
Under consideration for publication in Knowledge and Information
Systems

Early Classification on Time Series

Zhengzheng Xing1, Jian Pei2, and Philip S. Yu3

1 Amazon.com Inc., Seattle, WA, USA;
2 School of Computing Science, Simon Fraser University, Burnaby BC, Canada;
3 Department of Computer Science, University of Illinois at Chicago, Chicago IL, USA

Abstract. In this paper, we formulate the problem of early classification of time series
data, which is important in some time-sensitive applications such as health-informatics.
We introduce a novel concept of MPL (Minimum Prediction Length) and develop
ECTS (Early Classification on Time Series), an effective 1-nearest neighbor classifica-
tion method. ECTS makes early predictions and at the same time retains the accuracy
comparable to that of a 1NN classifier using the full-length time series. Our empirical
study using benchmark time series data sets shows that ECTS works well on the real
data sets where 1NN classification is effective.
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1. Introduction

Early classification of time series data is critical in some time-sensitive applica-
tions. For example, a retrospective study of the clinical data of infants admitted
to a neonatal intensive care unit (Griffin and Moorman 2001) found that the
infants, who were diagnosed with sepsis disease, had abnormal heart beating
time series patterns 24 hours preceding the diagnosis. Monitoring the heartbeat
time series data and classifying the time series data as early as possible may lead
to earlier diagnosis and effective therapy. As another example, Bernaille et al.
(2006) showed that by only observing the first five packages of a TCP connection,
the application associated with the traffic flow can be classified. The applications
of online traffic can be identified without waiting for the TCP flow to end, since
the most relevant information about the types of flow may be represented in the
application protocol headers. Waiting for more byes may hurt the classification
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effectiveness due to over fitting noise. In other words, in many applications, cap-
turing the right information is important, either the complete time series or not
does not matter. Generally, early classification of sequences may have applica-
tions in anomaly detection, intrusion detection, health informatics, and process
control.

However, constructing classifiers that are capable of early prediction is far
from trivial. Most of the existing classification methods on sequences and time
series extract features from full-length sequences and time series, and do not
consider the earliness of prediction. Moreover, in those traditional sequence/time
series classifiers, the optimization goal is often set to maximize classification
accuracy. However, in early prediction, the goal is to optimize the earliness as
long as the classification accuracy is satisfactory. Therefore, in order to achieve
early prediction, we have to re-examine the existing classification methods and
develop new earliness-aware techniques.

An early classifier is expected to meet two requirements. First, an early clas-
sifier should be able to affirm the earliest time of reliable classification so that
the early predictions can be used for further actions. Second, an early classifier
should retain an accuracy comparable to that of a classifier using the full length
time series or some user-specified accuracy threshold.

In this paper, we tackle the problem of early prediction on time series data
and develop a native method. Specially, we adopt the 1-nearest neighbor (1NN)
approach, which has been well recognized as an effective classification method
for time series data (Keogh and Kasetty 2002, Wei and Keogh 2006). We intro-
duce a novel concept of MPL (Minimum Prediction Length) and develop ECTS
(Early Classification on Time Series), an effective 1-nearest neighbor classifi-
cation method which makes prediction early and at the same time retains an
accuracy comparable to that of a 1NN classifier using the full-length time series.
Our empirical study using benchmark time series data sets shows that ECTS
works well where 1NN classification is effective.

The rest of the paper is organized as follows. In Section 2, we formulate the
problem. We summarize related work in Section 3. We present a basic 1NN early
classifier in Section 4, and develop the ECTS method in Section 5. We evaluate
ECTS empirically in Section 6. Section 7 concludes the paper.

2. Problem Definition

A time series s is a sequence of pairs (timestamp, value). The data values are
ordered in timestamp ascending order. We assume that all timestamps take pos-
itive integer values. We denote by s[i] the value of time series s at timestamp i.

To keep our discussion simple, in this paper, we assume that all time series
in question are of length L, i.e., each time series s has a value s[i] at timestamp
1 ≤ i ≤ L. L is called the full length of the time series. In practice, there are
many cases the time series are of the same length, such as the real data sets
in the UCR time series archive (Keogh et al. 2006). When the time series are
not of the same length, alignments or dynamic warping can be applied as the
preprocessing step.

For a time series s of length L, s[i, j] = s[i]s[i + 1] · · · s[j] (1 ≤ i < j ≤ L)
is the subsequence at timestamp interval [i, j]. Subsequence s[1, l] (l ≤ L) is the
length-l prefix of s.

For two time series s and s′, dist(s, s′) denotes the distance between them.
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In this paper, we use the Euclidean distance

dist(s, s′) =

√√√√ L∑
i=1

(s[i]− s′[i])2,

which is a simple yet effective and popularly adopted choice.
The set of all possible time series of length L is RL and is called the full-

length space, where R is the set of real numbers. The prefix space of length-l,
denoted by Rl, is the set of length-l prefixes of all possible time series.

In time series classification, a training set T contains a set of time series
and a set of class labels C such that each time series t ∈ T carries a class label
t.c ∈ C. The time series classification problem is to learn from T a classifier
C : RL → C such that for any time series s, C predicts the class label of s by
C(s). The performance of a classifier is often evaluated using a test set T ′, which
is a set of time series such that each time series t′ ∈ T ′ also carries a class label
t′.c ∈ C. The accuracy of a classifier C on the test set T ′ is Accuracy(C, T ′) =
|{C(t′)=t′.c|t′∈T ′}|

|T ′| . Often, we want the classifier C as accurate as possible.

For a time series s, an early classifier C can identify an integer l0 and make
classification based on s[1, l0]. An early classifier is serial (Xing et al. 2008)
if C(s[1, l0]) = C(s[1, l0 + i]) for any i > 0. In other words, C can classify s
based on only the prefix s[1, l0], and the classification remains the same by using
any longer prefixes. An early classifier is preferred to be serial so that the early
classification is reliable and consistent. The minimum length l0 of the prefix based
on which C makes the prediction is called the cost of the prediction, denoted by
Cost(C, s) = l0. Trivially, for any finite time series s, Cost(C, s) ≤ |s|. The cost
of the prediction on a test set T ′ is Cost(C, T ′) = 1

|T ′|
∑

t′∈T ′ Cost(C, t′).

Among many methods that can be used in time series classification, the
1-nearest neighbor (1NN) classifier has been found often accurate in prac-
tice (Keogh and Kasetty 2002, Wei and Keogh 2006). The 1NN classification
method is parameter-free and does not require feature selection and discretiza-
tion. Theoretically, Cover and Hart (1967) showed that the error rate of the 1NN
classifier is at most twice that of the optimal Bayes probability when an infinite
sample set is used.

Due to the effectiveness and the simplicity of the 1NN classifier on time
series data, in this paper, we focus on extending the 1NN classifier for early
classification on time series data. We use the 1NN classifier on full length time
series as the baseline for comparison. Ideally, we want to build a classifier which
is as accurate as the baseline method and minimizes the expected prediction
cost.

In general, it is possible to achieve earlier classification at the expense of
accuracy. The tradeoff between earliness and accuracy is an interesting and fun-
damental problem for early classification. As the first step to tackle this problem,
the ECTS method to be developed in this paper stays at one end of the tradeoff,
that is, retaining the accuracy the same as that of the 1NN classifier. The other
end, classification without accuracy, can be trivially achieved by random guesses
such as a näıve Bayesian method. Such a method may even have a prediction
length of 0. However, such a method is not very useful or meaningful in practice.
How to achieve controllable tradeoff between earliness and accuracy is a very
challenging open problem beyond the scope of this paper.

We summarize the frequently used notations and abbreviations in Table 1.
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Abbreviation Explanation

1NN 1-nearest neighbor
ECTS Early Classification on Time Series
MLHC multi-level hierarchical clustering
MPL minimum prediction length
MPP minimum prediction prefix
NN l(s) the set of the nearest neighbors of s in T

in prefix space Rl

Rl prefix space
RNN l(t) the set of reverse nearest neighbors in pre-

fix space Rl of t(1, l)
Sib(s) the sibling cluster of s

Table 1. The frequently used notations and abbreviations.

3. Related Work

To the best of our knowledge, Rodŕıguez et al. (2001) are the first to mention
the term “early classification of time series”. They segment a time series into in-
tervals, and then described intervals using relative predicates, such as increases,
decreases, and stays, and region based predicates, such as sometime, always,
true-percentage. Those predicates are used as features to construct simple base
classifiers, each containing only one predicate. Ada boost (Freund and Schapire
1997) is used to ensemble the base classifiers. The ensemble classifier is capa-
ble of making predictions on incomplete data by viewing unavailable suffixes of
sequences as missing features.

Bregon et al. (2006) applied a case based reasoning method to classify time
series to monitor the system failure in a simulated dynamic system. The KNN
classifier is used to classify incomplete time series using various distances, such
as Euclidean distance and Dynamic time warping (DTW) distance (Wei et al.
2007). The simulation studies show that, by using case based reasoning, the most
important increase of classification accuracy occurs on the prefixes through thirty
to fifty percent of the full length.

Although in (Rodŕıguez et al. 2001, Bregon et al. 2006), the importance
of early classification on time series is identified and some encouraging results
are shown, the study only solved early classification as a problem of classify-
ing prefixes of sequences. Xing et al. (2008) pointed out the challenge of early
classification is to study the tradeoff between the earliness and the accuracy of
classification. The methods proposed in (Rodŕıguez et al. 2001, Bregon et al.
2006) only focus on making predictions based on partial information but do not
address how to select the shortest prefix to provide a reliable prediction. This
makes the result of early classification not easily used by users for further actions

In our previous work (Xing et al. 2008), we formulated the early classification
problem on symbolic sequence data as classifying sequences as early as possible
while maintaining an expected accuracy. The major idea is to first select a set of
features that are frequent, distinctive and early, and then build an association
rule classifier or a decision tree classifier using those features. In the process of
building the classifier, the user expected accuracy is satisfied by each association
rule or each branch in the decision tree. In the classification step, an oncoming
sequence is matched with all rules or branches simultaneously until on a prefix,
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a matching is found and the sequence is classified. In this way, a sequence is
classified immediately once the user expected accuracy is achieved. The meth-
ods proposed in (Xing et al. 2008) show some successes in handling symbolic
sequences by achieving competitive accuracies using only less than half of the
length of the full sequences.

Time series are numeric. To use our symbolic methods, time series have to be
discretized properly. However, appropriate discretization often heavily relies on
good background knowledge. Moreover, affected by the discretization granularity,
the discretization-based methods may lose important information in time series
data. Our previous study (Xing et al. 2008) shows that the symbolic methods
do not work well on numeric time series data. Thus, early prediction on time
series data, a type of data prevalent in time-sensitive applications, remains open
at large.

Generally, most existing time series classification methods transform a time
series into a set of features and then apply conventional classification methods
on the feature vectors. To apply feature based methods on simple time series,
usually, before feature selection, time series data needs to be transformed into
symbolic sequences through discretization or symbolic transformation (Lin et al.
2007). Lesh et al. (1999) proposed criteria for selecting features for symbolic
sequence classification. Ji et al. (2007) proposed an efficient algorithm to mine
features from symbolic sequences with gap constraints. Without discretization,
Ye and Keogh (2009) proposed a method to find time series shapelets and use
a decision tree to classify time series. Kadous and Sammut (2005) extracted a
set of user-defined meta-features from time series. Some universal meta-features
include the features to describe the trends of increases and decreases and local
max or min values.

Different from feature-based classifiers, instance based classifiers (Keogh and
Kasetty 2002, Wei and Keogh 2006, Xi et al. 2006), such as 1NN classifiers, make
predictions based on the similarities between the time series to be classified and
the ones in the training set. A 1NN classifier is chosen as the benchmark classifier
in (Ding et al. 2008) to evaluate the performance of various time series distances
due to its competent performance and simplicity. The choice of distance measures
is critical to the performance of 1NN classifiers. The Euclidean distance is shown
surprisingly competitive in terms of accuracy, compared to other more complex
similarity measures (Keogh and Kasetty 2002, Wei and Keogh 2006). Xi et al.
(2006) showed that, on small data sets, elastic measures such as dynamic time
warping (DTW) can be more accurate than the Euclidean distance. However,
the empirical results (Xi et al. 2006) strongly suggest that on large data sets, the
accuracy of elastic measures converges with Euclidean distance. In this paper,
we focus on extending the 1NN classifier with the Euclidean distance to achieve
early classification. However, our principle can be applied to other instance-based
methods using different distance metrics.

This paper is a substantial extension of (Xing et al. 2009) on some important
aspects. First, we propose a new method relaxed ECTS which is as accurate
as ECTS on all the experiments, and can find significantly shorter MPLs than
ECTS on some data sets. Second, we present new techniques to speed up the
learning process. Third, we provide more experimental results including those
on the new methods. Last, we provide proofs for all theoretical results.

Recently, we (Xing et al. 2011) developed a feature extraction method for
early classification of time series, which can be applied on even the cases where
the 1NN methods are not effective.
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t-id time series class

t1 (1, 1, 1) c1
t2 (2, 1, 2) c1
t3 (5, 2, 1) c1
t4 (6, 1, 2) c1
t5 (5, 8, 7) c2
t6 (5, 9, 9) c2
t7 (6, 8, 9) c2

Table 2. A training set T as the running example.

4. 1NN Early Classification

1NN classifier is a lazy learning method and does not require any training. To
extend 1NN classifier to achieve early classification, we need to add a training
process to learn more information from the training data. In the training stage,
we want to find out how early a time series can be used as the nearest neighbor
to make accurate prediction.

Example 1. Consider a training set of time series T in Table 2, where each
time series, written as a sequence of values in timestamp ascending order, has a
length L = 3.

To classify a time series s1 = (1, 2, 1), using full length time series, the 1NN
classifier finds t1 as the 1NN of s1 in space R3, and outputs c1, the class label
of t1.

The prediction on s1 can be made much earlier, since t1 is also the 1NN of
prefixes s1[1] = (1) and s1[1, 2] = (1, 2). In other words, using the 1NN of the
prefixes, we may make early prediction.

For a time series s and a training data set T , let

NN l(s) = argmin
t∈T

{dist(s[1, l], t[1, l])}

be the set of the nearest neighbors of s in T in prefix space Rl. In Example 1,
NN1(s1) = {t1} and NN2(s1) = {t1}.

In the full length spaceRL, using the 1NN classifier, a time series s is classified
by the dominating label inNNL(s). Consider prefix spaceRL−1. Let T [1, L−1] =
{t[1, L − 1]|t ∈ T} be the set of length-(L − 1) prefixes of all time series in the
training set T . If the time series in NNL(s) are still the nearest neighbors of
s[1, L−1] in T [1, L−1], i.e.,NNL(s) = NNL−1(s), then we can useNNL−1(s) to
make prediction on the class label of s at timestamp (L−1) without compromise
in accuracy. This immediately leads to early prediction, as observed in Example 1.
The question is when the data points of s arriving in time ascending order, how
we can know starting from which prefix length l, the nearest neighbors of s will
remain the same.

Generally, the set of length-l prefixes (1 ≤ l ≤ L) of the time series in T is
T [1, l] = {t[1, l]|t ∈ T}. For t ∈ T , the set of reverse nearest neighbors in prefix
space Rl of t(1, l) is RNN l(t) = {t′ ∈ T | t ∈ NN l(t′)}. That is, RNN l(t) is
the set of time series in T that treat t as its nearest neighbor. In Example 1,
since RNN1(t1) = RNN2(t1) = RNN3(t1) = {t2}, RNN1(t2) = RNN2(t2) =
RNN3(t2) = {t1}.
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Suppose training set T is a sufficiently large and uniform sample of the time
series to be classified. For a time series t ∈ T , if there exists a timestamp l < L
such that RNN l(t) = RNN l+1(t) = · · · = RNNL(t), then we can use t to make
prediction early at timestamp l without loss in expected accuracy, since every
time series s which uses t in RL to predict the class label also likely has t as the
1NN in prefix spaces Rl, Rl+1, . . . , RL−1. In Example 1, t1 can be used to make
prediction at timestamp 1 since RNN1(t1) = RNN2(t1) = RNN3(t1).

Definition 1 (Minimum prediction length). In a training data set T with
full length L, for a time series t ∈ T , the minimum prediction length (MPL for
short) of t, MPL(t) = k if for any l (k ≤ l ≤ L), (1) RNN l(t) = RNNL(t) ̸= ∅
and (2) RNNk−1(t) ̸= RNNL(t). Specifically, if RNNL(t) = ∅, then MPL(t) =
L. We denote by MPP (t) = t[1,MPL(t)] the minimum prediction prefix of t.

Example 2. In Example 1, MPL(t1) = 1 and MPP (t1) = (1). Moreover,
MPL(t2) = 1, MPL(t3) = MPL(t4) = 2. MPL(t5) = MPL(t6) = MPL(t7) =
3.

Given a training set T , a simple 1NN early classification method works as
follows.

Training Phase For each time series t ∈ T , we calculate the minimum predic-
tion length MPL(t).

Classification Phase For a time series s to be classified, the values of s ar-
rive in timestamp ascending order. At timestamp i, we return the dominating
class label of time series in NN i(s) that have a MPL at most i. If no such a
time series is found, then we cannot make reliable prediction at the current
timestamp, and have to wait for more values of s.

Example 3. In Example 1, it is easy to verify that s1 = (1, 2, 1) is classified as
c1 using t1 at timestamp 1. Consider s2 = (6, 2, 3). NN1(s2) = {t4, t7}, but the
MPLs of t4 and t7 are greater than 1. Thus, s2 cannot be classified at timestamp
1. NN2(s2) = {t3, t4}. The MPLs of t3 and t4 are 2. Thus, s2 can be assigned
label c1 at timestamp 2.

The intuition behind the simple RNN method can be understood from a
classification model compression angle. A time series t in the training set T can
be compressed as its minimum prediction prefix MPP (t) since based on the
information in T , any longer prefix of t does not give a different prediction on a
time series that uses t as the nearest neighbor. Thus, those longer prefixes of t are
redundant in 1NN classification and can be removed to achieve early prediction.
We assume that the training set is a sufficiently large and uniform sample of the
data to be classified. Then, for new time series to be classified, the early 1NN
classifier can classify new time series as accurate as full length 1NN.

The 1NN early classification method has two drawbacks. First, to make early
prediction using a time series t in a training set T , the RNNs of t must be stable
after timestamp MPL(t). This requirement is often too restrictive and limits
the capability of finding shorter prediction length. In Example 1, the RNNs of
t5, t6, t7 are not stable, and the MPLs of them are all 3. We cannot use those
time series to classify s3 = (5, 8, 8) at timestamp 2.

Second, the 1NN early classification method may overfit a training set. The
MPP of a time series is obtained by only considering the stability of its RNN
which often consist of a small number of time series. The learned MPL(t) may
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Prefix space Clusters

R1 S1 = {t1, t2}, S2 = {t3, t4, t5, t6, t7}
R2 S1 = {t1, t2}, S2 = {t3, t4} S3 = {t5, t6, t7}
R3 S1 = {t1, t2}, S2 = {t3, t4} S3 = {t5, t6, t7}

Table 3. The clusters in different prefix spaces, as shown in Figure 1.

not be long and robust enough to make accurate classification if the training set
is not big enough or is not a uniform sample of the time series to be classified.

5. The ECTS Method

To overcome the drawbacks in the early 1NN classification method, we develop
the ECTS method which extends the early 1NN classification method by finding
the MPL for a cluster of similar time series instead of a single time series. In this
section, we first develop the idea of the ECTS classifier. Then, we present the
algorithm of ECTS method in detail. At last, we discuss a variation of computing
MPLs in the framework of ECTS.

5.1. ECTS

When we cluster the training data in each prefix space, Rl, where l = 1, 2, · · · , L,
we can observe the formations of clusters along the time. When l is small, the
clusters in Rl may be very different from the ones in RL. When l increases and
approaches L, some clusters in Rl may become stable and similar to some in
RL. Those clusters can be used for early prediction.

Example 4. Figure 1 shows the distribution of the time series in Table 2 in
each prefix space, R3, R2 and R1. From Figure 1, we can observe the natural
clusters in each prefix space. We summarize the clusters in Table 3. Cluster S1

is stable in all three spaces, and thus can be used at early classification as early
as timestamp 1. Clusters S2 and S3 are stable at timestamps 2 and 3 and thus
can be used as early as at timestamp 2.

We consider the clusters in the full length space RL as the ground truth. To
learn when a cluster can be used for early classification, we need to address two
issues. First, we need to use a clustering approach to obtain the clusters in the
full-length space. Second, we need to compute the MPLs of clusters.

We adopt single link MLHC (Ding and He 2005), an agglomerative hierar-
chical clustering method to cluster the training data set in the full length space.
It builds a hierarchical clustering tree level by level by merging all mutual near-
est neighbor pairs of clusters at each level. Two clusters form a mutual nearest
neighbor pair if they consider each other as the nearest neighbor. The distance
between two clusters is measured by the minimum among all inter-cluster pair-
wise distances. In the output hierarchical clustering tree (i.e., a dendrogram),
a cluster represented by a leaf node is called a leaf-cluster, and a cluster rep-
resented by an internal node is called a sub-cluster. The whole training set is
represented by the root, and thus is called the root-cluster.
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Fig. 1. Plots of data in Table 2. We can observe the natural clusters in each prefix space,
which will be summarized in Table 3.

A cluster S is called 1NN consistent (Ding and He 2004) if for each object
(a time series in our case) o ∈ S, the 1NN of o also belongs to S. Immediately,
we have the following.

Lemma 1. The sub-clusters and the root-cluster generated by single link MLHC
are 1NN consistent.

Proof In the dendrogram generated by MLHC, we call a cluster represented by
a leaf node a leaf-cluster, a cluster represented by an internal node a sub-cluster,
and the cluster represented by the root the root-cluster.

A leaf-cluster contains only one time series. For a leaf-cluster s in the den-
drogram generated by MLHC on space Rl, let Sib(s) be the sibling cluster of s,
which is another time series. Now, we show NN l(s)∩Sib(s) ̸= ∅ by contradiction.

Suppose NN l(s) ∩ Sib(s) = ∅. Then, we can find q ∈ NN l(s). According
to the assumption, q /∈ Sib(s). Then, for all s′ ∈ Sib(s), we have dist(s, s′) >
dist(s, q), which means dist(s, Sib(s)) > dist(s, q). Then, s cannot be merged
with Sib(s) in the process of MLHC. This contradicts with the assumption that
Sib(s) is the sibling of s.

For any sub-cluster S in the dendrogram and all s ∈ S, we have Sib(s) ⊆ S.
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Because NN l(s)∩Sib(s) ̸= ∅, we have NN l(s)∩S ̸= ∅. So, S is a 1NN consistent
cluster. The lemma holds for the root cluster trivially since the root cluster
contains all time series in question.

If all time series in a sub-cluster S carry the same label, then S is called
a discriminative cluster. We denote by S.c the common class label of the time
series in S. A discriminative cluster can be used in classification.

Example 5. S1, S2 and S3 in space R3 in Table 3 are discriminative clusters
and can be used in classification. For example, s3 = (5, 8, 8) finds t5 ∈ S3 as the
1NN in R3. S3.c = c2 can be assigned to s3.

To explore the potential of a discriminative cluster S in early classification,
we find the earliest prefix space in which S is formed and becomes stable since
then. The corresponding prefix length is the minimum prediction length (MPL)
of S.

One straight forward way is to apply MLHC on space RL−1 and check if S is
preserved as a sub-cluster, and continue this process on the previous prefix spaces
until the sub-cluster is not preserved. This can be very costly in computation.

An efficient way is to check if the 1NN consistence property holds for the
cluster in the previous prefix spaces and the stability of the reverse neighbors of
S.

For a sub-cluster S, in space Rl (1 ≤ l ≤ L), we define the reverse nearest
neighbors of S as RNN l(S) = ∪s∈SRNN l(s) \ S. If S is well separated from
other clusters, then RNN l(S) is empty. Often, some sub-clusters in a training set
may not be well separated from others. In such a case, RNN l(S) is the boundary
area of S.

Definition 2. [MPLs of clusters] In a training data set T with full length L,
for a discriminative cluster S, MPL(S) = k if for any l ≥ k, (1) RNN l(S) =
RNNL(S); (2) S is 1NN consistent in space Rl; and (3) for l = k−1, properties
(1) and (2) cannot be both satisfied.

Example 6. For discriminative clusters S1, S2 and S3, MPL(S1) = 1,
MPL(S2) = 2 and MPL(S3) = 2. Take S3 as an example, in spaces R3 and R2,
S3 is 1NN consistent and RNN3(S3) = RNN2(S3) = ∅. In space R1, S3 is not
1NN consistent. Thus, MPL(S3) = 2.

In a discriminative cluster S, there may be another discriminative cluster
S′ ⊂ S. MPL(S) may be longer or shorter than MPL(S′). Moreover, for a time
series t ∈ T , t itself is a leaf-cluster with MPL(t) (Definition 1). Among all
the discriminative or leaf clusters containing t, we can use the shortest MPL to
achieve the earliest prediction using t.

As one drawback of the 1NN early classification method, the MPL obtained
from a very small cluster may cause over-fitting. To avoid over-fitting, a user
can specify a parameter minimum support to control the size of a cluster. We
calculate the support of a cluster in a way that is aware of the population of the
corresponding class.

Definition 3 (Support). In a training set T , let Tc = {s ∈ T |s.c = c} be the
set of time series that have label c. For a discriminative cluster or a leaf cluster
S such that S.c = c, Support(S) = |S|

|Tc| .
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We only use clusters passing the user-specified minimum support threshold
for early prediction. As in many other data mining problems such as association
rule mining, the support here is a parameter. The optimal value of this parameter
depends on data sets.

To summarize, given a training set T , the ECTS method works in two phases
as follow.

Training Phase Given aminimum support threshold p0, for a time series t ∈ T ,
let SS = {S|t ∈ S ∧ S is a discriminative cluster or a leaf cluster} be the set
of discriminative or leaf clusters containing t.

MPL(t) = min
S∈SS,Support(S)≥p0

MPL(S).

The training process is to compute MPLs for all t ∈ T .

Classification Phase Same as the 1NN early classification method in Sec-
tion 4.

Section 2 states that we want to build a classifier as accurate as the 1NN
classifier using the full-length time series. The following result answers the re-
quirement.

Theorem 1. In a training data set T of full length L, assuming for any t ∈ T
and 1 ≤ l ≤ L, NN l(t) contains only one time series1, ECTS has the same
accuracy in leave-one-out testing on T as the 1NN classifier using the full-length
time series. Moreover, ECTS is a serial classifier, defined in Section 2, on the
time series in T .

Proof In the leave-one-out classification, if a sequence t ∈ T is classified by
sequence q on prefix t(1, k) by the ECTS classifier, then MPL(q) ≤ k. Since t
is classified by q, t ∈ RNNk(q) in prefix space Rk. From the learning process
we know that there is a cluster Q containing q, and MPL(Q) = MPL(q). Since
t ∈ RNNk(q), t is either a member of cluster Q or a member of RNNk(Q). We
consider the two cases one by one.

If t ∈ Q, because MPL(Q) ≤ k, starting from length k to the full length L, Q
is always 1NN consistent. Since t ∈ Q, in any prefix space Rl, where k ≤ l ≤ L,
we have NN l(t) ∈ Q. Because all members in Q have the same class label, by
the ECTS classifier, we have C(t, k) = C(t, k + 1) = · · · = C(t, L). For t, the
classifier is serial. Since C(t, L) by ECTS is actually the 1NN classifier using the
full length, so for t, ECTS gives the same prediction as the 1NN classifier using
the full length time series.

Let t ∈ RNNk(Q). Since RNNk(Q) = RNNk+1(Q) = · · · = RNNL(Q), we
have t ∈ RNN l(Q) for any k ≤ l ≤ L. It means NN l(t) ∈ Q for any k ≤ l ≤ L.
Because all members in Q have the same class label, by the ECTS classifier,
C(t, k) = C(t, k + 1) = · · · = C(t, L). For t, the classifier is serial and ECTS
gives the same prediction as the 1NN classifier using the full-length time series.

Based on the above analysis, for any t ∈ T , the class label predicted by
ECTS will be the same as the class label predicted by the 1NN classifier using
the full-length time series, and the ECTS is serial.

Theorem 1 indicates that the learned MPLs by ECTS are long enough to
classify all time series in the training data set as accurately as the full length time

1 If multiple 1NNs exist, then we can select the 1NN of the smallest index.
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series by a 1NN classifier. If the training data set is large enough and provides
a good sample of the time series space, then, for an unlabeled time series, the
ECTS classifier is expected to give the same accuracy as the full length 1NN
classifier, and is expected to be serial.

5.2. The Algorithm

To train an ECTS classifier, we integrate the computation of MPLs for clusters
into the framework of MLHC. The algorithm of training the ECTS classifier is
shown in Figure 2.

The training process requires many nearest neighbor queries and reverse near-
est neighbor queries in various prefix spaces. To share the computation, we pre-
compute the nearest neighbors for every time series t ∈ T in all prefix spaces,
from R1 to RL, (line 1 in Figure 2). This pre-computation step takes time
O(|T |2 · L) where L is the full length.

Then, we apply the single link MLHC (Ding and He 2005) to space RL. We
implement the MLHC framework in lines 4-11. As stated before, in each iteration,
MLHC merges all mutual nearest neighbor (MNN) pairs of clusters. When a new
cluster S is formed in the process of MLHC, we compute its MPL (line 9). In
line 10, we update the MPL of every time series in s ∈ S if MPL(S) < MPL(s).
When the iteration terminates, the MPL of each time series s is the shortest
MPL of all the clusters containing s.

All time series in a discriminative cluster should have the same label. In
MLHC, if a cluster formed is not pure, that is, the time series in the cluster are
inconsistent in class label, then we do not need to merge the cluster further to
other clusters in the next iteration. MLHC in our method terminates when no
pure clusters are generated after the current round of iteration. In other words,
our adaption of MLHC generates a cluster forest instead of a cluster tree.

To compute the MPL of a discriminative cluster S, according to Definition 2,
we check whether the 1NN consistency and the RNN stability hold in space
RL and the prefix spaces Rl. The checking is conducted in the prefix length
descending order. If MPL(S) = k, to compute the MPL of S, we need to find
RNN l(S) and check 1NN consistency in spaces Rl(L ≥ l ≥ (k−1)). If the MPL
of every discriminative cluster is computed from the scratch, then it is very costly.
Fortunately, we do not need to compute the MPL for every discriminative cluster
from scratch. Instead, we can use the information provided by the clusters formed
in the previous iterations. When computing the MPL of a discriminative cluster
S, which is formed by merging clusters S1 and S2 in an iteration, two situations
may arise.

First, |S1| > 1 and |S2| > 1. Without loss of generality, let us assume
MPL(S1) ≤ MPL(S2). Cluster S must be 1NN consistent and RNN stable
in spaces Rl for L ≥ l ≥ MPL(S2). Thus, we only need to check if the 1NN
consistency and RNN stability hold for S in space Rl for MPL(S2) ≥ l ≥ 1.

Second, if |S1| = 1 and |S2| > 1, then S is always 1NN consistent in spaces
Rl for L ≥ l ≥ MPL(S2). For ECTS, to test the RNN stability of S, we only
need to check if RNN(S1)\S2 is stable in spaces Rl for L ≥ l ≥ MPL(S2). This
is because we already know that the RNNs of cluster S2 are stable in spaces Rl

for L ≥ l ≥ MPL(S2). If for some l (L ≥ l ≥ MPL(S2)) that S passes the test
in prefix space Rl but fails in Rl−1, then MPL(S) = l. If S passes the test, then
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Input: a training data set T;
Output: MPL(t) for each t ∈ T ;
Method:
1: pre-compute 1NNs for each t ∈ T in all prefix spaces;
2: compute the MPLs of leaf clusters and update the MPL

for each t ∈ T ;
3: n = |T |, the number of time series in T ;
4: while n > 1
5: compute the mutual nearest neighbor pairs;
6: for each mutual nearest neighbor pair (S1, S2)
7: merge S1 and S2 into a parent cluster S, n = n− 1;
8: if all time series in S carry the same label then
9: compute the MPL of S;
10: update the MPL for each time series in S;

end if
end for

11: if no new discriminative clusters are generated in this
round then break;

end while

Fig. 2. The algorithm of the training phase in ECTS.

MPL(S) ≤ MPL(S2). We need to check the 1NN consistency and the RNN
stability in the prefix spaces of shorter prefix lengths.

The complexity of building the dendrogram in the full-length space by MLHC
is O(|T |2). By integrating the MPLs computation in MLHC, the complexity of
is O(|T |3L).

5.3. Relaxed ECTS

If we apply the 1NN classifier in the full length space RL to classify the training
data T using leave-one-out method, then we may get some time series miss classi-
fied. We denote Tmis ⊆ T as the set of time series that are not classified correctly
in the leave-one-out process. One important reason of misclassification is that
some time series in Tmis are on the decision boundary. The nearest neighbors
of those time series may have a considerable chance to fall into other clusters in
the prefix spaces. To compute the MPL for a cluster, Definition 2 requires the
RNN stability from prefix space RMPL(S) till the full length space. The time se-
ries in Tmis may hinder many discriminative clusters from meeting the stability
requirement. Can we relax the requirement of MPL by ignoring the instability
caused by the time series in Tmis?

Definition 4 (Relaxed MPL). In a training data set T with full length L, for
a discriminative cluster S, MPL(S) = k if for any l ≥ k, (1) RNN l(S) ∩ (T −
Tmis) = RNNL(S) ∩ (T − Tmis); (2) S is 1NN consistent in space Rl; and (3)
for l = k − 1, (1) and (2) cannot be both satisfied.

Specifically, if S is a leaf cluster and RNNL(S) ∩ (T − Tmis) = ∅, then we
define MPL(S) = L.
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We call the ECTS classifier using the above relaxed MPL the relaxed version
of ECTS. In the relaxed version, we relax the condition of RNN stability to
partial stability. The relaxed ECTS has the following property.

Theorem 2. In a training data set T of full length L, assuming for any t ∈ T
and 1 ≤ l ≤ L, NN l(t) contains only one time series2, the relaxed ECTS has
the same leave-one-out accuracy on T as the 1NN classifier using the full-length
time series.

Proof In the leave-one-out classification process, if a time series t is classified
by sequence s on prefix t(1, k) by the relaxed ECTS classifier, then t either is a
member of a cluster Q or belongs to RNNk(Q).

In the case where t ∈ Q, same as the proof in Theorem 1, we can prove the
relaxed ECTS makes prediction as accurate as the 1NN classifier using the full
length time series.

In the case that t ∈ RNNk(Q), we need to consider two subcases.
In the first subcase, t ∈ RNNk(Q) ∩ (T − Tmis), same as the proof in The-

orem 1, we can prove the relaxed ECTS makes prediction as accurate as 1NN
classifier using the full length time series.

In the second subcase, t ∈ RNNk(Q) ∩ Tmis. Although C(t, k) = C(s, L)
cannot be guaranteed, since t cannot be correctly classified by the 1NN classifier
using the full length time series, the subcase does not make the accuracy of the
relaxed ECTS lower than that of the 1NN classifier using the full length time
series.

Based on the above analysis, we conclude, by using the relaxed ECTS, the
leave-one-out accuracy is at least the same as using the 1NN classifier using the
full length time series.

Comparing with ECTS, the average MPLs learned by the relaxed ECTS is
expected to be shorter because for a cluster, we only require a subset of its
RNN to be stable. When classifying unlabeled time series, the relaxed ECTS is
expected to give the same prediction as ECTS and make the prediction on a
shorter prefix. We will verify the expected property in our experiments.

6. Experimental Results

The UCR time series archive (Keogh et al. 2006) provides 23 time series data
sets which are widely used to evaluate time series clustering and classification
algorithms. In each data set, the time series have a fixed length. Each data set
contains a training set and a testing set. The 1NN classification accuracies using
the Euclidean distance on the testing sets are provided in the archive as well.

Table 4 lists the results on all the 7 data sets in the archive where the full-
length 1NN classifier using Euclidean distance achieves an accuracy of at least
85%. The 1NN classifier can be regarded effective on those data sets. The seven
data sets cover cases of 2-class and more-than-two-class.

Table 4 compares 6 methods. We use the 1NN classifier using the full length
(denoted by full 1NN) as the baseline. In addition to ECTS and relaxed ECTS, we

2 Again, if multiple 1NNs exist, then we can select the 1NN of the smallest index .
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Table 4. Results on seven datasets from UCR Time Series Archive, where the full-length 1NN
classifier using Euclidean distance achieves an accuracy of at least 85%. The data sets cover
cases of 2-class and more-than-two-class. 6 methods are compared. We use the 1NN classifier
using the full length (denoted by full 1NN) as the baseline. We also report the results of the
1NN early classification method (Section 4, denoted by 1NN Early), the 1NN fixed method
which will be introduced in Section 6.2, and the SCR method (Xing et al. 2008). ECTS and
relaxed ECTS use only an optional parameter, minimum support, to avoid overfitting. All
results of ECTS and relaxed ECTS are obtained by setting minimum support= 0.
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also report the results of the 1NN early classification method (Section 4, denoted
by 1NN Early), the 1NN fixed method which will be introduced in Section 6.2,
and the SCR method (Xing et al. 2008). ECTS and relaxed ECTS use only an
optional parameter, minimum support, to avoid overfitting. All results of ECTS
and relaxed ECTS in Table 4 are obtained by setting minimum support= 0.

All the experiments were conducted using a PC computer with an AMD
2.2GHz CPU and 1GB main memory. The algorithms were implemented in C++
using Microsoft Visual Studio 2005.

6.1. Results of ECTS Methods

In Figure 3, we compare the performance of full 1NN, ECTS, relaxed ECTS
and early 1NN in terms of classification accuracy and average prediction length
(Cost(C, T ′) defined in Section 2.

On data sets Wafer and Gun-point, the average prediction lengths of ECTS
are shorter than half of the full lengths. On the other five data sets, the average
prediction lengths of ECTS are from 71% to 89% of the full lengths. In terms
of accuracy, except for data sets Gun-point and Two-patterns, ECTS has an
accuracy almost the same or even slightly better than that obtained by the full-
length 1NN method. On Gun-point and Two-patterns, ECTS is about 5% lower
in accuracy. The results on the seven data sets show that ECTS can preserve
accuracy consistently as the baseline method. At the same time, ECTS can
achieve considerable saving in prediction length.

Similar to ECTS, the results of relaxed ECTS confirm that relaxed ECTS
can also achieve early classification while retaining the accuracy as the baseline
method. Especially, on data set ECG, relaxed ECTS uses an average prediction
length of 57.71,(60.11% of the full length) and ECTS uses an average prediction
length of 74.04 (77.13% of the full length). Relaxed ECTS achieves significantly
earlier classification than ECTS. Also, on the Synthetic Control data set, relaxed
ECTS uses shorter prediction than ECTS. The results are consistent with our
discussion in Section 4.2. The relaxed ECTS may be able to use a shorter prefix
length to obtain nearly the same accuracy as ECST. In Table 4, the runtime
of the training algorithms in ECTS and the relaxed ECTS (i.e., computing the
MPLs for all training time series) and the average runtime of the classification
phase of the ECTS methods are also reported. The relaxed ECTS takes slightly
longer time in training. Both methods are very fast in classification.

From Figure 3, we can also see that on all the 7 data sets, the early 1NN
method achieves almost the same accuracies as the baseline method. In terms of
accuracy, the early 1NN method, ECTS, and relaxed ECTS are all quite reliable.
ECTS and relaxed ECTS always achieve a shorter average prediction length than
the early 1NN method. This result confirms that finding MPLs through clusters
helps to obtain shorter MPLs.

ECTS and relaxed ECTS have an optional parameter, minimum support. If
the user does not set the parameter, then the default value is 0. As shown in the
experiments, in most cases, the performance of ECTS is satisfactory by using
the default value. On data sets Gun-point and Two-patterns, ECTS and relaxed
ECTS are about 5% lower in accuracy comparing to the full length 1NN. As
explained before, when minimal support= 0, ECTS may over fit a training set
and thus may slightly lose accuracy. By increasing minimum support, overfitting
can be reduced. Figure 4 shows the effect on the Gun-point data set. When
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Fig. 3. Comparison among full 1NN, ECTS, relaxed ECTS and early 1NN in terms of classi-
fication accuracy and average prediction length (Cost(C, T ′) defined in Section 2. ECTS can
preserve accuracy consistently as the baseline method. At the same time, ECTS can achieve
considerable saving in prediction length.
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Fig. 4. Accuracy and average length vs. minimum support on the Gun-point data set. When
minimum support increases, the accuracy of ECTS approaches the accuracy of the full length
1NN classifier quickly. As the tradeoff, the average prediction length increases, too. By using
parameter minimum support, ECTS can reduce overfitting effectively.

minimum support increases, the accuracy of ECTS approaches the accuracy of
the full length 1NN classifier quickly. As the tradeoff, the average prediction
length increases, too.

By comparing ECTS, relaxed ECTS and the early 1NN method against the
baseline method, we can conclude that ECTS, relaxed ECTS and the early 1NN
method have a common property that they can all make early classification while
retain an accuracy comparable to using full length 1NN classifier. Relaxed ECTS
is the best at finding short prediction length. ECTS has the similar performance
as relaxed ECTS in most cases. Early 1NN cannot achieve early classification as
well as ECTS and relaxed ECTS, but it requires significantly less training time.

6.2. Comparison with 1NN Fixed

Is learning different MPLs for different time series necessary? Can we just learn
a fixed MPL for all time series in a training set? Let us consider the following
simple early classification method called 1NN fixed. Given a training set T of full
length L, we calculate the 1NN classification accuracy p in the full space RL.
Then, we check the prefix spaces RL−1,RL−2, . . . until prefix space Rk such that
the accuracies in spaces RL−1, . . . ,Rk+1 are at least p, and the accuracy in space
Rk is lower than p. We use (k + 1) as the MPL for all time series. That is, in
classification, we always read the length-(k + 1) prefix of a time series s to be
classified, and find the 1NNs of s among the length-(k + 1) prefixes of the time
series in T to classify s.

Interestingly, 1NN fixed is a simplified special case of ECTS in 2-class situ-
ations under the assumption that each class forms one discriminative cluster in
the full length space RL. However, since 1NN fixed does not consider the dif-
ferent early classification capabilities of the clusters in the hierarchy, it may use
longer prefixes for classifications. Furthermore, when there are multiple classes
or multiple large discriminative clusters, the 1NN fixed method may not work
well since it requires the overall accuracy to be high and cannot identify clus-
ters which are separated from other clusters earlier than the overall accuracy is
satisfied.

We compare 1NN fixed with ECTS in Figure 5. On data sets Wafer, ECG and
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Fig. 5. Comparison between ECTS and fixed 1NN. ECTS and the 1NN fixed method are both
as accurate as the full length 1NN method, but ECTS can make prediction significantly earlier
than 1NN fixed on the first 5 data sets.
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Synthetic-control, ECTS using minimum support= 0 achieves a shorter average
prediction length than the 1NN fixed method. The two methods have similar
accuracies. Especially, for the 6 classes synthetic control data set, the 1NN fixed
method has to use the full length. ECTS uses a shorter prediction length. The
saving mainly comes from the class cyclic, which is classified using an average
length of 45. To handle multi-class situations, the 1NN fixed method cannot
classify one class earlier if the other classes are mixed together in the prefix
spaces.

On data set Gun-point, by setting minimum support= 15% to reduce overfit-
ting, ECTS obtains an accuracy comparable to the 1NN fixed method, but uses
a remarkably shorter average prediction length. Similar results are observed on
data set Two-patterns.

From Table 4, we can see that on data sets OliveOil and CBF, interestingly,
the 1NN fixed method is less accurate than ECTS but can obtain shorter average
prediction length. For example, on data set OliveOil, ECTS obtains an accuracy
of 90% and 1NN fixed method makes only 83.33%. The 1NN fixed method obtains
an average prediction length of 406 and ECTS gives a length of 497.63. By
analyzing the training set of 30 time series, we find that, training samples 7 and
9 are the cause of the dropping accuracy in the 1NN fixed method, which means
the MPLs (406) of those two samples learned by the 1NN fixed method are not
long enough to make accurate classification. In ECTS, the learned MPLs vary
from 117 to 570 for the training samples. For samples 7 and 9, the learned MPLs
are 567 and 570, respectively. Why does ECTS learn longer MPLs for samples 7
and 9? In the full length space, training sample 9 has an empty RNN set. The
RNN set of training sample 7 consists of samples from two classes. Those RNN
sets suggest that samples 7 and 9 are likely on the decision boundary. In contrast
to the 1NN fixed method, ECTS can find longer MPLs for samples likely on the
decision boundary to reduce the possible misclassification led by such a sample.

From the above analysis, we can conclude that in most cases, the ECTS
method can use significantly shorter prediction to achieve very similar accuracy
as the fixed 1NN method. ECTS is especially suitable for more-than-two-class
early classification task.

6.3. Comparison with SCR

We also compare ECTS with our previous symbolic method SCR (Xing et al.
2008), a rule based classifier proposed to solve the problem of early prediction
for symbolic sequences.

Since SCR can only handle discrete values, k-means (k = 3) is used to dis-
cretize values in the time series into 3 values, following the recommendation
in (Xing et al. 2008). In the classification, we do the online discretization using
learned thresholds on the training data set. SCR requires a parameter, expected
classification accuracy, which is set to the full length 1NN accuracy. The other
parameter of SCR, minimal support, is set to 0.

We compare SCR with ECTS in Figure 6. Although SCR sometimes uses a
shorter average prediction length, the accuracies are significant lower than the
expected values. Comparing to SCR, ECTS makes early classification reliable in
accuracy. In terms of efficiency, ECTS is much faster than SCR in training.
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Fig. 6. Comparison between ECTS and SCR. Although SCR sometimes uses a shorter average
prediction length, the accuracies are significant lower than the expected values. Comparing to
SCR, ECTS makes early classification reliable in accuracy. In terms of efficiency, ECTS is much
faster than SCR in training.
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7. Conclusions

In this paper, we propose the ECTS classifier to tackle the problem of early
classification of numerical time series data. ECTS extends the 1NN classifier to
achieve early classification while retains nearly the same accuracy as that of the
1NN classifier using the full-length time series. In the experiments, we show that
the ECTS methods are effective and superior to other existing early classification
methods.

Early classification is a new direction in data mining with many important
applications. In general, early classification is concerned about the tradeoff be-
tween earliness and accuracy in classification. Although we make good progress
in this paper, the ETCS methods are only the first step. One important insight
disclosed in this paper is that, when 1NN is effective, it is feasible to retain
the classification accuracy and shorten the prediction length substantially. This
paper also leads to the fundamental question for early classification, that is,
how to control the tradeoff between earliness and accuracy in classification. This
fundamental question is open for future study.

In the future, we also want extend the work in a few directions. For example,
we want to explore how to extend ECTS to handle multivariate time series data
and complex temporal sequence data with both numerical and symbolic values.
Moreover, we plan to explore how to extend the ECTS methods for streaming
time series data which may have multiple class labels.
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