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Abstract. Objective. Classification of electroencephalography (EEG) signals with

high accuracy using short recording intervals has been a challenging problem in

developing brain computer interfaces (BCIs). This paper presents a novel feature

extraction method for EEG recordings to tackle this problem. Approach. The proposed

approach is based on the concept that the brain functions in a dynamic manner, and

utilizes dynamic functional connectivity graphs. The EEG data is first segmented

into intervals during which functional networks sustain their connectivity. Functional

connectivity networks for each identified segment are then localized, and graphs are

constructed, which will be used as features. To take advantage of the dynamic nature

of the generated graphs, a Long Short Term Memory (LSTM) classifier is employed

for classification. Main results. Features extracted from various durations of post-

stimulus EEG data associated with motor execution and imagery tasks are used to

test the performance of the classifier. Results show an average accuracy of 85.32%

about only 500 ms after stimulus presentation. Significance. Our results demonstrate,

for the first time, that using the proposed feature extraction method, it is possible

to classify motor tasks from EEG recordings using a short interval of the data in the

order of hundreds of milliseconds (e.g. 500 ms).This duration is considerably shorter

than what has been reported before. These results will have significant implications

for improving the effectiveness and the speed of BCIs, particularly for those used in

assistive technologies.

Keywords: Electroencephalography (EEG), Brain Dynamics, Dynamic Functional

Connectivity, Dynamic Graphs, Brain Computer Interface (BCI), Long Short Term

Memory (LSTM).
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1. Introduction

Brain computer interfaces (BCIs) are designed to establish a communication link

between the human brain and external devices. BCIs offer the possibility of generating

commands from brain recordings to control external devices such as those used in

assistive technologies. Among different types of BCIs, electroencephalography (EEG)-

based BCIs have received considerable attention in the BCI research community due

to their advantages including non-invasiveness, high temporal resolution, low-cost, and

portability [1, 2].

Two important metrics that impact the performance of BCIs and influence their

efficiency and practicality in various applications are 1) the buffering lag, i.e. the

duration of recordings required by the classification algorithm to create commands

(which largely determines the speed of the BCI), and 2) the classification accuracy

(which determines the reliability of the BCI). Clearly, an algorithm capable of classifying

a number of different tasks with high accuracy using a “short” interval of recordings is

of great interest.

In EEG-based BCIs, motor imagery (MI) tasks, targeting imagination of different

forms of muscle movements, such as arms, hands, tongue, and legs have been commonly

used. To this date, numerous classification algorithms, utilizing various feature

extraction and classification techniques have been used in EEG-based BCIs for decoding

motor execution/imagery tasks [3]. To provide an overview of recent work in this

domain, in Table 1‡, a comparison of recent work is given. These studies have been

categorized into different groups based on the buffering lag, which is the duration of the

data that needs to be collected before a prediction can take place. We divided these

studies into three groups of 1−2 s, 2−4 s, and equal or greater than 4 s. For each study,

we have summarized information on the number of classes, number of EEG electrodes

(channels), feature extraction domain (time, frequency, time-frequency), classification

algorithm, and reported classification accuracy.

From Table 1, one can see that the majority of studies have considered two-class

problems. For two class problems, the highest accuracy results for using 1− 2 s of data

were reported in [4], for using 2 − 4 s of data in [5, 6, 7, 8, 9], and for using equal or

greater than 4 s of data in [10]. For multi-class problems, the highest accuracy results

were achieved in [11] for using 1−2 s of data, in [9, 12, 13] for using 2−4 s of data, and

in [14, 15, 16] for using equal or greater than 4 s of data. Considering these studies, it

can be concluded that with respect to the required buffering lag, the decoding process

has been relatively slow. This slowness causes challenges in BCI applications, where a

sequence of commands needs to be decoded and executed in order to complete a task,

such as moving a robotic arm from one place to another. There is therefore, a crucial

need to develop new methods capable of early decoding of EEG signals to improve

the efficiency of BCIs. In this paper, we aim to target this problem, and propose a

‡ Note that due to high volume of papers in this field, we only considered highly-cited studies that

considered classification of motor-related tasks, and were published after 2014.
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framework, which requires a relatively short duration of EEG data (in the order of

hundreds of milliseconds) to achieve high accuracy in classification.

Our proposed approach is based on functional connectivity and the hypothesis that

for the execution of tasks, the brain relies on dynamic interactions among its different

regions [17, 18, 19, 20]. Previous work [21, 22, 23, 24] have indicated that brain’s

functional connectivity throughout the course of movement-related (execution/imagery)

tasks can be used to study the underlying mechanisms involved in performing those

tasks. These results suggest the potential of acquiring useful information from functional

connectivity networks for discriminating various motor-related tasks. Indeed, functional

connectivity has been utilized in recent EEG-based BCI work. As an example, in

[25], phase-locking value (PLV) was used to estimate functional connectivity patterns

from EEG recordings. The authors then identified node-pairs in constructed functional

networks that discriminate resting state vs motor imagery tasks. Using this information

along with a subject-specific frequency band selection procedure, features were extracted

to discriminate left and right hand motor imagery tasks, where an average classification

accuracy of 64.27% was achieved. In another connectivity-BCI study [26], after

identifying functional connectivity patterns using partial directed coherence metric, a

statistical selection method based on the appearance rate of directed connectivities

and larger partial directed coherence magnitude was used to characterize task-specific

functional connectivity networks. The identified networks were then used as features and

an average classification accuracy of 78.76% for discriminating right hand vs right foot

motor imagery tasks was reported. In [27], the feasibility of using functional connectivity

patterns for classification of motor imagery (left vs right hand) was explored. In

this study, interactions among EEG electrodes were modeled as graphs which were

constructed using motif synchronization method, and then, various graph metrics were

used as features for the classification problem. The results of this study demonstrate

the feasibility of using graph methods for the classification of motor imagery tasks. In

another work [23] graph measures were employed as features for decoding motor imagery

tasks, resulting in an average classification accuracy of 71.5% for classifying pairs of left

hand, right hand, foot, and tongue motor imagery tasks. In [11], connectivity graph

measures combined with channel-based time/frequency domain features were employed

for the classifications of motor imagery tasks, and an average accuracy of 79.69%

was reported for a 4-class motor imagery classification. These studies demonstrate

the feasibility of using functional connectivity networks for decoding motor-movement

tasks in BCIs. However, as seen in Table 1, in these functional connectivity-based BCI

studies, features were extracted from durations of equal or greater than 2 s. As for

dynamics, dynamic brain functional networks corresponding to motor imagery tasks

during the event-related synchronization (ERS) and de-synchronization (ERD) periods

were investigated in [22], where it was shown that different stages of motor preparation

and imagery can be characterized by network measures. Their findings demonstrated

that the underlying dynamic information processing during motor imagery tasks can

be described by dynamic functional connectivity networks, suggesting the potential for
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using dynamic functional connectivity in BCIs. In [28], empirical mode decomposition

phase locking method was used to model the functional connectivity between EEG

channels, and time-frequency connectivity maps were generated by computing time-

dependent mean clustering coefficients of graph nodes for different frequency bands.

A Hidden Markov Model (HMM) was then employed to classify the dynamics of the

mean clustering coefficients in different frequency bands, indicating that the dynamics

of functional connectivity networks could provide useful information for differentiating

motor tasks.

Table 1: Performance comparison of recent studies for classification of MI tasks in EEG-based

BCIs.

Time Year # of # of Feature Classifier Average Ref.
(s) Classes Channels Domain Accuracy(%)

1− 2 2016 2 3 Time & Frequency GA-PSO Based 60.97 [29]
k-means Clustering

2018 2 15 Time RF 72.73 [30]
2014 2 128 Frequency SVM 77.11 [31]
2014 2 4 Time & Frequency LDA 77.3 [32]
2017 2 118/3 Time NBPW 76.12/86.41 [33]
2019 2/2 2/2 Frequency SVM 78.04/83.58 [4]

2019 4 22 Time Multi-branch 75.02 [34]
3D CNN

2019 4 22 Time & Frequency SRDA 79.7 [11]

2− 4 2016 2 22 Time & Frequency SVM 64.27 [25]
2016 2 118 Time DNN with LRP 71.6 [35]
2014 2 27 Time NBPW 74.14 [36]
2016 2 22 Time & Frequency SVM 74.92 [37]
2018 2 22 Time LSTM 75.28 [38]
2019 2 3 Frequency Capsule Network 78.44 [39]
2017 2 118 Frequency Mahalanobis Distance 78.76 [26]
2014 2 22/32 Time Minimum Distance 78/80 [40]
2019 2 15 Time & Frequency LDA/SVM 79.19 [41]
2018 2 22 Time & Frequency MDRM 79.93 [42]
2016 2 14 Time RF 80.05 [43]
2017 2 3 Time SBL 81.7 [44]
2016 2 59/118 Time SVM 78/83.3 [45]
2017 2 3/2/40 Frequency BTSPRT 83.4 [46]
2018 2 59 Time SVM 84.86 [47]
2019 2 3 Time & Frequency SVM 85 [48]
2015 2 118/60 Time FLDA 84.04/83.77 [49]

/22 /85.52
2016 2 60/118 Time & Frequency DPL 85.7/80.77 [50]
2018 2 18 Time Ensemble Classification 86.23 [51]
2018 2 60/22 Time & Frequency SVM 88.5/83.25 [52]

/3 /84.3
2015 2 118 Frequency - 90.7 [53]
2016 2 32 Time SVM 90.9 [54]
2019 2 118/60 Time MDRM 87.21/90.93 [55]

/22 /80.98
2018 2 64 Time ELM 91 [56]
2019 2 3 Time & Frequency HS-CNN 91.57/87.6 [57]
2017 2 18/59 Time LDA/SVM 91.68/82.34 [58]

/3 /81.02
2015 2 118 Time SVM 81/92 [59]
2015 2 14/118 Time SVM 80.88/92.29 [60]
2017 2 118 Time & Frequency kNN 92.8 [61]
2014 2 118 Time LR 93.91 [62]
2017 2 2 Time Hierarchical ELM 94.54 [5]

Continue on the next page
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Table 1: Continued from previous page

Time Year # of # of Feature Classifier Average Ref.
(sec) Classes Channels Domain Accuracy(%)

2016 2 118 Time NB 96.36/91.97 [6]
2018 2 118 Time SVM 96.89 [7]
2018 2 10 Time & Frequency SVM 97.56 [8]

2015 2/3 32 Time & Frequency LDA/LR/SVM 66.9/60.7 [63]
2015 3 118 Time - 68.94 [64]
2016 3 64 Time Multi-Class 79.5 [65]

Adaboost
2020 3 27 Time & Frequency SVM/ELM 99.38 [66]

2019 2/4 22 Time LS 71.5/49 [23]
2016 4 22 Frequency RF 68.32 [67]
2018 2/3 64 Time CNN 83.49/79.25 [68]

/4 /68.51
2018 4 22 Time Multi-Class 70.3 [69]

Multi-Kernel RVM
2015 2/4 118/60 Time & Frequency SVM 69.40/71.22 [70]
2019 4 22 Time CNN 74 [71]
2018 4 22 Time & Frequency SVM 75.47 [72]
2015 2/2 59/62 Frequency Hierarchical SVM 85.2/94.1 [9]

/4 /62 /83.2

2015 7 32 Frequency Bayesian 62.9 [12]
(2019) 4/5 22/8 Time & Frequency CNN 80.03/76.62 [13]

≥ 4 2014 2 64 Time SVM 78 [73]
2019 2 59 Time Regularized LDA 77 [74]
2019 2 3 Time SVM/Ensemble learning 80 [75]

learning
2019 2 3 Time & Frequency SVM 80.7 [76]
2014 2 3/2 Time & Frequency BPNN & SVM 80.8 [77]
2018 2 22 Time Information Fusion 81.87 [78]
2014 2 2 Time & Frequency AFNN 82.5 [79]
2016 2 3 Frequency RBM 84 [80]
2017 2 3/118 Time LDA 81.23/84.08 [81]

/118 /73.71
2019 2 64/118 Time & Frequency GSLDA 84.8 [82]

/3
2017 2 9 Time Fuzzy SVM 86.25 [83]
2017 2 118 Time & Frequency WNB 86.38 [84]
2018 2 118/3 Time Multi-Kernel ELM 87.5/78.9 [85]
2018 2 3 Time & Frequency SVM 88.36 [86]
2015 2 6/7 Time IT2FLS 90.10/56.67 [87]
2016 2 59 Time PSO-SVM 90.20/85.25 [88]
2015 2 2 Time & Frequency LDA 90.71 [89]
2015 2 64/3 Time & Frequency SVM 92.86/72.3 [90]
2019 2 32 Time & Frequency LSTM/pCNN 84.24/92.28 [91]

/RCNN /77.72
2018 2 64 Time LDA/SVM 99 [27]

2016 3 15 Time LDA 63 [92]
2014 3 22 Time SVM 86.25 [93]

2016 3/4 32/22 Frequency NBPW and 59.23/38.07 [94]
2019 2/3/4 64 Time & Frequency LSVM/KSVM/ 93.6/71.9 [95]

GB/SRDA /58.3
2017 4 22 Time Hierarchical SVM 64.4/69.16 [96]

Continue on the next page
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Table 1: Continued from previous page

Time Year # of # of Feature Classifier Average Ref.
(sec) Classes Channels Domain Accuracy(%)

2014 4 18 Time Decision Tree 65.35 [97]
2016 4 64 Frequency SVM 65/74.14 [98]
2015 2/4 64/3 Time Twin SVM 100/74.5 [10]
2014 4 60 Time & Frequency SVM 76.87 [99]
2015 4 22 Time SUSS-SRKDA 77 [100]
2016 4 17 Time & Frequency Mahalanobis Distance 81.4 [14]
2017 4 2 Time RANFN 85.5 [15]
2019 4 22/128 Time CPMS-CNN 74.3/94.7 [16]

Motivated by the results of functional connectivity-based BCIs, in this paper,

we propose a new framework that utilizes the spatial and temporal (dynamic)

characteristics of brain functional networks for early decoding of motor execution and

imagery tasks. Our hypothesis is that for different movement execution/imagery tasks,

the “spatial” distribution of the brain functional networks as well as their “dynamics”

provide discriminatory information for the classification problem, even within a short

interval after the task onset.

In the proposed framework, EEG recordings are first segmented using our recently-

proposed segmentation method [101, 102, 103] to identify the time intervals (segments)

during which the spatial distribution of the underlying functional networks stays quasi-

stationary. Functional connectivity networks for each identified segment are then

localized to generate functional connectivity graphs. The resulting graphs, extracted

from the sequences of the segments, are then vectorized and passed to the classifier.

Considering the dynamic nature of the extracted functional connectivity graphs, we

employ a long short-term memory (LSTM) network as the classifier, which allows for

using the information in sequence. To evaluate the early decoding capability of the

proposed framework, we use the sequence of functional connectivity graphs extracted

from the corresponding sequence of identified post-stimulus EEG segments, starting

with the very first segment. We also explore changes in the decoding accuracy as a

result of increasing the duration of EEG recordings used for classification. It is worth

mentioning that the proposed method is a synchronous BCI algorithm.

Two datasets are used to evaluate the performance of the proposed framework. The

first dataset is collected in our lab and includes various forms of tongue/hand motor

execution and imagery tasks [104]. The reason for choosing tongue movement execution

task is that voluntary tongue movement is mostly preserved in patients with severe

motor disorders, such as those with high spinal cord injury [105, 106], and therefore,

can be utilized in BCIs to increase the number of commands in BCI-based assistive

technologies for these patients. The second dataset is taken from a publicly-available

source (BCI competition IV, dataset IIa) and comprises four different imagery tasks

[107]. Our results demonstrate that although classification accuracy generally improves

over time, an average accuracy of 85.32% can be reached only 500 ms after task onset.

In summary, the contributions of this paper are as follows: 1) we present a new

framework that utilizes the spatial and dynamic characteristics of brain functional
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Figure 1: Overview of the proposed framework.

networks for decoding motor tasks from EEG recordings; 2) we demonstrate, for the

first time, that it is possible to achieve reasonable classification accuracy using only a

short interval of the data in the order of hundreds of milliseconds (e.g. 500 ms) after

the task onset, which can pave the path to further enhance the performance of the

BCIs in terms of the required buffering lag and increasing the decoding speed; and 3)

we consider classification of tongue movement execution versus hand/tongue movement

imagery, which offers the possibility of increasing the number of commands in BCIs.

The rest of the paper is organized as follows: the proposed methods for feature

extraction and classification of EEG data are presented in Section 2. In Section 3, the

experimental paradigms and data collection procedures are described. Classification

results and discussions are presented in Sections 4 and 5, respectively, and the paper is

concluded in Section 6.

2. Proposed Method

A functional network corresponds to a set of brain regions that exhibit correlation to

a common time-course, suggesting that they are collaborating functionally when the

brain is at rest or when it is engaged in executing a task [108]. It is also now known

that functional networks are dynamic, i.e., they sustain their inner-connectivity for

short intervals of time [17, 18]. As will be discussed here, our proposed novel feature

extraction/classification framework uses functional connectivity networks as well as their

dynamics, to enable the possibility of early decoding of EEG signals. An overview of

the proposed framework is illustrated in Figure 1. We consider a LSTM classifier to

take advantage of the information contained in the dynamics of the extracted features.

In what follows, we provide details for each step in the proposed framework.

2.1. Proposed Feature Extraction Framework

The proposed feature extraction framework is comprised of two main steps: first, the pre-

processed EEG data is segmented into quasi-stationary intervals, and then functional
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networks in each segment are localized and the corresponding graphs are constructed,

which will then be used as features for the LSTM classifier.

2.1.1. EEG Segmentation The first step of feature extraction uses our recently

developed source-informed segmentation algorithm [101]. The main objective of this

step is to find intervals in the EEG recordings during which “the spatial distribution” of

the cortical functional networks stays quasi-stationary. In other words, this step detects

the time points in the EEG data, at which there are changes in the location of cortical

networks. Therefore, this segmentation approach provides a functionally-relevant means

for segmenting EEG data, which is different from the commonly-practiced model-based

(e.g. autoregression) and metric-based (e.g. change point detection) segmentation

approaches.

The details of the source-informed segmentation algorithm is presented in [101],

and the algorithm was utilized in [109, 102, 103, 110, 111]. Briefly, this segmentation

technique employs singular value decomposition (SVD) along with a reference/sliding

window approach to identify targeted time intervals in the EEG data. In [101] we have

proved that the most significant left singular subspace of the EEG data captures the

“spatial locality” features of the cortical functional networks and can be used as a feature

space in the segmentation algorithm. Therefore, a significant change in this span of the

feature space, along the time axis, would indicate a change in the spatial distribution

of the cortical functional networks. Using a reference/sliding window approach, this

feature space can be dynamically extracted. The segment boundaries are detected by

statistically comparing the residual error resulting from projecting the block of EEG

data matrix under a reference window, on one hand, and that under a sliding window,

on the other hand, onto the feature subspace [101]. It is worth mentioning that this

segmentation algorithm is performed without using source localization methods, and

uses the information from all EEG channels to detect the boundaries of the segments.

2.1.2. Functional Connectivity Graphs The second step of the feature extraction

involves identifying the functional networks sustaining their connectivity during each

identified segment and calculating the corresponding graphs. Since the nodes of these

networks are taken to be the EEG electrodes, the problem of volume conduction needs

to be addressed [112, 113]. For this purpose, the surface Laplacian operator [114, 115]

is applied to the EEG data in order to minimize channel coupling. The segment-wise

average value of each EEG channel is then removed, in order to allow the next step

to focus on the temporal patterns of the activities, rather than the intensities, of these

channels.

Towards identifying the functional networks forming during a given segment, we

first note that each of these networks is characterized by a distinct time-course with

which the involved nodes show high correlation. Here, we use low-rank SVD to recover

a minimum mean square error (MMSE) estimate of the zeros-mean channel activities

conforming to these time-courses, thus, to their associated networks. For more details
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(a) (b)

(c) (d)

Figure 2: Segmentation and extracted color-coded functional connectivity matrices for

each segment of randomly selected trials from (a):left hand motor imagery, (b): right

hand motor imagery, (c): both feet motor imagery, and (d): tongue motor imagery of

BCI Competition IV-IIa dataset. As can be seen, across classes of motor movement

tasks, there are variations in the number and the duration of identified segments, as

well as in patterns of constructed graphs.

about this approach refer to [102]. The functional connectivity graph that captures the

networks forming during that segment can finally be calculated as the correlation matrix

among the estimated channel activities.

To illustrate an example of the outcome of the proposed methods, we applied the

proposed segmentation and functional connectivity graph extraction algorithms to 4

randomly selected trials from the BCI Competition IV-IIa dataset (see Section 3 for

more details about the experimental paradigm). Each trial was taken from one class of

motor imagery (left hand, right hand, both feet, and tongue). The results for 110 ms are

shown in Figure 2 as examples. It can be seen that, the length and the number of the

segments, as well as the extracted graphs are different for each class, further suggesting

that these features can be utilized to differentiate various forms of motor-movement

classes.

2.2. Classification Scheme

Due to the dynamic nature of the brain, it is important to consider the information

contained in the temporal sequence of the extracted features from identified segments.

We address this point by employing a LSTM classifier. The input to these classifiers are

variable-length temporal sequences of connectivity graph-based vectors. The variation
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Figure 3: The structure of the LSTM classifier.

in the lengths of these sequences comes from the variation in the number of the identified

segments, spanning any fixed time interval.

The structure of the classifier is shown in Figure 3. A neural network with three

hidden layers is used: a fully-connected layer consisting of 20 neurons, an LSTM layer

consisting of 20 neurons with a single-step delay feedback loop around the second

hidden layer, and another fully-connected layer consisting of 2 neurons. These layers

are followed by softmax and classification layers. An overall classification decision is

made by the neural network after it processes each segment in the sequence of dynamic

functional connectivity graphs.

3. Experimental Procedure

To evaluate the performance of the proposed method, two datasets have been used.

The first dataset was collected in our lab and the second dataset was available from the

BCI Competition IV-IIa. Detailed descriptions of the experimental paradigms for each

dataset are provided in this section.

Dataset 1: Eight healthy, right-handed volunteers (5 males and 3 females) aged

between 20 and 35, participated in the study. Written informed consents approved by

Rutgers’ Institutional Review Board (IRB) were obtained prior to experiments. Subjects

were seated in a comfortable chair with a display in front of them as shown in Figure

4. The experiment included 3 blocks of dictated motor execution tasks and 3 blocks of

dictated motor imagery tasks separated by short breaks. On average each block took

approximately 7.5 minutes. In execution/imagery blocks, subjects were instructed to

move/visualize moving their tongue upward or downward or squeeze/visualize squeezing

their left or right hand if they saw an arrow pointing up, down, left, or right,

respectively. The direction of movement, using an arrow, was shown for 1 s, followed

by a diamond stimulus which was shown for 2 s. Subjects were instructed to perform
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Figure 4: Experimental setup for Dataset 1.

0 1 32 4 5 6
t

1 s 2 s 2- 4 s

Motor execution/imagery

(b)(a)

...

Figure 5: Dataset 1- (a): Timing scheme of a single trial. (b): EEG electrodes montage.

motor execution or imagery only after they saw the diamond stimulus and to continue

until it disappeared. The inter-trial interval was set to 2 − 4 s (see Figure 5(a)). In

each block, 15 trials of each class were performed (a total of 45 trials per class). EEG

data was collected using a 128-channel EEG system (Brain Products), at a rate of

2000 samples/sec. We used 32 EEG channels for data analysis. The selected channels

are shown in Figure 5(b). The electrodes were positioned based on the international

extended 10− 20 electrode placement system.

The 2 s EEG data obtained during the presentation of the diamond stimulus, was

extracted from each trial and was preprocessed using EEGLAB toolbox [116]. The data

was filtered using a band-pass finite impulse response (FIR) filter in the range of 1

to 50 Hz . All imagery and execution trials were treated the same for preprocessing.

The artifacts were then removed using visual inspection of the trials and independent

component analysis (ICA).

Dataset 2: This online dataset was used to conduct a performance comparison

with existing work (see Section 5). The dataset provided by the Laboratory of Brain-

Computer Interfaces, Graz University of Technology have been used in several BCI
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Figure 6: Dataset 2-(a): Timing scheme of a single trial. (b): EEG electrodes montage.

Table 2: Number of available and used trials for Dataset 1 and 2.

Available trials Used trials

Dataset 1 2160 (270 per subject, 45 per task) 2160

Dataset 2 5184 (576 per subject, 144 per task) 4699

papers. The EEG data was collected from 9 right-handed subjects using 22 Ag/AgCl

electrodes (Figure 6(b)) and 3 EOG channels, at a rate of 250 Hz. The data was

collected in two sessions on different days. Each session comprised 6 runs with short

breaks between blocks. During each run, the subjects were asked to perform four motor

imagery tasks including the imagination of movement of the left hand, right hand, both

feet, and tongue. At the beginning of each trial, a fixation cross is shown on the black

screen and a short acoustic warning tone is presented. After 2 sec, an arrow pointing to

the left, right, down or up, corresponding to the motor imagery of left hand, right hand,

both feet, and tongue, appears on the screen for 1.25 s, followed by a fixation cross.

Subjects were asked to perform motor imagery task until the fixation cross disappears

at t = 6 s. A short resting time was considered before starting a new trial. Each run

consisted of 12 trials of each class, yielding a total of 72 trials per class in each session.

A visual illustration of a single trial is shown in Figure 6(a).

Previous studies that used this dataset, have mostly considered the [3−6] s window

as the interval during which motor imagery tasks are performed [37, 42, 23, 25, 52, 69, 72]

for the analysis. Therefore, we also extracted this 3-s motor imagery interval from each

trial. Data was then preprocessed in EEGLAB toolbox [116], using a band-pass FIR

filter in the range of 1 to 45 Hz . For artifact removal, the trials marked as bad trials

in the file that accompanied the data, were removed in the pre-processing step before

removing artifacts via ICA.

Table 2 summarizes the total number of available and used trials for each dataset.

4. Results

In this section, we present the results for the performance of the proposed feature

extraction/classification framework for different durations of post-stimulus EEG data.
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Figure 7: PMF of the segment lengths across all subjects, tasks, and trials. The average

length of the segments is 22.2 ms with standard deviation of 8.7.

The trials were separated into three randomized groups for: training (75%), validation

(10%), and testing (15%) the classification model. For Dataset 1, features extracted from

2 s post-stimulus intervals were used for training and validation. However, for testing,

different time intervals of the data were used to study the early decoding capability of

the proposed framework.

Figure 7 displays the probability mass function (PMF) of the length of the identified

segments for the duration of motor execution/imagery tasks across all subjects, tasks,

and trials for Dataset 1. The average length of the segments is 22.2 ms with standard

deviation of 8.7. The sequences of graph patterns from identified segments were passed

to the classifiers and the decisions were made at the end of each segment. As the

segments for different trials have different durations and ending points, to calculate the

accuracy at any time instant, decisions were grouped based on the ending point of the

corresponding segment into non-overlapping time bins of 100 ms duration.

Let us describe this procedure with an example. For a randomly selected trial

(e.g. subject 6, tongue imagery movement towards up direction, trial 9), the identified

segments for the duration of [0 − 300] ms are as follows: [0 − 20.5] ms, [20.5 − 33.5]

ms, [33.5 − 60] ms, [60 − 84] ms, [84 − 108] ms, . . . , [184 − 206.5] ms, [206.5 − 223]

ms, [223 − 238] ms, [238 − 250.5] ms, [250.5 − 268.5] ms and [268.5 − 285] ms. The

functional connectivity feature extracted from an individual segment is passed to the

dynamic classifier to generate a single decision about the type of the task. The sequence

of segments results in a sequence of decisions. Now, to calculate the average accuracy for

example for the time bin [200 − 300] ms, the classification decisions from all segments

whose end-point lies within the [200 − 300] ms bin are considered. In this example,

these segments are [184− 206.5] ms, [206.5− 223] ms, [223− 238] ms, [238− 250.5] ms,

[250.5− 268.5] ms and [268.5− 285] ms. Note that we did not include the decision from

segment [285− 304.5] ms in the calculation of accuracy here, because this segment does

not end within the [200− 300] ms bin.
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Figure 8: Extracted first 8 graph sequences of two randomly-selected trials from Dataset

1 for an exemplary subject (subject 6) (a): execution of tongue movement in the down

direction, (b): imagery of right hand squeezing.

4.1. Dataset 1: Classification Accuracy Using Short Duration of Post-stimulus EEG

Data

For Dataset 1, 32 EEG channels (Figure 5) were used for the classification. For the

segmentation step, 20 samples for both reference and decision windows were considered,

which according to [101], it is a proper choice in terms of the performance of the

algorithm in detecting segment boundaries. Using the 32 EEG channels, the size of

the extracted functional graph matrices is 32 × 32. Since the extracted graphs are

symmetric and include no self-loops, only the upper triangle from each graph matrix

was extracted and put into a vector of size 496 (i.e., 32×31
2

). The extracted graphs for an

exemplary subject and two randomly-selected trials are shown in Figure 8. One can see,

qualitatively, that across tasks, there are differences in the patterns of the connectivity

graphs as well as in the duration of the EEG data for which the graphs were constructed

as determined by the segmentation algorithm.

In this work, we focus on the classification of tongue movement execution vs

tongue/hand imagery tasks. Selecting these pairs of motor execution vs imagery tasks

was motivated by the fact that the tongue movement ability is often preserved in patients

with motor disabilities, and its inclusion in BCIs can increase the number of control

commands which is crucial in BCI-based assistive technologies. In contrast, patients

in need of BCI technology usually do not possess hand movement execution ability.

Therefore, discrimination of hand motor execution tasks vs tongue/hand motor imagery

tasks was not considered in this study.

The accuracy, using the first 500 ms of the EEG data for classifying tongue

movement execution vs tongue imagery (in various directions), and for tongue movement

execution vs hand movement imagery (in various directions) for all subjects, and

averaged across subjects are summarized in Tables 3 and 4, respectively.

As expected, the accuracy results are subject-dependent. For Subject 5, the average

accuracy for all classes was higher than 97%, while for subjects 1, 3, 4, and 6, the average
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Table 3: Classification accuracy results for tongue movement execution (TE) in up (U)

or down (D) directions vs tongue imagery (TI) in up (U) or down (D) directions, 500

ms after the task onset.

U (TE) vs U (TI) U (TE) vs D (TI) D (TE) vs U (TI) D (TE) vs D (TI) Average

Subject 1 83.60± 9.59 79.93± 10.19 87.01± 8.25 80.90± 9.45 82.86± 9.39

Subject 2 84.86± 8.21 79.68± 10.27 78.95± 11.13 82.74± 9.69 81.56± 9.88

Subject 3 92.02± 6.68 94.60± 6.89 89.63± 8.24 90.12± 9.60 91.59± 7.94

Subject 4 93.61± 5.96 87.59± 7.38 94.62± 6.83 89.68± 8.19 91.37± 7.14

Subject 5 98.58± 5.67 98.70± 2.34 98.55± 3.14 98.02± 3.12 98.46± 3.78

Subject 6 91.52± 8.22 90.88± 6.99 81.37± 9.58 77.25± 10.27 85.26± 8.86

Subject 7 55.87± 11.24 50.61± 12.85 58.64± 11.35 53.31± 12.18 54.36± 11.92

Subject 8 77.45± 11.32 69.65± 12.71 77.09± 11.42 66.48± 12.98 72.67± 12.13

Average 84.69± 8.61 81.33± 9.30 83.23± 9.13 79.81± 9.84 82.27± 9.23

Table 4: Classification accuracy results for tongue movement execution (TE) in up (U)

or down (D) directions vs imagery (HI) of left (L) or right (R) hands, 500 ms after the

task onset.

U (TE) vs L (HI) U (TE) vs R (HI) D (TE) vs L (HI) D (TE) vs R (HI) Average

Subject 1 85.42± 10.62 85.80± 10.03 86.20± 7.85 84.13± 8.55 85.39± 9.33

Subject 2 75.48± 11.01 79.45± 10.42 69.95± 9.31 78.34± 10.48 75.81± 10.32

Subject 3 93.09± 7.68 94.94± 5.85 88.33± 8.93 91.19± 9.73 91.89± 8.18

Subject 4 95.12± 5.37 93.07± 6.93 94.05± 6.77 90.85± 9.17 93.27± 7.19

Subject 5 98.15± 3.31 98.07± 5.92 97.57± 4.38 99.14± 2.48 98.23± 4.22

Subject 6 93.98± 6.35 93.05± 7.47 85.30± 9.81 82.91± 9.38 88.81± 8.37

Subject 7 74.88± 10.60 85.68± 9.82 75.69± 11.31 80.37± 11.51 79.16± 10.83

Subject 8 74.301± 12.18 72.69± 11.26 67.65± 12.09 65.52± 12.31 70.04± 11.97

Average 86.30± 8.90 87.84± 8.70 83.09± 9.10 84.06± 9.62 85.32± 9.09

accuracy results for different classes were above 80%. However, the average accuracy

for tongue movement execution vs tongue imagery for subject 7 was around the chance

level, which could be an outlier. Overall, after 500 ms of task onset, the average accuracy

results of 82.27% and 85.32% were achieved for tongue movement execution vs tongue

imagery, and tongue movement execution vs hand movement imagery tasks, respectively,

across all subjects. These results show that the discrimination between tasks can be

obtained within a short duration (in the order of hundreds of milliseconds) of task onset

using the proposed framework.

4.2. Dataset 1: Effects of Increasing the Time Duration of the EEG Data on the

Classification Accuracy

To this point, we only considered average classification accuracy 500 ms after task onset.

To further study the effects of the post-task onset time elapse, on the accuracy results,

the classification accuracy results for tongue movement execution vs tongue imagery,

and for tongue movement execution vs hand movement imagery are plotted as functions

of time in Figures 9 and 10, respectively.

Considering these plots, it can be concluded that for most subjects, using the
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Figure 9: (a)-(h): Classification accuracy of tongue movement execution (TE) in up (U)

or down (D) directions vs tongue imagery (TI) in up (U) or down (D) directions for all

subjects.
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Figure 10: (a)-(h): Classification accuracy of tongue movement execution (TE) in up

(U) or down (D) directions vs imagery (HI) of left (L) or right (R) hands for all subjects.
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Table 5: Dataset 1- Classification accuracy results averaged across all subjects, for

tongue movement execution (TE) vs tongue imagery (TI), and for tongue movement

execution (TE) vs hand movement imagery (HI), at different post-stimulus instants.

Duration (ms) 300 500 700 1000 1500 1900

TE vs TI 78.41± 9.76 82.27± 9.23 84.44± 8.49 85.39± 8.66 87.26± 8.45 87.35± 8.39

TE vs HI 82.14± 9.37 85.32± 9.09 87.64± 8.64 89.08± 8.51 90.01± 8.32 90.48± 8.46

proposed approach, the accuracy reaches to its high levels within 500− 1000 ms, except

for Subject 5, for whom the highest accuracy was achieved earlier than 500 ms.

To provide a comparison, the average accuracy results of the LSTM classifier across

all subjects at different post-stimulus instants of 300, 500, 700, 1000, 1500, and 1900

ms are summarized in Table 5. These results suggest that using longer duration of

recordings leads to some improvements in the classification accuracy.

4.3. Dataset 1: Significance of Considering the Dynamics of the Functional

Connectivity Graphs on Classification Performance

To further emphasize the importance of including the dynamics contained within the

sequence of the extracted features, we also considered a non-dynamic artificial neural

network (ANN) classifier. In contrast to LSTM, the ANN classifier is incapable of taking

advantage of the information conveyed by the sequencing of the feature vectors. We used

an ANN model with two fully-connected hidden layers consisting of 20 neurons. The

average classification results achieved at 500 ms using the ANN classifier for different

classes of tongue movement execution vs imagery, and tongue movement execution vs

hand movement imagery, compared to the accuracy results achieved from the LSTM

classifier are presented in Figure 11. As can be seen, the average classification accuracy

using the LSTM classifier is about 18% higher than the accuracy results achieved from

the ANN classifier (across classes), which confirms that the inclusion of the information

that lies in the temporal sequence of extracted features plays an important role in

improving the performance.

Additionally, from Figure 12, one can see that, for the ANN-based classifier, the

average classification accuracy does not improve as time goes by. This is caused by

the exclusion of the temporal information of the sequence in the ANN classifier, thus,

discriminating different tasks is only based on the spatial information of functional

connectivity graphs. In summary, these results demonstrate the significance of

considering the dynamics of the functional connectivity graphs for discriminating motor

tasks.

4.4. Dataset 2: Early classification of motor imagery tasks

In order to compare the performance of the proposed approach with existing methods,

we also applied the classification algorithm to the BCI Competition IV dataset IIa
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Figure 11: Average classification accuracy results, 500 ms after task onset, for different

classes of tongue movement execution (TE) vs imagery (TI) and tongue movement

execution (TE) vs hand movement imagery (HI) using ANN and LSTM classifiers.
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Figure 12: Average classification accuracy results for tongue movement execution (TE)

vs (a): tongue movement imagery (TI) and (b): hand movement imagery (HI) using

ANN and LSTM classifiers.

(Dataset 2), which has been commonly used in BCI studies. Features extracted from

the 3 s duration of motor imagery task ([3−6] s interval, see Figure 6(a)) were employed

for training and validation. For testing, the time bin ending 800 ms, after the motor

imagery task onset, was observed. The reason for selecting this duration is that when

plotting accuracy graphs similar to Figures 9 and 10 for this dataset, we observed that

around 800 ms a reasonable accuracy can be achieved. The classification results for

differentiating various pairs of MI tasks (i.e. left hand vs right hand (L vs R), left hand

vs both feet (L vs F), left hand vs tongue (L vs T), right hand vs both feet (R vs F),

right hand vs tongue (R vs T), and both feet vs tongue (F vs T)) for all subjects are

presented in Table 6. Accuracy results greater than 80% are also emphasized in bold.

As can be seen, the highest accuracy results have been achieved for left hand vs

tongue, and for right hand vs tongue classification cases, whereas the lowest accuracy

was obtained for feet vs tongue, and left hand vs right hand classification cases. One
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Table 6: Classification accuracy results for classifying various pairs of left hand (L),

right hand (R), both feet (F), and tongue (T) movement imagery tasks, 800 ms after

the task onset for Dataset 2 (Dataset IIa from BCI competition IV).

SUB L vs R L vs F L vs T R vs F R vs T F vs T

A01 59.91± 6.88 80.62± 6.45 86.12± 4.92 81.49± 6.95 91.56± 4.46 55.18± 6.36

A02 56.24± 6.62 72.87± 7.07 68.56± 7.45 75.35± 6.66 74.06± 6.92 60.39± 6.25

A03 77.26± 6.01 76.08± 6.88 86.47± 5.24 86.21± 5.37 92.19± 3.70 70.57± 6.95

A04 58.88± 7.48 63.23± 7.01 64.91± 6.98 68.84± 8.17 63.59± 6.53 60.92± 7.61

A05 56.88± 6.39 52.03± 4.84 53.49± 5.96 53.44± 5.77 55.07± 6.36 51.03± 5.86

A06 60.42± 8.21 60.67± 6.98 62.31± 7.24 56.23± 7.56 60.21± 7.90 58.59± 7.12

A07 59.48± 6.06 88.13± 4.98 85.97± 5.54 83.22± 5.29 84.80± 6.43 72.74± 6.53

A08 82.50± 5.44 69.69± 7.50 85.81± 5.48 76.91± 6.91 81.00± 5.85 76.90± 5.75

A09 84.87± 5.64 86.04± 5.72 94.13± 3.69 65.82± 6.75 74.31± 7.09 80.66± 6.60

Average 66.27± 6.68 72.19± 6.45 76.42± 5.95 71.94± 6.67 75.20± 6.26 65.22± 6.59

possible explanation for this observation is that the spatial and temporal patterns of the

estimated functional networks are more discriminatory among some pairs of imagery

tasks than others. Further exploration of the characteristics of these networks can

deepen our understanding of the reasons for achieving different decoding accuracy results

across different pairs of motor imagery tasks. Moreover, similar to the results obtained

from Dataset 1, the results for this dataset were also subject-dependent. The accuracy

results for subjects 1, 3, 7, 8, and 9 were higher than others, while the accuracy results for

subjects 5 and 6 were mostly low. Although the accuracy results for other subjects were

satisfactory, inclusion of these two subjects, has reduced the overall obtained averaged

accuracy across subjects.

5. Discussion

There has been significant interest in studying task-based or resting-state brain’s

functional connectivity in healthy and patient subjects, which has resulted in new

understanding about the brain function as well as the mechanisms underlying brain-

related disorders [117, 118, 119, 120, 121, 122, 123, 124, 125, 17, 126]. In BCIs,

functional connectivity measures have been employed as features to discriminate various

tasks [28, 26, 27, 22, 23]. This approach is in contrast to most of the BCI algorithms

in which features are typically extracted from individual EEG electrodes. Previous

studies suggest that using features from individual EEG electrodes may not provide

enough information to discriminate motor tasks in specific groups of patients with

motor disabilities [127]. For example, it has been shown that there exist differences

in the band power patterns corresponding to motor imagery tasks across stroke patients

with different location of lesion [128, 129, 130], and therefore, combining various features

have been suggested as a solution to improve the classification performance [129]. Since

performing tasks relies on the interactions among various brain regions, it is intuitive

to consider functional connectivity-based characteristics rather than using features from
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isolated regions/electrodes for the purpose of discriminating intended tasks.

Brain is known to be a dynamical system in which interactions among different

regions are time-varying [131, 17, 132, 133, 134]. These interactions are transient

and rapid (i.e. established on the millisecond time scale). Accordingly, it has been

suggested that studying the dynamics of functional connectivity networks provide

a better understanding of the brain function compared to studying the brain in a

static framework. Based on these facts, in this paper, we presented a novel feature

extraction/classification framework which utilizes dynamic functional connectivity

networks to decode the motor execution/imagery tasks. Furthermore, we aimed to

reduce the time interval required to achieve reasonable accuracy.

The proposed framework includes segmentation of the EEG data into variable-

length time intervals where the functional connectivity networks remain quasi-

stationary. It is worth mentioning that most of the previously-presented methods (such

as dynamic time warping (DTW), or microstates) for studying the brain dynamics

through EEG recordings, have been based on changes in the activities that form on

the scalp (sensor space)[17, 135, 136, 137]. In contrast, our novel source-informed

segmentation algorithm identifies segment boundaries based on changes in the spatial

characteristics of the functional networks in the cortex (i.e. the source space). This

makes the algorithm informed by the source space, without requiring computationally-

complex source localization algorithms [101].

In the proposed framework, the sequence of extracted connectivity features are

passed to the LSTM classifier to take advantage of the information that lies in the

temporal sequence of the constructed connectivity graphs. The obtained classification

accuracy results for Dataset 1 indicate that the proposed method can successfully

discriminate tongue movement execution vs tongue (82.27%)/hand (85.32%) movement

imagery tasks at only 500 ms after the task onset. These results suggest that the

connectivity patterns of motor execution/imagery tasks along with their temporal

dynamics can provide sufficient information for solving the classification problem within

a short interval of in the order of hundreds of milliseconds. Therefore, the proposed

feature extraction/classification framework can be utilized to reduce the required

buffering lag for the BCIs, and thereby, increasing their speed. It should be noted

that the time instants indicated for the two datasets (i.e. 500 ms for Dataset 1, and 800

ms for Dataset 2) were selected as examples to show that by using the proposed method,

good classification accuracy can be obtained as early as these time instants after the

task onset. However, as illustrated in Figures 9 and 10 due to the dynamic nature of

the proposed approach, the decision can be generated at any time instant since the first

identified segment. This is the feature offered by the proposed method that we refer to

as “early decoding”.

It is worth to mention that for Dataset 1, we have considered tongue movement

execution as one of the tasks for the BCI. The importance of discriminating tongue

movement execution vs other imagery tasks is that the movement of tongue is often

available even in patients with severe motor disabilities. Furthermore, tongue is a
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relatively strong muscle and can be moved in various directions [138]. If a patient

possesses the ability of moving his/her tongue, the BCI can actually benefit from this

available physiological signal. Therefore, in cases where tongue movement is available

from the patient, it can be used along with other motor imagery tasks to increase the

number of control commands.

Our results suggest that the temporal dynamics of functional networks play key

roles in early decoding capability offered by the proposed framework. This was

highlighted by comparing the classification results achieved from two classifiers: the

LSTM which considers both the temporal dynamics and the spatial information of

functional connectivity graphs, and ANN which only utilizes the spatial information. It

was observed that for the ANN classifier, there was not much difference in the obtained

classification accuracy results along time, while in the case of the LSTM classifier, the

average accuracy results improved along the time spent after task onset (Figure 12).

These results further confirm the importance of the inclusion of the temporal information

of the functional connectivity networks in achieving good classification performance

within a short interval. The significance of including the temporal information can

be observed as early as 100 ms after the task onset, where the average classification

accuracy using LSTM is ∼ 5% higher than the case of using ANN classifier. This

difference increases to 16.39 − 17.99% and 22.28 − 25.26% for 500 and 1900 ms after

the task onset, respectively. It can be concluded that the interactions among the brain

regions and how they evolve over time contribute to discriminatory information needed

to solve the classification problem.

The proposed method was employed to differentiate motor execution vs imagery

tasks. The similarities and differences in connectivity patterns of motor execution and

imagery tasks were investigated in [139, 140, 141, 123].

For example, in [139], coupling patterns among occipital and motor regions in the

beta frequency band were reported to be different during hand movement execution

and imagery. In [140], it was shown that the key nodes in netowrks related to motor

execution and imagery tasks are located in different areas. In [141] and [123] functional

connectivity analysis based on ERS/ERD and phase synchronization showed similar

connectivity patterns among contralateral brain regions for movement execution and

imagery of finger tapping [141], and foot and hand [123]. In [142], the results of effective

connectivity networks associated with finger tapping execution and imagery indicated

that the coupling strength of the feedforward network from dorsolateral prefrontal cortex

to premotor cortex was greater during motor execution tasks than to motor imagery

tasks, whereas the coupling strength of the feedforward network from premotor cortex

to supplementary motor area and the feedback network from the primary motor cortex

to premotor cortex were higher for motor imagery tasks. In [143], it was suggested

that increases in β-band connectivity occurs similarly in both movement execution and

imagery tasks, while in µ band, motor execution and imagery tasks are associated

with different connectivity patterns. Considering the results of these studies, it can be

concluded that depending on the analysis methods and variables that are selected as
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the basis of comparisons, one might observe common or different connectivity patterns

among motor execution and imagery tasks. In this paper, we showed that using the

proposed method, dynamic functional connectivity networks can provide discriminatory

information corresponding to motor execution vs imagery tasks. Frequency-specific

analysis can bring more insights into understanding how different EEG frequency bands

contribute in differentiating motor execution vs imagery tasks. We aim to investigate

this problem in our future studies.

Table 7 summarizes the classification results for some of the recent work that have

used Dataset 2 along with the required duration of the data that was used to achieve

these classification accuracy results. It can be seen that, our work shows the shortest

buffering lag (800 ms) while other methods required buffering lags equal or greater than

2 s to achieve the reported accuracy results.

Due to differences in the preprocessing steps, types of extracted features,

computational complexity, and choice of classifiers, a fair comparison is not possible

across different work. Another main difference that should be pointed out is that except

ours, the methods in Table 7 cannot be used for early decoding purposes. That is,

they would require the processing of the full considered interval of EEG data, before

coming up with a decision, while our method offers the possibility of decoding the

tasks as early as the first identified segment, due to it dynamic (segment-by-segment)

classification nature. In terms of types of extracted features, [23] and [25] are the

closest to our work for comparison as they have employed functional connectivity-based

features, albeit without considering the dynamics. Compared to these two studies,

it can be observed that our work has led to better accuracy results for majority of

listed MI tasks, while requiring only 800 ms after task onset, further suggesting the

importance of the inclusion of dynamic information for discriminating motor imagery

tasks. In terms of classifiers, [38] has also used LSTM, however, the extracted features

are time-domain and channel-based. The reported classification accuracy results from

this method for duration of 3 s after task onset are comparable to our results after 800

ms. Furthermore, the results for [38] which uses a deep learning classification algorithm

based on Restricted Boltzmann Machines (RBM) [80], are lower for all listed pairs of MI

tasks, as compared to our results. In [144], a method for reducing the effects of noisy

trials was used, which has resulted in improved classification performance. In our case,

we had only considered basic preprocessing steps (filtering and ICA). The possibility of

achieving higher accuracy results with more advanced preprocessing methods such as

those proposed in [144] requires further investigation. Also, the buffering lag for using

this result was not directly reported in [144], however, it seems the duration of the

trial was used in the analysis, which is considerably longer than what we used in our

work. The works [37, 52, 42, 55] have used channel-based features extracted from 2 or

3 s duration. Despite the good classification results reported in [37], implementing this

method is not computationally efficient due to the procedures involved in the decoding

algorithm. In [52], both the filter bandwidth and the time window used for feature

extraction were optimized for accuracy. In [42] features are extracted from specific EEG
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Table 7: Comparison of classification accuracy results and the required time, of the

proposed method and existing work using Dataset 2 (Dataset IIa from BCI competition

IV)

Ref. Year Duration (s)
Feature

Classifier
Accuracy (%)

Type L vs R L vs F L vs T R vs F R vs T F vs T

[37] 2016 3 Channel-based SVM 74.92 - - - - -

[25] 2016 3.5 Functional Connectivity SVM 64.27 - - - - -

[80, 38] 2017 3 Channel-based RBM 64.60 65.60 61.90 66.80 70.20 64.60

[144] 2017 unknown Channel-based MNN 79.52 83.19 84.64 81.44 83.40 78.64

[52] 2018 2 Channel-based SVM 82.50 - - - - 84.00

[42] 2018 2 Channel-based MDRM 79.93 85.50 84.30 85.43 83.75 74.78

[38] 2018 3 Channel-based LSTM 74.80 74.20 72.50 76.30 74.30 79.60

[55] 2019 2 Channel-based MDRM 80.98 - - - - -

[23] 2019 3 Functional Connectivity LS 71.00 74.00 74.00 71.00 74.00 65.00

This work - 0.8 Functional Connectivity LSTM 66.27 72.19 76.42 71.94 75.20 65.22

frequency bands. In our work, we did not consider band-specific results, and it would

be interesting to investigate whether optimizing bandwidth or employing frequency-

specific dynamic functional connectivity networks as features will improve the accuracy

results. Finally, in [55], a Riemannian-based approach is used which incorporates

inter-subject data to reduce the dimensionality of the covariance matrices through

regularization techniques. Including the inter-subject data in our proposed dynamic

functional connectivity-based method can be an interesting topic for the future studies.

In summary, it can be concluded that although some of the studies in Table 7

have reported higher classification accuracy results as compared to our case, we have

shown that within a notably shorter duration, reasonable classification accuracy can be

achieved using our proposed method. Inclusion of advanced-preprocessing techniques, or

optimizing the performance based on band selection, could further improve our accuracy

results. Our early decoding method is well-suited for applications that require decoding

the user’s intentions within a short interval after the onset of the task, while other

methods could be more preferable if higher decoding accuracy is required and the

duration of the buffering lag is not a concern.

To the best of our knowledge, this is the first study that demonstrates the possibility

of early decoding of motor tasks in BCIs from EEG recordings. There are a few

limitations in this study. Here, we have performed off-line processing and classification

of EEG data. In order to use this method in real-time BCIs, a framework for a real-

time implementation of the feature extraction algorithm should be developed. With the

current progress in the development of computational hardware and processing units,

this seems to be achievable in the near future. Moreover, previous studies on MI-

based EEG classification [145, 146, 147, 58] have demonstrated the role of specific EEG

frequency bands in the classification of MI tasks. We did not incorporate frequency

decomposition here. An extension of this work could be focused on the extraction of

functional networks from different EEG frequency bands to investigate the significance

of each frequency band in addressing the early decoding problem. Additionally, we only

considered basic FIR filtering and artifact removal using ICA. The performance of the
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proposed method can further be improved by incorporating noise and artifact reduction

techniques in the algorithm and/or utilizing mechanisms to detect and remove noisy

trials as suggested in [144].

It is also worth mentioning that although we have verified the early-decoding

effectiveness of the proposed approach using two different datasets, the collected data

belonged to healthy groups. For the purpose of implementing BCI-based assistive

technologies for patients, testing the proposed framework on data collected from patients

would be necessary. Moreover, in this work, we considered the decoding problem for

movement-related tasks. However, the proposed framework can also be applied to other

tasks, such as P300 and cognitive tasks, to evoke brain activities in BCIs. Implementing

the proposed method for early decoding of other mental activities from EEG recordings

may offer the ability to improve the speed and practicality of the BCIs that are based

on these tasks.

6. Conclusions

This paper introduced a new feature extraction method based on dynamic functional

connectivity networks for early decoding of EEG signals. The proposed method

comprised of two steps: first, segmenting the EEG data into quasi-stationary

temporal blocks during which functional networks sustain their connectivity, and second

constructing functional connectivity graphs for each identified segment. An LSTM

classifier was then employed for the classification due to its advantageous utilization

of the contained memory cell which allowed for processing a sequence of features.

The proposed method enabled us to differentiate among tongue movement execution

vs tongue or hand movement imagery tasks within a short interval in the order of

hundreds of milliseconds (e.g. 500 ms) with good accuracy. These results indicated, for

the first time, that the required duration of EEG data on a given trial for decoding motor

execution and imagery tasks, can be significantly reduced compared to existing methods,

suggesting that this framework is an efficient approach for improving the speed of BCIs.

Additionally, we showed that the early decoding capability relied on both spatial and

temporal information of functional connectivity networks that were captured by using

the proposed feature extraction method and utilizing the LSTM classifier.

This study was the first step in addressing the early classification problem from

EEG data. The extension of the proposed method for band-specific early decoding, and

multi-class problems are considered as our future work.
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[32] Garćıa-Laencina P J, Rodŕıguez-Bermudez G and Roca-Dorda J 2014 Exploring dimensionality

reduction of EEG features in motor imagery task classification Expert Systems with Applications

41 5285–5295

[33] Miao M, Wang A and Liu F 2017 A spatial-frequency-temporal optimized feature sparse

representation-based classification method for motor imagery EEG pattern recognition Medical

& biological engineering & computing 55 1589–1603

[34] Zhao X, Zhang H, Zhu G, You F, Kuang S and Sun L 2019 A multi-branch 3d convolutional neural

network for EEG-based motor imagery classification IEEE Transactions on Neural Systems and

Rehabilitation Engineering 27 2164–2177

[35] Sturm I, Lapuschkin S, Samek W and Müller K R 2016 Interpretable deep neural networks for

single-trial EEG classification Journal of neuroscience methods 274 141–145

[36] Li X, Guan C, Zhang H, Ang K K and Ong S H 2014 Adaptation of motor imagery EEG

classification model based on tensor decomposition Journal of neural engineering 11 056020

[37] Raza H, Cecotti H, Li Y and Prasad G 2016 Adaptive learning with covariate shift-detection for

motor imagery-based brain–computer interface Soft Computing 20 3085–3096

[38] Wang P, Jiang A, Liu X, Shang J and Zhang L 2018 LSTM-based EEG classification in motor

imagery tasks IEEE Transactions on Neural Systems and Rehabilitation Engineering 26 2086–

2095

[39] Ha K W and Jeong J W 2019 Motor imagery EEG classification using capsule networks Sensors

19 2854

[40] Kang H and Choi S 2014 Bayesian common spatial patterns for multi-subject EEG classification

Neural Networks 57 39–50

[41] Gaur P, Pachori R B, Wang H and Prasad G 2019 An automatic subject specific intrinsic mode

function selection for enhancing two-class EEG based motor imagery-brain computer interface

IEEE Sensors Journal

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.08.12.244921doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.244921


Early Classification of Motor Tasks Using Dynamic Functional Connectivity Graphs from EEG 28

[42] Gaur P, Pachori R B, Wang H and Prasad G 2018 A multi-class EEG-based BCI classification

using multivariate empirical mode decomposition based filtering and riemannian geometry

Expert Systems with Applications 95 201–211

[43] Kim Y, Ryu J, Kim K K, Took C C, Mandic D P and Park C 2016 Motor imagery classification

using mu and beta rhythms of EEG with strong uncorrelating transform based complex common

spatial patterns Computational intelligence and neuroscience 2016 1

[44] Zhang Y, Wang Y, Jin J and Wang X 2017 Sparse bayesian learning for obtaining sparsity of EEG

frequency bands based feature vectors in motor imagery classification International journal of

neural systems 27 1650032

[45] Qiu Z, Jin J, Lam H K, Zhang Y, Wang X and Cichocki A 2016 Improved SFFS method for

channel selection in motor imagery based BCI Neurocomputing 207 519–527

[46] Liu R, Wang Y, Newman G I, Thakor N V and Ying S 2017 EEG classification with a sequential

decision-making method in motor imagery BCI International journal of neural systems 27

1750046

[47] Feng J, Yin E, Jin J, Saab R, Daly I, Wang X, Hu D and Cichocki A 2018 Towards correlation-

based time window selection method for motor imagery BCIs Neural Networks 102 87–95

[48] Luo J, Feng Z and Lu N 2019 Spatio-temporal discrepancy feature for classification of motor

imageries Biomedical Signal Processing and Control 47 137–144

[49] Qi F, Li Y and WuW 2015 Rstfc: A novel algorithm for spatio-temporal filtering and classification

of single-trial EEG a, a 1 1

[50] Ameri R, Pouyan A and Abolghasemi V 2016 Projective dictionary pair learning for EEG signal

classification in brain computer interface applications Neurocomputing 218 382–389

[51] Park S H, Lee D and Lee S G 2018 Filter bank regularized common spatial pattern ensemble

for small sample motor imagery classification IEEE Transactions on Neural Systems and

Rehabilitation Engineering 26 498–505

[52] Zhang Y, Nam C S, Zhou G, Jin J, Wang X and Cichocki A 2018 Temporally constrained sparse

group spatial patterns for motor imagery BCI IEEE transactions on cybernetics 49 3322–3332

[53] Meng J, Yao L, Sheng X, Zhang D and Zhu X 2015 Simultaneously optimizing spatial spectral

features based on mutual information for EEG classification IEEE transactions on biomedical

engineering 62 227–240

[54] Tavakolan M, Yong X, Zhang X and Menon C 2016 Classification scheme for arm motor imagery

Journal of medical and biological engineering 36 12–21

[55] Singh A, Lal S and Guesgen HW 2019 Small sample motor imagery classification using regularized

riemannian features IEEE Access 7 46858–46869

[56] Xie X, Yu Z L, Gu Z, Zhang J, Cen L and Li Y 2018 Bilinear regularized locality preserving

learning on riemannian graph for motor imagery BCI IEEE Transactions on Neural Systems

and Rehabilitation Engineering 26 698–708

[57] Dai G, Zhou J, Huang J and Wang N 2019 Hs-cnn: A cnn with hybrid convolution scale for EEG

motor imagery classification Journal of neural engineering

[58] Kumar S, Sharma A and Tsunoda T 2017 An improved discriminative filter bank selection

approach for motor imagery EEG signal classification using mutual information BMC

bioinformatics 18 545

[59] Zhang Y, Zhou G, Jin J, Wang X and Cichocki A 2015 Optimizing spatial patterns with sparse

filter bands for motor-imagery based brain–computer interface Journal of neuroscience methods

255 85–91

[60] Liu Y, Zhao Q and Zhang L 2015 Uncorrelated multiway discriminant analysis for motor imagery

EEG classification International journal of neural systems 25 1550013

[61] Kevric J and Subasi A 2017 Comparison of signal decomposition methods in classification of EEG

signals for motor-imagery BCI system Biomedical Signal Processing and Control 31 398–406

[62] Li Y, Wen P P et al. 2014 Modified CC-LR algorithm with three diverse feature sets for motor

imagery tasks classification in EEG based brain–computer interface Computer Methods and

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.08.12.244921doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.244921


Early Classification of Motor Tasks Using Dynamic Functional Connectivity Graphs from EEG 29

programs in Biomedicine 113 767–780

[63] Yong X and Menon C 2015 EEG classification of different imaginary movements within the same

limb PloS one 10 e0121896

[64] Lu N, Li T, Pan J, Ren X, Feng Z and Miao H 2015 Structure constrained semi-nonnegative

matrix factorization for EEG-based motor imagery classification Computers in biology and

medicine 60 32–39

[65] Gao L, ChengW, Zhang J andWang J 2016 EEG classification for motor imagery and resting state

in BCI applications using multi-class adaboost extreme learning machine Review of Scientific

Instruments 87 085110

[66] Andrade M K, de Santana M A, Moreno G, Oliveira I, Santos J, Rodrigues M C A and dos Santos

W P 2020 Biomedical Signal Processing (Springer) pp 83–98

[67] Luo J, Feng Z, Zhang J and Lu N 2016 Dynamic frequency feature selection based approach for

classification of motor imageries Computers in biology and medicine 75 45–53

[68] Dose H, Møller J S, Iversen H K and Puthusserypady S 2018 An end-to-end deep learning approach

to MI-EEG signal classification for BCIs Expert Systems with Applications 114 532–542

[69] Nguyen C H and Artemiadis P 2018 EEG feature descriptors and discriminant analysis under

riemannian manifold perspective Neurocomputing 275 1871–1883

[70] Lu N and Yin T 2015 Motor imagery classification via combinatory decomposition of erp and

ersp using sparse nonnegative matrix factorization Journal of neuroscience methods 249 41–49

[71] Amin S U, Alsulaiman M, Muhammad G, Bencherif M A and Hossain M S 2019 Multilevel

weighted feature fusion using convolutional neural networks for EEG motor imagery

classification IEEE Access 7 18940–18950

[72] Hersche M, Rellstab T, Schiavone P D, Cavigelli L, Benini L and Rahimi A 2018 Fast and accurate

multiclass inference for mi-BCIs using large multiscale temporal and spectral features arXiv

preprint arXiv:1806.06823

[73] Xu P, Liu T, Zhang R, Zhang Y and Yao D 2014 Using particle swarm to select frequency band

and time interval for feature extraction of EEG based BCI Biomedical Signal Processing and

Control 10 289–295

[74] Fu R, Tian Y, Bao T, Meng Z and Shi P 2019 Improvement motor imagery EEG classification

based on regularized linear discriminant analysis Journal of medical systems 43 169

[75] Chatterjee R, Moitra T, Islam S H, Hassan M M, Alamri A and Fortino G 2019 A novel machine

learning based feature selection for motor imagery EEG signal classification in internet of

medical things environment Future Generation Computer Systems

[76] Malan N S and Sharma S 2019 Feature selection using regularized neighbourhood component

analysis to enhance the classification performance of motor imagery signals Computers in

biology and medicine 107 118–126

[77] Hsu W Y 2014 Improving classification accuracy of motor imagery EEG using genetic feature

selection Clinical EEG and neuroscience 45 163–168

[78] Wang J, Feng Z, Lu N, Sun L and Luo J 2018 An information fusion scheme based common

spatial pattern method for classification of motor imagery tasks Biomedical Signal Processing

and Control 46 10–17

[79] Hsu W Y 2014 Motor imagery electroencephalogram analysis using adaptive neural-fuzzy

classification. International Journal of Fuzzy Systems 16

[80] Lu N, Li T, Ren X and Miao H 2017 A deep learning scheme for motor imagery classification

based on restricted boltzmann machines IEEE transactions on neural systems and rehabilitation

engineering 25 566–576

[81] Kee C Y, Ponnambalam S and Loo C K 2017 Binary and multi-class motor imagery using renyi

entropy for feature extraction Neural Computing and Applications 28 2051–2062

[82] Peterson V, Wyser D, Lambercy O, Spies R and Gassert R 2019 A penalized time-frequency

band feature selection and classification procedure for improved motor intention decoding in

multichannel EEG Journal of neural engineering 16 016019

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.08.12.244921doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.244921


Early Classification of Motor Tasks Using Dynamic Functional Connectivity Graphs from EEG 30

[83] Hsu W C, Lin L F, Chou C W, Hsiao Y T and Liu Y H 2017 EEG classification of imaginary

lower limb stepping movements based on fuzzy support vector machine with kernel-induced

membership function International Journal of Fuzzy Systems 19 566–579

[84] Miao M, Zeng H, Wang A, Zhao C and Liu F 2017 Discriminative spatial-frequency-temporal

feature extraction and classification of motor imagery EEG: an sparse regression and weighted
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supervised classification to reduce intersession non-stationarity in multiclass motor imagery-

based brain–computer interfaces Neurocomputing 159 186–196

[101] Haddad A E and Najafizadeh L 2018 Source-informed segmentation: A data-driven approach for

the temporal segmentation of EEG IEEE Transactions on Biomedical Engineering

[102] Haddad A and Najafizadeh L 2016 Source-informed segmentation: Towards capturing the

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.08.12.244921doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.244921


Early Classification of Motor Tasks Using Dynamic Functional Connectivity Graphs from EEG 31

dynamics of brain functional networks through EEG 50th Asilomar Conference on Signals,

Systems and Computers pp 1290–1294

[103] Haddad A and Najafizadeh L 2016 Multi-scale analysis of the dynamics of brain functional

connectivity using EEG IEEE Biomedical Circuits and Systems Conference (BioCAS) pp 240–

243

[104] Haddad A, Shamsi F, Ghovanloo M and Najafizadeh L Early decoding of tongue-hand

movement from EEG recordings using dynamic functional connectivity graphs accepted in 9th

International IEEE EMBS Conference on Neural Engineering (NER 2019)

[105] Huo X, Wang J and Ghovanloo M 2008 Introduction and preliminary evaluation of the tongue

drive system: Wireless tongue-operated assistive technology for people with little or no upper-

limb function. Journal of Rehabilitation Research & Development 45

[106] Huo X and Ghovanloo* M 2009 Using unconstrained tongue motion as an alternative control

mechanism for wheeled mobility IEEE Transactions on Biomedical Engineering 56 1719–1726
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Table A1: List of Acronyms.

AFNN Adaptive Fuzzy Neural Network
ANN Artificial Neural Network
BCI Brain Computer Interfaces
BPNN Back-Propagation Neural Network
BTSPRT Balanced Threshold Sequential Probability Ratio Test
CPMS-CNN Channel-Projection Mixed-Scale Convolutional Neural Network
CNN Convolutional Neural Network
CSP Common Spatial Pattern
DNN Deep Neural Network
DPL Dictionary Pair Learning
EEG Electroencephalography
ELM Extreme Learning Machine
EOG Electrooculography
ERD Event-Related De-synchronization
ERS Event-Related Synchronization
FIR Finite Impulse Response
FLDA Fisher Linear Discriminant Analysis
GA Genetic Algorithm
GB Gradient Boosting
GSLDA Generalized Sparse Linear Discriminant Analysis
HMM Hidden Markov Model
HS-CNN Convolutional Neural Network with hybrid Convolution Scale
ICA Independent Component Analysis
IT2FLS Interval Type-2 Fuzzy Logic System
kNN k-Nearest Neighbors
KSVM Kernel Support Vector Machine
LDA Linear Discriminant Analysis
LR Logistic Regression
LRP Layerwise Relevance Propagation
LS Least-Square
LSTM Long Short Term Memory
MDRM Minimum Distance to Riemannian Mean
ME Motor Execution
MI Motor Imagery
MNN Modified Neural Network
NB Naive Bayse
NBPW Naive Bayesian Parzen Window
NN Neural Network
pCNN ; Spectrogram-based Convolutional Neural Network
PCSP Probabilistic Common Spatial Pattern
PSO Particle swarm optimization
RANFN Recurrent Adaptive Neuro-Fuzzy Network
RBM Restricted Boltzmann Machines
RCNN Recurrent Convolutional Neural Network
RF Random Forest
SBL Sparse Bayesian Learning
SRC Sparse Representation-based Classification
SRDA Spectral Regression Discriminant Analysis
RVM Relevance Vector Machine
SVD Singular Value Decomposition
SVM Support Vector Machine
SUSS-SRKDA Sequential Updating Semi-Supervised Spectral Regression Kernel Discriminant Analysis
WNB Weighted Naive Bayesian

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted November 9, 2020. ; https://doi.org/10.1101/2020.08.12.244921doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.12.244921



