppressed for respondent confidentiality
	E7DDCOM	E7 Q26B DAY QUESTIONNAIRE COMPLETED	These data suppressed for respondent confidentiality
	E7YYCOM	E7 Q26C YEAR QUESTIONNAIRE COMPLETED	These data suppressed for respondent confidentiality
	E7FSTIEP	E7 Q3 WHEN DID CHILD FIRST HAVE IEP	These data suppressed for respondent confidentiality
	E7RVRCRD	E7 Q4 REVIEWED CHILD'S SP ED RECORD	These data suppressed for respondent confidentiality
	E7PRMDIS	E7 Q5 STUDENT'S MAIN DISABILITY CATEGORY	These data suppressed for respondent confidentiality
	E7LRNDIS	E7 Q6A SPECIAL ED/LEARNING DISABILITY	These data suppressed for respondent confidentiality
	E7EMTPRB	E7 Q6B SPECIAL ED/EMOTIONAL PROBLEM	These data suppressed for respondent confidentiality
	E7SPCHLN	E7 Q6C SPECIAL ED /SPEECH IMPAIRMENT	These data suppressed for respondent confidentiality

[^69]Table 7-16. Recoded and suppressed data on the ECLS-K Eighth-Grade Public-Use Data FileContinued

Field ID	Variable	Field label	Comment
	E7MNTRTR	E7 Q6D SPECIAL ED/MENTAL RETARDATION	These data suppressed for respondent confidentiality
	E7BLNVSL	E7 Q6E SPECIAL ED/VISUAL IMPAIRMENT	These data suppressed for respondent confidentiality
	E7DEAFHH	E7 Q6F SPECIAL ED/HARD OF HEARING	These data suppressed for respondent confidentiality
	E7HLTHIM	E7 Q6G SPECIAL ED/HEALTH IMPAIRMENT	These data suppressed for respondent confidentiality
	E7PHYSIM	E7 Q6H SPECIAL ED/PHYSICAL IMPAIRMNT	These data suppressed for respondent confidentiality
	E7MLTIM	E7 Q6I SPECIAL ED/MULTIPLE IMPAIRMENT	These data suppressed for respondent confidentiality
	E7DFBLND	E7 Q6J SPECIAL ED/DEAF-BLIND	These data suppressed for respondent confidentiality
	E7DEVDLY	E7 Q6K SPECIAL ED/DEV DELAY	These data suppressed for respondent confidentiality
	E7AUTISM	E7 Q6L SPECIAL ED/AUTISM	These data suppressed for respondent confidentiality
	E7BRAIN	E7 Q6M SPECIAL ED/BRAIN INJURY	These data suppressed for respondent confidentiality
	E7SPED	E7 Q7 RECEIVING SP ED OR RELATED SERVCS	These data suppressed for respondent confidentiality
	E7IEPRDG	E7 Q8A IEP GOAL-READING	These data suppressed for respondent confidentiality
	E7IEPMTH	E7 Q8B IEP GOAL-MATHEMATICS	These data suppressed for respondent confidentiality
	E7IEPLNG	E7 Q8C IEP GOAL-LANGUAGE ARTS	These data suppressed for respondent confidentiality
	E7IEPSCI	E7 Q8D IEP GOAL-SCIENCE	These data suppressed for respondent confidentiality
	E7IEPADT	E7 Q8E IEP GOAL-AUDITORY PROCESSING	These data suppressed for respondent confidentiality
	E7IEPLST	E7 Q8F IEP GOAL-LISTENING COMPREHENSION	These data suppressed for respondent confidentiality
	E7IEPORL	E7 Q8G IEP GOAL-ORAL EXPRESSION	These data suppressed for respondent confidentiality
	E7IEPVOC	E7 Q8H IEP GOAL-VOICE/SPEECH ARTICULATN	These data suppressed for respondent confidentiality
	E7IEPLP	E7 Q8I IEP GOAL-LANGUAGE PRAGMATICS	These data suppressed for respondent confidentiality
	E7IEPSOC	E7 Q8J IEP GOAL-SOCIAL SKILLS	These data suppressed for respondent confidentiality
	E7IEPADP	E7 Q8K IEP GOAL-ADAPTIVE BEHAVIOR	These data suppressed for respondent confidentiality
	E7IEPTRN	E7 Q8L IEP GOAL-TRANSITIONAL GOALS	These data suppressed for respondent confidentiality
	E7IEPFMS	E7 Q8M IEP GOAL-FINE MOTOR SKILLS	These data suppressed for respondent confidentiality
	E7IEPGMS	E7 Q8N IEP GOAL-GROSS MOTOR SKILLS	These data suppressed for respondent confidentiality
	E7IEPMOB	E7 Q80 IEP GOAL-ORIENTATION+MOBILITY	These data suppressed for respondent confidentiality
	E7IEPOTH	E7 Q8P IEP GOAL-OTHER SPECIFY	These data suppressed for respondent confidentiality
	E7ADLGY	E7 Q9A AUDIOLOGY PROVIDED	These data suppressed for respondent confidentiality
	E7CNSSER	E7 Q9B COUNSELING SERVICES PROVIDED	These data suppressed for respondent confidentiality
	E7OCCTHR	E7 Q9C OCCUPATIONAL THERAPY PROVIDED	These data suppressed for respondent confidentiality
	E7PHYTHR	E7 Q9D PHYSICAL THERAPY PROVIDED	These data suppressed for respondent confidentiality
	E7PSYTHR	E7 Q9E PSYCHOLOGICAL SERVICES PR0VIDED	These data suppressed for respondent confidentiality
	E7SCHHLT	E7 Q9F SCHOOL HEALTH SERVICES PROVIDED	These data suppressed for respondent confidentiality
	E7SOCWRK	E7 Q9G SOCIAL WORK SERVICES PROVIDED	These data suppressed for respondent confidentiality
	E7TRNSPR	E7 Q9H SPECIAL TRANSPORT PROVIDED	These data suppressed for respondent confidentiality
	E7LNGTHR	E7 Q9I LANGUAGE THERAPY PROVIDED	These data suppressed for respondent confidentiality
	E7MOBILT	E7 Q9J ORIENTATION SERVICES PROVIDED	These data suppressed for respondent confidentiality
	E7MIBILT	E7 Q9K MobILITY SERVICES PROVIDED	These data suppressed for respondent confidentiality
	E7REHAB	E7 Q9L REHABILITATION SERVICES PROVIDED	These data suppressed for respondent confidentiality
	E7OTHSER	E7 Q9M OTHER SERVICE PROVIDED	These data suppressed for respondent confidentiality
	E7SETQB	E7 SP ED PART B QUESTIONNAIRE COMPLETED	These data suppressed for respondent confidentiality

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

This page is intentionally left blank.

8. ELECTRONIC CODEBOOK

8.1 Introduction

The purpose of this chapter is to provide users of the Early Childhood Longitudinal Study, both Kindergarten Class of 1998-99 (ECLS-K) and Birth Cohort (ECLS-B), with specific directions for using the Electronic Codebook (ECB) CD-ROM. The information in this chapter provides a comprehensive tour through the ECB that addresses all of the functions and capabilities of the program. These functions allow users to access the accompanying catalog and "view" the data in various ways by performing customized searches, queries, and extractions. The organization of this document provides a "start to finish" approach through the system, beginning with the installation of the ECB, utilizing the ECB's functions, navigating through the catalog, and performing user-specified data extractions.

Sections 8.1 through 8.6 contain general instructions on using the ECB and apply to both the ECLS-K ECB and the ECLS-B ECB, including descriptions of the menu bars (exhibit 8-57). The exhibits and examples given in these sections are generic and will not exactly match what the users see on their own screens.

The ECB CD-ROM contains an ECB that allows users to easily examine the variables in the ECB dataset. The data user can create SAS, SPSS for Windows, and Stata programs that will generate an extract data file from the text (ASCII) data file on the CD-ROM.

Additionally, the CD-ROM contains Portable Document Format (PDF) files of the associated questionnaires in appendix A and the record layout for the data file in appendix B , as well as file-specific information on the child catalog in appendix E. When needed, additional user's guides and supplementary files may also be included in additional appendixes.

8.1.1 Hardware/Software Requirements

The ECB program is designed to run under Windows 95^{\circledR}, Windows 98^{\circledR}, Windows 2000^{\circledR}, Windows XP^{\circledR}, or Windows $\mathrm{NT}^{\circledR} 4.0$ on a Pentium-class or higher PC. (Given the variations of Windows Vista, it is uncertain what issues may be encountered when attempting to run the ECB on this operating
system.) The PC should also have a minimum of 20 megabytes (MB) of available disk space. The program will visually fit best on screens set to a desktop area of 800×600 pixels. It will still work on other screen settings, but it may not make the best use of the available screen space. You can check/set your desktop area as follows:

1. Click on the Windows Start button.
2. Select the Settings menu and then the Control Panel folder icon.
3. In the Control Panel window, click on the Display icon.
4. Select the Settings tab.
5. Set the Desktop Area to 800×600 pixels with the Desktop Area slidebar.

As noted above, the ECB requires approximately 20 MB of available disk space on your hard drive. If 20 MB of space is not available, you may wish to delete unnecessary files from the drive to make space for the ECB.

8.1.2 ECB Features

The ECB allows a user to do the following:

- Search the names and labels of variables in the database (called the catalog) to select variables for analysis (see section 8.3, Variable List).
- Examine the question wording, response categories, and response frequencies for variables the user selects (see section 8.4.9, Viewing Codebook and Variable Information).
- Create a list of variables to be extracted from the catalog, save the list for later use, print the list as a codebook, or use a predefined list on the ECB (see section 8.4, Working Taglist).
- Automatically generate SAS, SPSS for Windows, or Stata programs to extract selected variables from the whole dataset or for a subset of the cases that are defined by the user (see section 8.5, Extracting Data From the ECB).

The ECB does not create a SAS, SPSS for Windows, or Stata data file. It will prepare the statements that you can use with your own SAS, SPSS for Windows, or Stata software to create your file.

As noted earlier, the CD-ROM contains an ASCII dataset that the ECB uses to extract specific subdata files. The CD-ROM must be in the drive for the data to be extracted.

8.2 Installing, Starting, and Exiting the ECB

The ECB is provided on a CD-ROM and is intended to be installed and run from within the Windows 95^{\circledR}, Windows 98^{\circledR}, Windows 2000^{\circledR}, Windows XP^{\circledR}, or Windows $\mathrm{NT}^{\circledR} 4.0$ environment. As mentioned in the previous section, use of the ECB in the Vista environment may produce unexpected results. The sections in this chapter provide you with step-by-step instructions for installing the program on your personal computer (PC), starting the program, and exiting the program once you have completed your tasks.

8.2.1 Installing the ECB Program on Your Personal Computer

Program installation is initiated by running the Setup.exe file found within the CD-ROM's root directory.

How To Install the Program:

1. Close all applications on your computer.
2. Insert the installation CD-ROM into your PC's CD-ROM drive.
3. From the desktop Start menu, select Run.
4. Type "D:\Setup.exe" into the "Open" field of the Run screen, shown in exhibit 8-1. If your CD-ROM drive is assigned a different drive letter, substitute it for the "D."

Exhibit 8-1. Windows Run screen

5. Click on the OK button to start the installation. You will now see several installation screens, some of which will prompt you for a response.

Depending on your PC's configuration, you may encounter warning messages during installation. To respond, always keep the newer version of a file being copied and ignore any access violations that occur during file copying.

If you are installing multiple ECBs (not different versions of the same ECB) on your PC, you may receive a message warning that Setup is about to replace pre-existing files. To respond, always opt to continue the installation although the default is to cancel the setup. When you get a follow-up message to confirm whether the installation should be continued, press "Yes" to continue although the default is "No."
6. The screen shown in exhibit 8-2 indicates that the setup is being prepared.

Exhibit 8-2. InstallShield Wizard

7. You will be prompted to continue with the installation in the Welcome window shown in exhibit 8-3. Click on the Next button to continue.

Exhibit 8-3. Welcome window

8. When you continue, you will be prompted to choose a destination location for the installation in the window shown in exhibit 8-4. If you wish to change the destination location, click on the Browse button to change the directory. Click on the Next button when the desirable destination folder is shown.

Exhibit 8-4. Choose Destination Location

9. Setup will then start installing files. Exhibit 8-5 shows the setup status.

Exhibit 8-5. Setup Status

10. Once the installation is completed, the InstallShield Wizard Complete window shown in exhibit 8-6 will appear. Click on the Finish button to finish the process and return to your PC's desktop.

Exhibit 8-6. InstallShield Wizard Complete

11. The installation process should take about a minute, depending on the speed of the computer on which the ECB is being installed.

Another option for installing the ECB software is to go to the Start menu and go to Settings. Select Control Panel and select Add/Remove Programs from the options. Click on the Install button and follow the directions. Make sure the ECB CD-ROM is in the CD-ROM drive before starting. The program will automatically find the file Setup.exe in the CD-ROM and begin installation. The process will begin at step 5 in the section above.

8.2.2 Starting the ECB

Now that you have installed the ECB on your PC, you can start the program by simply selecting it from the Windows Start, Programs Menu, ECB.

How to Start the ECB:

1. On the desktop screen, click on the ECB desktop icon (exhibit 8-7a) shown below to invoke the program. Alternatively, on the desktop screen, click on the Start button and then point to Programs (exhibit 8-7b). Click on the ECB title to invoke the program.

Exhibit 8-7a. Desktop icon

Exhibit 8-7b. Desktop screen-click start

2. If you are a first-time user of the ECB, exhibit $8-8$ will appear and ask if you are a new ECB user.

Exhibit 8-8. First-time user dialog box

3. Click "Yes" if you are a first-time user. The ECB splash-screen shown in exhibit 8-9 will appear.

Exhibit 8-9. ECB splash screen

4. On the Select Catalog screen (exhibit 8-10), highlight the name of the catalog. (The eighth-grade ECB has only one catalog.)

Exhibit 8-10. Select Catalog screen

5. Click OK to open the Main ECB screen, shown in exhibit 8-11.

Exhibit 8-11. Main ECB screen

6. You are now ready to use the functions of the ECB as described in the following sections.

8.2.3 Exiting the ECB

The ECB can be shut down at any time; however, you will be prompted to save any unsaved information.

How To Shut Down the ECB:

1. From the File menu, click on the Exit option as shown in exhibit 8-12.

Exhibit 8-12. Exit screen

2. If you have not saved your Working Taglist, you will be prompted with the dialog box shown in exhibit 8-13.

Exhibit 8-13. Save working taglist dialog box

3. If you DO NOT wish to save your Working Taglist, click on the "No" button. If you DO wish to save your Working Taglist, click the "Yes" button. For more information, refer to section 8.4.4, Saving Taglists.

8.2.4 Removing the ECB Program From Your Personal Computer

How to Uninstall the ECB:

1. Click on the Windows Start button.
2. Select the Settings menu.
3. In the Control Panel window, click on the Add/Remove Programs.
4. Select "ECB" and click on the Add/Remove button.
5. Follow any prompts. You will be prompted by the InstallShield Wizard to confirm the uninstallation and finish the process.
6. The program is designed so that the uninstallation will keep the taglists when the ECB program is uninstalled in order that all the saved taglists will be retained when the ECB is reinstalled. As a result, the uninstallation will not remove the directory where the ECB was located.

8.2.5 Title Bar

The Title Bar, shown below in exhibit 8-14, is the horizontal bar located at the top of the main screen. It will list the name of the program and the catalog that you have opened, and it will indicate that you are in the "Create Taglist" mode.

Exhibit 8-14. Title Bar

ECLS ECB - Catalog Name - [Create Taglist]

8.2.6 Menu Bar

Selecting items from the pulldown menus listed on the Menu Bar (exhibit 8-15) provides access to the available action commands. Section 8.6 shows the choices and functions available within each menu.

Exhibit 8-15. Menu Bar

> 㕠 ECLS ECB - Catalog Name - [Create Taglist]
> 準 Eile Iaglist Extract Tools Codebook Help

How to Access the Menu Bar Items:

1. Point to an item on the Menu Bar and click.
2. Click on a command from the dropdown list.

The Menu Bar may also be activated and its options selected using the shortcut keys described in section 8.2.7.

8.2.7 Using Shortcut Keys to Navigate

The shortcut keys provide a means for selecting menu options and screen buttons without the use of a mouse. These shortcut keys are identified by an underscore under the shortcut letter within the option or button label. The menus that appear on the windows are activated by simultaneously selecting the $<$ ALT $>$ key and the underscored letter. An example of this is the activation of the Taglist Menu by selecting the key combination of $\langle\mathrm{ALT}\rangle-\langle\mathrm{T}\rangle$. Once the menu is activated and all options are displayed, the options can be selected by then pressing the underscored letter for the desired option or by pressing the arrow keys to move between the options.

Not all screens have shortcut keys. They may, however, be used without mouse capability by pressing the $<\mathrm{TAB}>$ key. The $<\mathrm{TAB}>$ key moves the cursor or highlight through the options and buttons within the windows. When the desired option or button is highlighted, it can be selected by pressing the $<$ ENTER $>$ key.

8.3 Variable List

The ECB main screen, shown in exhibit 8-16, comprises two primary lists that each provide functions for reviewing, grouping, and extracting variable data from the opened catalog. These lists include the Variable List and the Working Taglist.

The Variable List, shown in exhibit 8-17, is a list of all variables associated with the current catalog. When you first open a catalog, all variables contained in the catalog are displayed in the Variable List. Once the catalog is open and the Variable List is displayed, you can scroll through the list using the scrollbar controls at the right side of the Variable List screen. Additionally, you can press $<\mathrm{PgUp}>$ and $<\mathrm{PgDn}>$ to scroll the list one screen at a time. $<\mathrm{Ctrl}><$ Home $>$ and $<\mathrm{Ctrl}><$ End $>$ will move to the first and last variable in the list, respectively. Also, the arrow keys can be used to move through the list of variable names.

The "Field ID" at the upper right corner of the Variable List shows the field ID of the selected variable on the Variable List. The field ID is the variable's number in the ECB - for example, CHILDID is the first variable appearing in the ECB, and it has FieldID=1.

Exhibit 8-16. ECB main screen

\% ECLS ECE - Catalog Name - [Cueate Taplint]						- $\mathrm{E}_{\text {d }}$
医 Ele Iapls	Evpract Tock Sodebook Hep					= \|즁 x
vamiable List			WOPBMNG TACLIST - Mew			
Nsiow	Evpand Reset \square Go	Field 1D: 1	Save		Save As	
Vaidile Niome	Vatidu Dexctiplion	-		Vaislib Nime	Vativis Depiciplion	
VAR1	VAPLABLE LABEL 1			VAR1	Varlable Label 1	
VAR2	VARIABLE LABEL 2		3	VAR2	VARIABLE LABEL 2	
VAR3	VARIABLE LABEL 3			VAR3	VAPLABLE LABEL 3	
VAR4	VAPIABLE LABEL 4					
VAR5	VAPIABLE LABEL 5		3			
VAP6	VARIABLE LABEL 6					
VART	VARIABLE LABEL 7		ce			
VARB	VARIABLE LABEL 8		se			
VAR9	VARIABLE LABEL 9					
VAR10	VAPIABLE LABEL 10		<			
VAR11	VaPLABLE LABEL 11					
VAR12	VARIABLE LABEL 12					
VAR13	VAPLABLE LABEL 13					
VAR14	VAPIABLE LABEL 14					
VAR15	VAPIABLE LABEL 15					
VAR16	VAPLABLE LABEL 16					
V/AR17	VARLABLE LABEL 17					
VAR18	VARLABLE LABEL 18					
VAR19	VAPLABLE LABEL 19					
VAR20	VAPIABLE LABEL 20					
VAR221	VaPLABLE LABEL 21					
VAR22	V/ARIABLE LABEL 22					
VAR23	VARLABLE LABEL 23					
VAR24	VMPIABLE LABEL 24					
VAR25	VAPIABLE LABEL 25					
VARR26	VAPLABLE LABEL 26					
VAR27	VAPLABLE LABEL 27					
VARR28	VARIABLE LABEL 28					
VARR29	VAPLABLE LABEL 29					
VAF30	VAPIABLE LABEL 30					
VAR3 31	VAPIABLE LABEL 31					
VAR32	VAPLABLE LABEL 32	\pm				
$4{ }^{4}$	-.......- ---	$\stackrel{1}{ }$		41		-

Exhibit 8-17. Variable List

VAPIABLE LIST			
Namow	Expand Reset	Gol	Field 10: 1
Vriable Name	Vaiable Description		\pm
VAR1]	VARIABLE LABEL 1		
VAR2	VARIABLE LABEL 2		
VAR3	VAPLABLE LABEL 3		
VAR4	VARIABLE LABEL 4		
VAR5	VARIABLE LABEL 5		
VARE	VARLABLE LABEL 6		
VAR7	VAPLABLE LABEL 7		
VAR8	VARIABLE LABEL 8		
VAR9	VARIABLE LABEL 9		
VAR10	VARLABLE LABEL 10		
VAR11	VARIABLE LABEL 11		
VAR12	VARIABLE LABEL 12		
VAR13	VAPLABLE LABEL 13		
VAR14	VARIABLE LABEL 14		
VAR15	VARLABLE LABEL 15		
VAR16	VARIABLE LABEL 16		
VAR17	VARIABLE LABEL 17		
VAR18	VARIABLE LABEL 18		
VAR19	VARIABLE LABEL 19		
VAR20	VARIABLE LABEL 20		
VAR21	VARIABLE LABEL 21		
V/RR22	VARIABLE LABEL 22		
VAR23	VARIABLE LABEL 23		
VAR24	VARIABLE LABEL 24		
VAR25	VARIABLE LABEL 25		
VAR26	VARIABLE LABEL 26		
VAR27	VARIABLE LABEL. 27		
VAR28	VARLABLE LABEL 28		
VAR29	VARIABLE LABEL 29		
VAR30	VARIABLE LABEL 30		
VAR31	VARIABLE LABEL 31		
VAR32	VARIABLE LABEL 32		*
$4{ }^{-}$			$\stackrel{\rightharpoonup}{*}$

The Variable List provides you with a comprehensive means of reviewing and identifying the variables that you want to use. To help you select the desired variables, the ECB provides you with the following capabilities:

- Perform searches of variable names and descriptions (see section 8.3.1);
- View codebook information for each variable (see section 8.4.9); and
- Move selected variables to a Working Taglist (see section 8.4.2).

8.3.1 Searching the Codebook for Variables

The ECB allows you to search a catalog's Variable List for variables meeting criteria you specify. The Narrow Search and Expand Search functions are used to develop and refine the variables listed in your Variable List before adding them to your Working Taglist. Help screens with topical variable groupings were designed for each catalog to expedite searching. The catalog-specific topical variable groupings can be found in appendix E on the CD-ROM.

8.3.1.1 Using the Go Button

Using the Go button, located at the top of the Variable List column, allows you to quickly move to a particular variable in the Variable List. You use the field ID presented in the help screens described earlier.

How To Use the Go Button:

1. Type the field ID in the input box on the left of the Go button.
2. Click on the Go button.
3. The Variable List will then scroll down automatically to show the selected variable.
4. The selected variable is highlighted.
5. The field ID of the current variable selected is shown on the right of the Go button (exhibit 8-18).
6. Click the Reset button to return to the top of the original Variable List (Field ID 1) or enter another field ID to scroll to another variable.

For field IDs that identify different groups of variables, please refer to appendix E on the CD-ROM for the catalog-specific topical variable groupings.

The Go button will not be available in a narrowed or expanded list. After a Narrow Search or an Expand Search, you must reset the Variable List (see section 8.3.1.4) before you can use the Go button.

The "Field ID" remains active in a narrowed or expanded list. However, the field IDs indicate the order of the variables in the catalog rather than that in the Variable List. As a result, the field IDs would not change in a narrowed or expanded list.

Exhibit 8-18. Go button

8.3.1.2 Narrowing Your Variable Search

The Narrow Search function can be used to narrow the list of variables displayed in the Variable List. Since some catalogs have several thousand variables, this feature helps eliminate the variables that do not apply to your analysis. In performing the Narrow Search, you can enter key
characters, words, or phrases as your criteria for searching the variable names, variable descriptions, or both. Also, the Narrow Search can be performed multiple times allowing you to repeatedly refine the list of variables displayed in the Variable List column.

Performing the Narrow Search function will only narrow down the variables listed in the Variable List window and will not affect those in the Working Taglist window.

How To Conduct a Narrow Search:

1. Click on the Narrow button located above the Variable List window.
2. The Narrow Search dialog box appears as shown in exhibit 8-19.

Exhibit 8-19. Narrow Search Text dialog box

3. Enter a key character string, word, or phrase in the Enter Narrow Text field. Character strings can include a single alphanumeric character or a sequence of several characters. The search is not case sensitive. The results returned will be all entries that contain that exact sequence of letters, numbers, spaces, and words.
4. Click on the Variable Name, Variable Description, or Both Variable Name and Description radio button to specify where to search.
5. Click on the Search button to initiate the search.
6. The variables meeting the specified criteria will be displayed in the Variables List column.

If no variable names or descriptions in the catalog contain the specified search text, then the message shown in exhibit 8 -20 will appear.

Exhibit 8-20. No Matches Found message

No Matches Found

No variables in the Variable List matched your search criteria. You can press the Reset button to start over with the complete list of variables for the current catalog, Catalog Name.

Note: After you Narrow/Search the Variable List, your next Narrow/Search applies ONLY to the results of your previous search: the remaining variables in the Variable List. Expand/Search always searches the entire current active catalog, and adds matching variables to the Variable List.

7. Repeat the Narrow Search procedure if necessary.

Please note that the field ID at the upper right corner of the Variable List reflects the order of the variables in the catalog rather than that in the narrowed Variable List.

Example of Narrowing a Search

The following example shows you how to narrow the Variable List. In this example, you want to include all the variables from the catalog that measure education. Do the following:

1. In the Variable List, click on the Narrow button.
2. In the Search Text Box (shown in exhibit 8-21), type in "edu" and then click on the Search button.

Exhibit 8-21. Example of narrowing a search

3. The new Variable List will include only the variables that have the text "edu" in the variable name or the variable description.

The catalog-specific topical variable groupings can be found in appendix E on the CD-ROM. Simply find the topic of interest in the Topic column first and then enter in the Search Text Box the matching keywords in the Variable Identifier to narrow the search.

8.3.1.3 Expanding Your Variable Search

The Expand Search function can be used to expand a previously narrowed list of variables displayed in the Variable List. After performing a Narrow Search operation, you can add variables to your current Variable List that meet your specified criteria. In performing the Expand Search, you can enter key characters, words, or phrases as your criteria for searching the variable names, variable descriptions, or both. Also, the Expand Search can be performed multiple times, allowing you to repeatedly expand the list of variables displayed in the Variable List column.

Performing the Expand Search function will only expand the variables listed in the Variable List window and will not affect those in the Working Taglist window.

How To Conduct an Expand Search:

1. Click on the Expand button located above the Variable List window.
2. The Expand Search dialog box will appear as shown in exhibit 8-22.

Exhibit 8-22. Expand Search Text dialog box

3. Enter a key character string, word, or phrase in the Enter Expand Text field. Character strings can include a single alphanumeric character or a sequence of several characters. The search is not case sensitive. The results returned will be all entries that contain that exact sequence of letters, numbers, spaces, and words.
4. Click on the Variable Name, Variable Description, or Both Variable Name and Description radio button to specify where to search.
5. Click on the Search button to initiate the search.
6. The variables meeting the specified criteria will be added to the variables already displayed in the Variables List column.
7. Repeat the Expand Search procedure if necessary.

If no variable names or descriptions in the catalog contain the specified search text, then the message shown in exhibit 8-23 will appear.

Please note that the field ID at the upper right corner of the Variable List reflects the order of the variables in the catalog rather than that in the expanded Variables List.

Exhibit 8-23. No Matches Found message

No Matches Found

No variables in the Variable List matched your search criteria. You can press the Reset button to start over with the complete list of variables for the current catalog. Catalog Name.

Note: After you Narrow/Search the Variable List, your next Narrow/Search applies ONLY to the results of your previous search: the remaining variables in the Variable List. Expand/Search always searches the entire current active catalog, and adds matching variables to the Variable List.

8.3.1.4 Resetting Your Variable List

Following a narrowing or expanding of the Variable List as described earlier, it is possible to reset the list to display ALL of the variables available in the catalog. The Variable List is reset by clicking on the Reset button located at the top of the Variable List column. Resetting the Variable List does not affect the variables listed in the Working Taglist.

8.4 Working Taglist

The Working Taglist, shown in exhibit 8-24, displays a list of variables that are currently selected or tagged for extraction. All Working Taglists contain a set of variables, called required variables, that will be automatically included in all data files that the user creates. The required variables provide a foundational dataset upon which other variables rely. These required variables cannot be untagged or deleted from the Working Taglist by the user. When a catalog is first opened, the default Working Taglist consists of only the required variables for that catalog. (See appendix E on the CD-ROM for the catalog-specific required variables.) To create a taglist, add the variables you have selected to the required variables.

Exhibit 8-24. ECB Working Taglist

WORKING TAGLIST -- New		
Save	Save As	
Variable Name	Variable Description	
VAR1 VAR2 VAR3	VARIABLLE LABEL 1 VARIABLE LABEL 2 VARIABBLE LABEL 3	

8.4.1 Opening a Taglist

The ECB allows you to open a predefined or previously saved taglist and display it in the Working Taglist column. Taglists, however, are saved as part of a particular catalog and can only be opened as part of the associated catalog.

How To Open a Taglist:

1. Open a catalog.
2. Select Open from the Taglist pulldown menu.
3. The Open Taglist dialog box, shown in exhibit 8-25, appears.

Exhibit 8-25. Open Taglist dialog box

4. Highlight the taglist that you wish to open.
5. Click on the OK button.

If you have made modifications to the taglist currently open in the Working Taglist column, you will be prompted to save your changes.

8.4.2 Adding Variables to the Working Taglist

Variables can be added to your Working Taglist after you have identified the variables in the ECB's catalog that you want to extract. The user-selected variables can be added to the Working Taglist by selecting one of the two command buttons described in exhibit $8-26$. The Working Taglist may also have variables added to it from a previously saved taglist. When moving or adding variables to the Working Taglist, the ECB will not permit variables to be listed multiple times. This is an automatic feature of the ECB.

Exhibit 8-26. Add variables buttons

Command Button	Description
$>$	The Tag button moves variables that are selected in the Variable List to the Working Taglist for extraction.
\ggg	The Tag All button moves all variables in the Variable List to the Working Taglist for extraction.

Multiple variables can be selected by using the following Microsoft Windows ${ }^{\circ}$ techniques:

- Simultaneously pressing the $<$ SHIFT $>+$ Up/Down arrow keys or
- Pressing $<$ CTRL $>+$ left-mouse clicking on the items to be selected (or deselected). Also, $<$ SHIFT $>+$ left-mouse clicking extends the selection to include all list items between the current selection and the location of the click.

How To Add Variables to a Working Taglist:

1. Highlight the variable(s) in the Variables List that you wish to add. (See Microsoft Windows ${ }^{\ominus}$ techniques discussed earlier.)
2. Click on the Tag button, and the selected variables are added to your Working Taglist. To add all variables from the catalog displayed in the Variable List window to your Working Taglist, click on the Tag All button.

How To Add Variables From Another Taglist:

1. Click on the Taglist pulldown menu to display the menu options.
2. Select the Add option to display a list of previously saved taglists, shown in exhibit 8-27.
3. Highlight the saved taglist whose variables you wish to add to your Working Taglist.
4. Click on the OK button.
5. The new variables are added to your Working Taglist.

Exhibit 8-27. Add Taglist dialog box

8.4.3 Removing Variables From the Working Taglist

Variables are removed from your Working Taglist by selecting one or more of the nonrequired variables and clicking one of the two command buttons described in exhibit 8-28. All variables can be removed by clicking on the Untag All button. All but the required variables will be deleted from your Working Taglist. Required variables are variables that are automatically extracted for all user-created files and cannot be removed from the taglist by the user.

Exhibit 8-28. Remove variables buttons

Removing or untagging required variables from the Working Taglist is not permitted by the ECB. A message will be displayed indicating that the required variable cannot be untagged.

How To Untag Variables From the Working Taglist:

1. Highlight the variable(s) in the Working Taglist that you wish to remove. (See Microsoft Windows ${ }^{\circ}$ techniques discussed in previous page.)
2. Click on the Untag button, and the selected variables are removed from your Working Taglist. To remove all nonrequired variables from the Working Taglist, click on the Untag All button.

8.4.4 Saving Taglists

The ECB has the ability to save the newly created or modified taglist displayed in the Working Taglist column. Taglists can be saved either under the name already assigned or under a new name. If you have opened a new taglist and have not yet assigned it a name, you will be presented with the Save As dialog box. If you have opened a predefined taglist and have made modifications to it, you must save the modified taglist to a new name. You will also be prompted to save your Working Taglist changes if you attempt to close the catalog or if you open or import another taglist.

How To Save a New Taglist:

1. Complete any changes you wish to make to the new taglist.
2. Click on the Save or Save As button above the Working Taglist column. You can also select the Save or Save As options from the Taglist pulldown menu.
3. The Save Taglist As dialog box appears as shown in exhibit 8-29.
4. Enter the new name for the taglist in the Taglist Name field.
5. Click on the Save button.
6. The newly assigned taglist name now appears in the Working Taglist header bar.

If a name that already exists is entered, you will be prompted to replace the old taglist with the new taglist. Click "Yes" only if you wish to replace the old taglist with the new taglist.

Exhibit 8-29. Save Taglist As dialog box

How To Save an Existing Taglist Under a New Name:

1. Complete any changes you wish to make to the existing taglist.
2. Click on the Save As button above the Working Taglist column. You can also click on the Taglist pulldown menu and select the Save As option.
3. The Save Taglist As dialog box appears, shown in exhibit $8-30$, with the current taglist name in the Taglist Name field.
4. Enter the new name of the taglist in the Taglist Name field.
5. Click on the Save button.
6. The newly assigned taglist name now appears in the Working Taglist header bar.

If a name that already exists is entered, you will be prompted to replace the old taglist with the new taglist. Click "Yes" only if you wish to replace the old taglist with the new taglist or enter a unique name.

Exhibit 8-30. Save Taglist As dialog box (\#2)

8.4.5 Exporting Taglists

Taglists can be saved as external files (*.tlt) for distribution. However, the exported files should be accessed only through the ECBs. Manually modifying the files outside of the ECB software is not recommended.

How To Export a Taglist:

1. Add to the Working Taglist all the variables that you would like to export.
2. Click on the Taglist pulldown menu (exhibit 8-31) and select the Export option.
3. The Export Working Taglist To dialog box appears (exhibit 8-32).
4. Enter the file name for your taglist.
5. Click on the Save button.
6. You will be prompted to replace the file if the file name you entered already exists. Do so or click on "No" to enter a new file name.

The Working Taglist will be saved under the filename you enter.

Exhibit 8-31. Pulldown menu to select Taglist Export

\% ECLS ECB - Catalog Name - [Creat			
䳐 Eile	Iaglist Extract Tools		Codeb
	New $\mathrm{Ctr}+\mathrm{N}$ Open $\mathrm{Ctr}+\mathrm{O}$		ABLE LI
Narrob			eselt
Variable	OpenDeleterDir		escription
VAR1	Add		
VAR2	SaveSave As		LABEL
VAR3			LABEL
R5	Import		LABEL 4
VAR6	Export		LABEL
VAR7			LABEL
$3 / 4 \mathrm{~B}$			FIAREI

Exhibit 8-32. Export Taglist dialog box

8.4.6 Importing Taglists

Taglists can be imported to the Working Taglist from external *.tlt files that are created by the ECB Taglist/Export function. Please note that only taglists exported from the same catalog of the same version ECB should be imported.

How To Import a Taglist:

1. Save the current Working Taglist before importing new taglist if desired.
2. Click on the Taglist pulldown menu (exhibit 8-33) and select the Import option.

Exhibit 8-33. Pulldown menu to select Taglist Import

峪 ECLS ECB - Catalog Name - [Creat		
渦 Eile	Iagist Extract Tools	Codebo
	New $\mathrm{Ctl}+\mathrm{N}$ Qpen $\mathrm{Ctl}+\mathrm{O}$	ABLE L
Narrou		Eeser
Variable	Delete	escription
VAR1	Agd	LABEL
VAR2	Save Ctrl+S	LABEL
VAR3	Save As	LABEL
VAR4		LABEL
VAR5	Import	LABEL
VAR6	Export	L LABEL
VAR7	vATIMEL	LABEL
VARS		F \triangle ARE

3. You will be prompted to save the current Working Taglist if unsaved changes have been made. Save the taglist if desired.
4. The Import Taglist From dialog box appears (exhibit 8-34).
5. Enter the file name for the taglist you want to import.
6. Click on the Open button.

The Working Taglist will be replaced by the new imported taglist.

8.4.7 Using Predefined Taglists

The ECB provides predefined taglists that address specific topics. These predefined taglists can be added to your Working Taglist or can be opened as a new Working Taglist. Opening these predefined taglists is performed using the same steps as opening a user-saved taglist presented in section 8.4.1. Users can add as many of the predefined taglists as desired to the open Working Taglist. See appendix E on the CD-ROM for listings and descriptions of the catalog-specific predefined taglists.

Exhibit 8-34. Import Taglist dialog box

8.4.8 Deleting Taglists

The ECB provides the capability to permanently delete previously saved taglists. Predefined taglists provided with the ECB, however, cannot be deleted through this function.

How To Delete a Taglist:

1. Close the taglist currently displayed in the Working Taglist column by selecting the New option from the Taglist pulldown menu.
2. The Working Taglist will be replaced by a New taglist.
3. Click on the Taglist pulldown menu and select the Delete option.
4. The Delete Taglist selection screen, shown in exhibit 8-35, appears with the taglists listed that may be deleted.
5. Highlight the taglist that is to be deleted and click on the OK button.
6. A confirmation screen, shown in exhibit 8-36, verifies your intention to delete the taglist.
7. Click on the "Yes" button to permanently delete the saved taglist.

Please note that you cannot delete the taglist that is currently open as the Working Taglist.

Exhibit 8-35. Delete Taglist selection
Delete Taglist
Taglist 3
Taglist 4

Exhibit 8-36. Delete Taglist confirmation window

8.4.9 Viewing Codebook and Variable Information

The codebook for a taglist displayed in the Working Taglist column can be created, viewed, and printed from the ECB main screen. The codebook displays several pieces of information about each variable that are described in exhibit 8-37.

Exhibit 8-37. Codebook information

Field	Description
Question Text	The question that was asked of the respondent by the interviewer or that was on the self-administered instruments.
Variable Name/ Description	The name of the variable as it appears in the catalog and a brief description of its content.
Record Number	The row number of the variable within the catalog data file.
Format	The format of the variable. The first character is either "A" or "N" for alphabetical or numeric. Most variables are numeric except the identifiers - which begin with an "A." The number following the "A" or "N" is the length of the variable. For numeric variables, the number after the decimal point is the number of decimal places.
Comment	Information to clarify specific information about a variable.
Position	The column number (position) of the variable within the catalog data file.
Response	A brief statement of each response code's meaning.
Codes	The numeric codes specifying each response.
Frequency	The numeric count of respondents providing the corresponding response code. The frequency counts are unweighted.
Percent	The percentage of respondents providing the corresponding response code. The percents are unweighted.

How To View the Codebook for Tagged Variables:

1. Complete any changes you wish to make to the displayed taglist.
2. Click on the Codebook pulldown menu and select the View option.
3. The codebook for the current taglist opens in a new window as shown in exhibit 8-38.
4. Use the buttons described in exhibit 8-39 to navigate through the displayed codebook.

Exhibit 8-38. Codebook view

Exhibit 8-39. Navigation buttons

Command button	Description
14	Click this button to change the displayed page to the first page.
4	Click this button to change to the previous page.
-	Click this button to advance to the next page.
-	Click this button to change the displayed page to the last page.
\square	Click this button to discontinue a page change.
它	Click this button to print the codebook. Refer to the procedure below for steps on printing the codebook.
旬	Click this button to export the codebook to a different destination and save it as a different file format. Refer to the procedure below for steps on exporting the codebook.
100\% $\quad \square$	Click the dropdown arrow to select a display magnification of the codebook.

NOTE: The counter " 1 of $1+$ " on the tool bar on top of the screen indicates the current page number and the last page number of the report. Users must navigate to the last page of the report to load
the entire report. Once the user has viewed the last page of the report, the " + " sign will disappear and the correct last page number will show.
5. Once you have finished viewing the codebook, close the screen by clicking on the Windows " X " control located in the top right corner of the window. You may also close the window using the other standard Windows defaults: by clicking on the windows icon in the upper left corner and selecting Close, or by pressing Alt-F4.

How To Print the Codebook:

1. Complete any changes you wish to make to the displayed taglist.
2. Click on the Codebook pulldown menu and select the Print option.
3. The Printing Status screen, shown in exhibit 8-40, appears, and the codebook prints on your PC's default printer.

How To Export the Codebook:

1. Complete any changes you wish to make to the displayed taglist.
2. Click on the Codebook pulldown menu and select the View option.

Exhibit 8-40. Printing status screen

3. The codebook for the current taglist opens in a new window, similar to the one shown in exhibit 8-38.
4. Click on the Export codebook button:
5. The Export codebook selection screen, shown in exhibit 8-41, appears.

Exhibit 8-41. Export codebook selection screen

6. Select the desired options from the "Format" pulldown menu and the "Destination" pulldown menu.
7. Click on the OK button and complete any subsequent screens required for exporting the file.

Please note that exporting the codebook for a catalog in its entirety will take a long time due to the large size. In addition, users encountering difficulty with codebooks exported in Word format (due to variations in versions of Word or PC registry settings) should export the codebook using the Rich Text Format (RTF). The document can then be opened using Word or another text-based software package (Notepad, WordPad, TextPad, etc.).

The codebook and its variables can be selected to display their information from either the Variable List or the Working Taglist. The information that can be displayed for a variable includes the variable name and label, the question wording associated with the variable, the position and format of the variable on the data file, each response value and its label, unweighted frequencies, and the unweighted percentage distributions as listed on exhibit 8-37. The entire codebook can also be viewed after moving all of the catalog's variables to the Working Taglist. The following procedures describe how to view some or all codebook variables:

How To Display Information for a Single Codebook Variable:

1. Locate the desired variable from either the Variable List or the Working Taglist.
2. Click on the variable name to highlight it and press <ENTER> or double-click on the variable name to view the variable information as shown in exhibit 8-42.

Exhibit 8-42. Variable Quick View

```
乲 ECLS ECB - Catalog Name - [Variable Quick View]
```

Variable Name : VAR1 (VARIABLE LABEL 1)
Record Number : 1
Position : 1-1
Format : N1.0
Comment : Comments for variable \#1.

```
\begin{tabular}{|c|c|c|c|}
\hline Response & Code & Unweighted Freq. & Percent \\
\hline RESPONSE CATEGORY 1 & 1 & 100 & 10.0\% \\
\hline RESPONSE CATEGORY 2 & 2 & 900 & 90.0\% \\
\hline Total & & 1,000 & 100.0\% \\
\hline
\end{tabular}

The Variable Name is the only field that can be highlighted for displaying the variable's codebook information. Clicking on the variable description field will not activate the Variable Quick View.
3. When you are done reviewing the variable information, close the window by clicking on the Windows control " \(X\) " in the upper right corner of the screen. You'll return to the main screen.

\section*{How to Print Information for a Single Codebook Variable:}

The ECB currently does not support printing the information for a single variable directly to the printer. If you must print the information for a single variable, follow these steps:
1. Double-click on the variable to activate the Variable Quick View (see the previous "How To" section for details).
2. With the Variable Quick View being the active window on top, press \(<\) Alt \(>+<\) Print Screen> to save the image of the Variable Quick View window.
3. In any application that supports bitmap images (e.g., Microsoft Paint, Microsoft Word, etc.), paste the saved image.
4. Print the image to the printer using the print function of the application that you are using.

\section*{How to Display and Print the Entire Codebook or Selected Pages:}
1. Move all of the catalog's variables displayed in the Variable List to the Working Taglist by clicking on the Tag All button.
2. Click on the OK button of the Add All Variables Confirmation dialog box, shown in exhibit 8-43.

Exhibit 8-43. Add All Variables dialog box

3. All of the variables listed in the Variable List are now displayed in the Working Taglist.
4. Select View from the Codebook pulldown menu.
5. The entire codebook displays as shown in exhibit 8-44. Note that this view includes ALL variables in the catalog and can span more than 1000 pages depending on the size of the ECB. The page number is in the upper left corner of the window.

Exhibit 8-44. View of the entire codebook

6. To print the entire codebook, click on the printer icon displayed at the top of the codebook screen. Select ALL from the Printer Dialog box (exhibit 8-45). Enter the number of copies you want and click on the OK button.

Exhibit 8-45. Printer dialog box

7. To print selected pages of the codebook, select Pages from the Printer Dialog box. Enter the pages you want to print and the number of copies you want. Click on the OK button.
8. When you are done viewing the entire codebook, close the window by clicking on the Windows control " \(X\) " in the upper right corner of the screen. You will return to the main screen.

\subsection*{8.5 Extracting Data From the ECB}

Once the variables have been selected (tagged) for extraction and reside in the Working Taglist, the next step is to generate the code through which the statistical analysis software can retrieve and display the results. The ECB provides options for generating the code for analyzing data with the SAS, SPSS for Windows, or Stata statistical analysis programs.

To run these programs, you will need the appropriate statistical software and the ECB CDROM from which the program can extract data.

SPSS users should note that an entire catalog can produce a Frequencies command statement with more than 500 variables. This may produce a warning of "too many variables," and the Frequencies command will not execute. Users may work around this limitation by dividing the Variable List into two or more Frequencies commands.

When extracting data to be used with either the SAS, SPSS for Windows, or Stata programs, a dialog box will be presented that allows the user to define the extract population through the Limiting Fields. See exhibit 8-46. The Limiting Fields include various subgroups of respondents that are typically of interest to analysts. These subgroups can be selected or deselected to narrow the data field that is extracted.

Also, please note that the ECB extract function allows the user to specify the drive letter of the CD-ROM drive. If you attempt to run the resulting SAS, SPSS, and Stata programs on a workstation with a different CD-ROM drive letter, you must alter the program code accordingly or regenerate the program code using the ECB.

The SAS, SPSS, or Stata source code generated by the ECB to read in the data may contain code statements that are "commented" out (e.g., with * in SAS). These code statements either run descriptive statistics (e.g., frequencies, means, etc.), or associate formats with variables. They are commented out because not all analysts will want them included in the source code.

SAS users (prior to SAS, Version 8) should note that, although the ECB will allow dataset names larger than eight characters, the SAS system will reject these names at run-time.

Exhibit 8-46. Limiting fields dialog box


Refer to appendix E for instructions on using and modifying the catalog-specific limiting variables.

\section*{How To Extract a File to SAS Format:}
1. Complete any changes you wish to make to the displayed taglist.
2. Click on the Extract pulldown menu and select the SAS option.
3. The Limiting Fields screen for the open catalog appears. Make your selections for each limiting variable indicator.
4. Verify that the ECB CD-ROM is loaded in your PC's default CD-ROM drive and then click on the OK button.
5. Type the desired name of the extract program file in the file name field of the screen shown in exhibit 8-47.

Exhibit 8-47. Save SAS program file dialog box

6. To save the file to another directory, click on the "Save in" dropdown menu button to browse to the new location, as shown in exhibit 8-48.

Exhibit 8-48. Save SAS program file location browse screen

7. Click on the Save button to store the file.
8. In the Save Data File As window (exhibit 8-49) type in the file name you want the data file to save to and then click on Save.

Exhibit 8-49. Save SAS data file dialog box

9. Run the saved extract program in SAS to extract the data.

\section*{How To Extract a File to SPSS Format:}
1. Complete any changes you wish to make to the displayed taglist.
2. Click on the Extract pulldown menu and select the SPSS option.
3. The Limiting Fields screen for the open catalog appears. Make your selections for each limiting variable indicator.
4. Verify that the ECB CD-ROM is loaded in your PC's default CD-ROM drive and then click on the OK button.
5. Type the desired name of the extract program file in the file name field of the screen shown in exhibit 8-50.
6. To save the file to another directory, click on the "Save in" dropdown menu button to browse to the new location, as shown in exhibit 8-51.
7. Click on the Save button to store the file.

Exhibit 8-50. Save SPSS program file dialog box


Exhibit 8-51. Save SPSS program file location browse screen

8. In the Save Data File As window (exhibit 8-52), type in the file name you want the data file to save to and then click on Save.
9. Run the saved extract program in SPSS to extract the data.

Exhibit 8-52. Save SPSS data file dialog box


\section*{How To Extract a File to Stata Format:}
1. Complete any changes you wish to make to the displayed taglist.
2. Click on the Extract pulldown menu and select the Stata option.
3. The Limiting Fields screen for the open catalog appears. Make your selections for each limiting variable indicator.
4. Verify that the ECB CD-ROM is loaded in your PC's default CD-ROM drive and then click on the OK button.
5. Type the desired name of the extract program file in the file name field of the screen shown in exhibit 8-53.
6. To save the file to another directory, click on the "Save in" dropdown menu button to browse to the new location, as shown in exhibit 8-54.
7. Click on the Save button to store the file.
8. In the Save Data File As window (exhibit 8-55), type in the file name you want the data file to save to and then click on Save.
9. Run the saved extract program in Stata to extract the data.

Exhibit 8-53. Save Stata program file dialog box


Exhibit 8-54. Save Stata program file location browse screen


Exhibit 8-55. Save Stata data file dialog box


\subsection*{8.5.1 Reviewing the Extract Specifications}

Users should review the SAS, SPSS, or Stata program code that is generated before running it to check that any statements subsetting the data are correct. Note that the ECB sometimes outputs superfluous code for selecting cases; this code is consistent with extract specifications, but users may wish to delete it.

If a mistake in defining the criteria is made, and it is not discovered until after writing out or running the extract program, it is very easy to correct if the taglist was saved before exiting the ECB program. Simply restart the ECB and select the appropriate catalog, open the taglist that you saved, define the extract criteria correctly, and write out the extract program again. The program should be reviewed before running it because it may need to be customized.

\subsection*{8.5.2 Repairing and Compacting the Database}

Periodically users may wish to repair and compact the database that contains the data of the ECB program. If many taglists are created and deleted on a regular basis, the database will contain lingering references to old taglists that are no longer needed. When the database is repaired and compacted, the ECB program "cleans house" and makes the database more efficient. It also decreases the size of the database, so space is conserved.

\section*{How To Repair and Compact the ECB Database:}
1. Select the Tools pulldown menu and select the Repair and Compact Database option.
2. After a few seconds, the screen shown in exhibit 8-56 appears indicating that the repair and compact of the database was successfully completed.

Exhibit 8-56. Repair database completed screen

3. Click on the OK button.

\subsection*{8.6 Menu Bar Descriptions}

Exhibit 8-57. Menu Bar descriptions

\begin{tabular}{|c|c|}
\hline \begin{tabular}{l}
File \\
Open Catalog... \\
Print Setup \\
Exit
\end{tabular} & \begin{tabular}{l}
The File menu contains the commands needed to do the following: \\
Select and open a catalog; \\
Set up your software for printing; and \\
Exit the ECB.
\end{tabular} \\
\hline \begin{tabular}{|l|l|}
\hline Iaglist & Extract \\
\hline New & Cod +N \\
Open & \(\mathrm{Ctrl}+\mathrm{O}\) \\
Delete & \\
Add & \\
Save & \(\mathrm{Ctrl}+\mathrm{S}\) \\
Save As & \\
\hline Import & \\
Export & \\
\hline
\end{tabular} & \begin{tabular}{l}
The Taglist menu contains the commands required to manipulate the variable lists once a catalog has been selected: \\
Create a new taglist; \\
Open a previously saved or predefined taglist; \\
Delete a previously saved taglist; \\
Add a previously saved or predefined taglist to the working taglist; \\
Save the working taglist; \\
Save a taglist with another name; \\
Import a previously exported taglist as working taglist and; Export the working taglist for distribution.
\end{tabular} \\
\hline \begin{tabular}{l} 
Extract \\
\hline SAS \\
SPSS [Windows] \\
SIATA \\
\hline
\end{tabular} & \begin{tabular}{l}
The Extract menu contains options to create a syntax file for the following: \\
- SAS; \\
- SPSS for Windows; or \\
- \(\quad\) Stata.
\end{tabular} \\
\hline Tools \({ }_{\text {Repair and Compact Database }}\) & \begin{tabular}{l}
The Tools menu contains \\
- The command for repairing and compacting the database.
\end{tabular} \\
\hline \begin{tabular}{|c|}
\hline Codebook \\
\hline Yiew \\
Print \\
\hline
\end{tabular} & \begin{tabular}{l}
The Codebook menu contains the command for the following: \\
Viewing the entire codebook based on the working taglist; and \\
Printing the entire codebook based on the working taglist.
\end{tabular} \\
\hline \begin{tabular}{|l|}
\hline Help \\
\hline Contents \\
\hline About \\
\hline
\end{tabular} & The Help menu provides access to the detailed online help system. \\
\hline
\end{tabular}

\section*{9. LONGITUDINAL ANALYSES}

\begin{abstract}
- Please note that this chapter is for users who conduct longitudinal analyses. The last section of this chapter is for users of the eighth-grade restricted-use file who wish to create their own longitudinal files using data from previous rounds of the ECLS-K. Users who intend to use the \(K-8\) full sample file that NCES releases should refer to chapter 10 for additional information.
\end{abstract}

Longitudinal analyses with the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K) can be conducted both "within school year" and "across school years." Examples of within-year analyses are those that look at children's growth in cognitive scores between fall and spring of kindergarten or between fall and spring of first grade. Such analyses do not require the combined use of kindergarten and first-grade data. They can be conducted using only the kindergarten base-year files or the first-grade files only. Therefore, within-school year analyses are not discussed in this chapter. Since data were only collected once for third grade, once for fifth grade and once for eighth grade, within-third grade, within-fifth grade, and within-eighth grade longitudinal analyses are not possible. Cross-year analyses, on the other hand, those that combine information from two or more of the kindergarten, firstgrade, third-grade, fifth-grade, or eighth-grade years, are the focus of this chapter.

This chapter describes how to combine (or merge) the kindergarten, first-grade, third-grade, fifth-grade, and eighth-grade files to create cross-year files for \(\mathrm{K}-8\) longitudinal analyses. The information contained in this chapter applies to users of the base-year, first-grade, third-grade, fifth-grade, and eighth-grade files. Users of the public-use files can consider using the public-use \(\mathrm{K}-8\) full sample file briefly described in chapter 1 , which combines data from the base year and first, third, fifth, and eighth grades. It contains longitudinal weights so that analysts can examine children's growth and development between kindergarten and eighth grade. Because it contains most of the variables in the restricted-use files, most users will find it more convenient to use the K-8 full sample data file that NCES releases rather than creating their own longitudinal file (see chapter 10).

This chapter begins with a discussion of K-8 longitudinal analyses and the types of research questions that can be addressed with cross-year files. All the examples assume that analysts are including eighth-grade data in their analyses. In chapter 10, additional examples of longitudinal research questions are provided, not all of which include eighth-grade data. It then describes the \(\mathrm{K}-8\) longitudinal weights
available on the cross-sectional file and merging procedures for users who wish to create their own longitudinal files.

\subsection*{9.1 Conducting Longitudinal Analyses}

As described in chapter 1, one of the primary goals of the ECLS-K is to understand how children's early experiences influence their transition into kindergarten and their progression through the early elementary school years and into middle school. A major strength of the ECLS-K design is that it captures important aspects of children's experiences as they occur. Thus, information about children's experiences in each grade is captured in that grade. Capturing this information as it occurs means that the information is not distorted by faulty memory or by revisions to memory based on subsequent experiences. In addition, information from earlier points in time can be included in multivariable models to assess whether they are associated with later events and experiences, thereby strengthening the ability of researchers to make causal inferences.

In conducting \(\mathrm{K}-8\) longitudinal analyses with the ECLS-K data, it is important to keep in mind the sample design described in chapter 4. Certain features of the design must be considered. First, because the first-, third-, fifth-, and eighth-grade data are released only as child-based files, all analyses involving either first-grade, third-grade, fifth-grade, or eighth-grade data will, of necessity, be childbased. Second, the first-, third-, fifth-, and eighth-grade data are not representative of all first-grade or third-grade or fifth-grade or eighth-grade schools, classrooms, or teachers in the United States. Since the sample was freshened neither in third grade, fifth grade nor eighth grade, the children are not representative of all children attending third grade in the 2001-02 school year, fifth grade in the 2003-04 school year, and eighth grade in the 2006-07 school year. Children who started their schooling in the U.S. in second, third, fourth, fifth, or eighth grade are not represented in the sample. Similarly, since the study follows a cohort, children who were in eighth grade in the 2006-07 school year because they were repeating that grade are not represented in the sample. Researchers conducting K-8 analyses should not attempt to use the data to describe the population of all third- or fifth- or eighth-grade children, their classrooms, teachers, or schools. However, information about the schools can be used in the child-based analyses to examine, for example, the relationship of the school environment with children's learning or to describe the learning environments of the group of children who attended kindergarten 3 or 5 or 8 years earlier. Users may also examine the relationship of the kindergarten year school characteristics with children's later school experiences.

\subsection*{9.2 Examples of Research Questions}

A variety of research questions can be examined using the \(\mathrm{K}-8\) longitudinal files. The following are some examples:
1. How much do children's reading and mathematics skills increase between the fall of kindergarten and the spring of eighth grade?
2. Do measures of school readiness at the beginning of kindergarten predict children's skill and knowledge levels at the end of eighth grade?
3. What family background characteristics (e.g., family poverty, parent education, maternal employment) are associated with children's later school outcomes?
4. Do children who adapted easily to a school setting in kindergarten do better in eighth grade than their peers who experienced more difficulty settling into school, or is slow adjustment to kindergarten associated with poorer performance in eighth grade?
5. Are there particular school or classroom characteristics that are associated with larger growth rates in reading and mathematics skills between first grade and eighth grade, between third grade and eighth grade, or between fifth grade and eighth grade?
6. Are kindergartners' reading and mathematics growth over the first 7 years of school associated with their family's poverty status in kindergarten?

To study these and similar questions, researchers would use information from two or more rounds of data collection, across the kindergarten, first-, third-, fifth-, and eighth-grade years. \({ }^{35}\) For the first question, the researcher would need to examine differences between fall-kindergarten and springeighth grade assessment scores. To do this, one would use fall-kindergarten data with spring-eighth grade data. Similarly, questions 2 and 3 (regarding the relationship between readiness at kindergarten entry—or maternal employment in that time frame-and eighth-grade outcomes) would be examined by using data from the same two time points. Note that for question 3 one would need to include data from the parent interview in the base year.

To examine the relationship of children's kindergarten adjustment with their later grade performance, as in question 4, researchers might use data from several rounds (i.e., fall-kindergarten, spring-kindergarten, spring-first grade, spring-third grade, spring-fifth grade, and spring-eighth grade). For example, one could use variables from fall-kindergarten and spring-kindergarten to measure

\footnotetext{
\({ }^{35}\) When creating a longitudinal file to analyze assessment scores, the recalibrated assessments scores contained on the eighth-grade file should be used. Please refer to chapter 3 for more information on the recalibrated scores.
}
adjustment during kindergarten and then relate those variables to outcomes in the spring of the third, fifth, and eighth grades.

\subsection*{9.3 K-8 Longitudinal Weights}

\subsection*{9.3.1 Types of K-8 Longitudinal Weights}

K-8 longitudinal weights are used to analyze data in a K-8 file created by merging baseyear, first-grade, third-grade, fifth-grade, and eighth-grade data or by users of the \(\mathrm{K}-8\) full sample file data file created by NCES..\(^{36}\) Cross-sectional weights, on the other hand, are used for analyses within one round of data collection. There are several sets of \(\mathrm{K}-8\) longitudinal weights computed for children with complete data from different combinations of rounds. All K-8 longitudinal weights are child-level weights. There are no K-8 longitudinal weights at the school or teacher level since school- and teacherlevel weights are not computed for the first-grade, third-grade, fifth-grade, or eighth-grade year. The K-8 longitudinal weights are defined as follows:
- C67CW0 is nonzero if assessment data are present for both spring-fifth grade and spring-eighth grade, or if the child was excluded from direct assessment in both of these rounds of data collection due to a disability.
- C67PW0 is nonzero if parent interview data are present for both spring-fifth grade and spring-eighth grade.
- C567CW0 is nonzero if assessment data are present for spring-third grade, spring-fifth grade, and spring-eighth grade, or if the child was excluded from direct assessment in all of these three rounds of data collection due to a disability.
- C567PW0 is nonzero if parent interview data are present for spring-third grade, spring-fifth grade, and spring-eighth grade.
- C4_7CW0 is nonzero if assessment data are present for spring-first grade, spring-third grade, spring-fifth grade, and spring-eighth grade, or if the child was excluded from direct assessment in all of these four rounds of data collection due to a disability.
- C4_7PW0 is nonzero if parent interview data are present for spring-first grade, springthird grade, spring-fifth grade, and spring-eighth grade.

\footnotetext{
\({ }^{36}\) Please note that the K-8 full sample file contains more longitudinal weights than are described here. See chapter 10 for details on these additional weights.
}
- \(\mathrm{C} 2 \_7 \mathrm{FC} 0\) is nonzero if assessment data are present for five rounds of data collection involving the full sample of children (spring-kindergarten, spring-first grade, springthird grade, spring-fifth grade, and spring-eighth grade), or if the child was excluded from direct assessment in all of these five rounds of data collection due to a disability.
- C2_7FP0 is nonzero if parent interview data are present for five rounds of data collection involving the full sample of children (spring-kindergarten, spring-first grade, spring-third grade, spring-fifth grade, and spring-eighth grade).
- \(\quad\) C1_7FC0 is nonzero if assessment data are present for six rounds of data collection involving the full sample of children (fall-kindergarten, spring-kindergarten, springfirst grade, spring-third grade, spring-fifth grade, and spring-eighth grade), or if the child was excluded from direct assessment in all of these six rounds of data collection due to a disability.
- C1_7FP0 is nonzero if parent interview data are present for six rounds of data collections involving the full sample of children (fall-kindergarten, springkindergarten, spring-first grade, spring-third grade, spring-fifth grade, and springeighth grade).
- \(\mathrm{C} 1 \_7 \mathrm{SC} 0\) is nonzero if assessment data are present for all seven rounds of data collection (fall-kindergarten, spring-kindergarten, fall-first grade, spring-first grade, spring-third grade, spring-fifth grade, and spring-eighth grade), or if the child was excluded from direct assessment in all of these seven rounds of data collection due to a disability.
- C1_7SP0 is nonzero if parent interview data are present for all seven rounds of data collection (fall-kindergarten, spring-kindergarten, fall-first grade, spring-first grade, spring-third grade, spring-fifth grade, and spring-eighth grade).

The use of the \(\mathrm{K}-8\) longitudinal weights is described in exhibit \(9-1\). This exhibit is designed to help users choose appropriate weights for their analysis. First, decide which two or more points in time are the focus of the analysis. The analysis could pertain to two points in time (spring-fifth grade and spring-eighth grade), three points in time (spring-third grade, spring-fifth grade, and spring-eighth grade), four points in time (spring-first grade, spring-third grade, spring-fifth grade, and spring-eighth grade), five points in time (spring-kindergarten, spring-first grade, spring-third grade, spring-fifth grade, and springeighth grade), six points in time (fall-kindergarten, spring-kindergarten, spring-first grade, spring-third grade, spring-fifth grade, and spring-eighth grade), or seven points in time (all seven rounds of data collection). For example, if the analysis uses spring-fifth grade and spring-eighth grade data, then the appropriate weights would be those beginning with C67 (denoting child-level data from round 6, springfifth grade AND round 7, spring-eighth grade). Second, consider the source of the data, which also affects the choice of the weight. In exhibit 9-1, details under "to be used for analysis of ..." provide guidance based on whether the data were collected through the child assessments, parent interviews, teacher
questionnaires at the teacher level, or at the child level (English, mathematics, or science teacher questionnaire). For the same example noted earlier, the two weights available are C67CW0 and C67PW0. If parent data from spring-fifth grade and spring-eighth grade are needed for the analysis, then C67PW0 should be used.

Base-year longitudinal weights for the analysis of the base-year data (within the kindergarten year) alone are described in the base-year user's manuals. First-grade longitudinal weights for the analysis of the first-grade data (within the first-grade year) alone, and of the combined kindergarten/first-grade data, are described in the first-grade user's manuals. Third-grade longitudinal weights for the analysis of the third-grade data alone, and of the combined kindergarten/first-grade/third-grade data, are described in the third-grade user's manuals. Fifth-grade longitudinal weights for the analysis of the fifth-grade data alone, and of the combined kindergarten/first-grade/third-grade/fifth-grade data, are described in the fifthgrade user's manual.

K-8 longitudinal weights are used to produce estimates of differences between two or more rounds of data collection spanning kindergarten, first grade, third grade, fifth grade, and eighth grade. Simple examples involving two rounds of data collection are the differences in children's mean assessment scores between spring-fifth grade and spring-eighth grade using the C67CW0 weight and the change in the total number of persons in the household size using C67PW0. K-8 longitudinal weights are also used to study the characteristics of children who were assessed in two or more rounds of data collection. For example, one can study how family background characteristics of children in kindergarten are related to assessment scores in spring-eighth grade for children who were assessed in spring-first grade, spring-third grade, spring-fifth grade, and spring-eighth grade. In this case, C4_7PW0 is used to study the characteristics of the children as reported by their parents, and C4_7CW0 is used to estimate the change in assessment scores between spring-first grade and spring-eighth grade. As noted earlier, any longitudinal analysis that uses data from fall-first grade will be limited to a 27 percent subsample of children.

There may be combinations of data for which no weights were developed. For further advice on which weights to use when analyzing a complex combination of data, contact NCES at ECLS@ed.gov.

Exhibit 9-1. ECLS-K: K-8 longitudinal weights, spring-eighth grade: School year 2006-07
\begin{tabular}{ll} 
Weight & To be used for analysis of ... \\
\hline C67CW0 & \begin{tabular}{l} 
child direct assessment data from BOTH spring-fifth grade and spring-eighth grade, alone or in \\
combination with (a) a limited set of child characteristics (e.g., age, sex, and race/ethnicity), (b) data \\
\\
\\
from any spring-fifth grade or spring-eighth grade teacher questionnaire (teacher-level or child- \\
\\
level), (c) data from any spring-fifth grade or spring-eighth grade school administrator \\
\\
\\
questionnaire, or (d) data from spring-fifth grade school facilities checklist.
\end{tabular} \\
& \begin{tabular}{l} 
parent interview data from BOTH spring-fifth grade or spring-eighth grade, alone or in combination \\
with (a) spring-fifth grade or spring-eighth grade child assessment data, (b) data from any spring- \\
fifth grade or spring-eighth grade teacher questionnaire (teacher-level or child-level), (c) data from
\end{tabular} \\
& \begin{tabular}{l} 
any spring-fifth grade or spring-eighth grade school administrator questionnaire, or (d) data from
\end{tabular} \\
& spring-fifth grade school facilities checklist.
\end{tabular}

See notes at end of exhibit.

Exhibit 9-1. ECLS-K: K-8 longitudinal weights, spring-eighth grade: School year 2006-07-Continued
\begin{tabular}{ll}
\hline Weight & To be used for analysis of ... \\
\hline C2_7FP0 & \begin{tabular}{l} 
parent interview data from FIVE rounds of data collection (spring-kindergarten, spring-first grade, \\
\\
\\
\\
\\
spring-third grade, spring-fifth grade, and spring-eighth grade), alone or in combination with (a)
\end{tabular} \\
& first grade, spring-third grade, spring-fifth grade, or spring-eighth grade teacher questionnaire \\
& (teacher-level or child-level), (c) data from any spring-kindergarten, spring-first grade, spring-third \\
& grade, spring-fifth grade, or spring-eighth grade school administrator questionnaire, or (d) data from \\
& any spring-kindergarten, spring-first grade, spring-third grade, or spring-fifth grade school facilities \\
& checklist. \\
& child direct assessment data from SIX rounds of data collection (fall-kindergarten, spring- \\
& kindergarten, spring-first grade, spring-third grade, spring-fifth grade, and spring-eighth grade) \\
& alone or in combination with (a) a limited set of child characteristics (e.g., age, sex, and \\
& race/ethnicity), (b) data from any spring-kindergarten, spring-first grade, spring-third grade, spring- \\
& fifth grade, or spring-eighth grade teacher questionnaire (teacher-level or child-level), (c) data from \\
& any spring-kindergarten, spring-first grade, spring-third grade, spring-fifth grade, or spring-eighth \\
& grade school administrator questionnaire, or (d) data from any spring-kindergarten, spring-first \\
grade, spring-third grade, or spring-fifth grade school facilities checklist.
\end{tabular}

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

\subsection*{9.3.2 Weighting Procedures}

This section presents the statistical procedures used to produce the \(\mathrm{K}-8\) longitudinal weights. These procedures are nearly identical to the procedures used for the cross-sectional weights (see chapter 4). The differences are primarily in how eligible respondents are defined, and in how adjustment cells are created. For example, in computing weight C67CW0, a respondent was defined as a child for whom both cross-sectional weights, C6CW0 and C7CW0, are nonzero. A child with a nonzero C67CW0 had both spring-fifth grade and spring-eighth grade scorable cognitive assessment data, or was excluded from the cognitive assessments because he or she was a child with disabilities. Longitudinal weights involving the fall-first grade data collection were computed differently to adjust for the fact that only a subsample of children was included in fall-first grade.

\subsection*{9.3.2.1 Longitudinal Weights Not Involving the Fall-First Grade Data}

In the first stage, the starting point for the \(\mathrm{K}-8\) longitudinal weights is the initial child weight that reflected the following:
- adjustment of the school base weight for base-year school-level nonresponse;
- adjustment of the child weights for base-year child-level nonresponse; and
- adjustment of the base-year child weight for subsampling of schools for freshening in first grade (for children sampled in first grade only).

The second stage of weighting was to adjust the initial child weight in the first stage for the following:
- subsampling of movers in data collection rounds prior to eighth grade; and
- adjustment for longitudinal unknown eligibility status and nonresponse.

In the adjustment for subsampling of movers, mover status was created so that it was specific to each panel. For example, for the spring-fifth grade/spring-eighth grade panel (longitudinal weights C67CW0 and C67PW0), a child was a mover if he had been identified as a mover in spring-fifth grade, i.e., in spring-fifth grade he attended a school that was not the school where he had been sampled in kindergarten. As mentioned earlier, all eighth-graders were followed into their new schools if they
moved between fifth and eighth grade. Therefore the concept of mover in eighth grade does not exist as far as weight computation is concerned. Similarly, for the spring-third grade/spring-fifth grade/springeighth grade panel (longitudinal weights C567CW0 and C567PW0), a child was a mover if he had been identified as a mover in spring-third grade and in spring-fifth grade. The adjustment factor for subsampling movers was computed within cells created using the following characteristics: whether children were sampled in kindergarten or first grade and whether they were language minority children. A small number of children with large weights had their weights trimmed. However, the weights were not redistributed because the total sum of weights was reestablished in the raking procedure that came later. In both steps of the nonresponse adjustment, separate nonresponse classes were created for longitudinal movers and nonmovers using race/ethnicity, school affiliation, combinations of response status of child assessments and parent interviews from previous rounds, and the type of household collected from the parent interviews.

The third and last stage was to rake the weights adjusted in the second stage to sample-based control totals. The raking factor was computed separately within raking cells as the sample-based control total for the raking cell over the sum of the nonresponse-adjusted weights for children in the same cell. Raking cells (also known as raking dimensions) were created using school and child characteristics collected in the base-year or first-grade data collection: school affiliation, region, type of locale, sex, age, race/ethnicity, socioeconomic status (SES), language minority status, whether sampled in kindergarten or first grade and, if sampled in kindergarten, mover status.

\subsection*{9.3.2.2 Longitudinal Weights Involving the Fall-First Grade Data}

For the longitudinal weights involving the fall-first grade data collection in which children were part of a subsample of the ECLS-K full sample (i.e., \(\mathrm{C} 1 \_7 \mathrm{SC} 0\) and \(\mathrm{C} 1 \_7 \mathrm{SP} 0\) ), the initial weights were from fall-first grade. These were the base-year child-adjusted weights (as described in chapter 4, section 4.8.3.2 for base-year respondents), incorporating the school subsampling factor appropriate for fall-first grade. These weights were also trimmed to reduce the weight of all the children in one private school that had a large school weight.

The adjustments for subsampling movers and for child nonresponse are identical to those for the other longitudinal weights. The adjustment factor for subsampling movers was computed within cells by whether they belonged in the language minority group. A small number of children with large weights had their weights trimmed. However, the weights were not redistributed because the total sum of weights was reestablished in the raking procedure that came later. In both steps of the nonresponse adjustment, separate nonresponse classes were created for movers and nonmovers using the type of household collected from the parent interviews, school affiliation, and race/ethnicity.

The raking dimensions are the same as those for the other longitudinal weights. After the first raking, a small number of children had their weights trimmed; then all the weights were raked again.

\subsection*{9.3.3 Characteristics of Longitudinal Weights}

The statistical characteristics of the longitudinal weights are presented in table 9-1. For each weight, the number of cases with nonzero values is presented together with the mean weight, the standard deviation, the coefficient of variation (i.e., the standard deviation as a percentage of the mean weight), the minimum value of the weight, the maximum value of the weight, the skewness, the kurtosis, and the sum of weights.

Table 9-1. Characteristics of child-level K-8 longitudinal weights, spring-eighth grade: School year 2006-07
\begin{tabular}{lrrrrrrrrr}
\hline \begin{tabular}{l} 
Variable \\
name
\end{tabular} & \begin{tabular}{r} 
Number \\
of cases
\end{tabular} & Mean & \begin{tabular}{c} 
Standard \\
deviation
\end{tabular} & \begin{tabular}{c} 
CV \(^{1}\) \\
\((\times 100)\)
\end{tabular} & Minimum & Maximum & Skewness & Kurtosis & Sum \\
\hline C67CW0 & 8,960 & 440.18 & 596.56 & 135.53 & 2.12 & \(6,180.46\) & 3.32 & 12.67 & \(3,944,055\) \\
C67PW0 & 8,544 & 461.62 & 581.11 & 125.89 & 2.26 & \(5,526.63\) & 3.34 & 13.73 & \(3,944,048\) \\
C567CW0 & 8,827 & 446.77 & 613.70 & 137.36 & 2.12 & \(6,024.73\) & 3.30 & 12.15 & \(3,943,678\) \\
C567PW0 & 8,070 & 488.64 & 638.85 & 130.74 & 2.16 & \(6,857.84\) & 3.58 & 16.23 & \(3,943,290\) \\
C4_7CW0 & 8,633 & 456.32 & 664.30 & 145.58 & 2.14 & \(6,183.19\) & 3.40 & 12.74 & \(3,939,414\) \\
C4_7PW0 & 7,764 & 507.37 & 660.81 & 130.24 & 2.46 & \(6,381.09\) & 3.44 & 14.23 & \(3,939,255\) \\
C2_7FC0 & 8,503 & 451.67 & 666.27 & 147.51 & 2.20 & \(5,668.77\) & 3.47 & 13.19 & \(3,840,561\) \\
C2_7FP0 & 7,558 & 508.27 & 669.20 & 131.66 & 2.60 & \(6,297.36\) & 3.58 & 15.17 & \(3,841,500\) \\
C1_7FC0 & 7,803 & 492.17 & 722.31 & 146.76 & 2.39 & \(7,294.96\) & 3.58 & 14.41 & \(3,840,438\) \\
C1_7FP0 & 6,861 & 559.80 & 714.14 & 127.57 & 3.11 & \(6,628.98\) & 3.27 & 12.78 & \(3,840,784\) \\
C1_7SC0 & 2,369 & \(1,619.67\) & \(2,364.29\) & 145.97 & 79.85 & \(14,915.75\) & 3.27 & 10.97 & \(3,836,993\) \\
C1_7SP0 & 2,063 & \(1,861.13\) & \(2,264.50\) & 121.67 & 124.86 & \(12,554.01\) & 2.49 & 5.81 & \(3,839,514\) \\
\hline
\end{tabular}
\({ }^{1}\) Coefficient of variation.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

The difference in the estimate of the population of children (sum of weights) between the different panels of children and types of weights results from a combination of factors, among them: (1) the number of base-year respondents who became ineligible (due to death, leaving the country, or being a nonsampled mover) after the base year, (2) the adjustment of the weights for the children of unknown eligibility, and (3) the difference in the number of records used to construct sample-based control totals. Of the 12 longitudinal weights computed, only the first six (C67CW0, C67PW0, C567CW0, C567PW0, C4_7CW0, and C4_7PW0) involve children sampled in first grade as part of sample freshening (see section 4.3.2). For these six weights, the child records included in the file used for computing the control totals are records of base-year respondents and records of eligible children sampled in first grade. The sums of all other longitudinal weights are smaller because records of children sampled in first grade were not included in the file with control totals since these panels do not include children sampled in first grade.

\subsection*{9.3.4 Variance Estimation}

For each K-8 full sample weight listed in exhibit 9-1, a set of replicate weights was calculated. Replicate weights are used in the jackknife replication method to estimate the standard errors of survey estimates. Any adjustments done to the full sample weights were repeated for the replicate weights.

For longitudinal weights not involving the fall-first grade data, there are 90 replicate weights. For a description of how the replicates were formed, see chapter 4, section 4.8 . For the two longitudinal weights involving fall-first grade ( \(\mathrm{C} 1 \_7 \mathrm{SC} 0\) and \(\mathrm{C} 1 \_7 \mathrm{SP} 0\) ), there are 40 replicate weights. The reason for the smaller number of replicates is that only a subsample of schools was included in the fall-first grade sample. The weights associated with the fall-first grade data do not account for the Durbin method of selecting primary sampling units (PSUs), since it did not apply. Rather, they reflect the fact that only one of the two sampled PSUs in the non-self-representing (NSR) strata was kept in the subsample. To account for this feature, pairs of similar NSR PSUs were collapsed into 19 variance strata. The self-representing (SR) PSUs account for the remaining 21 variance strata.

Each replicate weight variable name has the same weight prefix as for the full sample weight variable name. For example, the replicate weights for \(\mathrm{C} 1 \_7 \mathrm{FC} 0\) are \(\mathrm{C} 1 \_7 \mathrm{FC} 1\) through \(\mathrm{C} 1 \_7 \mathrm{FC} 90\); the replicate weights for \(\mathrm{C} 1 \_7 \mathrm{SC} 0\) are \(\mathrm{C} 1 \_7 \mathrm{SC} 1\) through C1_7SC40.

Stratum and first-stage unit identifiers used with the Taylor Series method are provided for each of the \(\mathrm{K}-8\) longitudinal weights in the file. They are described in exhibit 9-2. For a description of the Taylor Series method, see chapter 4, section 4.9.2.

Specifications for computing standard errors are given in table 9-2. For each type of analysis described in table 9-2, users can choose between the replication method and the Taylor Series method for computing standard errors.

For the replication method using WesVar or AM, the full sample weight, the replicate weights, and the method of replication are required parameters. Variance estimation using the ECLS-K data should be done using the paired jackknife method (JK2). As an example, to compute the mean difference in reading scores between spring-fifth and spring-eighth grade and their standard errors, users need to specify C67CW0 as the full sample weight, C67CW1 to C67CW90 as the replicate weights, and JK2 as the method of replication.

For the Taylor Series method using SUDAAN, SAS, Stata, SPSS, or AM, the full sample weight, the sample design, the nesting stratum, and PSU variables are required. For the same example cited earlier, the full sample weight (C67CW0), the stratum variable (C67CSTR), and the PSU variable (C67CPSU) must be specified. The "with replacement" sample design option, WR, must also be specified if using SUDAAN.

Exhibit 9-2. ECLS-K Taylor Series stratum and first-stage unit identifiers, spring-eighth grade:
School year 2006-07
\begin{tabular}{|c|c|}
\hline Variable name & Description \\
\hline C67CSTR & Sampling stratum-spring-fifth grade/spring-eighth grade longitudinal C-weights \\
\hline C67CPSU & First-stage primary sampling unit within stratum-spring-fifth grade/spring-eighth grade longitudinal C-weights \\
\hline C67PSTR & Sampling stratum - spring-fifth grade/spring-eighth grade longitudinal P-weights \\
\hline C67PPSU & First-stage primary sampling unit within stratum-spring-fifth grade/spring-eighth grade longitudinal P-weights \\
\hline C567CSTR & Sampling stratum—spring-third grade/spring-fifth grade/spring-eighth grade longitudinal Cweights \\
\hline C567CPSU & First-stage primary sampling unit within stratum-spring-third grade/spring-fifth grade/springeighth grade longitudinal C-weights \\
\hline C567CSTR & Sampling stratum—spring-third grade/spring-fifth grade/spring-eighth grade longitudinal Pweights \\
\hline C567PPSU & First-stage primary sampling unit within stratum-spring-third grade/spring-fifth grade/springeighth grade longitudinal P -weights \\
\hline C47FCSTR & Sampling stratum—spring-first grade/spring-third grade/spring-fifth grade/spring-eighth grade longitudinal C-weights \\
\hline C47FCPSU & First-stage primary sampling unit within stratum-spring-first grade/spring-third grade/springfifth grade/spring-eighth grade longitudinal C-weights \\
\hline C47FPSTR & Sampling stratum—spring-first grade/spring-third grade/spring-fifth grade/spring-eighth grade longitudinal P-weights \\
\hline C47FPPSU & First-stage primary sampling unit within stratum-spring-first grade/spring-third grade/springfifth grade/spring-eighth grade longitudinal P -weights \\
\hline C27FCSTR & Sampling stratum-spring-kindergarten/spring-first grade/spring-third grade/spring-fifth grade/spring-eighth grade longitudinal C-weights \\
\hline C27FCPSU & First-stage primary sampling unit within stratum-spring-kindergarten/spring-first grade/springthird grade/spring-fifth grade/spring-eighth grade longitudinal C-weights \\
\hline C27FPSTR & Sampling stratum—spring-kindergarten/spring-first grade/spring-third grade/spring-fifth grade/spring-eighth grade longitudinal P -weights \\
\hline C27FPPSU & First-stage primary sampling unit within stratum-spring-kindergarten/spring-first grade/springthird grade/spring-fifth grade/spring-eighth grade longitudinal P-weights \\
\hline C17FCSTR & Sampling stratum—fall-kindergarten/spring-kindergarten/spring-first grade/spring-third grade/spring-fifth grade/spring-eighth grade longitudinal C-weights \\
\hline C17FCPSU & First-stage primary sampling unit within stratum—fall-kindergarten/spring-kindergarten/springfirst grade/spring-third grade/spring-fifth grade/spring-eighth grade longitudinal C-weights \\
\hline C17FPSTR & Sampling stratum—fall-kindergarten/spring-kindergarten/spring-first grade/spring-third grade/spring-fifth grade/spring-eighth grade longitudinal P-weights \\
\hline C17FPPSU & First-stage primary sampling unit within stratum—fall-kindergarten/spring-kindergarten/springfirst grade/spring-third grade/spring-fifth grade/spring-eighth longitudinal P-weights \\
\hline C17SCSTR & Sampling stratum-longitudinal C-weights covering all seven rounds of data collection \\
\hline C17SCPSU & First-stage primary sampling unit within stratum-longitudinal C-weights covering all seven rounds of data collection \\
\hline C17SPSTR & Sampling stratum-longitudinal P-weights covering all seven rounds of data collection \\
\hline C17SPPSU & First-stage primary sampling unit within stratum-longitudinal P -weights covering all seven rounds of data collection \\
\hline
\end{tabular}

Table 9-2. Specifications for computing standard errors, spring-eighth grade: School year 2006-07
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{3}{*}{Type of analysis} & \multirow[b]{3}{*}{Full sample
weight} & \multicolumn{5}{|c|}{Computing standard errors} & \multirow[t]{3}{*}{\begin{tabular}{l}
Approximating sampling errors \\
DEFT \\
(Average root design effect)
\end{tabular}} \\
\hline & & \multicolumn{3}{|c|}{Replication method (WesVar, SUDAAN or AM)} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Taylor Series method \\
(SUDAAN, Stata, SAS, SPSS or AM)
\end{tabular}} & \\
\hline & & ID & Replicate weights & Jackknife method & Sample design \({ }^{1}\) & Nesting variables & \\
\hline Spring-fifth grade/ spring-eighth grade longitudinal & \[
\begin{aligned}
& \text { C67CW0 } \\
& \text { C67PW0 }
\end{aligned}
\] & CHILDID CHILDID & \begin{tabular}{l}
C67CW1-C67CW90 \\
C67PW1-C67PW90
\end{tabular} & \[
\begin{aligned}
& \text { JK2 } \\
& \text { JK2 }
\end{aligned}
\] & WR WR & \begin{tabular}{l}
C67CSTR-C67CPSU \\
C67PSTR-C67PPSU
\end{tabular} & 1.815 \\
\hline Spring-third grade/ spring-fifth grade/ spring-eighth grade longitudinal & \[
\begin{aligned}
& \text { C567CW0 } \\
& \text { C567PW0 }
\end{aligned}
\] & CHILDID CHILDID & C567CW1-C567CW90 C567PW1-C567PW90 & \[
\begin{aligned}
& \text { JK2 } \\
& \text { JK2 }
\end{aligned}
\] & WR
WR & C567CSTR-C567CPSU C567PSTR-C567PPSU & 1.825 \\
\hline Spring-first grade/ spring-third grade/ spring-fifth grade/ spring-eighth grade longitudinal & \[
\begin{aligned}
& \mathrm{C} 4 \text {-7CW0 } \\
& \text { C4_7PW0 }
\end{aligned}
\] & \begin{tabular}{l}
CHILDID \\
CHILDID
\end{tabular} & \begin{tabular}{l}
C4_7CW1-C4_7CW90 \\
C4_7PW1-C4_7PW90
\end{tabular} & \[
\begin{aligned}
& \text { JK2 } \\
& \text { JK2 }
\end{aligned}
\] & WR
WR & C47FCSTR-C47FCPSU C47FPSTR-C47FPPSU & 1.824 \\
\hline Spring-kindergarten/ spring-first grade/ spring-third grade/ spring-fifth grade/ spring-eighth grade longitudinal & \[
\begin{aligned}
& \text { C2_7FC0 } \\
& \text { C2_7FP0 }
\end{aligned}
\] & \[
\begin{aligned}
& \text { CHILDID } \\
& \text { CHILDID }
\end{aligned}
\] & \begin{tabular}{l}
C2_7FC1-C2_7FC90 \\
C2 7FP1-C2 7FP90
\end{tabular} & \[
\begin{aligned}
& \text { JK2 } \\
& \text { JK2 }
\end{aligned}
\] & WR
WR & C27FCSTR-C27FCPSU C27FPSTR-C27FPPSU & 1.842 \\
\hline
\end{tabular}

\footnotetext{
See notes at end of table.
}

Table 9-2. Specifications for computing standard errors, spring-eighth grade: School year 2006-07—Continued

\({ }^{1} \mathrm{WR}\) = with replacement, specified only if using SUDAAN. WR is the only option available if using SAS, Stata, SPSS, or AM.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of \(1998-99\) (ECLS-K), spring 2007.

\subsection*{9.3.5 Design Effects}

An important analytic device compares the statistical efficiency of survey estimates with what would have been obtained in a hypothetical and usually impractical simple random sample (SRS) of the same size. For a discussion of design effects and their use, see chapter 4, section 4.10. In this section, design effects are presented for selected illustrative estimates produced using longitudinal weights. The tables that follow show estimates, standard errors, and design effects for selected means and proportions based on the ECLS-K child and parent data. For each survey item, the tables present the number of cases, the estimate, the standard error taking into account the actual sample design (Design SE), the standard error assuming SRS (SRS SE), the root design effect (DEFT), and the design effect (DEFF). Standard errors (Design SE) were produced using JK2.

Standard errors and design effects are presented in tables 9-3 to 9-8. Data items are from the direct child assessment, the student questionnaire, the parent interview, and the child-level teacher questionnaires. Full sample weights were used to compute the estimates; then the corresponding replicate weights were used to compute standard errors and design effects.

Table 9-3. ECLS-K, spring-fifth grade/spring-eighth grade panel: standard errors and design effects using C67CW0-C67CW90 and C67PW0-C67PW90, by selected child and parent variables: School years 2003-04 and 2006-07
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Survey item & Variable name & \begin{tabular}{l}
Number \\
of cases
\end{tabular} & Estimate & \[
\begin{array}{r}
\text { Design } \\
\mathrm{SE}^{1}
\end{array}
\] & \[
\begin{gathered}
\hline \mathrm{SRS} \\
\mathrm{SE}^{2} \\
\hline
\end{gathered}
\] & \(\mathrm{DEFT}^{3}\) & DEFF \({ }^{4}\) \\
\hline \multicolumn{8}{|l|}{Difference between spring-fifth grade and spring-eighth grade scores (mean)} \\
\hline Reading scale score & C7R4RSCL-C6R4RSCL & 8,814 & 17.41 & 0.365 & 0.195 & 1.874 & 3.512 \\
\hline Mathematics scale score & C7R4MSCL-C6R4MSCL & 8,878 & 16.55 & 0.274 & 0.138 & 1.984 & 3.938 \\
\hline Science scale score & C7R2SSCL-C6R2SSCL & 8,894 & 18.41 & 0.218 & 0.111 & 1.971 & 3.883 \\
\hline \multicolumn{8}{|l|}{Difference between spring-third grade and spring-eighth grade scores (mean)} \\
\hline Reading scale score & C7R4RSCL-C5R4RSCL & 8,636 & 40.57 & 0.494 & 0.223 & 2.220 & 4.927 \\
\hline Mathematics scale score & C7R4MSCL-C5R4MSCL & 8,732 & 40.23 & 0.309 & 0.163 & 1.893 & 3.584 \\
\hline Science scale score & C7R2SSCL-C5R2SSCL & 8,743 & 32.32 & 0.233 & 0.122 & 1.916 & 3.672 \\
\hline \multicolumn{8}{|l|}{Other differences (mean)} \\
\hline Child's BMI & C7BMI-C6BMI & 8,296 & 2.54 & 0.053 & 0.040 & 1.327 & 1.762 \\
\hline Height & C7HEIGHT-C6HEIGHT & 8,432 & 6.69 & 0.054 & 0.029 & 1.871 & 3.499 \\
\hline Weight & C7WEIGHT-C6WEIGHT & 8,598 & 38.64 & 0.357 & 0.210 & 1.703 & 2.900 \\
\hline HH size & P7HTOTAL-P6HTOTAL & 7,894 & -0.06 & 0.016 & 0.009 & 1.727 & 2.981 \\
\hline \multicolumn{8}{|l|}{Characteristics from student questionnaire (percent)} \\
\hline Participated in school sports & C7SPORTS & 8,830 & 57.60 & 0.927 & 0.526 & 1.764 & 3.110 \\
\hline Described as overweight/slightly overweight & C7DESCWT & 8,752 & 29.26 & 0.787 & 0.487 & 1.617 & 2.616 \\
\hline Tried to change weight & C7TRYWT & 8,741 & 42.83 & 0.858 & 0.530 & 1.620 & 2.625 \\
\hline Home alone at least once a week & C7HOME & 8,805 & 52.57 & 0.993 & 0.532 & 1.866 & 3.482 \\
\hline Angry when had trouble learning & C7ANGRY & 8,837 & 79.29 & 0.809 & 0.431 & 1.877 & 3.523 \\
\hline Liked reading & C7LIKRD & 8,802 & 77.50 & 0.811 & 0.445 & 1.823 & 3.323 \\
\hline Often felt lonely & C7LONLY & 8,782 & 32.28 & 0.759 & 0.499 & 1.522 & 2.317 \\
\hline Felt good about self & C7FLGOOD & 8,832 & 93.96 & 0.458 & 0.253 & 1.809 & 3.271 \\
\hline Parents helped with school work & C7SCHLPA & 8,766 & 56.09 & 0.947 & 0.530 & 1.787 & 3.192 \\
\hline Parents advised on important decisions & C7ADVIPA & 8,782 & 70.32 & 0.840 & 0.488 & 1.723 & 2.968 \\
\hline \multicolumn{8}{|l|}{Characteristics from parent interview (percent)} \\
\hline Lived in single parent family & P7HFAMIL & 8,544 & 25.39 & 0.860 & 0.470 & 1.828 & 3.340 \\
\hline Lived in two-parent family & P7HFAMIL & 8,544 & 71.73 & 0.977 & 0.487 & 2.005 & 4.022 \\
\hline Mom worked 35 hours+/week & P7HMEMP & 6,588 & 68.24 & 1.179 & 0.573 & 2.056 & 4.228 \\
\hline Parents had high school or less & W8PARED & 8,544 & 28.96 & 1.052 & 0.491 & 2.143 & 4.592 \\
\hline Household income & W8INCCAT & 8,544 & 50.14 & 1.220 & 0.541 & 2.256 & 5.091 \\
\hline Parent attended PTA & P7ATTENP & 5,810 & 34.08 & 1.077 & 0.621 & 1.733 & 3.002 \\
\hline Had family TV rule & P7TVRULE & 8,421 & 87.97 & 0.630 & 0.355 & 1.777 & 3.157 \\
\hline Have someone help with reading homework & P7HELPR & 8,280 & 94.44 & 0.382 & 0.251 & 1.519 & 2.308 \\
\hline Talk to child about day at school everyday & P7OFTTLK & 8,430 & 78.16 & 0.797 & 0.450 & 1.771 & 3.137 \\
\hline Talk to child about smoking 3+ times a year & P7TLKSMK & 8,423 & 76.52 & 0.756 & 0.462 & 1.637 & 2.679 \\
\hline Talk to child about alcohol \(3+\) times a year & P7TLKALC & 8,424 & 76.16 & 0.815 & 0.464 & 1.756 & 3.085 \\
\hline Took away privilege when child angry & P7HITPRV & 8,394 & 87.54 & 0.602 & 0.360 & 1.670 & 2.788 \\
\hline Self-reported in very good health & P7HEALTH & 8,256 & 86.61 & 0.667 & 0.375 & 1.779 & 3.164 \\
\hline Received food stamps in last 12 months & P7FSTAMP & 8,342 & 15.00 & 1.158 & 0.391 & 2.963 & 8.778 \\
\hline \multicolumn{8}{|l|}{Characteristics from teacher questionnaire (percent)} \\
\hline Child in eighth grade & T7GLVL & 8,960 & 85.55 & 0.818 & 0.372 & 2.201 & 4.845 \\
\hline Worked hard for grades-English & G7WRKHRD & 8,538 & 70.63 & 0.862 & 0.493 & 1.748 & 3.056 \\
\hline Attentive in class-English & G7ATTENT & 8,540 & 73.20 & 0.775 & 0.480 & 1.616 & 2.612 \\
\hline Was able to organize thoughts-English & G7ORGANZ & 8,504 & 67.75 & 0.807 & 0.507 & 1.593 & 2.537 \\
\hline
\end{tabular}

\footnotetext{
See notes at end of table.
}

Table 9-3. ECLS-K, spring-fifth grade/spring-eighth grade panel: standard errors and design effects using C67CW0-C67CW90 and C67PW0-C67PW90, by selected child and parent variables: School years 2003-04 and 2006-07-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Survey item & Variable name & \begin{tabular}{l}
Number \\
of cases
\end{tabular} & Estimate & \[
\begin{array}{r}
\text { Design } \\
\mathrm{SE}^{1} \\
\hline
\end{array}
\] & \[
\begin{gathered}
\mathrm{SRS} \\
\mathrm{SE}^{2}
\end{gathered}
\] & DEFT \({ }^{3}\) & DEFF \({ }^{4}\) \\
\hline \multicolumn{8}{|l|}{Other characteristics (mean)} \\
\hline Age of child in months & R7AGE & 8,953 & 171.56 & 0.100 & 0.050 & 2.004 & 4.017 \\
\hline Child's BMI & C7BMI & 8,461 & 23.17 & 0.096 & 0.065 & 1.486 & 2.208 \\
\hline Hours spent in school activities & C7HRSCLB & 8,602 & 4.74 & 0.097 & 0.069 & 1.400 & 1.961 \\
\hline Hours spent on non-school reading & C7HRSRD & 8,568 & 3.63 & 0.097 & 0.069 & 1.399 & 1.956 \\
\hline Hours spent watching TV on weekdays & C7TVWKDY & 8,743 & 3.20 & 0.053 & 0.033 & 1.628 & 2.650 \\
\hline Hours spent watching TV on weekend & C7TVWKEN & 8,716 & 4.60 & 0.070 & 0.043 & 1.616 & 2.611 \\
\hline Hours spent playing videogames on weekdays & C7VIDWKD & 8,740 & 1.50 & 0.043 & 0.025 & 1.699 & 2.885 \\
\hline Hours spent playing videogames on weekend & C7VIDWKN & 8,754 & 2.68 & 0.068 & 0.038 & 1.804 & 3.254 \\
\hline Hours spent on the internet on weekdays & C7INTWKD & 8,683 & 2.12 & 0.042 & 0.025 & 1.691 & 2.860 \\
\hline Hours spent on the internet on weekend & C7INTWKN & 8,685 & 2.95 & 0.058 & 0.034 & 1.698 & 2.882 \\
\hline Child's household size & P7HTOTAL & 8,544 & 4.48 & 0.030 & 0.015 & 1.991 & 3.966 \\
\hline Number of children < 18 in child's HH & P7LESS18 & 8,544 & 2.40 & 0.027 & 0.012 & 2.162 & 4.673 \\
\hline Number of siblings in HH & P7NUMSIB & 8,544 & 1.51 & 0.025 & 0.012 & 2.036 & 4.145 \\
\hline Median & & & & & & 1.777 & 3.157 \\
\hline Mean & & & & & & 1.815 & 3.364 \\
\hline Standard deviation & & & & & & 0.268 & 1.092 \\
\hline Coefficient of variation & & & & & & 0.148 & 0.325 \\
\hline Minimum & & & & & & 1.327 & 1.762 \\
\hline Maximum & & & & & & 2.963 & 8.778 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Design SE is the standard error under the ECLS-K sample design. For an explanation of this statistic, see section 4.10.
\({ }^{2}\) SRS SE is the standard error assuming simple random sample. For an explanation of this statistic, see section 4.10.
\({ }^{3}\) DEFT is the root design effect. For an explanation of DEFT, see section 4.10.
\({ }^{4}\) DEFF is the design effect. For an explanation of DEFF, see section 4.10.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of
1998-99 (ECLS-K), spring 2007.
}

Table 9-4. ECLS-K, spring-third grade/spring-fifth grade/spring-eighth grade panel: standard errors and design effects using C567CW0-C567CW90 and C567PW0-C567PW90, by selected child and parent variables: School years 2001-02, 2003-04, and 2006-07
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Survey item & Variable name & Number of cases & Estimate & \[
\begin{array}{r}
\text { Design } \\
\mathrm{SE}^{1} \\
\hline
\end{array}
\] & \[
\begin{gathered}
\hline \mathrm{SRS} \\
\mathrm{SE}^{2} \\
\hline
\end{gathered}
\] & \(\mathrm{DEFT}^{3}\) & DEFF \({ }^{4}\) \\
\hline \multicolumn{8}{|l|}{Difference between spring-fifth grade and spring-eighth grade scores (mean)} \\
\hline Reading scale score & C7R4RSCL-C6R4RSCL & 8,687 & 17.63 & 0.385 & 0.193 & 1.993 & 3.971 \\
\hline Mathematics scale score & C7R4MSCL-C6R4MSCL & 8,749 & 16.55 & 0.285 & 0.140 & 2.038 & 4.155 \\
\hline Science scale score & C7R2SSCL-C6R2SSCL & 8,766 & 18.51 & 0.216 & 0.111 & 1.942 & 3.773 \\
\hline \multicolumn{8}{|l|}{Difference between spring-third grade and spring-eighth grade scores (mean)} \\
\hline Reading scale score & C7R4RSCL-C5R4RSCL & 8,636 & 40.60 & 0.508 & 0.223 & 2.283 & 5.211 \\
\hline Mathematics scale score & C7R4MSCL-C5R4MSCL & 8,732 & 40.21 & 0.314 & 0.164 & 1.914 & 3.665 \\
\hline Science scale score & C7R2SSCL-C5R2SSCL & 8,743 & 32.30 & 0.235 & 0.122 & 1.926 & 3.708 \\
\hline \multicolumn{8}{|l|}{Other differences (mean)} \\
\hline Child's BMI & C7BMI-C6BMI & 8,180 & 2.53 & 0.059 & 0.041 & 1.448 & 2.096 \\
\hline Height & C7HEIGHT-C6HEIGHT & 8,315 & 6.70 & 0.048 & 0.029 & 1.684 & 2.835 \\
\hline Weight & C7WEIGHT-C6WEIGHT & 8,481 & 38.60 & 0.385 & 0.212 & 1.814 & 3.289 \\
\hline HH size & P7HTOTAL-P6HTOTAL & 7,789 & -0.06 & 0.015 & 0.009 & 1.596 & 2.548 \\
\hline \multicolumn{8}{|l|}{Characteristics from student questionnaire (percent)} \\
\hline Participated in school sports & C7SPORTS & 8,702 & 57.61 & 0.967 & 0.530 & 1.826 & 3.334 \\
\hline Described as overweight/slightly overweight & C7DESCWT & 8,625 & 29.24 & 0.817 & 0.490 & 1.668 & 2.783 \\
\hline Tried to change weight & C7TRYWT & 8,614 & 42.77 & 0.875 & 0.533 & 1.642 & 2.696 \\
\hline Home alone at least once a week & C7HOME & 8,679 & 52.66 & 0.992 & 0.536 & 1.851 & 3.425 \\
\hline Angry when had trouble learning & C7ANGRY & 8,708 & 79.19 & 0.772 & 0.435 & 1.774 & 3.147 \\
\hline Liked reading & C7LIKRD & 8,674 & 77.52 & 0.800 & 0.448 & 1.785 & 3.187 \\
\hline Often felt lonely & C7LONLY & 8,653 & 32.19 & 0.775 & 0.502 & 1.544 & 2.383 \\
\hline Felt good about self & C7FLGOOD & 8,704 & 94.09 & 0.448 & 0.253 & 1.774 & 3.147 \\
\hline Parents helped with school work & C7SCHLPA & 8,638 & 56.15 & 0.971 & 0.534 & 1.819 & 3.309 \\
\hline Parents advised on important decisions & C7ADVIPA & 8,654 & 70.70 & 0.852 & 0.489 & 1.741 & 3.031 \\
\hline \multicolumn{8}{|l|}{Characteristics from parent interview (percent)} \\
\hline Lived in single parent family & P7HFAMIL & 8,070 & 24.59 & 0.913 & 0.479 & 1.905 & 3.628 \\
\hline Lived in two-parent family & P7HFAMIL & 8,070 & 72.43 & 1.052 & 0.498 & 2.114 & 4.470 \\
\hline Mom worked 35 hours+/week & P7HMEMP & 6,248 & 68.73 & 1.176 & 0.586 & 2.006 & 4.023 \\
\hline Parents had high school or less & W8PARED & 8,070 & 28.16 & 1.054 & 0.501 & 2.105 & 4.432 \\
\hline Household income & W8INCCAT & 8,070 & 48.98 & 1.256 & 0.556 & 2.257 & 5.095 \\
\hline Parent attended PTA & P7ATTENP & 5,493 & 34.26 & 1.174 & 0.640 & 1.834 & 3.364 \\
\hline Had family TV rule & P7TVRULE & 7,961 & 87.96 & 0.668 & 0.365 & 1.831 & 3.352 \\
\hline Have someone help with reading homework & P7HELPR & 7,836 & 94.60 & 0.393 & 0.256 & 1.538 & 2.366 \\
\hline Talk to child about day at school everyday & P7OFTTLK & 7,969 & 78.43 & 0.805 & 0.461 & 1.746 & 3.049 \\
\hline Talk to child about smoking 3+ times a year & P7TLKSMK & 7,963 & 76.18 & 0.824 & 0.477 & 1.727 & 2.982 \\
\hline Talk to child about alcohol 3+ times a year & P7TLKALC & 7,964 & 75.74 & 0.890 & 0.481 & 1.852 & 3.430 \\
\hline Took away privilege when child angry & P7HITPRV & 7,937 & 87.65 & 0.623 & 0.369 & 1.688 & 2.850 \\
\hline Self-reported in very good health & P7HEALTH & 7,814 & 86.85 & 0.744 & 0.383 & 1.945 & 3.784 \\
\hline Received food stamps in last 12 months & P7FSTAMP & 7,892 & 14.27 & 1.215 & 0.394 & 3.087 & 9.531 \\
\hline \multicolumn{8}{|l|}{Characteristics from teacher questionnaire (percent)} \\
\hline Child in eighth grade & T7GLVL & 8,827 & 85.72 & 0.811 & 0.372 & 2.179 & 4.747 \\
\hline Worked hard for grades-English & G7WRKHRD & 8,417 & 70.69 & 0.803 & 0.496 & 1.619 & 2.620 \\
\hline Attentive in class-English & G7ATTENT & 8,419 & 73.40 & 0.756 & 0.481 & 1.571 & 2.467 \\
\hline Was able to organize thoughts-English & G7ORGANZ & 8,384 & 67.96 & 0.833 & 0.510 & 1.634 & 2.670 \\
\hline
\end{tabular}

See notes at end of table.

Table 9-4. ECLS-K, spring-third grade/spring-fifth grade/spring-eighth grade panel: standard errors and design effects using C567CW0-C567CW90 and C567PW0-C567PW90, by selected child and parent variables: School years 2001-02, 2003-04, and 2006-07-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Survey item & Variable name & \begin{tabular}{l}
Number \\
of cases
\end{tabular} & Estimate & \[
\begin{array}{r}
\text { Design } \\
\mathrm{SE}^{1} \\
\hline
\end{array}
\] & \[
\begin{gathered}
\mathrm{SRS} \\
\mathrm{SE}^{2}
\end{gathered}
\] & \(\mathrm{DEFT}^{3}\) & \(\mathrm{DEFF}^{4}\) \\
\hline \multicolumn{8}{|l|}{Other characteristics (mean)} \\
\hline Age of child in months & R7AGE & 8,820 & 171.54 & 0.101 & 0.051 & 1.995 & 3.980 \\
\hline Child's BMI & C7BMI & 8,336 & 23.13 & 0.097 & 0.065 & 1.487 & 2.210 \\
\hline Hours spent in school activities & C7HRSCLB & 8,476 & 4.77 & 0.100 & 0.070 & 1.422 & 2.022 \\
\hline Hours spent on non-school reading & C7HRSRD & 8,440 & 3.65 & 0.101 & 0.070 & 1.441 & 2.076 \\
\hline Hours spent watching TV on weekdays & C7TVWKDY & 8,618 & 3.16 & 0.051 & 0.032 & 1.571 & 2.469 \\
\hline Hours spent watching TV on weekend & C7TVWKEN & 8,591 & 4.56 & 0.067 & 0.043 & 1.554 & 2.415 \\
\hline Hours spent playing videogames on weekdays & C7VIDWKD & 8,615 & 1.48 & 0.043 & 0.025 & 1.708 & 2.916 \\
\hline Hours spent playing videogames on weekend & C7VIDWKN & 8,629 & 2.66 & 0.064 & 0.038 & 1.680 & 2.824 \\
\hline Hours spent on the internet on weekdays & C7INTWKD & 8,556 & 2.11 & 0.042 & 0.025 & 1.679 & 2.818 \\
\hline Hours spent on the internet on weekend & C7INTWKN & 8,560 & 2.95 & 0.059 & 0.035 & 1.697 & 2.879 \\
\hline Child's household size & P7HTOTAL & 8,070 & 4.47 & 0.032 & 0.015 & 2.079 & 4.323 \\
\hline Number of children < 18 in child's HH & P7LESS18 & 8,070 & 2.37 & 0.027 & 0.013 & 2.103 & 4.424 \\
\hline Number of siblings in HH & P7NUMSIB & 8,070 & 1.49 & 0.025 & 0.013 & 1.971 & 3.886 \\
\hline Median & & & & & & 1.785 & 3.187 \\
\hline Mean & & & & & & 1.825 & 3.408 \\
\hline Standard deviation & & & & & & 0.279 & 1.173 \\
\hline Coefficient of variation & & & & & & 0.153 & 0.344 \\
\hline Minimum & & & & & & 1.422 & 2.022 \\
\hline Maximum & & & & & & 3.087 & 9.531 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Design SE is the standard error under the ECLS-K sample design. For an explanation of this statistic, see section 4.10.
\({ }^{2}\) SRS SE is the standard error assuming simple random sample. For an explanation of this statistic, see section 4.10.
\({ }^{3}\) DEFT is the root design effect. For an explanation of DEFT, see section 4.10.
\({ }^{4}\) DEFF is the design effect. For an explanation of DEFF, see section 4.10.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.
}

Table 9-5. ECLS-K, spring-first grade/spring-third grade/spring-fifth grade/spring-eighth grade panel: standard errors and design effects using C4_7CW0-C4_7CW90 and C4_7PW0-C4_7PW90, by selected child and parent variables: School years 1999-2000, 2001-02, 2003-04, and 2006-07
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Survey item & Variable name & Number of cases & Estimate & Design
\[
\mathrm{SE}^{1}
\] & \[
\begin{array}{r}
\mathrm{SRS} \\
\mathrm{SE}^{2}
\end{array}
\] & \(\mathrm{DEFT}^{3}\) & DEFF \({ }^{4}\) \\
\hline \multicolumn{8}{|l|}{Difference between spring-fifth grade and spring-eighth grade scores (mean)} \\
\hline Reading scale score & C7R4RSCL-C6R4RSCL & 8,504 & 17.71 & 0.387 & 0.195 & 1.982 & 3.930 \\
\hline Mathematics scale score & C7R4MSCL-C6R4MSCL & 8,562 & 16.46 & 0.293 & 0.141 & 2.081 & 4.331 \\
\hline Science scale score & C7R2SSCL-C6R2SSCL & 8,578 & 18.55 & 0.219 & 0.111 & 1.975 & 3.901 \\
\hline \multicolumn{8}{|l|}{Difference between spring-third grade and spring-eighth grade scores (mean)} \\
\hline Reading scale score & C7R4RSCL-C5R4RSCL & 8,457 & 40.61 & 0.525 & 0.225 & 2.330 & 5.429 \\
\hline Mathematics scale score & C7R4MSCL-C5R4MSCL & 8,549 & 40.09 & 0.316 & 0.166 & 1.909 & 3.643 \\
\hline Science scale score & C7R2SSCL-C5R2SSCL & 8,561 & 32.30 & 0.227 & 0.121 & 1.874 & 3.513 \\
\hline \multicolumn{8}{|l|}{Other differences (mean)} \\
\hline Child's BMI & C7BMI-C6BMI & 8,010 & 2.51 & 0.063 & 0.041 & 1.525 & 2.326 \\
\hline Height & C7HEIGHT-C6HEIGHT & 8,144 & 6.69 & 0.049 & 0.029 & 1.700 & 2.891 \\
\hline Weight & C7WEIGHT-C6WEIGHT & 8,304 & 38.51 & 0.390 & 0.212 & 1.840 & 3.384 \\
\hline HH size & P7HTOTAL-P6HTOTAL & 7,627 & -0.06 & 0.016 & 0.010 & 1.674 & 2.803 \\
\hline \multicolumn{8}{|l|}{Characteristics from student questionnaire (percent)} \\
\hline Participated in school sports & C7SPORTS & 8,521 & 57.81 & 0.979 & 0.535 & 1.830 & 3.348 \\
\hline Described as overweight/slightly overweight & C7DESCWT & 8,442 & 29.17 & 0.836 & 0.495 & 1.690 & 2.856 \\
\hline Tried to change weight & C7TRYWT & 8,432 & 42.65 & 0.913 & 0.538 & 1.696 & 2.876 \\
\hline Home alone at least once a week & C7HOME & 8,496 & 52.54 & 1.050 & 0.542 & 1.938 & 3.757 \\
\hline Angry when had trouble learning & C7ANGRY & 8,523 & 79.30 & 0.829 & 0.439 & 1.889 & 3.567 \\
\hline Liked reading & C7LIKRD & 8,492 & 77.79 & 0.806 & 0.451 & 1.787 & 3.192 \\
\hline Often felt lonely & C7LONLY & 8,471 & 32.08 & 0.814 & 0.507 & 1.605 & 2.577 \\
\hline Felt good about self & C7FLGOOD & 8,519 & 94.24 & 0.441 & 0.252 & 1.747 & 3.051 \\
\hline Parents helped with school work & C7SCHLPA & 8,457 & 56.59 & 1.037 & 0.539 & 1.924 & 3.703 \\
\hline Parents advised on important decisions & C7ADVIPA & 8,472 & 70.79 & 0.912 & 0.494 & 1.847 & 3.410 \\
\hline \multicolumn{8}{|l|}{Characteristics from parent interview (percent)} \\
\hline Lived in single parent family & P7HFAMIL & 7,764 & 26.25 & 0.905 & 0.499 & 1.813 & 3.288 \\
\hline Lived in two-parent family & P7HFAMIL & 7,764 & 70.74 & 0.995 & 0.516 & 1.927 & 3.712 \\
\hline Mom worked 35 hours+/week & P7HMEMP & 6,048 & 69.13 & 1.137 & 0.594 & 1.913 & 3.661 \\
\hline Parents had high school or less & W8PARED & 7,764 & 27.42 & 0.983 & 0.506 & 1.941 & 3.767 \\
\hline Household income & W8INCCAT & 7,764 & 49.18 & 1.157 & 0.567 & 2.039 & 4.159 \\
\hline Parent attended PTA & P7ATTENP & 5,297 & 33.73 & 1.139 & 0.650 & 1.753 & 3.073 \\
\hline Had family TV rule & P7TVRULE & 7,663 & 87.90 & 0.703 & 0.373 & 1.887 & 3.559 \\
\hline Have someone help with reading homework & P7HELPR & 7,554 & 94.63 & 0.401 & 0.259 & 1.547 & 2.394 \\
\hline Talk to child about day at school everyday & P7OFTTLK & 7,674 & 78.36 & 0.772 & 0.470 & 1.643 & 2.698 \\
\hline Talk to child about smoking 3+ times a year & P7TLKSMK & 7,668 & 77.07 & 0.732 & 0.480 & 1.525 & 2.327 \\
\hline Talk to child about alcohol \(3+\) times a year & P7TLKALC & 7,669 & 76.42 & 0.845 & 0.485 & 1.743 & 3.037 \\
\hline Took away privilege when child angry & P7HITPRV & 7,646 & 87.75 & 0.621 & 0.375 & 1.656 & 2.741 \\
\hline Self-reported in very good health & P7HEALTH & 7,536 & 86.93 & 0.774 & 0.388 & 1.994 & 3.976 \\
\hline Received food stamps in last 12 months & P7FSTAMP & 7,604 & 14.09 & 1.246 & 0.399 & 3.124 & 9.760 \\
\hline \multicolumn{8}{|l|}{Characteristics from teacher questionnaire (percent)} \\
\hline Child in eighth grade & T7GLVL & 8,633 & 85.56 & 0.844 & 0.378 & 2.232 & 4.981 \\
\hline Worked hard for grades-English & G7WRKHRD & 8,236 & 70.69 & 0.815 & 0.502 & 1.624 & 2.639 \\
\hline Attentive in class-English & G7ATTENT & 8,236 & 73.46 & 0.793 & 0.487 & 1.630 & 2.658 \\
\hline Was able to organize thoughts-English & G7ORGANZ & 8,203 & 68.27 & 0.856 & 0.514 & 1.665 & 2.773 \\
\hline
\end{tabular}

See notes at end of table.

Table 9-5. ECLS-K, spring-first grade/spring-third grade/spring-fifth grade/spring-eighth grade panel: standard errors and design effects using C4_7CW0-C4_7CW90 and C4_7PW0-C4_7PW90, by selected child and parent variables: School years 1999-2000, 2001-02, 2003-04, and 2006-07-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Survey item & Variable name & Number of cases & Estimate & Design \(\mathrm{SE}^{1}\) & \[
\begin{array}{r}
\mathrm{SRS} \\
\mathrm{SE}^{2} \\
\hline
\end{array}
\] & DEFT \(^{3}\) & DEFF \({ }^{4}\) \\
\hline \multicolumn{8}{|l|}{Other characteristics (mean)} \\
\hline Age of child in months & R7AGE & 8,628 & 171.54 & 0.101 & 0.051 & 1.970 & 3.882 \\
\hline Child's BMI & C7BMI & 8,159 & 23.13 & 0.103 & 0.065 & 1.574 & 2.477 \\
\hline Hours spent in school activities & C7HRSCLB & 8,299 & 4.74 & 0.099 & 0.071 & 1.395 & 1.946 \\
\hline Hours spent on non-school reading & C7HRSRD & 8,268 & 3.70 & 0.108 & 0.071 & 1.515 & 2.296 \\
\hline Hours spent watching TV on weekdays & C7TVWKDY & 8,436 & 3.16 & 0.053 & 0.033 & 1.595 & 2.543 \\
\hline Hours spent watching TV on weekend & C7TVWKEN & 8,410 & 4.56 & 0.068 & 0.044 & 1.552 & 2.408 \\
\hline Hours spent playing videogames on weekdays & C7VIDWKD & 8,437 & 1.47 & 0.043 & 0.025 & 1.723 & 2.968 \\
\hline Hours spent playing videogames on weekend & C7VIDWKN & 8,447 & 2.67 & 0.068 & 0.039 & 1.759 & 3.095 \\
\hline Hours spent on the internet on weekdays & C7INTWKD & 8,377 & 2.12 & 0.044 & 0.026 & 1.725 & 2.976 \\
\hline Hours spent on the internet on weekend & C7INTWKN & 8,380 & 2.97 & 0.061 & 0.035 & 1.736 & 3.014 \\
\hline Child's household size & P7HTOTAL & 7,764 & 4.44 & 0.030 & 0.015 & 1.955 & 3.821 \\
\hline Number of children <18 in child's HH & P7LESS18 & 7,764 & 2.36 & 0.027 & 0.013 & 2.069 & 4.279 \\
\hline Number of siblings in HH & P7NUMSIB & 7,764 & 1.48 & 0.026 & 0.013 & 1.973 & 3.891 \\
\hline Median & & & & & & 1.787 & 3.192 \\
\hline Mean & & & & & & 1.824 & 3.398 \\
\hline Standard deviation & & & & & & 0.267 & 1.149 \\
\hline Coefficient of variation & & & & & & 0.146 & 0.338 \\
\hline Minimum & & & & & & 1.395 & 1.946 \\
\hline Maximum & & & & & & 3.124 & 9.760 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Design SE is the standard error under the ECLS-K sample design. For an explanation of this statistic, see section 4.10.
\({ }^{2}\) SRS SE is the standard error assuming simple random sample. For an explanation of this statistic, see section 4.10.
\({ }^{3}\) DEFT is the root design effect. For an explanation of DEFT, see section 4.10.
\({ }^{4}\) DEFF is the design effect. For an explanation of DEFF, see section 4.10.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.
}

Table 9-6. ECLS-K, spring-kindergarten/spring-first grade/spring-third grade/spring-fifth grade/springeighth grade panel: standard errors and design effects using C2_7FC0-C2_7FC90 and C2_7FP0-C2_7FP90, by selected child and parent variables: School years 1998-99, 19992000, 2001-02, 2003-04, and 2006-07
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Survey item & Variable name & Number of cases & Estimate & Design
\[
\mathrm{SE}^{1}
\] & \[
\begin{gathered}
\mathrm{SRS} \\
\mathrm{SE}^{2}
\end{gathered}
\] & \(\mathrm{DEFT}^{3}\) & DEFF \({ }^{4}\) \\
\hline \multicolumn{8}{|l|}{Difference between spring-fifth grade and spring-eighth grade scores (mean)} \\
\hline Reading scale score & C7R4RSCL-C6R4RSCL & 8,381 & 17.82 & 0.401 & 0.196 & 2.045 & 4.183 \\
\hline Mathematics scale score & C7R4MSCL-C6R4MSCL & 8,436 & 16.49 & 0.301 & 0.142 & 2.116 & 4.477 \\
\hline Science scale score & C7R2SSCL-C6R2SSCL & 8,451 & 18.63 & 0.221 & 0.111 & 1.994 & 3.978 \\
\hline \multicolumn{8}{|l|}{Difference between spring-third grade and spring-eighth grade scores (mean)} \\
\hline Reading scale score & C7R4RSCL-C5R4RSCL & 8,334 & 40.59 & 0.547 & 0.225 & 2.426 & 5.887 \\
\hline Mathematics scale score & C7R4MSCL-C5R4MSCL & 8,423 & 40.18 & 0.319 & 0.167 & 1.905 & 3.630 \\
\hline Science scale score & C7R2SSCL-C5R2SSCL & 8,434 & 32.36 & 0.250 & 0.121 & 2.060 & 4.242 \\
\hline \multicolumn{8}{|l|}{Other differences (mean)} \\
\hline Child's BMI & C7BMI-C6BMI & 7,889 & 2.49 & 0.062 & 0.042 & 1.485 & 2.205 \\
\hline Height & C7HEIGHT-C6HEIGHT & 8,022 & 6.71 & 0.046 & 0.029 & 1.585 & 2.511 \\
\hline Weight & C7WEIGHT-C6WEIGHT & 8,182 & 38.50 & 0.392 & 0.216 & 1.817 & 3.303 \\
\hline HH size & P7HTOTAL-P6HTOTAL & 7,517 & -0.07 & 0.016 & 0.009 & 1.736 & 3.014 \\
\hline \multicolumn{8}{|l|}{Characteristics from student questionnaire (percent)} \\
\hline Participated in school sports & C7SPORTS & 8,394 & 57.57 & 0.973 & 0.539 & 1.804 & 3.253 \\
\hline Described as overweight/slightly overweight & C7DESCWT & 8,316 & 29.34 & 0.870 & 0.499 & 1.742 & 3.036 \\
\hline Tried to change weight & C7TRYWT & 8,306 & 42.65 & 0.995 & 0.543 & 1.833 & 3.361 \\
\hline Home alone at least once a week & C7HOME & 8,371 & 53.03 & 1.082 & 0.545 & 1.984 & 3.935 \\
\hline Angry when had trouble learning & C7ANGRY & 8,396 & 79.37 & 0.804 & 0.442 & 1.820 & 3.311 \\
\hline Liked reading & C7LIKRD & 8,365 & 77.81 & 0.769 & 0.454 & 1.693 & 2.865 \\
\hline Often felt lonely & C7LONLY & 8,346 & 32.31 & 0.821 & 0.512 & 1.604 & 2.573 \\
\hline Felt good about self & C7FLGOOD & 8,392 & 94.15 & 0.454 & 0.256 & 1.771 & 3.138 \\
\hline Parents helped with school work & C7SCHLPA & 8,331 & 56.93 & 1.102 & 0.542 & 2.032 & 4.127 \\
\hline Parents advised on important decisions & C7ADVIPA & 8,345 & 71.14 & 0.911 & 0.496 & 1.837 & 3.374 \\
\hline \multicolumn{8}{|l|}{Characteristics from parent interview (percent)} \\
\hline Lived in single parent family & P7HFAMIL & 7,558 & 25.07 & 0.869 & 0.498 & 1.744 & 3.042 \\
\hline Lived in two-parent family & P7HFAMIL & 7,558 & 71.88 & 0.988 & 0.517 & 1.911 & 3.653 \\
\hline Mom worked 35 hours+/week & P7HMEMP & 5,911 & 68.69 & 1.229 & 0.603 & 2.038 & 4.154 \\
\hline Parents had high school or less & W8PARED & 7,558 & 26.34 & 0.951 & 0.507 & 1.877 & 3.523 \\
\hline Household income & W8INCCAT & 7,558 & 48.10 & 1.208 & 0.574 & 2.103 & 4.422 \\
\hline Parent attended PTA & P7ATTENP & 5,165 & 33.83 & 1.167 & 0.658 & 1.773 & 3.144 \\
\hline Had family TV rule & P7TVRULE & 7,462 & 87.94 & 0.712 & 0.377 & 1.888 & 3.566 \\
\hline Have someone help with reading homework & P7HELPR & 7,354 & 94.97 & 0.381 & 0.255 & 1.495 & 2.234 \\
\hline Talk to child about day at school everyday & P7OFTTLK & 7,470 & 78.58 & 0.787 & 0.475 & 1.657 & 2.747 \\
\hline Talk to child about smoking 3+ times a year & P7TLKSMK & 7,464 & 76.89 & 0.773 & 0.488 & 1.585 & 2.512 \\
\hline Talk to child about alcohol 3+ times a year & P7TLKALC & 7,465 & 76.27 & 0.908 & 0.492 & 1.844 & 3.400 \\
\hline Took away privilege when child angry & P7HITPRV & 7,447 & 87.81 & 0.656 & 0.379 & 1.731 & 2.995 \\
\hline Self-reported in very good health & P7HEALTH & 7,346 & 87.40 & 0.739 & 0.387 & 1.908 & 3.641 \\
\hline Received food stamps in last 12 months & P7FSTAMP & 7,404 & 13.33 & 1.214 & 0.395 & 3.074 & 9.450 \\
\hline \multicolumn{8}{|l|}{Characteristics from teacher questionnaire (percent)} \\
\hline Child in eighth grade & T7GLVL & 8,503 & 85.59 & 0.867 & 0.381 & 2.275 & 5.176 \\
\hline Worked hard for grades-English & G7WRKHRD & 8,112 & 70.50 & 0.806 & 0.507 & 1.591 & 2.532 \\
\hline Attentive in class-English & G7ATTENT & 8,112 & 73.06 & 0.817 & 0.492 & 1.659 & 2.752 \\
\hline Was able to organize thoughts-English & G7ORGANZ & 8,080 & 68.47 & 0.915 & 0.517 & 1.769 & 3.131 \\
\hline
\end{tabular}

See notes at end of table.

Table 9-6. ECLS-K, spring-kindergarten/spring-first grade/spring-third grade/spring-fifth grade/springeighth grade panel: standard errors and design effects using C2_7FC0-C2_7FC90 and C2_7FP0-C2_7FP90, by selected child and parent variables: School years 1998-99, 19992000, 2001-02, 2003-04, and 2006-07-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Survey item & Variable name & Number of cases & Estimate & Design \(\mathrm{SE}^{1}\) & \[
\begin{array}{r}
\mathrm{SRS} \\
\mathrm{SE}^{2} \\
\hline
\end{array}
\] & \(\mathrm{DEFT}^{3}\) & DEFF \({ }^{4}\) \\
\hline \multicolumn{8}{|l|}{Other characteristics (mean)} \\
\hline Age of child in months & R7AGE & 8,498 & 171.33 & 0.085 & 0.047 & 1.794 & 3.217 \\
\hline Child's BMI & C7BMI & 8,032 & 23.10 & 0.103 & 0.066 & 1.560 & 2.435 \\
\hline Hours spent in school activities & C7HRSCLB & 8,176 & 4.76 & 0.102 & 0.072 & 1.416 & 2.004 \\
\hline Hours spent on non-school reading & C7HRSRD & 8,148 & 3.74 & 0.118 & 0.074 & 1.602 & 2.566 \\
\hline Hours spent watching TV on weekdays & C7TVWKDY & 8,308 & 3.17 & 0.057 & 0.034 & 1.685 & 2.839 \\
\hline Hours spent watching TV on weekend & C7TVWKEN & 8,284 & 4.58 & 0.068 & 0.044 & 1.533 & 2.349 \\
\hline Hours spent playing videogames on weekdays & C7VIDWKD & 8,310 & 1.47 & 0.045 & 0.026 & 1.755 & 3.079 \\
\hline Hours spent playing videogames on weekend & C7VIDWKN & 8,321 & 2.68 & 0.066 & 0.039 & 1.693 & 2.865 \\
\hline Hours spent on the internet on weekdays & C7INTWKD & 8,253 & 2.12 & 0.045 & 0.026 & 1.749 & 3.060 \\
\hline Hours spent on the internet on weekend & C7INTWKN & 8,256 & 2.97 & 0.067 & 0.036 & 1.863 & 3.470 \\
\hline Child's household size & P7HTOTAL & 7,558 & 4.44 & 0.031 & 0.016 & 1.998 & 3.991 \\
\hline Number of children <18 in child's HH & P7LESS18 & 7,558 & 2.35 & 0.028 & 0.013 & 2.122 & 4.504 \\
\hline Number of siblings in HH & P7NUMSIB & 7,558 & 1.48 & 0.026 & 0.013 & 1.974 & 3.897 \\
\hline Median & & & & & & 1.804 & 3.253 \\
\hline Mean & & & & & & 1.842 & 3.466 \\
\hline Standard deviation & & & & & & 0.271 & 1.151 \\
\hline Coefficient of variation & & & & & & 0.147 & 0.332 \\
\hline Minimum & & & & & & 1.416 & 2.004 \\
\hline Maximum & & & & & & 3.074 & 9.450 \\
\hline
\end{tabular}
\({ }^{1}\) Design SE is the standard error under the ECLS-K sample design. For an explanation of this statistic, see section 4.10.
\({ }^{2}\) SRS SE is the standard error assuming simple random sample. For an explanation of this statistic, see section 4.10.
\({ }^{3}\) DEFT is the root design effect. For an explanation of DEFT, see section 4.10.
\({ }^{4}\) DEFF is the design effect. For an explanation of DEFF, see section 4.10.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

Table 9-7. ECLS-K, fall-kindergarten/spring-kindergarten/spring-first grade/spring-third grade/springfifth grade/spring-eighth grade panel: standard errors and design effects using C1_7FC0C1_7FC90 and C1_7FP0-C1_7FP90, by selected child and parent variables: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Survey item & Variable name & Number of cases & Estimate & \[
\begin{array}{r}
\text { Design } \\
\mathrm{SE}^{1} \\
\hline
\end{array}
\] & \[
\begin{gathered}
\mathrm{SRS} \\
\mathrm{SE}^{2} \\
\hline
\end{gathered}
\] & \(\mathrm{DEFT}^{3}\) & DEFF \({ }^{4}\) \\
\hline \multicolumn{8}{|l|}{Difference between spring-fifth grade and spring-eighth grade scores (mean)} \\
\hline Reading scale score & C7R4RSCL-C6R4RSCL & 7,692 & 17.68 & 0.368 & 0.203 & 1.810 & 3.275 \\
\hline Mathematics scale score & C7R4MSCL-C6R4MSCL & 7,743 & 16.42 & 0.332 & 0.148 & 2.247 & 5.048 \\
\hline Science scale score & C7R2SSCL-C6R2SSCL & 7,756 & 18.70 & 0.227 & 0.115 & 1.974 & 3.897 \\
\hline \multicolumn{8}{|l|}{Difference between spring-third grade and spring-eighth grade scores (mean)} \\
\hline Reading scale score & C7R4RSCL-C5R4RSCL & 7,650 & 40.57 & 0.543 & 0.233 & 2.333 & 5.442 \\
\hline Mathematics scale score & C7R4MSCL-C5R4MSCL & 7,733 & 40.23 & 0.348 & 0.176 & 1.975 & 3.899 \\
\hline Science scale score & C7R2SSCL-C5R2SSCL & 7,743 & 32.53 & 0.262 & 0.127 & 2.071 & 4.287 \\
\hline \multicolumn{8}{|l|}{Other differences (mean)} \\
\hline Child's BMI & C7BMI-C6BMI & 7,241 & 2.48 & 0.062 & 0.040 & 1.544 & 2.385 \\
\hline Height & C7HEIGHT-C6HEIGHT & 7,366 & 6.72 & 0.045 & 0.030 & 1.485 & 2.204 \\
\hline Weight & C7WEIGHT-C6WEIGHT & 7,509 & 38.33 & 0.402 & 0.223 & 1.806 & 3.261 \\
\hline HH size & P7HTOTAL-P6HTOTAL & 6,908 & -0.07 & 0.016 & 0.010 & 1.668 & 2.781 \\
\hline \multicolumn{8}{|l|}{Characteristics from student questionnaire (percent)} \\
\hline Participated in school sports & C7SPORTS & 7,702 & 58.06 & 0.977 & 0.562 & 1.738 & 3.022 \\
\hline Described as overweight/slightly overweight & C7DESCWT & 7,634 & 28.94 & 0.894 & 0.519 & 1.723 & 2.968 \\
\hline Tried to change weight & C7TRYWT & 7,624 & 42.10 & 1.085 & 0.565 & 1.919 & 3.684 \\
\hline Home alone at least once a week & C7HOME & 7,682 & 52.86 & 1.041 & 0.569 & 1.828 & 3.343 \\
\hline Angry when had trouble learning & C7ANGRY & 7,707 & 79.66 & 0.873 & 0.459 & 1.903 & 3.621 \\
\hline Liked reading & C7LIKRD & 7,678 & 78.39 & 0.780 & 0.470 & 1.660 & 2.757 \\
\hline Often felt lonely & C7LONLY & 7,659 & 32.54 & 0.815 & 0.535 & 1.522 & 2.316 \\
\hline Felt good about self & C7FLGOOD & 7,701 & 94.21 & 0.458 & 0.266 & 1.722 & 2.966 \\
\hline Parents helped with school work & C7SCHLPA & 7,646 & 57.18 & 1.154 & 0.566 & 2.040 & 4.160 \\
\hline Parents advised on important decisions & C7ADVIPA & 7,661 & 70.91 & 0.951 & 0.519 & 1.832 & 3.356 \\
\hline \multicolumn{8}{|l|}{Characteristics from parent interview (percent)} \\
\hline Lived in single parent family & P7HFAMIL & 6,861 & 22.95 & 0.942 & 0.508 & 1.855 & 3.440 \\
\hline Lived in two-parent family & P7HFAMIL & 6,861 & 73.90 & 1.009 & 0.530 & 1.904 & 3.624 \\
\hline Mom worked 35 hours+/week & P7HMEMP & 5,374 & 68.63 & 1.259 & 0.633 & 1.988 & 3.953 \\
\hline Parents had high school or less & W8PARED & 6,861 & 25.63 & 1.027 & 0.527 & 1.948 & 3.795 \\
\hline Household income & W8INCCAT & 6,861 & 47.42 & 1.230 & 0.603 & 2.041 & 4.165 \\
\hline Parent attended PTA & P7ATTENP & 4,705 & 33.84 & 1.257 & 0.690 & 1.823 & 3.322 \\
\hline Had family TV rule & P7TVRULE & 6,778 & 88.34 & 0.736 & 0.390 & 1.888 & 3.564 \\
\hline Have someone help with reading homework & P7HELPR & 6,676 & 95.09 & 0.364 & 0.265 & 1.376 & 1.893 \\
\hline Talk to child about day at school everyday & P7OFTTLK & 6,786 & 79.11 & 0.808 & 0.494 & 1.637 & 2.681 \\
\hline Talk to child about smoking 3+ times a year & P7TLKSMK & 6,780 & 77.36 & 0.724 & 0.508 & 1.425 & 2.030 \\
\hline Talk to child about alcohol 3+ times a year & P7TLKALC & 6,781 & 76.76 & 0.868 & 0.513 & 1.692 & 2.863 \\
\hline Took away privilege when child angry & P7HITPRV & 6,767 & 87.90 & 0.642 & 0.397 & 1.619 & 2.621 \\
\hline Self-reported in very good health & P7HEALTH & 6,679 & 87.56 & 0.744 & 0.404 & 1.843 & 3.395 \\
\hline Received food stamps in last 12 months & P7FSTAMP & 6,726 & 12.93 & 1.196 & 0.409 & 2.922 & 8.540 \\
\hline \multicolumn{8}{|l|}{Characteristics from teacher questionnaire (percent)} \\
\hline Child in eighth grade & T7GLVL & 7,803 & 85.55 & 0.940 & 0.398 & 2.362 & 5.580 \\
\hline Worked hard for grades-English & G7WRKHRD & 7,429 & 71.07 & 0.885 & 0.526 & 1.683 & 2.832 \\
\hline Attentive in class-English & G7ATTENT & 7,427 & 73.72 & 0.908 & 0.511 & 1.778 & 3.161 \\
\hline Was able to organize thoughts-English & G7ORGANZ & 7,396 & 68.98 & 1.011 & 0.538 & 1.879 & 3.531 \\
\hline
\end{tabular}

See notes at end of table.

Table 9-7. ECLS-K, fall-kindergarten/spring-kindergarten/spring-first grade/spring-third grade/springfifth grade/spring-eighth grade panel: standard errors and design effects using C1_7FC0C1_7FC90 and C1_7FP0-C1_7FP90, by selected child and parent variables: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Survey item & Variable name & Number of cases & Estimate & Design
\[
\mathrm{SE}^{1}
\] & \[
\begin{gathered}
\mathrm{SRS} \\
\mathrm{SE}^{2}
\end{gathered}
\] & \(\mathrm{DEFT}^{3}\) & DEFF \({ }^{4}\) \\
\hline \multicolumn{8}{|l|}{Other characteristics (mean)} \\
\hline Age of child in months & R7AGE & 7,798 & 171.33 & 0.085 & 0.050 & 1.712 & 2.931 \\
\hline Child's BMI & C7BMI & 7,369 & 23.04 & 0.113 & 0.067 & 1.685 & 2.840 \\
\hline Hours spent in school activities & C7HRSCLB & 7,505 & 4.79 & 0.108 & 0.074 & 1.454 & 2.114 \\
\hline Hours spent on non-school reading & C7HRSRD & 7,474 & 3.74 & 0.120 & 0.078 & 1.537 & 2.362 \\
\hline Hours spent watching TV on weekdays & C7TVWKDY & 7,624 & 3.18 & 0.059 & 0.035 & 1.665 & 2.773 \\
\hline Hours spent watching TV on weekend & C7TVWKEN & 7,603 & 4.61 & 0.067 & 0.047 & 1.432 & 2.050 \\
\hline Hours spent playing videogames on weekdays & C7VIDWKD & 7,622 & 1.45 & 0.047 & 0.026 & 1.786 & 3.191 \\
\hline Hours spent playing videogames on weekend & C7VIDWKN & 7,637 & 2.67 & 0.069 & 0.040 & 1.710 & 2.923 \\
\hline Hours spent on the internet on weekdays & C7INTWKD & 7,578 & 2.12 & 0.044 & 0.026 & 1.679 & 2.819 \\
\hline Hours spent on the internet on weekend & C7INTWKN & 7,573 & 2.99 & 0.070 & 0.038 & 1.844 & 3.401 \\
\hline Child's household size & P7HTOTAL & 6,861 & 4.47 & 0.032 & 0.016 & 1.965 & 3.862 \\
\hline Number of children <18 in child's HH & P7LESS18 & 6,861 & 2.36 & 0.030 & 0.014 & 2.186 & 4.778 \\
\hline Number of siblings in HH & P7NUMSIB & 6,861 & 1.49 & 0.027 & 0.014 & 1.948 & 3.795 \\
\hline Median & & & & & & 1.810 & 3.275 \\
\hline Mean & & & & & & 1.825 & 3.402 \\
\hline Standard deviation & & & & & & 0.271 & 1.100 \\
\hline Coefficient of variation & & & & & & 0.149 & 0.323 \\
\hline Minimum & & & & & & 1.376 & 1.893 \\
\hline Maximum & & & & & & 2.922 & 8.540 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Design SE is the standard error under the ECLS-K sample design. For an explanation of this statistic, see section 4.10.
\({ }^{2}\) SRS SE is the standard error assuming simple random sample. For an explanation of this statistic, see section 4.10.
\({ }^{3}\) DEFT is the root design effect. For an explanation of DEFT, see section 4.10.
\({ }^{4}\) DEFF is the design effect. For an explanation of DEFF, see section 4.10.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.
}

Table 9-8. ECLS-K, panel of all seven rounds: standard errors and design effects for the full sample using C1_7SC0-C1_7SC40 and C1_7SP0-C1_7SP40, by selected child and parent variables: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Survey item & Variable name & \begin{tabular}{l}
Number \\
of cases
\end{tabular} & Estimate & \[
\begin{array}{r}
\text { Design } \\
\mathrm{SE}^{1}
\end{array}
\] & \[
\begin{gathered}
\hline \mathrm{SRS} \\
\mathrm{SE}^{2} \\
\hline
\end{gathered}
\] & \(\mathrm{DEFT}^{3}\) & DEFF \({ }^{4}\) \\
\hline \multicolumn{8}{|l|}{Difference between spring-fifth grade and spring-eighth grade scores (mean)} \\
\hline Reading scale score & C7R4RSCL-C6R4RSCL & 2,338 & 18.37 & 0.592 & 0.367 & 1.615 & 2.607 \\
\hline Mathematics scale score & C7R4MSCL-C6R4MSCL & 2,352 & 16.31 & 0.524 & 0.257 & 2.039 & 4.156 \\
\hline Science scale score & C7R2SSCL-C6R2SSCL & 2,355 & 18.86 & 0.336 & 0.207 & 1.621 & 2.628 \\
\hline \multicolumn{8}{|l|}{Difference between spring-third grade and spring-eighth grade scores (mean)} \\
\hline Reading scale score & C7R4RSCL-C5R4RSCL & 2,333 & 41.49 & 0.703 & 0.410 & 1.716 & 2.945 \\
\hline Mathematics scale score & C7R4MSCL-C5R4MSCL & 2,354 & 40.46 & 0.583 & 0.293 & 1.991 & 3.963 \\
\hline Science scale score & C7R2SSCL-C5R2SSCL & 2,355 & 32.84 & 0.546 & 0.235 & 2.325 & 5.404 \\
\hline \multicolumn{8}{|l|}{Other differences (mean)} \\
\hline Child's BMI & C7BMI-C6BMI & 2,191 & 2.59 & 0.154 & 0.070 & 2.195 & 4.820 \\
\hline Height & C7HEIGHT-C6HEIGHT & 2,215 & 6.80 & 0.084 & 0.054 & 1.556 & 2.421 \\
\hline Weight & C7WEIGHT-C6WEIGHT & 2,291 & 39.83 & 1.161 & 0.475 & 2.445 & 5.976 \\
\hline HH size & P7HTOTAL-P6HTOTAL & 2,086 & -0.09 & 0.030 & 0.019 & 1.603 & 2.570 \\
\hline \multicolumn{8}{|l|}{Characteristics from student questionnaire (percent)} \\
\hline Participated in school sports & C7SPORTS & 2,343 & 58.24 & 1.326 & 1.018 & 1.302 & 1.694 \\
\hline Described as overweight/slightly overweight & C7DESCWT & 2,318 & 27.55 & 1.565 & 0.928 & 1.686 & 2.843 \\
\hline Tried to change weight & C7TRYWT & 2,316 & 40.04 & 1.643 & 1.018 & 1.614 & 2.605 \\
\hline Home alone at least once a week & C7HOME & 2,337 & 51.79 & 2.021 & 1.034 & 1.955 & 3.823 \\
\hline Angry when had trouble learning & C7ANGRY & 2,342 & 80.63 & 1.554 & 0.817 & 1.903 & 3.620 \\
\hline Liked reading & C7LIKRD & 2,330 & 78.49 & 1.523 & 0.851 & 1.789 & 3.201 \\
\hline Often felt lonely & C7LONLY & 2,327 & 32.51 & 1.702 & 0.971 & 1.752 & 3.071 \\
\hline Felt good about self & C7FLGOOD & 2,343 & 93.92 & 0.743 & 0.494 & 1.505 & 2.265 \\
\hline Parents helped with school work & C7SCHLPA & 2,323 & 56.91 & 1.492 & 1.027 & 1.453 & 2.110 \\
\hline Parents advised on important decisions & C7ADVIPA & 2,329 & 69.94 & 1.736 & 0.950 & 1.827 & 3.338 \\
\hline \multicolumn{8}{|l|}{Characteristics from parent interview (percent)} \\
\hline Lived in single parent family & P7HFAMIL & 2,063 & 25.00 & 1.398 & 0.954 & 1.466 & 2.150 \\
\hline Lived in two-parent family & P7HFAMIL & 2,063 & 71.79 & 1.546 & 0.991 & 1.560 & 2.433 \\
\hline Mom worked 35 hours+/week & P7HMEMP & 1,607 & 65.91 & 1.748 & 1.183 & 1.478 & 2.185 \\
\hline Parents had high school or less & W8PARED & 2,063 & 23.46 & 1.631 & 0.933 & 1.748 & 3.056 \\
\hline Household income & W8INCCAT & 2,063 & 49.74 & 2.411 & 1.101 & 2.190 & 4.796 \\
\hline Parent attended PTA & P7ATTENP & 1,397 & 32.21 & 2.359 & 1.250 & 1.887 & 3.562 \\
\hline Had family TV rule & P7TVRULE & 2,045 & 86.82 & 1.057 & 0.748 & 1.414 & 1.999 \\
\hline Have someone help with reading homework & P7HELPR & 1,999 & 95.04 & 0.675 & 0.486 & 1.390 & 1.933 \\
\hline Talk to child about day at school everyday & P7OFTTLK & 2,044 & 80.07 & 1.595 & 0.884 & 1.805 & 3.259 \\
\hline Talk to child about smoking 3+ times a year & P7TLKSMK & 2,042 & 77.37 & 1.496 & 0.926 & 1.616 & 2.611 \\
\hline Talk to child about alcohol 3+ times a year & P7TLKALC & 2,044 & 75.88 & 1.462 & 0.946 & 1.545 & 2.388 \\
\hline Took away privilege when child angry & P7HITPRV & 2,041 & 89.16 & 1.314 & 0.688 & 1.909 & 3.645 \\
\hline Self-reported in very good health & P7HEALTH & 2,015 & 86.67 & 1.425 & 0.757 & 1.883 & 3.544 \\
\hline Received food stamps in last 12 months & P7FSTAMP & 2,034 & 15.36 & 1.949 & 0.799 & 2.438 & 5.944 \\
\hline \multicolumn{8}{|l|}{Characteristics from teacher questionnaire (percent)} \\
\hline Child in eighth grade & T7GLVL & 2,369 & 84.46 & 1.894 & 0.744 & 2.544 & 6.474 \\
\hline Worked hard for grades-English & G7WRKHRD & 2,257 & 70.79 & 1.447 & 0.958 & 1.511 & 2.284 \\
\hline Attentive in class-English & G7ATTENT & 2,257 & 74.44 & 1.569 & 0.918 & 1.709 & 2.919 \\
\hline Was able to organize thoughts-English & G7ORGANZ & 2,243 & 70.37 & 1.758 & 0.964 & 1.823 & 3.325 \\
\hline
\end{tabular}

See notes at end of table.

Table 9-8. ECLS-K, panel of all seven rounds: standard errors and design effects for the full sample using C1_7SC0-C1_7SC40 and C1_7SP0-C1_7SP40, by selected child and parent variables: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Survey item & Variable name & \begin{tabular}{l}
Number \\
of cases
\end{tabular} & Estimate & \[
\begin{array}{r}
\text { Design } \\
\mathrm{SE}^{1}
\end{array}
\] & \[
\begin{gathered}
\mathrm{SRS} \\
\mathrm{SE}^{2}
\end{gathered}
\] & \(\mathrm{DEFT}^{3}\) & DEFF \({ }^{4}\) \\
\hline \multicolumn{8}{|l|}{Other characteristics (mean)} \\
\hline Age of child in months & R7AGE & 2,368 & 171.39 & 0.139 & 0.095 & 1.462 & 2.138 \\
\hline Child's BMI & C7BMI & 2,234 & 22.99 & 0.223 & 0.118 & 1.893 & 3.585 \\
\hline Hours spent in school activities & C7HRSCLB & 2,285 & 4.78 & 0.185 & 0.143 & 1.294 & 1.675 \\
\hline Hours spent on non-school reading & C7HRSRD & 2,266 & 3.67 & 0.185 & 0.160 & 1.155 & 1.333 \\
\hline Hours spent watching TV on weekdays & C7TVWKDY & 2,304 & 3.13 & 0.077 & 0.061 & 1.260 & 1.588 \\
\hline Hours spent watching TV on weekend & C7TVWKEN & 2,306 & 4.43 & 0.119 & 0.083 & 1.432 & 2.052 \\
\hline Hours spent playing videogames on weekdays & C7VIDWKD & 2,302 & 1.47 & 0.068 & 0.043 & 1.579 & 2.494 \\
\hline Hours spent playing videogames on weekend & C7VIDWKN & 2,318 & 2.74 & 0.125 & 0.072 & 1.748 & 3.057 \\
\hline Hours spent on the internet on weekdays & C7INTWKD & 2,299 & 2.14 & 0.072 & 0.047 & 1.536 & 2.360 \\
\hline Hours spent on the internet on weekend & C7INTWKN & 2,289 & 3.01 & 0.080 & 0.065 & 1.235 & 1.524 \\
\hline Child's household size & P7HTOTAL & 2,063 & 4.43 & 0.051 & 0.030 & 1.706 & 2.911 \\
\hline Number of children < 18 in child's HH & P7LESS18 & 2,063 & 2.34 & 0.046 & 0.025 & 1.815 & 3.295 \\
\hline Number of siblings in HH & P7NUMSIB & 2,063 & 1.46 & 0.041 & 0.025 & 1.614 & 2.605 \\
\hline Median & & & & & & 1.686 & 2.843 \\
\hline Mean & & & & & & 1.716 & 3.043 \\
\hline Standard deviation & & & & & & 0.314 & 1.158 \\
\hline Coefficient of variation & & & & & & 0.183 & 0.381 \\
\hline Minimum & & & & & & 1.155 & 1.333 \\
\hline Maximum & & & & & & 2.544 & 6.474 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1}\) Design SE is the standard error under the ECLS-K sample design. For an explanation of this statistic, see section 4.10.
\({ }^{2}\) SRS SE is the standard error assuming simple random sample. For an explanation of this statistic, see section 4.10.
\({ }^{3}\) DEFT is the root design effect. For an explanation of DEFT, see section 4.10.
\({ }^{4}\) DEFF is the design effect. For an explanation of DEFF, see section 4.10.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.
}

Table 9-9 presents the median design effects for subgroups based on school affiliation, child's sex and race/ethnicity, geographic region, type of locale, and the socioeconomic status scales (SES quintiles) of the parents. At the overall level, median design effects are lowest for the panel that includes all seven rounds of data collection. Since this panel of children has a much reduced sample size as it includes the fall-first grade subsample from the full base year sample, the clustering effect is smaller, resulting in smaller design effects. Within this smallest panel, median design effects range from 1.9 for Blacks to 5.0 for American Indian. This last group has a very small sample size and is highly clustered.

For the other five panels, all involving the full sample of children, median design effects have about the same magnitude at the overall level, between 3.2 and 3.3 , compared with 2.8 for the reduced panel. By subgroups, the median design effect is smallest for American Indian in all panels. They are highest for children in Catholic schools.

Standard errors and design effects were not computed for items from the teacher and school administrator questionnaires since there are no teacher or school weights computed for spring-third grade. Although standard errors and design effects may also be calculated for the teacher and school administrator questionnaires at the child level, they are quite large compared to those typically found for the ECLS-K data. Design effects for teacher and school items are large because the intraclass correlation is 100 percent for children in the same school and very high for children in the same class; children attending the same school have the same school data, and children in the same class have the same teacher data. The correlation is not 100 percent for children in the same class because teacher data include not only items about the teacher and the class but also items about the individual children as completed by their teachers.

Table 9-9. ECLS-K panel: median design effects for subgroups, kindergarten through eighth grade: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|r|}{Spring-fifth/ spring-eighth} & \multicolumn{2}{|r|}{Spring-third/ spring-fifth/ spring-eighth} & \multicolumn{2}{|r|}{Spring-first/ spring-third/ spring-fifth/ spring-eighth} & \multicolumn{2}{|r|}{\begin{tabular}{l}
Spring- \\
kindergarten/ spring-first/ spring-third/ spring-fifth/ spring-eighth
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
Fall-kindergarten/ \\
spring- \\
kindergarten/ spring-first/ spring-third/ spring-fifth/ spring-eighth
\end{tabular}} & \multicolumn{2}{|l|}{All seven rounds of data collection} \\
\hline Characteristic & \(\mathrm{DEFT}^{1}\) & DEFF \(^{2}\) & DEFT \({ }^{1}\) & DEFF \(^{2}\) & DEFT \(^{1}\) & DEFF \({ }^{1}\) & \(\mathrm{DEFT}^{2}\) & \(\mathrm{DEFF}^{2}\) & \(\mathrm{DEFT}^{1}\) & DEFF \(^{2}\) & DEFT \(^{1}\) & DEFF \(^{2}\) \\
\hline All children & 1.777 & 3.157 & 1.785 & 3.187 & 1.787 & 3.192 & 1.804 & 3.253 & 1.810 & 3.275 & 1.686 & 2.843 \\
\hline School affiliation \({ }^{3}\) & & & & & & & & & & & & \\
\hline Public & 1.747 & 3.053 & 1.760 & 3.096 & 1.749 & 3.060 & 1.766 & 3.118 & 1.752 & 3.068 & 1.595 & 2.543 \\
\hline Private & 1.963 & 3.853 & 1.984 & 3.937 & 1.962 & 3.851 & 1.996 & 3.985 & 1.934 & 3.740 & 1.922 & 3.695 \\
\hline Catholic private & 1.961 & 3.845 & 2.002 & 4.007 & 1.977 & 3.910 & 2.024 & 4.098 & 2.031 & 4.125 & 2.009 & 4.037 \\
\hline Other private & 1.765 & 3.115 & 1.807 & 3.267 & 1.782 & 3.176 & 1.823 & 3.323 & 1.670 & 2.788 & 1.670 & 2.788 \\
\hline Sex & & & & & & & & & & & & \\
\hline Male & 1.724 & 2.973 & 1.743 & 3.039 & 1.759 & 3.095 & 1.779 & 3.165 & 1.741 & 3.030 & 1.622 & 2.632 \\
\hline Female & 1.718 & 2.950 & 1.735 & 3.011 & 1.773 & 3.143 & 1.781 & 3.171 & 1.744 & 3.043 & 1.673 & 2.800 \\
\hline Race/ethnicity & & & & & & & & & & & & \\
\hline White & 1.822 & 3.318 & 1.828 & 3.342 & 1.812 & 3.284 & 1.889 & 3.568 & 1.876 & 3.519 & 1.746 & 3.049 \\
\hline Black & 1.561 & 2.436 & 1.544 & 2.385 & 1.582 & 2.502 & 1.642 & 2.695 & 1.590 & 2.527 & 1.383 & 1.913 \\
\hline Hispanic & 1.399 & 1.956 & 1.382 & 1.909 & 1.410 & 1.988 & 1.375 & 1.891 & 1.371 & 1.881 & 1.507 & 2.270 \\
\hline Asian & 1.447 & 2.093 & 1.457 & 2.124 & 1.442 & 2.080 & 1.448 & 2.098 & 1.532 & 2.346 & 1.541 & 2.374 \\
\hline Pacific Islander & 1.324 & 1.753 & 1.303 & 1.697 & 1.303 & 1.699 & 1.309 & 1.714 & 1.261 & 1.590 & 1.963 & 3.853 \\
\hline American Indian & 1.098 & 1.206 & 1.170 & 1.369 & 1.157 & 1.338 & 1.268 & 1.607 & 1.118 & 1.250 & 2.233 & 4.985 \\
\hline Other & 1.528 & 2.336 & 1.575 & 2.480 & 1.628 & 2.652 & 1.642 & 2.697 & 1.535 & 2.357 & 1.496 & 2.239 \\
\hline Region & & & & & & & & & & & & \\
\hline Northeast & 1.677 & 2.812 & 1.734 & 3.006 & 1.779 & 3.166 & 1.823 & 3.325 & 1.809 & 3.273 & 1.838 & 3.380 \\
\hline Midwest & 2.007 & 4.030 & 1.930 & 3.726 & 2.026 & 4.105 & 2.041 & 4.166 & 1.889 & 3.570 & 1.801 & 3.242 \\
\hline South & 1.667 & 2.779 & 1.706 & 2.909 & 1.743 & 3.037 & 1.715 & 2.940 & 1.746 & 3.047 & 1.549 & 2.399 \\
\hline West & 1.696 & 2.877 & 1.676 & 2.810 & 1.669 & 2.785 & 1.706 & 2.910 & 1.649 & 2.720 & 1.567 & 2.455 \\
\hline
\end{tabular}

\footnotetext{
See notes at end of table.
}

Table 9-9. ECLS-K panel: median design effects for subgroups, kindergarten through eighth grade: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07-Continued
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{2}{|r|}{Spring-fifth/ spring-eighth} & \multicolumn{2}{|r|}{Spring-third spring-fifth spring-eighth} & \multicolumn{2}{|r|}{Spring-first/ spring-third/ spring-fifth/ spring-eighth} & \multicolumn{2}{|r|}{Springkindergarten/ spring-first/ spring-third/ spring-fifth/ spring-eighth} & \multicolumn{2}{|l|}{Fall-kindergarten/ springkindergarten/ spring-first/ spring-third/ spring-fifth/ spring-eighth} & \multicolumn{2}{|l|}{All seven rounds of data collection} \\
\hline Characteristic & \(\mathrm{DEFT}^{1}\) & \(\mathrm{DEFF}^{2}\) & \(\mathrm{DEFT}^{1}\) & \(\mathrm{DEFF}^{2}\) & \(\mathrm{DEFT}^{1}\) & DEFF \(^{1}\) & \(\mathrm{DEFT}^{2}\) & \(\mathrm{DEFF}^{2}\) & DEFT \(^{1}\) & \(\mathrm{DEFF}^{2}\) & \(\mathrm{DEFT}^{1}\) & \(\mathrm{DEFF}^{2}\) \\
\hline Type of locale & & & & & & & & & & & & \\
\hline Central city & 1.748 & 3.056 & 1.772 & 3.139 & 1.786 & 3.191 & 1.805 & 3.258 & 1.789 & 3.199 & 1.773 & 3.145 \\
\hline Urban fringe and large town & 1.732 & 3.001 & 1.719 & 2.956 & 1.771 & 3.136 & 1.773 & 3.144 & 1.799 & 3.235 & 1.680 & 2.824 \\
\hline Small town and rural area & 1.859 & 3.456 & 1.914 & 3.664 & 1.931 & 3.730 & 1.877 & 3.522 & 1.954 & 3.818 & 1.713 & 2.936 \\
\hline Socioeconomic status quintiles & & & & & & & & & & & & \\
\hline First (lowest) & 1.554 & 2.415 & 1.514 & 2.293 & 1.545 & 2.386 & 1.549 & 2.400 & 1.556 & 2.422 & 1.478 & 2.185 \\
\hline Second & 1.677 & 2.812 & 1.717 & 2.948 & 1.741 & 3.030 & 1.731 & 2.997 & 1.715 & 2.940 & 1.557 & 2.423 \\
\hline Third & 1.718 & 2.952 & 1.722 & 2.966 & 1.781 & 3.171 & 1.789 & 3.201 & 1.749 & 3.060 & 1.617 & 2.615 \\
\hline Fourth & 1.706 & 2.912 & 1.770 & 3.132 & 1.816 & 3.297 & 1.841 & 3.388 & 1.801 & 3.242 & 1.670 & 2.788 \\
\hline Fifth (highest) & 1.717 & 2.948 & 1.707 & 2.914 & 1.764 & 3.113 & 1.792 & 3.211 & 1.714 & 2.936 & 1.762 & 3.106 \\
\hline
\end{tabular}
\({ }^{1}\) DEFT is the root design effect. For an explanation of DEFT, see chapter 4, section 4.10.
\({ }^{2}\) DEFF is the design effect. For an explanation of DEFF, see chapter 4, section 4.10.
\({ }^{3}\) The categories of school affiliation in this table do not match categories of school affiliation in chapter 4 . This is to allow users to compare median DEFT and DEFF in fifth grade with those in previous years.
NOTE: Each median is based on 51 items.
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99
(ECLS-K), fall 1998, spring 1999, fall 1999, spring 2000, spring 2002, spring 2004, and spring 2007.
- Please note that section 9.4 applies only to the eighth-grade restricted-use file. This section does not apply to the \(K-8\) full sample file.

\subsection*{9.4 Merging Base-year Child-Level Data With the First-Grade, Third-Grade, Fifth-Grade, and Eighth-Grade Child-Level Data}

To create a \(\mathrm{K}-8\) restricted-use data file, which combines data from the base-year, first-grade, third-grade, fifth-grade, and eighth-grade data collections, an analyst should use the ECLS-K Base Year Restricted-Use Electronic Code Book (NCES 2000-097); the ECLS-K First Grade Restricted-Use Electronic Code Book (NCES 2002-127); the ECLS-K Third Grade Restricted-Use Electronic Code Book (NCES 2003-002); the ECLS-K Fifth-Grade Restricted-Use Electronic Codebook (NCES 2006-033); and the ECLS-K Eighth-Grade Restricted-Use Electronic Codebook (NCES 2009-006). To create a restricteduse longitudinal file, perform the following steps to merge the base-year child-level variables needed for analysis with the first-grade, third-grade, fifth-grade, and eighth-grade child-level variables needed:
1. Select the variables to be analyzed from the base-year electronic codebook (ECB) child catalog and the variable CHILDID. This creates a "working taglist" (see section 8.4 in chapter 8 for more detail on how to create a working taglist).
2. Run the program generated after extraction to create a base-year dataset (DATA1).
3. Using the child catalog from the First-Grade ECB, select the variables to be analyzed and the variable CHILDID.
4. Run the program generated after extraction to create a first-grade dataset (DATA2).
5. Using the child catalog from the Third-Grade ECB, select the variables to be analyzed and the variable CHILDID.
6. Run the program generated after extraction to create a third-grade dataset (DATA3).
7. Using the child catalog from the Fifth-Grade ECB, select the variables to be analyzed and the variable CHILDID.
8. Run the program generated after extraction to create a fifth-grade dataset (DATA4).
9. Using the child catalog from the Eighth-Grade ECB, select the variables to be analyzed and the variable CHILDID.
10. Run the program generated after extraction to create an eighth-grade dataset (DATA5).
11. Sort DATA1, DATA2, DATA3, DATA4, and DATA5 by CHILDID.
12. Merge DATA1 and DATA2 and DATA3 and DATA4 and DATA5 by CHILDID.

This merged file will contain 21,409 cases, some of which will not have \(\mathrm{K}-8\) longitudinal weights. For example, base-year respondents who did not participate in either fall or spring of first grade or spring of third grade or spring of fifth grade or spring of eighth grade, and movers who were not included in the first-grade, third-grade, and fifth-grade samples, will not have any \(\mathrm{K}-8\) longitudinal weights. To select cases with \(\mathrm{K}-8\) longitudinal data, a user can use a \(\mathrm{K}-8\) longitudinal weight appropriate to the analysis.

As mentioned in section 3.1.2, the eighth-grade data files contain rescaled assessment scale scores that were recalibrated for all rounds to make longitudinal comparisons possible. As a result, estimates of gains in scale score points should be made using the recalibrated versions of the scores on the eighth-grade data files, rather than scores from data files from previous rounds.

\section*{10. KINDERGARTEN-EIGHTH GRADE FULL SAMPLE PUBLIC-USE DATA FILE}

\section*{- Please note that this entire chapter is for users of the \(K-8\) full sample public-use data file that NCES releases. Users who have created their own longitudinal files should refer to chapter 9. This chapter does not apply to users of the eighth-grade restricted-use file.}

\subsection*{10.1 Introduction}

For the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), the kindergarten-eighth grade full sample public-use data file, referred to hereinafter as the \(\mathrm{K}-8\) full sample data file, combines data from the base-year (kindergarten), first-grade, third-grade, fifth-grade, and eighth-grade data collections. It was created so that analysts can easily access all data that has been publicly released in any round of data collection between fall-kindergarten and spring-eighth grade. The file can be used to analyze data from any single round of data collection or from any combination of rounds (e.g., cross-year analysis). When using the data from a single round of data collection, analysts can answer questions related to children's status at a point in time. When using data from multiple rounds, analysts can examine children's growth and development within kindergarten, within first grade, and between kindergarten and eighth grade without having to go through the process of merging several different data files. Cross-sectional and longitudinal weights developed for each round of the ECLS-K are included on the data file. Thus, this file can be used to study such topics as children's skills at school entry and their learning across school years, the extent of summer learning or loss between kindergarten and the fall of the following school year, and the home, school, or classroom characteristics that are associated with children's growth in reading, mathematics, and science skills.

Users will obtain basic information about the \(\mathrm{K}-8\) full sample public-use data file in this chapter. The chapter begins with a description of the individuals included on the file. It then provides an overview of the content of the data file and a description of the cross-sectional and longitudinal weights on the file. Round 7 weights described in chapters 4 and 9 are repeated here as well for the convenience of users of the K-8 full sample data file.

\subsection*{10.2 Individuals Included on the K-8 Full Sample Public-Use Data File}

Unlike previously released longitudinal files that contained only those children with data at particular points in time, the K-8 full sample public-use data file includes all children with ECLS-K data in at least one of the seven rounds of data collection, from fall-kindergarten through spring-eighth grade. In all, the K-8 full sample data file has 21,409 child records. They are as follows:
- 21,260 base-year respondents, i.e., children who had fall- and/or spring-kindergarten child assessment or parent interview data or who were excluded from assessment because of a disability or because they belonged in the language minority, not Spanish group; in other words, children with at least one nonzero base-year cross-sectional weight (C1CW0, C2CW0, C1PW0, or C2PW0); and
- 149 children who were sampled in spring-first grade through the sampling freshening process, and who had data for at least one data collection year (i.e., spring of first, third, fifth, or eighth grade).

The K-8 full sample data file is a child-level file. All parent, teacher, and school information collected for any particular child from each round of data collection has been attached to that child's record (a more detailed description of the record layout is contained in appendix E on the Electronic Codebook (ECB) for the K-8 full sample data file). For detailed information about response rates in each round of data collection, see chapter 5 of the base-year, first-grade, third-grade, fifth-grade, and eighthgrade user's manuals.

\subsection*{10.3 Content}

The K-8 full sample data file contains all publicly released data collected from parents, children, teachers, or schools in the base-year (fall and spring), first-grade (fall and spring), spring-third grade, spring-fifth grade, and spring-eighth grade data collections. It includes data from the household rosters, which list all household members, their relationship to the sampled child, and selected other characteristics. This roster information has not been available on the longitudinal files previously released. The \(\mathrm{K}-8\) full sample data file also includes the composite variables describing critical household roster-based information, such as the children's family structure and selected characteristics of the family members. See chapter 7 of the base-year, first-grade, third-grade, fifth-grade, and eighth-grade user's manuals for a description of these and other composite variables.

Similar to the first-, third-, and fifth-grade files, the K-8 full sample data file contains a few base-year variables that were not in the base-year files. They fall into three categories: (1) base-year recalibrated assessment scores, (2) base-year recalibrated Academic Rating Scale (ARS) scores, and (3) new and corrected base-year composites. The direct child assessment scores were recalibrated to obtain gain scores that could be compared across seven waves of data. The ARS scores were recalibrated because an error was identified in the base-year ARS scores. Specifically, the fall and spring base-year ARS scores used slightly different metrics. These scores were recalibrated using a combined calibration of fall- and spring-kindergarten ratings. Therefore, the unit for the corrected fall- and spring-kindergarten scores is the same, though comparisons between fall- and spring-kindergarten scores are not recommended. Although the item stems are similar across grades, the actual items include performance criteria that increase from one grade to the next. Moreover, the ARS score metric is different at each point. Therefore, change scores should not be used to compare eighth-grade ratings with those from earlier rounds.

The specifics of the ARS and composite problems are described in the first-grade public-use user's manual in the section titled Base-Year Errata and Composites. The other errors listed in that section have either been corrected (errata numbers 1 through 7) or are not pertinent to the K-8 full sample data file (erratum number 8). For example, the base-year poverty and locality composites were detected to have errors and were recreated and included with the first-grade data file (appendix D) and in the K-8 longitudinal data file. Specifically, WKPOV_R replaces WKPOVRTY and KURBAN_R replaces KURBAN. Similarly, the imputation flag IF_INC_R replaces IF_INC. Errata numbers 3, 6, and 7 were corrected but did not require replacing existing variables.

Two sets of composite variables have been revised for the kindergarten, first-grade, and third-grade years. They are the school lunch composites (percent of children eligible for free lunch and percent of children eligible for reduced-price lunch), and the child's disability status. See section 10.3 of the fifth-grade user's manual for a description of how these composites were revised. The revised school lunch composites and child disability status composites are included on the K-8 full sample data file.

\subsection*{10.4 K-8 Weights}

Several sets of cross-sectional and longitudinal weights have been computed for children with complete data from each round and different combinations of rounds. All weights on the K-8 full
sample data file are child-level weights. There are no K-8 longitudinal weights at the school or teacher level since school- and teacher-level weights were not computed for the first-grade, third-grade, fifth-, or eighth-grade years due to lack of representativeness. Detailed descriptions of the ECLS-K cross-sectional weights are included in chapter 4 of the ECLS-K base-year, first-grade, third-grade, fifth-grade, and eighth-grade user's manuals. Detailed descriptions of the ECLS-K longitudinal weights are included in chapter 9 of the first-grade, third-grade, fifth-grade, and eighth-grade user's manuals.

Before describing the weights, it is useful to understand the conventions used to name them. The names of the weights indicate the round or rounds of data collection and the component or combination of components (parent, child assessment, teacher) to which they apply. The ECLS-K has seven rounds of data collection, as shown in exhibit 10-1:

Exhibit 10-1. Crosswalk between round number of data collection, grade, and school year: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07
\begin{tabular}{lll}
\hline Round number & Grade & School year \\
\hline 1 & Fall-kindergarten & Fall 1998 \\
2 & Spring-kindergarten & Spring 1999 \\
3 & Fall-first grade (subsample) & Fall 1999 \\
4 & Spring-first grade & Spring 2000 \\
5 & Spring-third grade & Spring 2002 \\
6 & Spring-fifth grade & Spring 2004 \\
7 & Spring-eighth grade & Spring 2007 \\
\hline SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of \\
1998-99 (ECLS-K), fall 1998, spring 1999, fall 1999, spring 2000, spring 2002, spring 2004, and spring 2007.
\end{tabular}

ECLS-K variable names are restricted to eight characters; thus, some weights use an underscore to indicate a range of rounds. For example, weight C1_4CW0 applies to cases with assessment data from the first four rounds of data collection (fall-kindergarten, spring-kindergarten, fall first-grade, and spring-first grade) or cases that were excluded from the direct assessment in one or more rounds due to a disability.

The letters in the weight names indicate the survey component (see exhibit 10-2). Two letters ( F and S ) are also used in some of the longitudinal weights to indicate whether the weight applies to the full sample ( F ) or to the fall-first grade subsample (S). These letters appear before P (parent interview) and C (child assessment) in the weight name. For example, C1_6FC0 is used for analysis of child assessment data for the full sample from five rounds ( \(1,2,4,5\), and 6). Data from round 3 (the
subsample) are not included and thus the weight applies to the full sample. Weight \(\mathrm{C} 1 \_6 \mathrm{SC} 0\), on the other hand, pertains to assessment data from six rounds including the round 3 subsample, and thus the weight applies only to cases included in the subsample. The letter ' S ' is not provided to indicate fall-first grade subsampling when round 3 is specified in the weight name (e.g., C34PW0). Many weights end in W0; the 'W' merely stands for "weight." All analysis weights end in 0 (zero), whereas replicate weights end in 1 through 90 . Four longitudinal weights described in exhibit 10-4 do not follow these naming conventions: BYCOMW0, Y2COMW0, C1_4PW0, and C1_4CW0. These weights were named before the naming conventions were put into place. Both C1_4PW0 and C1_4CW0 include the first four rounds of data and thus pertain to cases in the fall-first grade subsample.

Exhibit 10-2. Interpretation of letters used in names of weights
\begin{tabular}{ll}
\hline Letter & Interpretation \\
\hline P & Parent interview \\
C & Child assessment \\
T & Child-level information in the teacher questionnaire (through third grade) \\
R & Child-level information in reading teacher questionnaire (fifth grade) \\
E & Child-level information in English teacher questionnaire (eighth grade) \\
M & Child-level information in mathematics teacher questionnaire (fifth and eighth grades) \\
S & Child-level information in science teacher questionnaire (fifth and eighth grades) \\
BY & \begin{tabular}{l} 
Base-year data: information from fall- and spring-kindergarten (e.g., BYCW0, BYPW0, \\
\\
BYCPTW0)
\end{tabular} \\
\hline
\end{tabular}
\({ }^{1}\) When S appears in longitudinal weights, it means that the weight applies only to the panel that includes the fall-first grade subsample. SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 1998, spring 1999, fall 1999, spring 2000, spring 2002, spring 2004, and spring 2007.

The cross-sectional weights available on the \(\mathrm{K}-8\) full sample file ECB are described in exhibit 10-3. The longitudinal weights available on the file are described in exhibit 10-4. In both exhibits, the number of records with nonzero weights is given for each weight so that users can check the count of records that will be included in a particular analysis. The use of the weights is described in the last column of exhibits 10-3 and 10-4. This column is designed to help users choose appropriate weights for their analyses.

The K-8 full sample file includes records of children who were base-year respondents but who did not have data for both fall-kindergarten and spring-kindergarten. These records are included because a base-year respondent is defined as a child who had either a fall- or spring-kindergarten child assessment or parent interview or was excluded from assessment because of a disability or because the child belonged in the language minority, not Spanish group; in other words the data file includes records
for children with at least one nonzero base-year cross-sectional weight (C1CW0, C2CW0, C1PW0, or C2PW0) but not necessarily all nonzero base-year cross-sectional weights.

\section*{How to Use Cross-Sectional Weights}

To use cross-sectional weights, decide which round of data collection you will be using and from which components you will be drawing data (e.g., parent interview, child assessment, or teacher questionnaire). In exhibit 10-3, go to the round of data collection you will be using. The column "to be used in analysis of" will help you select the weight that most closely matches the components from which you are drawing data. For example, if you are using third-grade parent interview and child assessment data in your analysis, go to the section of the exhibit labeled "Spring-third grade." The best weight for your purposes is C5PW0. If you are also going to use teacher-level information from the third-grade teacher questionnaire, then you would use C5CPTW0. Detailed descriptions of the ECLS-K crosssectional weights are included in chapter 4 of the ECLS-K base-year, first-grade, third-grade, fifth-grade, and eighth-grade user's manuals.

Exhibit 10-3. ECLS-K: K-8 cross-sectional weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{K}-8\) crosssectional (within round) weights & Number of records with nonzero weight & Is nonzero if ... & To be used for analysis of ... \\
\hline \multicolumn{4}{|l|}{Fall-Kindergarten} \\
\hline B1TW0 & 3,047 & data from the teacher questionnaire part B are present for fall-kindergarten. & data from fall-kindergarten teacher questionnaire part A or part B. \\
\hline C1CW0 & 19,173 & assessment data are present for fallkindergarten, or if the child was excluded from direct assessment in fall-kindergarten due to a disability. & child direct assessment data from fall-kindergarten, alone or in combination with (a) a limited set of child characteristics (e.g., age, sex, and race/ethnicity) or (b) data from any fall-kindergarten teacher questionnaire (teacher-level or child-level). \\
\hline C1PW0 & 18,097 & parent interview data are present for fallkindergarten. & parent interview data from fall-kindergarten, alone or in combination with (a) fall-kindergarten child assessment data or (b) data from any fallkindergarten teacher questionnaire (teacher-level or child-level). \\
\hline & & & Exception: If data from the parent interview AND child assessments AND teacher-level (with or without child-level teacher) questionnaires are used together, then C1CPTW0 should be used. \\
\hline C1CPTW0 & 17,124 & assessment data are present for fallkindergarten (or if the child was excluded from direct assessment in fall-kindergarten due to a disability), parent interview data are present for fall-kindergarten, and teacher-level questionnaire data are present for fall-kindergarten. & child direct assessment data from fall-kindergarten with fall-kindergarten parent interview data and fall-kindergarten teacher-level data with or without child-level data from the teacher. \\
\hline \multicolumn{4}{|l|}{Spring-Kindergarten} \\
\hline S2SAQW0 & 866 & data from the school administrator questionnaire are present for springkindergarten. & data from the spring-kindergarten school administrator questionnaire or school facilities checklist. \\
\hline B2TW0 & 3243 & data from the teacher questionnaire part B are present for spring-kindergarten. & data from spring-kindergarten teacher questionnaire part A , data from fallor spring-kindergarten teacher questionnaire part B , or combination of data from fall-kindergarten or spring-kindergarten teacher questionnaire part A or B. \\
\hline C2CW0 & 19,967 & assessment data are present for springkindergarten, or if the child was excluded from direct assessment in springkindergarten due to a disability. & child direct assessment data from spring-kindergarten, alone or combination with (a) a limited set of child characteristics (e.g., age, sex, and race/ethnicity), (b) data from any spring-kindergarten teacher questionnaire (teacher-level or child-level), or (c) data from the springkindergarten school administrator questionnaire or school facilities checklist. \\
\hline
\end{tabular}

Exhibit 10-3. ECLS-K: K-8 cross-sectional weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07-Continued
\(\left.\begin{array}{llll}\hline \begin{array}{l}\text { K-8 cross- } \\
\text { sectional (within } \\
\text { round) weights }\end{array} & \begin{array}{l}\text { Number of } \\
\text { records with } \\
\text { nonzero weight }\end{array} & \text { Is nonzero if ... } & \text { To be used for analysis of ... }\end{array}\right]\)\begin{tabular}{ll}
\hline Spring-Kindergarten-Continued & \\
\hline C2PW0 & 18,950 \\
& \begin{tabular}{l} 
parent interview data are present for spring- \\
kindergarten.
\end{tabular} \\
\hline parent interview data from spring-kindergarten, alone or in combination \\
with (a) spring-kindergarten child assessment data, (b) data from any \\
spring-kindergarten teacher questionnaire (teacher-level or child-level), or \\
(c) data from the spring-kindergarten school administrator questionnaire \\
or school facilities checklist. \\
Exception: If data from the parent interview AND child assessments AND \\
teacher-level (with or without child-level teacher) questionnaires are used \\
together, then C2CPTW0 should be used.
\end{tabular}

\footnotetext{
See note at end of exhibit.
}

Exhibit 10-3. ECLS-K: K-8 cross-sectional weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07-Continued
\begin{tabular}{|c|c|c|c|}
\hline K-8 crosssectional (within round) weights & Number of records with nonzero weight & Is nonzero if ... & To be used for analysis of ... \\
\hline \multicolumn{4}{|l|}{Spring-First Grade-Continued} \\
\hline \multirow[t]{2}{*}{C4PW0} & \multirow[t]{2}{*}{15,626} & \multirow[t]{2}{*}{parent interview data are present for springfirst grade.} & parent interview data from spring-first grade, alone or in combination with (a) spring-first grade child assessment data, (b) data from any spring-first grade teacher questionnaire (teacher-level or child-level), or (c) data from the spring-first grade school administrator questionnaire or school facilities checklist. \\
\hline & & & Exception: If data from the parent interview AND child assessments AND teacher-level (with or without child-level teacher) questionnaires are used together, then C4CPTW0 should be used. \\
\hline C4CPTW0 & 13,491 & assessment data are present for spring-first grade (or if the child was excluded from direct assessment in spring-first grade due to a disability), parent interview data are present for spring-first grade, and teacherlevel questionnaire data are present for spring-first grade. & child direct assessment data from spring-first grade with spring-first grade parent interview data and spring-first grade teacher-level data with or without child-level data from the teacher, alone or in combination with data from the spring-first grade school administrator questionnaire or facilities checklist. \\
\hline \multicolumn{4}{|l|}{Spring-Third Grade} \\
\hline C5CW0 & 14,470 & assessment data are present for spring-third grade, or if the child was excluded from direct assessment in spring-third grade due to a disability. & child direct assessment data from spring-third grade, alone or in combination with (a) a limited set of child characteristics (e.g., age, sex, and race/ethnicity), (b) data from any spring-third grade teacher questionnaire (teacher-level or child-level), or (c) data from the springthird grade school administrator questionnaire or school facilities checklist. \\
\hline \multirow[t]{2}{*}{C5PW0} & \multirow[t]{2}{*}{13,489} & \multirow[t]{2}{*}{parent interview data are present for springthird grade.} & parent interview data from spring-third grade, alone or in combination with (a) spring-third grade child assessment data, (b) data from any spring-third grade teacher questionnaire (teacher-level or child-level), or (c) data from the spring-third grade school administrator questionnaire or school facilities checklist. \\
\hline & & & Exception: If data from the parent interview AND child assessments AND teacher-level (with or without child-level teacher) questionnaires are used together, then C5CPTW0 should be used. \\
\hline
\end{tabular}

\footnotetext{
See note at end of exhibit.
}

Exhibit 10-3. ECLS-K: K-8 cross-sectional weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07-Continued
\begin{tabular}{lll}
\begin{tabular}{l} 
K-8 cross- \\
sectional (within \\
round) weights
\end{tabular} & \begin{tabular}{l} 
Number of \\
records with \\
nonzero weight
\end{tabular} & Is nonzero if ...
\end{tabular}

\footnotetext{
See note at end of exhibit
}

Exhibit 10-3. ECLS-K: K-8 cross-sectional weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07-Continued


See note at end of exhibit.

Exhibit 10-3. ECLS-K: K-8 cross-sectional weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07-Continued
\begin{tabular}{|c|c|c|c|}
\hline K-8 crosssectional (within round) weights & Number of records with nonzero weight & Is nonzero if ... & To be used for analysis of ... \\
\hline \multicolumn{4}{|l|}{Spring-Eighth Grade-Continued} \\
\hline C7CPTE0 & 8,294 & assessment data are present for springeighth grade (or the child was excluded from direct assessment in spring-eighth grade due to a disability), or student questionnaire data are present for springeighth grade, parent interview data are present for spring-eighth grade, and teacherlevel data from the English teacher are present for spring-eighth grade. & child direct assessment or student questionnaire data from spring-eighth grade with spring-eighth grade parent interview data and spring-eighth grade English teacher-level data with or without child-level data from the English teacher, alone or in combination with data from the spring-eighth grade school administrator questionnaire. \\
\hline C7CPTM0 & 4,130 & child was sampled to have a child-level questionnaire completed by the mathematics teacher and assessment data are present for spring-eighth grade (or the child was excluded from direct assessment in spring-eighth grade due to a disability), or student questionnaire data are present for spring-eighth grade, parent interview data are present for spring-eighth grade, and teacher-level data are present for springeighth grade (either from the English teacher or the mathematics teacher). & child direct assessment or student questionnaire data from spring-eighth grade with spring-eighth grade parent interview data and spring-eighth grade English or mathematics teacher-level data with or without childlevel data from the mathematics teacher, alone or in combination with data from the spring-eighth grade school administrator questionnaire This weight is to be used only if the analytic sample is restricted to the subset of children who were sampled to have a mathematics teacher questionnaire. \\
\hline C7CPTS0 & 4,164 & child was sampled to have a child-level questionnaire completed by the science teacher and assessment data are present for spring-eighth grade (or the child was excluded from direct assessment in springfifth grade due to a disability), or student questionnaire data are present for springeighth grade, parent interview data are present for spring-eighth grade, and teacherlevel data are present for spring-eighth grade (either from the English teacher or the science teacher). & child direct assessment or student questionnaire data from spring-eighth grade with spring-eighth grade parent interview data and spring-eighth grade English or science teacher-level data with or without child-level data from the science teacher, alone or in combination with data from the spring-eighth grade school administrator questionnaire. This weight is to be used only if the analytic sample is restricted to the subset of children who were sampled to have a science teacher questionnaire. \\
\hline
\end{tabular}

\footnotetext{
SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 1998, spring 1999, fall 1999,
} spring 2000 , spring 2002 , spring 2004, and spring 2007.

\section*{How to Use Longitudinal Weights}

First, decide which two or more points in time are the focus of the analysis. The analysis could pertain to two points in time (e.g., spring-kindergarten and fall-first grade, or spring-kindergarten and spring-first grade, or spring-first grade and spring-third grade); three points in time (e.g., spring-first grade, spring-third grade, and spring-fifth grade); four points in time (any four of fall-kindergarten, spring-kindergarten, fall-first grade, spring-first grade, spring-third grade, spring-fifth grade, and springeighth grade); five points in time (any five of fall-kindergarten, spring-kindergarten, fall-first grade, spring-first grade, spring-third grade, spring-fifth grade, and spring-eighth grade); six points in time (any six of fall-kindergarten, spring-kindergarten, fall-first grade, spring-first grade, spring-third grade, springfifth grade, and spring-eighth grade, or seven points in time (all seven rounds of data). In exhibit 10-4, go to the section of the table containing the weights for the HIGHEST grade level that you will be including in your analyses. For example, if the analysis uses spring-kindergarten and fall-first grade data, go to the section of the table labeled "Fall-first grade." The appropriate weight begins with C23 (denoting childlevel data from round 2 AND round 3). If the analysis uses data from spring-kindergarten, spring-first, and spring-third grade, go to the section of exhibit 10-4 labeled "Spring-third grade." The appropriate weight begins with C245 (denoting data from rounds 2,4 , AND 5). If the analysis uses data from springkindergarten, spring-first, spring-third, and spring-fifth grade, go to the section of the exhibit labeled "Spring-fifth grade." The appropriate weight begins with C2_6F. If the analysis uses data from springkindergarten, spring-first, spring-third, spring-fifth grade, and spring-eighth grade, go to the section labeled "Spring-eighth grade." The appropriate weight begins with C2_7F.

Second, consider the source of the data, which also affects the choice of the weight. In exhibit 10-4, details under the "to be used in the analysis of ..." column provide guidance based on whether the data were collected through the child assessments, parent interviews, or teacher questionnaires. If parent data from spring-kindergarten and fall-first grade are needed for the analysis, then C23PW0 should be used, otherwise C23CW0 can be used. Similarly, if an analyst wishes to examine the influence of parent characteristics on gains in assessment scores between kindergarten and third grade, the appropriate weight would be C245PW0, indicating that parent interview data was included. However, if only child or teacher data were used in the analysis, then the appropriate weight to use is C245CW0. Detailed descriptions of the ECLS-K longitudinal weights are included in chapters 4 and 9 of the ECLS-K first-grade, third-grade, fifth-grade, and eighth-grade user's manuals.

Exhibit 10-4. ECLS-K: K-8 longitudinal weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07
\begin{tabular}{|c|c|c|c|c|}
\hline & K-8 longitudinal (cross-year) weights & Number of records with nonzero weight & Is nonzero if ... & To be used for analysis of ... \\
\hline & \multicolumn{4}{|l|}{Fall-Kindergarten no longitudinal weights in first round of data collection} \\
\hline & Spring-Kinderga & & & \\
\hline & BYCW0 & 18,211 & assessment data are present for both fall-kindergarten and springkindergarten, or if the child was excluded from direct assessment in both of these rounds of data collection due to a disability. & child direct assessment data from BOTH fall- and spring-kindergarten, alone or in combination with (a) a limited set of child characteristics (e.g., age, sex, and race/ethnicity), (b) data from any fall- or spring-kindergarten teacher questionnaire (teacher-level or child-level), or (c) data from the springkindergarten school administrator questionnaire or school facilities checklist. \\
\hline & BYPW0 & 16,906 & parent interview data are present for both fall-kindergarten and fall-first grade. & parent interview data from BOTH fall- and spring-kindergarten, alone or in combination with (a) fall- or spring-kindergarten child assessment data, (b) data from any fall- or spring-kindergarten teacher questionnaire (teacher-level or childlevel), or (c) data from the spring-kindergarten school administrator questionnaire or school facilities checklist. \\
\hline \[
\stackrel{\rightharpoonup}{i}
\] & BYCPTW0 & 15,420 & assessment data are present for both fall-kindergarten and springkindergarten (or if the child was excluded from direct assessment in both of these rounds of data collection due to a disability), parent interview data are present for both fall-kindergarten and springkindergarten grade, and teacher-level questionnaire data are present for both fall-kindergarten and springkindergarten. & child direct assessment data from BOTH fall- and spring-kindergarten with parent interview data from BOTH fall- and spring-kindergarten and teacher-level questionnaire data from BOTH fall- and spring-kindergarten, alone or in combination with data from the spring-kindergarten school administrator questionnaire or facilities checklist. \\
\hline
\end{tabular}

Exhibit 10-4. ECLS-K: K-8 longitudinal weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07-Continued
\begin{tabular}{llll}
\hline \begin{tabular}{l} 
K-8 longitudinal \\
(cross-year) \\
weights
\end{tabular} & \begin{tabular}{l} 
Number of \\
records with \\
nonzero weight
\end{tabular} & Is nonzero if ...
\end{tabular}

See note at end of exhibit.

Exhibit 10-4. ECLS-K: K-8 longitudinal weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07-Continued
\begin{tabular}{|c|c|c|c|}
\hline \(\mathrm{K}-8\) longitudinal (cross-year) weights & Number of records with nonzero weight & Is nonzero if & To be used for analysis of \\
\hline \multicolumn{4}{|l|}{Fall-First Grade-Continued} \\
\hline C123PW0 & 4,295 & parent interview data are present for fall- and spring-kindergarten and fallfirst grade. & parent interview data from THREE rounds of data collection (fall-kindergarten, spring-kindergarten and fall-first grade), alone or in combination with (a) child assessment data from any of these three rounds, (b) data from any fallkindergarten or spring-kindergarten teacher questionnaire (teacher-level or childlevel), or (c) data from the spring-kindergarten school administrator questionnaire or school facilities checklist. \\
\hline \multicolumn{4}{|l|}{Spring-First Grade} \\
\hline C24CW0 & 16,371 & assessment data are present for both spring-kindergarten and spring-first grade, or if the child was excluded from direct assessment in both of these rounds of data collection due to a disability. & child direct assessment data from BOTH spring-kindergarten and spring-first grade, alone or in combination with (a) a limited set of child characteristics (e.g., age, sex, and race/ethnicity), (b) data from any spring-kindergarten or spring-first grade teacher questionnaire (teacher-level or child-level), or (c) data from any spring-kindergarten or spring-first grade school administrator questionnaire or school facilities checklist. \\
\hline C24PW0 & 14,938 & parent interview data are present for both spring-kindergarten and springfirst grade. & parent interview data from BOTH spring-kindergarten or spring-first grade, alone or in combination with (a) spring-kindergarten or spring-first grade child assessment data, (b) data from any spring-kindergarten or spring-first grade teacher questionnaire (teacher-level or child-level), or (c) data from any springkindergarten or spring-first grade school administrator questionnaire or school facilities checklist. \\
\hline C124CW0 & 15,001 & assessment data are present for fallkindergarten and spring-kindergarten and spring-first grade, or if the child was excluded from direct assessment in all three of these rounds of data collection due to a disability. & child direct assessment data from THREE rounds of data collection (fallkindergarten, spring-kindergarten and spring-first grade) alone or in combination with (a) a limited set of child characteristics (e.g., age, sex, and race/ethnicity), (b) data from any spring-kindergarten, fall-kindergarten, or spring-first grade teacher questionnaire (teacher-level or child-level), or (c) data from any springkindergarten or spring-first grade school administrator questionnaire or school facilities checklist. \\
\hline C124PW0 & 13,413 & parent interview data are present for fall-kindergarten and springkindergarten and spring-first grade. & parent interview data from THREE rounds of data collection (fall-kindergarten, spring-kindergarten, and spring-first grade), alone or in combination with (a) child assessment data from any of these three rounds, (b) data from any springkindergarten, fall-kindergarten, or spring-first grade teacher questionnaire (teacher-level or child-level), or (c) data from any spring-kindergarten or springfirst grade school administrator questionnaire or school facilities checklist. \\
\hline
\end{tabular}

See note at end of exhibit.

Exhibit 10-4. ECLS-K: K-8 longitudinal weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07-Continued
\begin{tabular}{|c|c|c|c|}
\hline K-8 longitudinal (cross-year) weights & Number of records with nonzero weight & Is nonzero if & To be used for analysis of \\
\hline \multicolumn{4}{|l|}{Spring-First Grade-Continued} \\
\hline C1_4CW0 & 4,542 & assessment data are present for four rounds of data collection (fallkindergarten, spring-kindergarten, fall-first grade, and spring-first grade), or if the child was excluded from direct assessment in all of these four rounds of data collection due to a disability. & child direct assessment data from FOUR rounds of data collection (fallkindergarten, spring-kindergarten, fall-first grade, and spring-first grade) alone or in combination with (a) a limited set of child characteristics (e.g., age, sex, and race/ethnicity), (b) data from any fall-kindergarten, spring-kindergarten, or springfirst grade teacher questionnaire (teacher-level or child-level), or (c) data from any spring-kindergarten or spring-first grade school administrator questionnaire or school facilities checklist. \\
\hline C1_4PW0 & 4,012 & parent interview data are present for four rounds of data collection (fallkindergarten, spring-kindergarten, fall-first grade, and spring-first grade). & parent interview data from FOUR rounds of data collection (fall-kindergarten, spring-kindergarten, fall-first grade, and spring-first grade), alone or in combination with (a) child assessment data from any of these four rounds, (b) data from any fall-kindergarten, spring-kindergarten, or spring-first grade teacher questionnaire (teacher-level or child-level), or (c) data from any springkindergarten or spring-first grade school administrator questionnaire or school facilities checklist. \\
\hline C34CW0 & 5,047 & assessment data are present for both fall-first grade and spring-first grade, or if the child was excluded from direct assessment in both of these rounds of data collection due to a disability. & child direct assessment data from BOTH fall- and spring-first grade, alone or in combination with (a) a limited set of child characteristics (e.g., age, sex, and race/ethnicity), (b) data from the spring-first grade teacher questionnaire (teacherlevel or child-level), or (c) data from the spring-first grade school administrator questionnaire or school facilities checklist. \\
\hline C34PW0 & 4,682 & parent interview data are present for both fall-first grade and spring-first grade. & parent interview data from BOTH fall- and spring-first grade, alone or in combination with (a) fall- or spring-first grade child assessment data, (b) data from the spring-first grade teacher questionnaire (teacher-level or child-level), or (c) data from the spring-first grade school administrator questionnaire or school facilities checklist. \\
\hline
\end{tabular}

\footnotetext{
See note at end of exhibit.
}

Exhibit 10-4. ECLS-K: K-8 longitudinal weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07-Continued
\begin{tabular}{|c|c|c|c|c|}
\hline & \[
\begin{aligned}
& \hline \text { K-8 longitudinal } \\
& \text { (cross-year) } \\
& \text { weights } \\
& \hline
\end{aligned}
\] & Number of records with nonzero weight & Is nonzero if ... & To be used for analysis of ... \\
\hline \multirow{6}{*}{\[
\stackrel{\rightharpoonup}{i}
\]} & \multicolumn{4}{|l|}{Spring-First Grade-Continued} \\
\hline & Y2COMW0 & 13,983 & assessment data are present for fallkindergarten and spring-kindergarten and spring-first grade, or if the child was excluded from direct assessment in all three of these rounds of data collection, parent and/or teacher data are present for one or more base-year rounds, and parent and/or teacher data are present for spring-first grade. & child direct assessment data from THREE rounds of data collection (fallkindergarten, spring-kindergarten, and spring-first grade), in combination with parent and/or teacher data from spring-first grade, AND parent and/or teacher data from fall- or spring-kindergarten. \\
\hline & Spring-Third G & & & \\
\hline & C45CW0 & 13,964 & assessment data are present for both spring-first grade and spring-third grade, or if the child was excluded from direct assessment in both of these rounds of data collection due to a disability. & child direct assessment data from BOTH spring-first grade and spring-third grade, alone or in combination with (a) a limited set of child characteristics (e.g., age, sex, and race/ethnicity), (b) data from any spring-first grade or spring-third grade teacher questionnaire (teacher-level or child-level), or (c) data from any springfirst grade or spring-third grade school administrator questionnaire or school facilities checklist. \\
\hline & C45PW0 & 12,652 & parent interview data are present for both spring-first grade and springthird grade. & parent interview data from BOTH spring-first grade and spring-third grade, alone or in combination with (a) spring-first grade or spring-third grade child assessment data, (b) data from any spring-first grade or spring-third grade teacher questionnaire (teacher-level or child-level), or (c) data from any spring-first grade or spring-third grade school administrator questionnaire or school facilities checklist. \\
\hline & C245CW0 & 13,694 & assessment data are present for spring-kindergarten and spring-first grade and spring-third grade, or if the child was excluded from direct assessment in all of these three rounds of data collection due to a disability. & child direct assessment data from THREE rounds of data collection (springkindergarten, spring-first grade and spring-third grade) alone or in combination with (a) a limited set of child characteristics (e.g., age, sex, and race/ethnicity), (b) data from any spring-kindergarten, spring-first grade, or spring-third grade teacher questionnaire (teacher-level or child-level), or (c) data from any springkindergarten, spring-first grade, or spring-third grade school administrator questionnaire or school facilities checklist. \\
\hline
\end{tabular}

\footnotetext{
See note at end of exhibit.
}

Exhibit 10-4. ECLS-K: K-8 longitudinal weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07-Continued
\begin{tabular}{|c|c|c|c|c|}
\hline & K-8 longitudinal (cross-year) weights & Number of records with nonzero weight & Is nonzero if & To be used for analysis of . \\
\hline & \multicolumn{4}{|l|}{Spring-Third Grade-Continued} \\
\hline & C245PW0 & 12,204 & parent interview data are present for spring-kindergarten and spring-first grade and spring-third grade. & parent interview data from THREE rounds of data collection (spring-kindergarten, spring-first grade and spring-third grade), alone or in combination with (a) child assessment data from any of these three rounds, (b) data from any springkindergarten, spring-first grade, or spring-third grade teacher questionnaire (teacher-level or child-level), or (c) data from any spring-kindergarten, spring-first grade, or spring-third grade school administrator questionnaire or school facilities checklist. \\
\hline \(\frac{i}{6}\) & C1_5FC0 & 12,558 & assessment data are present for four rounds of data collection involving the full sample of children (fallkindergarten, spring-kindergarten, spring-first grade, and spring-third grade), or if the child was excluded from direct assessment in all four of these rounds of data collection due to a disability. & child direct assessment data from FOUR rounds of data collection (fallkindergarten, spring-kindergarten, spring-first grade, and spring-third grade) alone or in combination with (a) a limited set of child characteristics (e.g., age, sex, and race/ethnicity), (b) data from any fall-kindergarten, spring-kindergarten, springfirst grade, or spring-third grade teacher questionnaire (teacher-level or childlevel), or (c) data from any spring-kindergarten, spring-first grade or spring-third grade school administrator questionnaire, or school facilities checklist. \\
\hline & C1_5FP0 & 10,998 & parent interview data are present for four rounds of data collection involving the full sample of children (fall-kindergarten, springkindergarten, spring-first grade, and spring-third grade). & parent interview data from FOUR rounds of data collection (fall-kindergarten, spring-kindergarten, spring-first grade, and spring-third grade), alone or in combination with (a) child assessment data from any of these four rounds, (b) data from any fall-kindergarten, spring-kindergarten, spring-first grade, spring-third grade teacher questionnaire (teacher-level or child-level), or (c) data from any spring-kindergarten, spring-first grade, or spring-third grade school administrator questionnaire or school facilities checklist. \\
\hline & C1_5SC0 & 4,032 & assessment data are present for five rounds of data collection (fallkindergarten, spring-kindergarten, fall-first grade, spring-first grade, and spring-third grade), or if the child was excluded from direct assessment in all five rounds of data collection due to a disability. & child direct assessment data from FIVE rounds of data collection (fallkindergarten, spring-kindergarten, fall-first grade, spring-first grade and springthird grade) alone or in combination with (a) a limited set of child characteristics (e.g., age, sex, and race/ethnicity), (b) data from any fall-kindergarten, springkindergarten, spring-first grade, or spring-third grade teacher questionnaire (teacher-level or child-level), or (c) data from any spring-kindergarten, spring-first grade, or spring-third grade school administrator questionnaire or school facilities checklist. \\
\hline
\end{tabular}

See note at end of exhibit.

Exhibit 10-4. ECLS-K: K-8 longitudinal weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07-Continued
\begin{tabular}{lll}
\hline \begin{tabular}{l} 
K-8 longitudinal \\
(cross-year) \\
weights
\end{tabular} & \begin{tabular}{l} 
Number of \\
records with \\
nonzero weight
\end{tabular} & Is nonzero if ...
\end{tabular}\(\quad\) To be used for analysis of ... \(\quad\).

See note at end of exhibit.

Exhibit 10-4. ECLS-K: K-8 longitudinal weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07-Continued
\begin{tabular}{llll}
\hline \begin{tabular}{l} 
K-8 longitudinal \\
(cross-year) \\
weights
\end{tabular} & \begin{tabular}{l} 
Number of \\
records with \\
nonzero weight
\end{tabular} & Is nonzero if ... & \\
\hline Spring-Fifth Grade-Continued & & To be used for analysis of ....
\end{tabular}

See note at end of exhibit.

Exhibit 10-4. ECLS-K: K-8 longitudinal weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07-Continued
\begin{tabular}{llll}
\hline \begin{tabular}{l} 
K-8 longitudinal \\
(cross-year) \\
weights
\end{tabular} & \begin{tabular}{l} 
Number of \\
records with \\
nonzero weight
\end{tabular} & Is nonzero if ...
\end{tabular}

\footnotetext{
See note at end of exhibit.
}

Exhibit 10-4. ECLS-K: K-8 longitudinal weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07-Continued
\begin{tabular}{llll}
\begin{tabular}{l} 
K-8 longitudinal \\
(cross-year) \\
weights
\end{tabular} & \begin{tabular}{l} 
Number of \\
records with \\
nonzero weight
\end{tabular} & Is nonzero if ...
\end{tabular}\(\quad\)\begin{tabular}{lll}
\hline Spring-Eighth Grade & & To be used for analysis of ...
\end{tabular}

See note at end of exhibit.

Exhibit 10-4. ECLS-K: K-8 longitudinal weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07-Continued
\(\left.\begin{array}{llll}\hline \begin{array}{l}\text { K-8 longitudinal } \\
\text { (cross-year) } \\
\text { weights }\end{array} & \begin{array}{l}\text { Number of } \\
\text { records with } \\
\text { nonzero weight }\end{array} & \text { Is nonzero if ... } & \text { To be used for analysis of ... }\end{array}\right]\)\begin{tabular}{lll}
\hline Spring-Eighth Grade-Continued & & \\
\hline C4_7CW0 & 8,633 & \begin{tabular}{l} 
assessment data are present for \\
spring-first grade, spring-third grade, \\
spring-fifth grade, and spring-eighth \\
grade, or if the child was excluded \\
from direct assessment in all of these \\
four rounds of data collection due to \\
a disability.
\end{tabular} \\
& & \begin{tabular}{l} 
grade, spring-third grade, spring-fifth grade, and spring-eighth grade) alone or in \\
combination with (a) a limited set of child characteristics (e.g., age, sex, and \\
race/ethnicity), (b) data from any spring-first grade, spring-third grade, spring- \\
fifth grade, or spring-eighth grade teacher questionnaire (teacher-level or child- \\
level), (c) data from any spring-first grade, spring-third grade, spring-fifth grade, \\
or spring-eighth grade school administrator questionnaire, or (d) data from any \\
spring-first grade, spring-third grade, or spring-fifth grade school facilities
\end{tabular} \\
checklist.
\end{tabular}

See note at end of exhibit.

Exhibit 10-4. ECLS-K: K-8 longitudinal weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07-Continued
\begin{tabular}{|c|c|c|c|}
\hline K-8 longitudinal (cross-year) weights & Number of records with nonzero weight & Is nonzero if ... & To be used for analysis of ... \\
\hline \multicolumn{4}{|l|}{Spring-Eighth Grade-Continued} \\
\hline C2_7FP0 & 7,558 & parent interview data are present for five rounds of data collection involving the full sample of children (spring-kindergarten, spring-first grade, spring-third grade, spring-fifth grade, and spring-eighth grade). & parent interview data from FIVE rounds of data collection (spring-kindergarten, spring-first grade, spring-third grade, spring-fifth grade, and spring-eighth grade), alone or in combination with (a) child assessment data from any of these five rounds, (b) data from any spring-kindergarten, spring-first grade, spring-third grade, spring-fifth grade, or spring-eighth grade teacher questionnaire (teacherlevel or child-level), (c) data from any spring-kindergarten, spring-first grade, spring-third grade, spring-fifth grade, or spring-eighth grade school administrator questionnaire, or (d) data from any spring-kindergarten, spring-first grade, springthird grade, or spring-fifth grade school facilities checklist. \\
\hline C1_7FC0 & 7,803 & assessment data are present for six rounds of data collection involving the full sample of children (fallkindergarten, spring-kindergarten, spring-first grade, spring-third grade, spring-fifth grade, and spring-eighth grade), or if the child was excluded from direct assessment in all of these six rounds of data collection due to a disability. & child direct assessment data from SIX rounds of data collection (fall-kindergarten, spring-kindergarten, spring-first grade, spring-third grade, spring-fifth grade, and spring-eighth grade) alone or in combination with (a) a limited set of child characteristics (e.g., age, sex, and race/ethnicity), (b) data from any fallkindergarten, spring-kindergarten, spring-first grade, spring-third grade, springfifth grade, or spring-eighth grade teacher questionnaire (teacher-level or childlevel), (c) data from any spring-kindergarten, spring-first grade, spring-third grade, spring-fifth grade, or spring-eighth grade school administrator questionnaire, or (d) data from any spring-kindergarten, spring-first grade, springthird grade, or spring-fifth grade school facilities checklist. \\
\hline C1_7FP0 & 6,861 & parent interview data are present for six rounds of data collection involving the full sample of children (fall-kindergarten, springkindergarten, spring-first grade, spring-third grade, spring-fifth grade, and spring-eighth grade). & parent interview data from SIX rounds of data collection (fall-kindergarten, spring-kindergarten, spring-first grade, spring-third grade, spring-fifth grade, and spring-eighth grade), alone or in combination with (a) child assessment data from these any of these six rounds, (b) data from any fall-kindergarten, springkindergarten, spring-first grade, spring-third grade, spring-fifth grade, or springeighth grade teacher questionnaire (teacher-level or child-level), (c) data from any spring-kindergarten, spring-first grade, spring-third grade, spring-fifth grade, or spring-eighth grade school administrator questionnaire, or (d) data from any spring-kindergarten, spring-first grade, spring-third grade, or spring-fifth grade school facilities checklist. \\
\hline
\end{tabular}

\footnotetext{
See note at end of exhibit.
}

Exhibit 10-4. ECLS-K: K-8 longitudinal weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07-Continued
\begin{tabular}{|c|c|c|c|c|}
\hline & K-8 longitudinal (cross-year) weights & Number of records with nonzero weight & Is nonzero if ... & To be used for analysis of ... \\
\hline & \multicolumn{4}{|l|}{Spring-Eighth Grade-Continued} \\
\hline & C1_7SC0 & 2,369 & assessment data are present for all seven rounds of data collection involving the full sample of children (fall-kindergarten, springkindergarten, fall-first grade, springfirst grade, spring-third grade, spring-fifth grade, and spring-eighth grade), or if the child was excluded from direct assessment in all of these seven rounds of data collection due to a disability. & child direct assessment data from ALL SEVEN rounds of data collection (fallkindergarten, spring-kindergarten, fall-first grade, spring-first grade, spring-third grade, spring-fifth grade, and spring-eighth grade) alone or in combination with (a) a limited set of child characteristics (e.g., age, sex, and race/ethnicity), (b) data from any fall-kindergarten, spring-kindergarten, spring-first grade, spring-third grade, spring-fifth grade, or spring-eighth grade teacher questionnaire (teacherlevel or child-level), (c) data from any spring-kindergarten, spring-first grade, spring-third grade, spring-fifth grade, or spring-eighth grade school administrator questionnaire, or (d) data from any spring-kindergarten, spring-first grade, springthird grade, or spring-fifth grade school facilities checklist. \\
\hline \[
\begin{aligned}
& \text { B } \\
& \text { N }
\end{aligned}
\] & C1_7SP0 & 2,063 & parent interview data are present for all seven rounds of data collection involving the full sample of children (fall-kindergarten, springkindergarten, fall-first grade, springfirst grade, spring-third grade, spring-fifth grade, and spring-eighth grade). & parent interview data from ALL SEVEN rounds of data collection (fallkindergarten, spring-kindergarten, fall-first grade, spring-first grade, spring-third grade, spring-fifth grade, and spring-eighth grade), alone or in combination with (a) child assessment data from any of these seven rounds, (b) data from any fallkindergarten, spring-kindergarten, spring-first grade, spring-third grade, springfifth grade, or spring-eighth grade teacher questionnaire (teacher-level or childlevel), (c) data from any spring-kindergarten, spring-first grade, spring-third grade, spring-fifth grade, or spring-eighth grade school administrator questionnaire, or (d) data from any spring-kindergarten, spring-first grade, springthird grade, or spring-fifth grade school facilities checklist. \\
\hline
\end{tabular}

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 1998, spring 1999, fall 1999, spring 2000, spring 2002, spring 2004, and spring 2007.

K-8 longitudinal weights are used to produce estimates of differences between two or more rounds of data collection spanning kindergarten, first grade, third grade, fifth grade, and eighth grade. Simple examples involving two rounds of data collection are as follows:
1. estimating the differences in children's mean assessment scores between spring-fifth grade and spring-eighth grade using C67CW0; and
2. estimating the difference in Social Rating Scale scores as reported by parents in spring-kindergarten and spring-first grade using C24PW0 (Social Rating Scale scores as reported by parents are not available for fall-first grade, spring-third grade, springfifth grade or spring-eighth grade).

K-8 longitudinal weights are also used to study the characteristics of children who were assessed in two or more rounds of data collection. For example, one can study the characteristics of kindergarten children that are associated with the greatest gains in learning in fifth and eighth grades. If the analysis includes data collected from the parents in spring-fifth grade and spring-eighth grade, then C67PW0 can be used in the analysis. However, if the analysis involves only the key characteristics (e.g., race) available for most children and the child assessment data from spring-fifth grade and spring-eighth grade, then C67CW0 can be used to estimate changes in assessment scores between spring-fifth grade and spring-eighth grade. An example in which data from more than two rounds are used is as follows: to examine whether the gains children have made in their reading knowledge and skills during the kindergarten year and from the end of kindergarten to the end of first grade are associated with parents' and teachers' beliefs about kindergarten readiness and parental educational expectations, the weight Y2COMW0 would be appropriate. Exhibit 10-5 shows examples of research questions, the data of the survey components, and the weights to be used for analyses appropriate to these research questions. As noted in the first-grade, third-grade, fifth-grade, and eighth-grade user's manuals, any longitudinal analysis that uses data from fall-first grade will be limited to a 27 percent subsample of children. \({ }^{37}\)

\footnotetext{
\({ }^{37}\) As described in the first grade user's manual, fall-first grade was a design enhancement to enable researchers to study the extent of summer learning losses and gains and the factors associated with them. The fall data collection was limited to children in a 30 percent subsample of schools.
}

Exhibit 10-5. Examples of research questions and appropriate weights to use: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07
\begin{tabular}{|c|c|c|c|}
\hline Research questions & Components used & Grades included & Best weight to use \\
\hline Are teacher-reported measures of children's school readiness at the beginning of kindergarten associated with children's skills and knowledge at the end of eighth grade? & Round 1(R1) teacher questionnaire (child level) R7 child assessment & Fall-kindergarten Spring-eighth grade & C1_7FC0 ( \(\mathrm{n}=7,803\) ) \\
\hline Are kindergartners' reading and mathematics growth from kindergarten through eighth grade associated with their poverty status over the same time period? & R1, R2, R4, R5, R6, R7 parent interview R1, R2, R4, R5, R6, R7 child assessment & Fall-kindergarten through Spring-eighth grade (excluding Fall-first grade) & C1_7FP0 ( \(\mathrm{n}=6,861\) ) \\
\hline Do the gains children make in their reading knowledge and skills from fall to spring of kindergarten and to the spring of first grade relate to parents’ and teachers' beliefs about kindergarten readiness and parent educational expectations? & R1 parent interview R1 teacher questionnaire B R1, R2, R4 child assessment & Fall-kindergarten Spring-kindergarten Spring-first grade & \[
\begin{aligned}
& \text { Y2COMW0 } \\
& (\mathrm{n}=13,983)
\end{aligned}
\] \\
\hline In fifth grade, do children's reading, mathematics, and science achievement vary by the type of school attended, after controlling for family socioeconomic status (SES)? & R6 school administrator questionnaire R6 parent interview R6 child assessment & Spring-fifth grade & C6PW0 ( \(\mathrm{n}=10,996\) ) \\
\hline Are eighth-graders' educational expectations associated with their parents' educational expectations and their mathematics teachers' opinions about child success in general in the school? & R7 student questionnaire R7 parent questionnaire R7 teacher questionnaire (completed by the child's mathematics teacher) & Spring-eighth grade & C7CPTM0 ( \(\mathrm{n}=4,130\) ) \\
\hline Do the gains children make in mathematics from fall of kindergarten to the spring of fifth grade relate to the type of kindergarten program (full- or part-day) they attended? & R1 teacher questionnaire A R1, R6 child assessment & Fall-kindergarten Spring-fifth grade & C1_6FC0 ( \(\mathrm{n}=9,796\) ) \\
\hline
\end{tabular}

There may be combinations of data for which no weights were developed. For example, there is no specific weight to study changes in children's classroom environments as they move from kindergarten to eighth grade if child assessment or parent data are not used in the analysis. In this example, the data come from the teacher-level teacher's questionnaire (TQA in kindergarten, first grade, and third grade, and teacher-level teacher questionnaire in fifth grade and eighth grade). The preferred weight for this analysis would be C2_7FC0, which is the weight for child direct assessment data from spring-kindergarten, spring-first grade, spring-third grade, spring-fifth grade, and spring-eighth grade. Of children on the longitudinal \(\mathrm{K}-8\) file with teacher-level data in all five of these rounds (e.g., springkindergarten, spring-first grade, spring-third grade, spring-fifth grade, and spring-eighth grade), 99 percent \((6,483)\) have nonzero C2_7FC0, compared with 90 percent \((5,909)\) with nonzero \(\mathrm{C}_{1}\) _7FC0 and 25 percent \((1,669)\) with nonzero \(\mathrm{Cl}_{-}\)7SC0, the other two longitudinal weights available for analyses of child data. The preferred weight is the one that will yield the largest number of records for analysis, which in this case is \(\mathrm{C} 2 \_7 \mathrm{FC} 0\). Analytically, it can be argued that since the direct assessments are conducted in schools, this weight comes closest to capturing the children in participating schools and thus to capturing the children with relevant school environment data. Similarly, if data from the school administrator questionnaire are used in the analysis of the \(\mathrm{K}-8\) longitudinal data, then the same arguments can be used to select the weight. In this case, 27 percent of children in the K-8 file have school administrator questionnaire data from kindergarten, first grade, third grade, fifth grade, and eighth grade; of these, 98 percent have nonzero C2_7FC0 compared with 89 percent with nonzero C1_67FC0 and 25 percent with nonzero \(\mathrm{C} 1 \_7 \mathrm{SC} 0\). Therefore, the preferred weight is also \(\mathrm{C} 2 \_7 \mathrm{FC} 0\). For further advice on which weights to use when analyzing a complex combination of data, contact NCES at ECLS@ed.gov.

\section*{\(10.5 \quad\) Characteristics of Weights}

The statistical characteristics of the cross-sectional and longitudinal weights are presented in table 10-1. The weights are listed by round with the cross-sectional weights listed before the longitudinal ones within each round. For each weight, the number of cases with nonzero values is presented together with the mean weight, the standard deviation, the coefficient of variation (i.e., the standard deviation as a percentage of the mean weight), the minimum value of the weight, the maximum value of the weight, the skewness, the kurtosis, and the sum of weights.

The difference in the estimate of the population of children (sum of weights) between the different panels of children and types of weights results from a combination of factors, among them: (1) the number of base-year respondents who became ineligible (due to death, leaving the country, or being a nonsampled mover) after the base year; (2) the adjustment of the weights for the children of unknown eligibility; and (3) the difference in the number of records used to construct sample-based control totals. Of the longitudinal weights computed in third grade, fifth grade, and eighth grade, 12 weights (C45CW0, C45PW0, C56CW0, C56PW0, C67CW0, C67PW0, C456CW0, C456PW0, C567CW0, C567PW0, C4_7FC0, and C4_7FP0) involve children sampled in first grade. For these weights, the child records included in the file used for computing the control totals are records of baseyear respondents and records of eligible children sampled in first grade. For all other longitudinal weights, records of children sampled in first grade were not included in the file, causing the sum of weights to be smaller.

For information about the development of the longitudinal weights, see chapter 9 of the firstgrade, third-grade, fifth-grade, and eighth-grade user's manuals.

Table 10-1. Characteristics of child-level K-8 weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Variable name & Number of cases & Mean & Standard deviation & \[
\begin{array}{r}
\mathrm{CV} \\
(\times 100) \\
\hline
\end{array}
\] & Minimum & Maximum & Skewness & Kurtosis & Sum \\
\hline S2SAQW0 & 866 & 83.44 & 53.07 & 63.60 & 6.42 & 484.64 & 2.24 & 8.32 & 72,260 \\
\hline B1TW0 & 3,047 & 62.48 & 44.08 & 70.55 & 1.61 & 503.44 & 2.60 & 11.13 & 190,381 \\
\hline B2TW0 & 3,243 & 58.64 & 39.67 & 67.64 & 1.60 & 453.44 & 2.43 & 10.09 & 190,166 \\
\hline C1CW0 & 19,173 & 201.63 & 91.94 & 45.60 & 1.64 & 755.65 & 1.35 & 4.85 & 3,865,946 \\
\hline C1PW0 & 18,097 & 213.62 & 96.19 & 45.03 & 2.03 & 832.40 & 1.47 & 5.71 & 3,865,946 \\
\hline C1CPTW0 & 17,124 & 225.76 & 104.57 & 46.32 & 2.17 & 1,018.25 & 1.45 & 5.49 & 3,865,946 \\
\hline C2CW0 & 19,967 & 193.49 & 104.72 & 54.12 & 1.60 & 900.00 & 2.16 & 8.20 & 3,863,512 \\
\hline C2PW0 & 18,950 & 203.88 & 98.75 & 48.44 & 1.98 & 900.00 & 1.62 & 5.91 & 3,863,512 \\
\hline C2CPTW0 & 17,454 & 221.35 & 107.58 & 48.60 & 2.17 & 918.89 & 1.47 & 5.43 & 3,863,512 \\
\hline BYCW0 & 18,211 & 212.14 & 119.54 & 56.35 & 1.59 & 900.00 & 2.45 & 9.82 & 3,863,204 \\
\hline BYPW0 & 16,906 & 228.51 & 109.75 & 48.03 & 2.22 & 900.00 & 1.62 & 5.63 & 3,863,204 \\
\hline BYCPTW0 & 15,420 & 250.53 & 121.33 & 48.43 & 2.54 & 1,146.11 & 1.58 & 6.07 & 3,863,204 \\
\hline BYCOMW0 & 17,060 & 226.45 & 126.48 & 55.85 & 1.59 & 900.00 & 2.33 & 8.82 & 3,863,204 \\
\hline C3CW0 & 5,291 & 729.33 & 554.89 & 76.08 & 71.10 & 6,374.63 & 3.78 & 19.37 & 3,858,882 \\
\hline C3PW0 & 5,071 & 760.96 & 484.52 & 63.67 & 76.35 & 5,246.83 & 2.84 & 11.81 & 3,858,850 \\
\hline C23CW0 & 5,216 & 739.84 & 587.55 & 79.42 & 68.23 & 7,182.37 & 3.98 & 21.56 & 3,858,997 \\
\hline C23PW0 & 4,861 & 793.83 & 515.75 & 64.97 & 84.26 & 5,853.21 & 2.97 & 13.04 & 3,858,805 \\
\hline C123CW0 & 4,729 & 815.99 & 646.25 & 79.20 & 76.08 & 7,696.79 & 3.89 & 21.55 & 3,858,824 \\
\hline C123PW0 & 4,295 & 898.37 & 597.89 & 66.55 & 95.35 & 6,421.30 & 3.05 & 14.20 & 3,858,492 \\
\hline C4CW0 & 16,727 & 235.46 & 207.19 & 88.00 & 1.76 & 3,517.71 & 4.31 & 32.38 & 3,938,490 \\
\hline C4PW0 & 15,626 & 251.96 & 203.49 & 80.76 & 1.83 & 3,271.78 & 3.98 & 28.56 & 3,937,097 \\
\hline C4CPTW0 & 13,491 & 291.74 & 316.85 & 108.61 & 2.21 & 3,849.49 & 4.35 & 26.07 & 3,935,870 \\
\hline C24CW0 & 16,371 & 234.81 & 200.69 & 85.47 & 1.78 & 3,272.40 & 4.22 & 31.65 & 3,844,009 \\
\hline C24PW0 & 14,938 & 257.25 & 198.94 & 77.34 & 1.93 & 2,580.41 & 3.30 & 19.64 & 3,842,784 \\
\hline C124CW0 & 15,001 & 256.28 & 228.52 & 89.17 & 1.54 & 3,877.43 & 3.71 & 24.60 & 3,844,472 \\
\hline C124PW0 & 13,413 & 286.40 & 214.80 & 75.00 & 2.06 & 3,275.79 & 3.84 & 26.53 & 3,841,463 \\
\hline C1_4CW0 & 4,542 & 847.78 & 639.83 & 75.47 & 77.56 & 7,528.68 & 3.49 & 18.68 & 3,850,619 \\
\hline C1_4PW0 & 4,012 & 959.07 & 617.93 & 64.43 & 108.75 & 6,780.92 & 2.86 & 13.48 & 3,847,785 \\
\hline C34CW0 & 5,047 & 762.96 & 571.61 & 74.92 & 71.81 & 6,225.66 & 3.63 & 18.85 & 3,850,650 \\
\hline C34PW0 & 4,682 & 822.17 & 526.93 & 64.09 & 81.12 & 5,657.06 & 2.61 & 10.65 & 3,849,405 \\
\hline Y2COMW0 & 13,983 & 274.83 & 241.55 & 87.89 & 2.03 & 3,803.82 & 4.26 & 29.97 & 3,842,961 \\
\hline C5CW0 & 14,470 & 272.18 & 242.53 & 89.10 & 1.54 & 3,376.78 & 3.21 & 18.45 & 3,938,512 \\
\hline C5PW0 & 13,489 & 291.92 & 241.71 & 82.80 & 1.63 & 3,654.05 & 3.23 & 18.83 & 3,937,759 \\
\hline C5CPTW0 & 10,395 & 378.75 & 435.34 & 114.94 & 2.58 & 5,209.19 & 3.38 & 15.25 & 3,937,126 \\
\hline C45CW0 & 13,964 & 281.86 & 273.52 & 97.04 & 1.68 & 3,897.42 & 3.37 & 19.90 & 3,935,960 \\
\hline C45PW0 & 12,652 & 310.98 & 266.89 & 85.82 & 1.68 & 3,718.34 & 3.11 & 17.32 & 3,934,550 \\
\hline C245CW0 & 13,694 & 280.68 & 277.47 & 98.86 & 1.65 & 4,119.55 & 3.55 & 22.53 & 3,843,641 \\
\hline C245PW0 & 12,204 & 314.92 & 267.05 & 84.80 & 1.78 & 3,121.66 & 2.87 & 14.51 & 3,843,273 \\
\hline C1_5FC0 & 12,558 & 306.07 & 303.52 & 99.17 & 1.68 & 4,264.25 & 3.59 & 22.83 & 3,843,607 \\
\hline C1_5FP0 & 10,998 & 349.42 & 299.17 & 85.62 & 1.92 & 3,754.91 & 3.18 & 17.88 & 3,842,954 \\
\hline C1_5SC0 & 4,032 & 952.67 & 875.12 & 91.86 & 64.97 & 7,174.65 & 3.28 & 13.78 & 3,841,182 \\
\hline C1_5SP0 & 3,522 & 1,090.37 & 816.79 & 74.91 & 104.68 & 6,801.61 & 2.56 & 9.19 & 3,840,279 \\
\hline C6CW0 & 11,346 & 346.92 & 552.91 & 159.38 & 1.91 & 6,556.07 & 4.36 & 23.64 & 3,936,156 \\
\hline C6PW0 & 10,996 & 357.86 & 501.99 & 140.28 & 1.80 & 4,909.08 & 3.54 & 15.06 & 3,935,007 \\
\hline C6CPTR0 & 10,120 & 388.86 & 653.95 & 168.17 & 1.89 & 6,707.74 & 4.21 & 21.04 & 3,935,285 \\
\hline C6CPTM0 & 5,017 & 786.58 & 1,087.08 & 138.20 & 6.10 & 9,887.78 & 4.24 & 21.85 & 3,946,287 \\
\hline C6CPTS0 & 5,103 & 770.41 & 1,071.77 & 139.12 & 4.94 & 9,883.96 & 4.15 & 20.55 & 3,931,398 \\
\hline C56CW0 & 11,136 & 353.53 & 546.33 & 154.54 & 1.85 & 6,088.46 & 4.23 & 22.14 & 3,936,880 \\
\hline C56PW0 & 10,079 & 390.45 & 552.94 & 141.62 & 1.87 & 6,635.16 & 3.81 & 19.01 & 3,935,347 \\
\hline C456CW0 & 10,852 & 362.33 & 588.43 & 162.40 & 1.78 & 6,681.37 & 4.13 & 20.98 & 3,932,020 \\
\hline C456PW0 & 9,568 & 410.86 & 582.33 & 141.73 & 2.18 & 5,941.85 & 3.68 & 16.93 & 3,931,097 \\
\hline
\end{tabular}

See note at end of table.

Table 10-1. Characteristics of child-level K-8 weights: School years 1998-99, 1999-2000, 2001-02, 2003-04, and 2006-07-Continued
\begin{tabular}{lrrrrrrrrr}
\hline \begin{tabular}{l} 
Variable \\
name
\end{tabular} & \begin{tabular}{r} 
Number \\
of cases
\end{tabular} & Mean & \begin{tabular}{r} 
Standard \\
deviation
\end{tabular} & \begin{tabular}{r} 
CV \\
\((\times 100)\)
\end{tabular} & Minimum & Maximum & Skewness & Kurtosis & Sum \\
\hline C2_6FC0 & 10,673 & 359.60 & 596.79 & 165.96 & 1.75 & \(6,360.58\) & 4.25 & 22.07 & \(3,838,004\) \\
C2_6FP0 & 9,267 & 414.05 & 585.96 & 141.52 & 2.19 & \(5,945.74\) & 3.59 & 15.69 & \(3,836,967\) \\
C1_6FC0 & 9,796 & 391.72 & 651.89 & 166.41 & 1.62 & \(6,867.64\) & 4.21 & 21.76 & \(3,837,337\) \\
C1_6FP0 & 8,370 & 458.36 & 646.59 & 141.06 & 2.16 & \(6,801.76\) & 3.62 & 16.27 & \(3,836,496\) \\
C1_6SC0 & 3,000 & \(1,274.18\) & \(1,841.67\) & 144.54 & 58.68 & \(11,913.30\) & 3.28 & 11.10 & \(3,822,526\) \\
C16SP0 & 2,566 & \(1,490.10\) & \(1,835.53\) & 123.18 & 86.76 & \(10,279.40\) & 2.71 & 7.31 & \(3,823,589\) \\
C7CW0 & 9,358 & 421.44 & 546.25 & 129.62 & 2.19 & \(5,479.19\) & 3.44 & 13.93 & \(3,943,827\) \\
C7PW0 & 8,809 & 447.74 & 579.18 & 129.36 & 1.91 & \(5,626.11\) & 3.52 & 15.23 & \(3,944,166\) \\
C7CPTE0 & 8,294 & 475.44 & 631.93 & 132.91 & 2.42 & \(7,716.63\) & 3.41 & 13.91 & \(3,943,318\) \\
C7CPTM0 & 4,130 & 955.24 & \(1,227.71\) & 128.52 & 5.30 & \(10,632.40\) & 3.20 & 11.46 & \(3,945,141\) \\
C7CPTS0 & 4,164 & 946.51 & \(1,227.76\) & 129.71 & 6.88 & \(9,919.15\) & 3.16 & 10.87 & \(3,941,257\) \\
C67CW0 & 8,960 & 440.18 & 596.56 & 135.53 & 2.12 & \(6,180.46\) & 3.32 & 12.67 & \(3,944,055\) \\
C67PW0 & 8,544 & 461.62 & 581.11 & 125.89 & 2.26 & \(5,526.63\) & 3.34 & 13.73 & \(3,944,048\) \\
C567CW0 & 8,827 & 446.77 & 613.70 & 137.36 & 2.12 & \(6,024.73\) & 3.30 & 12.15 & \(3,943,678\) \\
C567PW0 & 8,070 & 488.64 & 638.85 & 130.74 & 2.16 & \(6,857.84\) & 3.58 & 16.23 & \(3,943,290\) \\
C4_7CW0 & 8,633 & 456.32 & 664.30 & 145.58 & 2.14 & \(6,183.19\) & 3.40 & 12.74 & \(3,939,414\) \\
C4_7PW0 & 7,764 & 507.37 & 660.81 & 130.24 & 2.46 & \(6,381.09\) & 3.44 & 14.23 & \(3,939,255\) \\
C2_7FC0 & 8,503 & 451.67 & 666.27 & 147.51 & 2.20 & \(5,668.77\) & 3.47 & 13.19 & \(3,840,561\) \\
C2_7FP0 & 7,558 & 508.27 & 669.20 & 131.66 & 2.60 & \(6,297.36\) & 3.58 & 15.17 & \(3,841,500\) \\
C1_7FC0 & 7,803 & 492.17 & 722.31 & 146.76 & 2.39 & \(7,294.96\) & 3.58 & 14.41 & \(3,840,438\) \\
C1_7FP0 & 6,861 & 559.80 & 714.14 & 127.57 & 3.11 & \(6,628.98\) & 3.27 & 12.78 & \(3,840,784\) \\
C1_7SC0 & 2,369 & \(1,619.67\) & \(2,364.29\) & 145.97 & 79.85 & \(14,915.80\) & 3.27 & 10.97 & \(3,836,993\) \\
C1_7SP0 & 2,063 & \(1,861.13\) & \(2,264.50\) & 121.67 & 124.86 & \(12,554.00\) & 2.49 & 5.81 & \(3,839,514\) \\
\hline
\end{tabular}

SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 1998, spring 1999, fall 1999, spring 2000, spring 2002, spring 2004, and spring 2007.

\section*{REFERENCES}

Durbin, J. (1967). Design of Multi-stage Surveys for the Estimation of Sampling Errors. Journal of the Royal Statistical Society, Series C (Applied Statistics), Vol. 16, 152-164.

Ellis, L. A., Marsh, H. W., and Richards, G. E. (2002). A Brief Version of the Self Description Questionnaire II. In R. G. Craven, H. W. Marsh and K. B. Simpson (Eds.), Proceedings of the 2nd International Biennial Conference Self-Concept Research: Driving International Research Agenda. Sydney: University of Western Sydney, SELF Research Centre.

Ingels, S.J., Abraham, S.Y, Karr, R., Spencer, B.D., and Frankel, M.R. (1990). National Education Longitudinal Study of 1988 (NELS:88) Base-Year: Student Component Data File User's Manual. (NCES 90-464). National Center for Education Statistics, U.S. Department of Education. Washington, DC.

Kish, L. (1965). Survey Sampling. New York: John L. Wiley \& Sons.
Marsh, H.W. (1992a). Self Description Questionnaire: A theoretical and empirical basis for the measurement of multiple dimensions of preadolescent self-concept. A test manual and a research monograph. Sydney: University of Western Sydney, SELF Research Centre. (Original work published in 1988)

Marsh, H.W. (1992b). Self Description Questionnaire (SDQ) II: A theoretical and empirical basis for the measurement of multiple dimensions of adolescent self-concept. An interim test manual and a research monograph. Sydney: University of Western Sydney, SELF Research Centre. (Original work published in 1990)

Muraki, E. (1992). A Generalized Partial Credit Model: Application of an EM Algorithm. Applied Psychological Measurement, 16(2): 159-176.

Najarian, M., Pollock, J. M. and Sorongon, A. G. (Forthcoming). Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), Psychometric Report for the Eighth Grade (NCES 2009-002). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC.

Nord, M., and Bickel, G. (2001). Estimating the Prevalence of Children's Hunger from the Current Population Survey Food Security Supplement. In M. Andrews and M. Prell (Eds.), Second Food Security Measurement and Research Conference, Volume II: Papers-Food Assistance and Nutrition Research Report 11-2 (p. 31-49). Washington, DC: Economic Research Service, U.S. Department of Agriculture.

Pollack, J.M., Atkins-Burnett, S., Najarian, M., and Rock, D.A. (2005). Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), Psychometric Report for the Fifth Grade (NCES 2006-036rev). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC.

Pollack, J. M., Rock, D.A., Weiss, M.J., and Atkins-Burnett, S. (2005). Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), Psychometric Report for the Third Grade (NCES 2005-62). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC.

Research Triangle Institute. (2004). SUDAAN Language Manual, Release 9.0. Research Triangle Park, NC: Research Triangle Institute.

Rock, D. A., and Pollack, J. M. (2002a). A Model-based Approach to Measuring Cognitive Growth in Pre-reading and Reading Skills During the Kindergarten Year (ETS Research Report RR-02-18). Princeton, NJ: Educational Testing Service.

Rock, D. A., and Pollack, J.M. (2002b). Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), Psychometric Report for Kindergarten Through First Grade (NCES 200205). National Center for Education Statistics, U.S. Department of Education. Washington, DC.

Rosenberg, Morris. (1965). Society and the Adolescent Self-Image. Princeton, New Jersey: Princeton University Press

Tourangeau, K., Brick, M., Byrne, L., Lê, T., Nord, C., West, J., and Germino Hausken, E. (2004). Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), Third Grade Methodology Report (NCES 2005-018). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC.

Tourangeau, K., Brick, M., Lê, T., Wan, S., Weant, M., Nord, C., Vaden-Kiernan, N., Hagedorn, M., Bissett, E., Dulaney, R., Fowler, J., Pollack, J., Rock, D., Weiss, M.J., Atkins-Burnett, S., Germino Hausken, E., West, J., Rathbun, A., and Walston, J. (2004). Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), User's Manual for the ECLS-K Third Grade Public-Use Data File and Electronic Code Book (NCES 2004-001). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC.

Tourangeau, K., Burke, J., Lê, T., Wan, S., Weant, M., Brown, E., Vaden-Kiernan, N., Rinker, E., Dulaney, R., Ellingsen, K., Barrett, B., Flores-Cervantes, I., Zill, N., Pollack, J., Rock, D., AtkinsBurnett, S., Meisels, S, Bose, J., West, J., Denton, K., Rathbun, A., and Walston, J. (2001a). Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), Base Year RestrictedHead Start File (NCES 2001-025). National Center for Education Statistics, U.S. Department of Education. Washington, DC.

Tourangeau, K., Burke, J., Lê, T., Wan, S., Weant, M., Brown, E., Vaden-Kiernan, N., Rinker, E., Dulaney, R., Ellingsen, K., Barrett, B., Flores-Cervantes, I., Zill, N., Pollack, J., Rock, D., AtkinsBurnett, S., Meisels, S, Bose, J., West, J., Denton, K., Rathbun, A., and Walston, J. (2001b). Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), Base Year RestrictedUse Salary and Benefits File (NCES 2001-014). National Center for Education Statistics, U.S. Department of Education. Washington, DC.

Tourangeau, K., Burke, J., Lê, T., Wan, S., Weant, M., Brown, E., Vaden-Kiernan, N., Rinker, E., Dulaney, R., Ellingsen, K., Barrett, B., Flores-Cervantes, I., Zill, N., Pollack, J., Rock, D., AtkinsBurnett, S., Meisels, S, Bose, J., West, J., Denton, K., Rathbun, A., and Walston, J. (2001c). Early

Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), Base Year RestrictedUse Special Education Child File (NCES 2001-015). National Center for Education Statistics, U.S. Department of Education. Washington, DC.

Tourangeau, K., Burke, J., Lê, T., Wan, S., Weant, M., Brown, E., Vaden-Kiernan, N., Rinker, E., Dulaney, R., Ellingsen, K., Barrett, B., Flores-Cervantes, I., Zill, N., Pollack, J., Rock, D., AtkinsBurnett, S., Meisels, S, Bose, J., West, J., Denton, K., Rathbun, A., and Walston, J. (2001d). Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), Base Year RestrictedUse Student Record Abstract File (NCES 2001-016). National Center for Education Statistics, U.S. Department of Education. Washington, DC.

Tourangeau, K., Burke, J., Lê, T., Wan, S., Weant, M., Brown, E., Vaden-Kiernan, N., Rinker, E., Dulaney, R., Ellingsen, K., Barrett, B., Flores-Cervantes, I., Zill, N., Pollack, J., Rock, D., AtkinsBurnett, S., Meisels, S, Bose, J., West, J., Denton, K., Rathbun, A., and Walston, J. (2004). Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), Base Year Public-Use Data Files and Electronic Codebook: User's Manual (NCES 2001-029r). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC.

Tourangeau, K., Burke, J., Lê, T., Wan, S., Weant, M., Nord, C., Vaden-Kiernan, N., Bissett, E., Dulaney, R., Fields, A., Byrne, L., Flores-Cervantes, I., Fowler, J., Pollack, J., Rock, D., Atkins-Burnett, S., Meisels, S., Bose, J., West, J. Denton, K., Rathbun, A., and Walston, J. (2002). Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), User's Manual for the ECLS-K First Grade Public-Use Data Files and Electronic Codebook (NCES 2002-135). National Center for Education Statistics, U.S. Department of Education. Washington, DC.

Tourangeau, K., Lê, T., and Nord, C. (2005). Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), Fifth-Grade Methodology Report (NCES 2006-037). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC.

Tourangeau, K., Lê, T., Nord, C., and Sorongon, A.G. (Forthcoming). Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), Eighth-Grade Methodology Report (NCES 2009-003). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC.

Tourangeau, K., Nord, C., Lê, T., Pollack, J.M., and Atkins-Burnett, S. (2006). Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), Combined User's Manual for the ECLS-K Fifth-Grade Data Files and Electronic Codebooks (NCES 2006-032). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC.
U.S. Department of Agriculture, Food and Nutrition Service. (2000). Guide to Measuring Household Food Security, Revised 2000. Alexandria, VA: Author.
U.S. Department of Agriculture, Economic Research Service. (2002). Measuring Children's Food Security in U.S. Households, 1995-99. Washington, DC: Author.
U.S. Department of Commerce, Bureau of the Census. (1982). 1980 Census of Population-Index of Industries and Occupations, Final Edition. Washington, DC: U.S. Government Printing Office.
U.S. Department of Commerce, Office of Federal Statistical Policy and Planning. (1980). Standard Occupational Classification Manual. Washington, DC: U.S. Government Printing Office.
U.S. Department of Education, National Center for Educational Statistics. (1995-96). Common Core of Data, Public Elementary/Secondary School Universe Survey. Washington, DC: Author.
U.S. Department of Education, National Center for Education Statistics. (1998). Private School Universe Survey, 1995-96. Washington, DC: Author.
U.S. Department of Education, National Center for Education Statistics. (1999). Manual for Coding Industries and Occupations. Appendix to Data File User's Manual, Volume IV, of the National Household Education Survey of 1999 (NCES 2000-077). Washington, DC: Author.
U.S. Department of Education, National Center for Educational Statistics. (2001). Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), Base Year Restricted-Use Electronic Code Book (NCES 2000-097). Washington, DC: Author.
U.S. Department of Education, National Center for Educational Statistics. (2001). Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), ECLS-K First Grade RestrictedUse Electronic Code Book (NCES 2002-127). Washington, DC: Author.
U.S. Department of Education, National Center for Educational Statistics. (2004). Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), Third Grade Restricted-Use Electronic Code Book (NCES 2003-002). Washington, DC: Author
U.S. Department of Education, National Center for Educational Statistics. (2006). Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), Fifth-Grade Restricted-Use Electronic Codebook (NCES 2006-033). Washington, DC: Author.
U.S. Department of Education, Institute of Education Sciences, National Center for Educational Statistics. (Forthcoming). Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), Eighth-Grade Restricted-Use Electronic Codebook (NCES 2009-006). Washington, DC: Author.
U.S. Department of the Interior, Bureau of Indian Affairs. (1995-96). Office of Indian Education Programs Education Directory. Washington, DC: Author.

Walston, J., and West, J. (2004). Full-day and Half-day Kindergarten in the United States: Findings from the Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (NCES 2004-078). National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education. Washington, DC.

Westat (2001). WesVar 4.0 User's Guide. Rockville, MD: Author.
Wolter, K. (1985). Introduction to Variance Estimation. New York: Springer-Verlag.```


[^0]:    ${ }^{1}$ To be consistent with documentation from earlier rounds of the ECLS-K, this manual refers to student respondents in the eighth-grade round as "children."

[^1]:    ${ }^{2}$ The term "eighth grade" is used throughout this document to refer to the data collections that took place in the 2006-07 school year, at which time most of the sampled children-but not all of them-were in eighth grade.
    ${ }^{3}$ Though the majority of base-year children were in first grade during the 1999-2000 school year, about 5 percent of the sampled children were retained in kindergarten and a handful of others were in second grade during the 1999-2000 school year.
    ${ }^{4}$ Approximately 27 percent of the base-year children who were eligible to participate in year 2 attended the 30 percent subsample of schools.

[^2]:    ${ }^{5}$ Their addition is referred to as "freshening" the sample. See chapter 4, section 4.3 .2 for more detail on the freshening process.
    ${ }^{6}$ Approximately 89 percent of the children interviewed were in third grade during the 2001-02 school year, 9 percent were in second grade, and less than 1 percent were in fourth grade or higher.

[^3]:    ${ }^{7}$ Approximately 90 percent of the children interviewed were in fifth grade during the 2003-04 school year, 9 percent were in fourth grade, and less than 1 percent were in some other grade (e.g., second, third, or sixth grade).
    ${ }^{8}$ Approximately 89 percent of the children interviewed were in eighth grade during the 2006-07 school year, 9 percent were in seventh grade, and less than 2 percent were in some other grade (e.g., such as fifth, sixth, or ninth grade).
    ${ }^{9}$ The Current Population Survey is the monthly survey of households conducted by the Bureau of the Census for the Bureau of Labor Statistics of the U.S. Department of Labor (see http://www.bls.gov/cps/).
    ${ }^{10}$ The estimate of the percent of eighth-graders captured by the ECLS-K was calculated by dividing the sum of the child weight (C7CW0) by the number of eighth-graders according to the 2006 Current Population Survey.

[^4]:    ${ }^{11}$ To understand top- and bottom-coding, consider a fictitious variable with the following frequency distribution:

    | Variable X frequency distribution |  |  |
    | :--- | ---: | ---: |
    | Value | Count | Percent |
    | Total | 4,641 | 100.00 |
    | 0 | 45 | 0.97 |
    | 1 | 193 | 4.16 |
    | 2 | 2,846 | 61.32 |
    | 3 | 1,318 | 28.40 |
    | 4 | 220 | 4.74 |
    | 5 | 18 | 0.39 |
    | 6 | 1 | 0.02 |

[^5]:    ${ }^{12}$ The student questionnaire used items adapted with permission from the Self Description Questionnaire (SDQ) II (Marsh, 1992).

[^6]:    ${ }^{13}$ For additional detail on the eighth-grade cognitive assessments, see the ECLS-K Psychometric Report for the Eighth Grade (NCES 2008069) (Najarian, Pollack, and Sorongon forthcoming).

[^7]:    ${ }^{14}$ Information on these CDC surveys is available at http://www.cdc.gov/HealthyYouth/.

[^8]:    ${ }^{15}$ These parent interview items (CHQ.900) are from the Strengths and Difficulties Questionnaire (ages $11-17$ ) copyrighted by Dr. Robert Goodman, Ph. D., of the Psychiatric Institute of London, England. Agencies may use these questions without charge or permission providing the wording is not modified, all questions are retained, and copyright is acknowledged. More information can be found at http://www.sdqinfo.com/ or Appendix V in http://www.cdc.gov/nchs/data/nhis/srvydesc.pdf.

[^9]:    ${ }^{16}$ This manual is applicable to the data gathered during the 2006-07 school year; information contained in this manual about data gathered during the 1998-1999 school year (base year of the study), 1999-2000 school year (first grade), 2001-02 school year (third grade), and 2003-04 (fifth grade) is provided primarily for background and comparison purposes.
    ${ }^{17}$ See chapter 2, section 2.1 of the ECLS-K Psychometric Report for the Eighth Grade (NCES 2008-069) (Najarian et al. forthcoming) for additional information on the two-stage process for the direct cognitive assessments.

[^10]:    See notes at end of table.

[^11]:    See notes at end of table.

[^12]:    ${ }^{18}$ The items were adapted with permission from the Self Description Questionnaire (SDQ II), from Self Description Questionnaire (SDQ) II: A theoretical and empirical basis for the measurement of multiple dimensions of adolescent self-concept. An interim test manual and a research monograph, by H.W. Marsh (Sydney: University of Western Sydney, SELF Research Centre, 1992). (Original work published in 1990.)

[^13]:    ${ }^{19}$ See the ECLS-K Base Year Public-Use Data Files and Electronic Codebook: User's Manual (NCES 2001-029rev) (Tourangeau, Burke et al. 2004).

[^14]:    See notes at end of table.

[^15]:    ${ }^{1}$ Characteristics are from the most recent data available for the child (e.g., if a child was not subsampled in third grade and had data from first grade, then the characteristics of the child come from first grade).
    ${ }^{2}$ These are statistical movers, not operation movers as discussed in chapter 5.
    SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 1998, spring 1999, fall 1999, spring 2000, spring 2002, and spring 2004.

[^16]:    ${ }^{20}$ In kindergarten and first grade, children who were not proficient in English due to a non-English or non-Spanish home language (LM/not Spanish) also had weights even though they were not administered a child assessment. In third grade and fifth grade, this is no longer applicable, since there were no children not assessed due to English language ability.

[^17]:    ${ }^{21}$ These weights, used only to link children sampled in first grade to children sampled in kindergarten, sum up to zero in schools not subsampled for freshening, meaning that there are no children sampled in those schools through freshening.

[^18]:    ${ }^{22}$ For a description of the Durbin method, see the ECLS-K Third Grade Methodology Report (NCES 2005-018) (Tourangeau, Brick, Byrne, et al. 2004).

[^19]:    ${ }^{23}$ Common procedures in SAS, SPSS, and Stata assume simple random sampling. Use the SVY procedure (SAS), the Complex Samples module (SPSS), or the SURVEY command (Stata) to account for complex samples.

[^20]:    See notes at end of table.

[^21]:    ${ }^{1}$ DEFT is the root design effect. For an explanation of DEFT, see section 4.10.
    ${ }^{2}$ DEFF is the design effect. For an explanation of DEFF, see section 4.10.
    ${ }^{3}$ The categories of school affiliation in this table do not match categories of school affiliation in other tables in this chapter. This is to allow users to compare median DEFT and DEFF in eighth grade with those in previous years.
    NOTE: Each median is based on 52 items.
    SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

[^22]:    ${ }^{24}$ Accommodations included in the data collection protocol were special setting accommodations, scheduling/timing accommodations, large-size print accommodations, presence of a health care aide, or use of an assistive device.

[^23]:    SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

[^24]:    ${ }^{25}$ The categories of school affiliation in the tables in this chapter do not match categories of school affiliation in the tables in chapter 4 . This is to allow users to compare completion rates in eighth grade with those in previous years.
    ${ }^{26}$ Hard-to-field cases are the hard-refusal cases and cases that were nonrespondents in both first and third grades as described in section 4.5.

[^25]:    School characteristics are for schools attended by children in the ECLS-K third-grade sample and are based on ECLS-K survey data, not data from the sampling frame.
    ${ }^{2}$ A completed questionnaire was defined as one that was not completely left blank.
    SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

[^26]:    A completed questionnaire was defined as one that was not completely left blank.
    SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of $1998-99$ (ECLS-K), spring 2007.

[^27]:    A completed questionnaire was defined as one that was not completely left blank.

[^28]:    ${ }^{1}$ Based on ECLS-K survey data and not on data from the sampling frame.

[^29]:    ${ }^{1}$ Based on ECLS-K survey data and not on data from the sampling frame.

[^30]:    Based on ECLS-K survey data and not on data from the sampling frame.

[^31]:    ${ }^{27}$ American Indian includes Alaska Native.

[^32]:    ${ }^{\text {' Reading, mathematics, or science assessment was scorable, or child was disabled and could not be assessed. }}$

[^33]:    See notes at end of table.

[^34]:    ${ }^{4}$ Reading, mathematics, or science assessment was scorable, or child was disabled and could not be assessed.

[^35]:    ${ }^{28}$ Children's height and weight measurements were each taken twice to prevent error and provide an accurate reading. Children's BMI was calculated based on height and weight. The rules for using "Don't Know" and "Not Ascertained" codes for these values was as follows. If both the first and second measurement of height in the child assessment were coded as -8 (Don't Know), then the height composite was coded as -8 (Don't Know). If both the first and second measurements of weight were coded as -8 (Don't Know), the weight composite was coded as -8 (Don't Know). If either the height or weight composites were coded as not ascertained ( -9 ), the BMI composite was coded as not ascertained ( -9 ). If neither the height nor weight composites were coded as not ascertained, and either the height or weight composite was coded as -8 (Don't Know), then the BMI composite was coded as -8 (Don't Know).

[^36]:    ${ }^{29}$ It should be noted that in past rounds derived child demographic variables for gender, race/ethnicity, and date of birth (GENDER, RACE, DOBMM, DOBDD, and DOBYY) in the kindergarten and first-grade files did not follow the prefix conventions above because they combined information across data collection points and/or several sources. In spring-third, spring-fifth, and spring-eighth grades, these same demographic variables begin with the prefix R5 (e.g., R5RACE) for spring-third grade, R6 (e.g., R6RACE) for spring-fifth grade, and R7 (e.g., R7RACE) for spring-eighth grade. This was done because reports of these variables from parent data were prioritized over other sources starting in spring-third grade, and a prefix change was used to indicate the difference to users.

[^37]:    ${ }^{30}$ A number of respondents, both in this and in prior rounds, gave some variant of "biracial" as the other-specify response to child race. In previous rounds, these responses had been considered to be uncodeable, and the relevant children were given a value of -9 (Not Ascertained) for WKRACETH and W1RACETH. In spring-third, spring-fifth, and spring-eighth grades, these responses were treated as multiracial, and the relevant children were given a value of 8 (multiracial) for W3RACETH, W5RACETH, or W8RACETH.

[^38]:    SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 2006.

[^39]:    ${ }^{1}$ No occupation was imputed if "not in labor force" was filled from previous rounds or imputed by hot deck.
    SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), fall 2006.

[^40]:    ${ }^{31}$ The ECLS-K provides an approximate, but not exact measure of poverty. Income category thresholds used in the parent questionnaire are similar, but not identical, to those from weighted census averages.

[^41]:    ${ }^{1}$ U.S. Census Bureau, Current Population Survey. http://www.census.gov/hhes/www/poverty/threshld/thresh06.html.
    SOURCE: U.S. Department of Education, National Center for Education Statistics, Early Childhood Longitudinal Study, Kindergarten Class of 1998-99 (ECLS-K), spring 2007.

[^42]:    ${ }^{32}$ Missing data were due to "Refused" or "Don't Know" answers from respondents.
    ${ }^{33}$ In a previous round of the study, respondents who reported they were "biracial" in the "other" category were classified as "uncodeable." These responses were reclassified as "multiracial" in spring-fifth and spring-eighth grades.

[^43]:    ${ }^{34}$ There were also other questions in the school administrator questionnaire that allowed for answers to be recorded as either a number or percent. The flags for these variables are S7ADAFLG (average daily attendance reported as number/percent), S7ASNFLG (question about Asian or Pacific Islander teachers reported as number or percent), S7HSPFLG (question about Hispanic teachers reported as number or percent), S7BLKFLG (question about Black teachers reported as number or percent), S7WHTFLG (question about White teachers reported as number or percent), S7INDFLG (question about American Indian or Native Alaskan teachers reported as number or percent), and S7OTHFLG (question about teachers of other races reported as number or percent). In all cases, the final variables related to these flags are reported as percentages, but the flags indicate how the answers were originally recorded by respondents.

[^44]:    - Please note that the last two columns of table 7-15 in section 7.9 contain information that is filespecific. Information for the restricted-use file is contained in the second to last column while information for the $K-8$ full sample public-use file is contained in the last column of table 7-15.

[^45]:    See note at end of table.

[^46]:    See note at end of table.

[^47]:    See note at end of table.

[^48]:    See note at end of table.

[^49]:    See note at end of table.

[^50]:    See note at end of table

[^51]:    See note at end of table.

[^52]:    See note at end of table.

[^53]:    See note at end of table.

[^54]:    See note at end of table.

[^55]:    See note at end of table.

[^56]:    See note at end of table.

[^57]:    See note at end of table

[^58]:    See note at end of table.

[^59]:    See note at end of table.

[^60]:    See note at end of table.

[^61]:    See note at end of table.

[^62]:    See note at end of table.

[^63]:    See note at end of table.

[^64]:    See note at end of table.

[^65]:    See note at end of table.

[^66]:    See note at end of table.

[^67]:    See note at end of table.

[^68]:    See note at end of table.

[^69]:    See note at end of table.

