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The ongoing spread and evolution of SARS-CoV-2 has gen-
erated several variants of interest and variants of concern 
(VOC)1–3, which can affect, to different degrees, transmissi-

bility1, disease severity4, diagnostics and the effectiveness of treat-
ment5 and vaccines. Therefore, early detection and monitoring of 
local variant spread has become an important public health task6.

Viral RNA of SARS-CoV-2 infected persons can be detected in 
the sewage collected in wastewater treatment plants (WWTPs) and 
its concentration has been shown to correlate with case reports7. 
Moreover, wastewater samples can provide a snapshot of the circu-
lating viral lineages and their diversity in the community through 
reverse transcription quantitative real-time PCR (RT-qPCR) analy-
sis8,9 or genomic sequencing9–16. Recently, it has been shown that 
variant prevalence in wastewater correlates with clinical data17,18. 
Therefore variant monitoring in wastewater may serve as an effi-
cient and complementary approach to genomic epidemiology based 
on individual patient samples.

However, it is challenging to analyse wastewater samples for 
their SARS-CoV-2 genomic composition because concentrations 
of SARS-CoV-2 can be very low, samples may be enriched for PCR 
inhibitors, viral genomes are typically fragmented and sewage 
contains large amounts of bacterial, human and other viral DNA 
and RNA genomes. In addition, the quality of the data obtained 
from sequencing the mixture of viral genomes is compromised by 

amplification biases, sequencing errors and incomplete phasing 
information, which further complicates the detection of an emerg-
ing viral lineage that is present in only a small fraction of infected 
persons.

Here we analysed amplicon-based next-generation sequenc-
ing (NGS) data of viral RNA extracted from raw influent samples 
obtained from multiple Swiss WWTPs (Fig. 1a). To assess repro-
ducibility and quantifiability of sequencing data obtained from 
wastewater-derived viral RNA, we conducted a series of replicate 
and spike-in experiments. We then focussed on a close-meshed 
time-series in two large cities between December 2020 and 
mid-February 2021, and a ski resort during the holiday season 
(121 samples in total). These samples cover the period in which the 
Alpha, Beta and Gamma variants first arrived in Europe. For valida-
tion, we then analysed 1,656 mostly daily samples from six WWTPs 
taken between January and September 2021 to cover the period 
in which the delta variant emerged. We developed a bioinformat-
ics method named COJAC (Co-Occurrence adJusted Analysis and 
Calling) for early detection of low-frequency variants emerging in a 
population and a statistical approach that is suitable for quantitative 
variant monitoring and estimation of the variant-specific transmis-
sion fitness advantage (that is, the relative increase in reproductive 
number) of any genetic variant of SARS-CoV-2. Our framework 
works best on close-meshed time-series data.
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Results
Quality of genomic sequencing data derived from wastewater 
samples. To assess the quality of genomic sequencing data derived 
from wastewater samples, we compared it to clinical sequencing 
data. We found that the normalized amplicon coverage obtained 
from the wastewater samples was not substantially different from 

the coverage of clinical samples (Fig. 1c) and that it allowed for 
calling low-frequency mutations in most genomic regions of most 
wastewater samples we analysed (Supplementary Fig. 1). Replicate 
and spike-in experiments (Methods) indicate that the relative 
prevalence of genomic variants can be quantified from the NGS 
data, although precision is limited at low prevalence. Replication 
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Fig. 1 | Method overview and quality control. a, Overview of the wastewater sampling campaign. Left: collection of raw wastewater samples containing 
a mixture of wild-type and variant SARS-CoV-2 viral RNA. Middle: viral concentration and nucleic acid extraction. Right: amplification using ARTIC v3 
primers, library preparation, NGS and mutation calling using V-pipe, followed by statistical analysis to detect and quantify the presence of SARS-CoV-2 
variants and estimate epidemiological parameters. Created with BioRender.com. b, Reproducibility of Alpha (B.1.1.7) prevalence based on resequencing of 
25 samples. Each dot shows the average fraction of Alpha-compatible reads across all signature mutations. Pearson correlation coefficient, R, and P value 
(two-sided test) indicate a high degree of variability in Alpha prevalence estimates at low frequencies. The solid line denotes the estimate from the linear 
model and the shaded area denotes the 95% confidence interval. c, Per-amplicon normalized coverage distributions after quality filtering and alignment 
in the same NGS batch containing both 589 clinical (orange) and 22 wastewater (blue) samples. Per-amplicon absolute coverages can be found in 
Supplementary Fig. 1. d, Reproducibility of Alpha (B.1.1.7) prevalence in a dilution series experiment. Boxplots represent fractions of substitutions called in 
5 technical replicates of wastewater spiked with SARS-CoV-2 RNA at 3 different Alpha-to-wild-type ratios. In both c and d, boxes show quartiles and the 
whiskers extend to a maximum of 1.5× the interquartile range, after which points are considered outliers.
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increases precision, especially in the monitoring of low-frequency 
variants (Fig. 1b,d and Supplementary Information).

Longitudinal surveillance of the Alpha, Beta and Gamma vari-
ant. The variant frequencies in the 122 wastewater samples revealed 
a continuous increase in the prevalence of the Alpha variant in 
Zurich starting around mid-December and in Lausanne starting in 
late December (Fig. 2). Much of the noise in the data can be removed 
by computing smoothed estimates over time and over signature 
mutations (Methods). When comparing these estimates of Alpha 
prevalence to those obtained from clinical samples, we found that 
they aligned very closely, even though the treatment plants serve 
only a subset of the respective cantonal populations (Lausanne: 30% 
of canton Vaud, Zurich: 29% of canton Zurich) (Figs. 3 and 4). For 
the alpine ski resort, we detected the Alpha variant over the entire 
period of observation (20–29 December 2020), consistent with the 
popularity of the ski resort with British tourists as a holiday destina-
tion (Fig. 2). Unlike for Alpha, we found almost no evidence for the 
distinctive signature mutations of Beta or Gamma (Supplementary 
Information), which is consistent with the observation that neither 
of the two variants was able to establish itself in the Swiss population.

Early detection of emerging variants with COJAC. For early 
detection and determination of the timing of the introduction of 
a variant into a population, we devised the bioinformatics method 
COJAC that searches for co-occurrence of mutations on read pairs 
(Methods). Such co-occurrence signals provide high confidence in 
the presence of the respective strain, as independent biological gen-
eration or technical artefacts are both very unlikely to produce such 
mutational patterns (Supplementary Information). We analysed all 
amplicons that contained co-occurrences of VOC-specific muta-
tions: four amplicons that each contain two or three Alpha-defining 
mutations, one amplicon with two signature mutations shared 
between Beta and Gamma, and one amplicon with two Gamma 
signature mutations. We found several co-occurrences in our data  
(Fig. 2 and Supplementary Table 3). The two mutations co-located 
on amplicon 93 provide the earliest evidence for Alpha in waste-
water samples in Zurich on 17 December and in Lausanne on 9 
December. In both locations, these dates fall at a time when evi-
dence based on single mutations alone was still very spotty (Fig. 2).

We compared our results to early variant detection based on clin-
ical sequencing data in the respective cantons of Zurich and Vaud. 
In Switzerland, around 4% of all SARS-CoV-2-positive clinical sam-
ples of December 2020 were sequenced. The first clinical evidence 
of the Alpha variant in canton Zurich was detected in a sample dated 
18 December, and in canton Vaud in a sample dated 21 December, 
the former being 1 d later and the latter being 13 d later than the first 
wastewater-based evidence. This finding is consistent with those of 
a retrospective sequencing campaign of March/April 2021 analys-
ing clinical samples collected in November and December 2020. 
The retrospectively obtained data revealed isolated occurrences 
of Alpha already on 9 November (3 cases) in canton Zurich, and 
on 17 December in canton Vaud (1 case) (Supplementary Table 5). 
For canton Vaud, the retrospective variant detection was still sig-
nificantly later (8 d) than the first wastewater-based evidence in its 
capital Lausanne. For canton Zurich, the Alpha-positive samples of 
9 November all originated from municipalities located outside the 
catchment area of the studied treatment plant and therefore could 
not be detected in the analysed wastewater samples.

The co-occurring mutation pair on amplicon 93 that we used for 
early detection in wastewater is highly specific to Alpha, as it has 
been observed only 14 times (0.07%) outside of the Alpha lineage in 
the 21,163 Swiss samples in the GISAID database (Supplementary 
Table 4) and only 138 times (0.01%) in all 1,397,333 SARS-CoV-2 
GISAID samples until 13 February 2021. At later timepoints, we 
also observe evidence based on the other three Alpha-specific 

amplicons both in Lausanne and Zurich. In the ski resort, evidence 
for the presence of Alpha has already been strong based on the anal-
ysis of individual mutations over the entire period of observation 
(20–29 December), and the amplicon-based analysis further sup-
ports this observation. For Beta and Gamma, the evidence based 
on co-occurrence is similarly weak as for the analysis of individual 
mutations (Supplementary Information). This result aligns with the 
clinical data for the period of study, with only one Gamma sample 
detected in canton Zurich (first occurrence on 27 January) and 
none in canton Vaud. Beta was detected two times in canton Zurich 
(first occurrence 18 January) and seven times in canton Vaud (first 
occurrence 14 January).

Estimation of transmission fitness advantage. The transmission 
fitness advantage of a variant corresponds to the relative increase 
in reproductive number and provides information on the epide-
miological relevance of an emerging variant. We estimated this 
parameter for Alpha from its prevalence in wastewater separately 
for Lausanne and Zurich on the basis of a logistic progression 
model (Methods and Extended Data Fig. 2). Our estimates of the 
transmission fitness advantage of 46% (confidence interval (CI) of 
35–60%) for the Zurich WWTP catchment and 59% (CI 42–84%) 
for the Lausanne WWTP catchment are in line with those based on 
regional clinical data19 and with reports from the United Kingdom20 
(Supplementary Information). Narrowing the clinical data down 
to the cantonal level, the estimates are still in line with the waste-
water for Zurich (54%, CI 43–69%, based on 2,062 samples), while 
for Vaud, the clinical estimates are less precise (75%, CI 34–144%, 
based on 345 samples) as reflected by the huge confidence interval. 
To assess how early the transmission fitness advantage can be esti-
mated with acceptable precision, we also computed online estimates 
of the transmission fitness advantage, that is, using only the data up 
to the respective time point—46 wastewater samples at most per 
location (Methods). For canton Vaud, the wastewater-based esti-
mates for the Lausanne WWTP are more precise than the estimates 
based on hundreds of clinical samples from the canton (Fig. 3b). 
For canton Zurich, the estimates are similar to those of thousands 
of cantonal clinical samples with one outlier around mid-January 
for Zurich (Fig. 4b and Supplementary Information). Restricting 
the clinical data to the 115 samples from the city of Zurich, which 
comprises the majority of the catchment area of the WWTP, shows 
that the precision of the wastewater-based online estimates is clearly 
superior (Fig. 4b and Supplementary Information).

Early detection of the Delta variant. To investigate whether our 
results could be reproduced for the emergence of the Delta variant 
(B.1.617.2), we analysed additional data from six WWTPs across 
Switzerland during the introduction and spread of B.1.617 and all 
its sublineages (denoted B.1.617*) (Fig. 5) for co-occurring signature 
mutations. Although the RNA concentration in sewage samples at this 
time was very low due to a lull in the pandemic, we were able to detect 
signals of B.1.617*- and B.1.617.2-specific co-occurrences before or 
early during the local spread of the variant as observed in clinical sam-
ples. In three out of six catchment areas, the wastewater-derived signal 
was detected before confirmation of the first local B.1.617*-positive 
clinical sample: 118 d earlier in Lausanne, 60 d earlier in Lugano and 
4 d earlier in Altenrhein. For the other WWTPs, the variant was first 
found in the clinical samples of the canton: 10 d earlier in Chur, 22 d 
earlier in Zurich and 47 d earlier in Laupen. In two of these cases 
(Lausanne and Lugano), the first detections of the Delta variant were 
transient and resumed at later dates when the spread of the variant 
started. In the cases where the detection in wastewater did not precede 
the detection in clinical samples, the variant was still detected when 
its prevalence was low. Whether wastewater-based variant detec-
tion can precede detection in clinical samples or not depends on the  
rate at which clinical samples are sequenced. To investigate this effect 
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further, we subsampled the clinical sequences at different sample sizes 
(Supplementary Fig. 4). We found that in general, for low clinical 
sample sizes, wastewater-based detection precedes clinical detection, 
while increasing clinical sample size eventually decreases or reverses 
the advantage of wastewater, with strong diminishing returns.

Discussion
We have demonstrated how genomic sequencing of wastewater 
samples can be used to detect, monitor and evaluate genetic vari-
ants of SARS-CoV-2 on a population level. Specifically, we have 
reported the detection of the local outbreak of the Alpha variant 
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in wastewater in two Swiss cities before it was observed in clini-
cal samples. We expanded our surveillance to six Swiss cities and 
found that in three of them, the earliest signal of the Delta variant 
in wastewater pre-dated the first local detection of the variant in 
clinical samples despite very high clinical sequencing rates at that 
time in Switzerland (between 66% and 94% of Swiss qPCR-positive 

samples were randomly selected for sequencing at that time). In 
the cases where clinical samples provided the first local evidence 
for the presence of the Delta variant, the first signal in wastewater 
occurred shortly after and at a time when the local prevalence of the 
Delta variant was still very low. By subsampling the available clini-
cal samples, we have shown the strong association between the rate 
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of clinical sequencing and the delay in variant detection compared 
with wastewater-based analyses.

While we have shown that early variant detection based on 
wastewater samples is feasible, we have also observed that the inter-
pretation of single wastewater samples can be challenging. This is 
because initially, only a small subset of signature mutations is typi-
cally observed at low frequencies, which makes it difficult to dis-
tinguish between signal and noise in the sequencing data. The high 
noise level in the data is attributable to the technical challenges that 
arise in the collection and processing of the raw wastewater sam-
ple, the extraction of SARS-CoV-2 RNA and its amplification. Our 
results suggest that high sampling density across time and replicate 
sequencing are key elements to improve the signal-to-noise ratio.

We also developed an approach to boost the signal strength 
in individual samples. This approach is based on the detection of 
co-occurring signature mutations on the same read pair, as their 
presence in a sample constitutes a much stronger signal than indi-
vidual mutations. This approach was particularly valuable for the 
detection of the Alpha variant which has multiple highly specific 
mutation pairs and even one triplet that can be detected in this 
manner. In Lausanne, the first co-occurrence-based evidence of the 
Alpha variant occurred 13 d before the first clinical evidence at that 
time in the area and 8 d earlier than in the clinical samples anal-
ysed retrospectively. Among the other variants we studied, Beta and 

Gamma shared one pair of co-occurring signature mutations, with 
Gamma having one additional variant-specific mutation pair. We 
detected some early evidence of the introduction of these variants 
into the Swiss population, but neither of these two variants was able 
to establish itself in Switzerland against the Alpha variant. For the 
Delta variant, there are two pairs of signature mutations, which we 
used for early co-occurrence-based detection: one shared among 
B.1.617* and one exclusive to B.1.617.2. In general, the usefulness of 
the co-occurrence analysis for variant identification depends on the 
exclusivity of co-occurrences and is negatively affected by the pres-
ence of recurring mutations in separate lineages21,22. As more and 
more variants arise and possibly co-exist in a population, shared sig-
nature mutations—by chance, convergence or homology—are more 
likely to occur. In such a case, deconvolution methods23 will become 
useful to disentangle the aggregate signals of co-occurring variants 
in wastewater. While we focused in this paper on the introduction 
of known variants into a new population, the data we generated and 
the methods we developed can in principle be used and extended 
to a de novo identification of circulating variants and the detec-
tion of cryptic variants in unsampled human or non-human animal 
populations.

Besides early detection, we have shown that sequencing data 
obtained from wastewater samples can also be used to monitor the 
local prevalence of a variant, and to estimate its growth rate and 
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transmission fitness advantage earlier and on the basis of sub-
stantially fewer samples as compared with using clinical samples. 
Moreover, wastewater samples have the advantage of representation 
of undiagnosed asymptomatic cases in the data, which are system-
atically overlooked in clinical sequencing.

Several challenges remain in the analysis and interpretation 
of wastewater-derived sequencing data. For example, relating the 
wastewater-derived estimates to a specific local population can 
be confounded by the movement of people. Switzerland, as many 
other European countries, has a high level of commuting between 
geographical locations within the country and from neighbour-
ing regions. The high congruence we observe between clinical 
and wastewater samples in terms of estimated prevalence and 
fitness advantage suggests that there is little difference between 
these two sources of information in regard to the overall pres-
ence of infectious individuals regularly present in a city due to 
residency or daily commute. Another challenge is posed by poten-
tial differences in shedding profiles between variants, which may 
impact quantification from wastewater sequencing, and thus also 
impact some of the inferred epidemiological characteristics of the 
variants.

Overall, we have shown that genomic analysis of SARS-CoV-2 
variants in wastewater samples can inform epidemiological stud-
ies and complement established approaches based on clinical  
samples. In fact, we have expanded our continued sequencing  
activities to six wastewater treatment plants across Switzerland 
for which we publish live updates for the general public as  
well as for local public health agencies (https://bsse.ethz.ch/cbg/ 
research/computational-virology/sarscov2-variants-wastewater- 
surveillance.html). Our methodology and continued sequencing 
campaign provide a blueprint for rapid, unbiased and cost-efficient 
genomic surveillance of emerging SARS-CoV-2 variants based on 
longitudinal sequencing of wastewater samples.

Methods
Wastewater sample collection and preparation. Raw wastewater samples were 
collected from three Swiss WWTPs: Werdhölzli, Zurich (64 samples, July 2020–
February 2021, population connected: 450,000), Vidy, Lausanne (49 samples, 
September 2020–February 2021, population connected: 240,000), and an alpine 
ski resort (8 samples, December 2020) (Fig. 1a and Extended Data Fig. 1). For 
the validation study, we used mostly daily wastewater samples from Lugano 
(n = 238, February–September 2021), Laupen (n = 242, February–September 
2021), Zurich (n = 251, January–September 2021), Chur (n = 230, February–
September 2021), Lausanne (n = 186, January–July 2021) and Altenrhein (n = 236, 
February–September 2021). Composite samples (24 h; Zurich and Lausanne) or 
grab samples (ski resort) were collected in 500 ml polystyrene or polypropylene 
plastic bottles, shipped on ice and stored at 4 °C for up to 8 d before processing. 
Aliquots of 50 ml were clarified by filtration (2 µm glass fibre filter (Millipore) 
followed by a 0.22 µm filter (Millipore), Zurich samples) or by centrifugation 
(4,863 × g for 30 min, Lausanne and ski resort samples). Clarified samples were 
then concentrated using centrifugal filter units (Centricon Plus-70 Ultrafilter, 
10 kDa, Millipore) by centrifugation at 3,000 × g for 30 min. Centricon cups were 
inverted and the concentrate was collected by centrifugation at 1,000 × g for 3 min. 
The resulting concentrate (up to 280 µl) was extracted using the QiaAmp viral RNA 
mini kit (Qiagen) according to the manufacturer’s instructions, adapted to the 
larger volumes and eluted in 80 µl. Samples collected after 1 February were further 
purified using One-Step PCR Inhibitor Removal columns (Zymo Research). RNA 
extracts were stored at −80 °C for up to 4 months before sequencing.

Genomic sequencing. RNA extracts from wastewater samples were used to 
produce amplicons and to prepare libraries according to the COVID-19 ARTIC 
v3 protocol24 with minor modifications. Briefly, extracted RNA was reverse 
transcribed using the NEB LunaScript RT SuperMix kit (New England Biolabs) 
and the resulting complementary DNA was amplified with the ARTIC v3 panel 
from IDT. ARTIC primers used were: ARTIC V4.1 NCOV-2019 Panel, 500rxn 
10011442, IDT ARTIC v3 panel 500rxns 10006788 (IDT). The amplicons were 
end-repaired and polyadenylated before ligation of adapters using NEB Ultra 
II (New England Biolabs). Fragments containing adapters on both ends were 
selectively enriched and barcoded with unique dual indexing with PCR. Libraries 
were sequenced using the Illumina NovaSeq 6000 and MiSeq platforms, resulting 
in paired-end reads of 250 bp length each (see Supplementary Information for 
quality metrics of the sequencing data).

Mutation calling. NGS data were analysed using V-pipe25, a bioinformatics 
pipeline for end-to-end analysis of viral sequencing reads obtained from mixed 
samples. Individual low-frequency mutations were called on the basis of local 
haplotype reconstruction using ShoRAH26. For detecting mutation co-occurrence, 
we developed a computational tool called COJAC. The ARTIC v3 protocol relies 
on tiled amplification and some amplicons cover multiple positions mutated in a 
variant (Supplementary Table 1). As the samples are sequenced with paired-end 
250 bp reads, each 400 bp amplicon can be fully observed on the read pairs in close 
to all instances. Detecting multiple signature mutations on the same amplicon 
increases the confidence of mutation calls at very low variant read counts. This 
opens the possibility of earlier detection while variant concentrations are still 
too low for reliable detection of individual mutations. COJAC takes as input the 
multiple read alignments (BAM files) and counts read pairs with variant-specific 
mutational patterns. It can be configured to work with any tiled amplification 
scheme and to simultaneously search for multiple variants, each defined by a list of 
signature mutations. COJAC and its documentation (README file) are available 
at https://github.com/cbg-ethz/cojac/ or as a bioconda package at https://bioconda.
github.io/recipes/cojac/README.html.

Statistical data analysis. For Zurich, we used the 55 sequencing experiments 
(excluding 1 failed) covering 46 dates ranging from 8 December 2020 to 11 
February 2021. For Lausanne, we used the 52 sequencing experiments (excluding 
4 failed) covering 43 dates ranging from 8 December 2020 to 13 February 2021. 
When a WWTP sample was sequenced multiple times, we fixed the empirical 
frequencies of the Alpha signature mutations for a given day by averaging 
their values between the different sequencing experiments. We only used 
non-synonymous substitutions for quantification. Frequencies of the Alpha 
signature substitutions in wastewater-derived NGS data were resampled with 
replacement and averaged per wastewater sample, before being smoothed across 
time by local regression using locally weighted scatterplot smoothing (lowess) with 
1/3 bandwidth from the Python v3.7.7 library statsmodels v0.12.127. This process 
was repeated 1,000 times to construct bootstrap estimates of the Alpha per-day 
frequency curves. The smoothed resampled values were used to compute point 
estimates by averaging the daily Alpha prevalence as well as confidence intervals 
as the empirical 2.5% and 97.5% quantiles. For the prevalence estimation of Alpha 
in clinical samples, we used the whole-genome sequencing data from randomly 
selected SARS-CoV-2 RT-qPCR-positive samples provided by the large diagnostics 
company Viollier AG19. Daily cantonal relative abundances of variants were 
estimated as their empirical frequencies in sequenced samples. For each canton, 
the sequenced cases were resampled with replacement and aggregated into daily 
relative frequencies of Alpha, which were then smoothed temporally using the 
same lowess smoother mentioned above. This process was repeated 1,000 times 
to construct bootstrap estimates of the Alpha daily cantonal relative prevalence, 
which were aggregated into point estimates and confidence intervals by the same 
method described above.

Estimation of epidemiological parameters. Following Chen et al.19, we assumed 
that the relative frequency p(t) of the Alpha variant in the population at time t 
follows a logistic growth with rate a and inflection point t0,

p(t) =
exp{a(t − t0)}

1 + exp{a(t − t0)}
.

For the wastewater samples, we further assumed that the Alpha signature 
mutation counts are distributed according to a binomial distribution, with 
expected value equal to p(t) times the total coverage at the respective site. Similarly, 
we assumed that the Alpha-positive clinical samples are also distributed according 
to a binomial distribution, with expected value equal to p(t) times the number 
of clinical samples analysed. The R v3.6.1 package stats28 was used to produce 
maximum likelihood estimates of the model parameters with a generalized linear 
model. Confidence intervals were computed on the basis of their asymptotically 
normal distribution. To account for overdispersion due to the inherently noisy 
nature of wastewater sequencing data, the confidence intervals were computed 
using the variance of a quasibinomial29 distribution. Although clinical data are not 
expected to exhibit overdispersion, the same procedure was applied for the sake 
of consistency. Confidence bands were first generated for the linear predictors, 
and then back-transformed into confidence bands for the regression curves to 
ensure that they are restricted to the interval (0,1). Estimates of the logistic growth 
parameter a were then transformed into estimates of the transmission fitness 
advantage fd, assuming the discrete-time model of Chen et al.19 with generation 
time g = 4.8 d such that fd = exp (ag) − 1. Confidence intervals for the logistic 
growth parameter a were then back-transformed into confidence intervals for the 
fitness advantage fd. This inference procedure was repeated at multiple timepoints 
with only the clinical and wastewater sequencing data available at these timepoints, 
to generate online estimates and confidence intervals of what could have been 
inferred about fd at that time. These estimates were compared to the estimates of 
fd reported in Chen et al.19 for the Lake Geneva region (population 1.6 million), 
which includes Lausanne and the Greater Zurich Area (population 1.5 million). 
The confidence intervals for these regional estimates of fd were recomputed using 
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back-transformation of the confidence intervals reported for the regional estimates 
of a, so that they could be meaningfully compared with the ones based on our data.

Dilution experiment. RNA samples of cultivated wild-type SARS-CoV-2 (Wuhan 
strain) and of a clinical Alpha strain were obtained. We measured the RNA 
concentrations in these samples by quantifying the N1 gene target (on the basis of 
the CDC N1 gene assay; primers in Supplementary Table 6) using Crystal Digital 
PCR (Naica system, Stilla Technologies)30. A 27 μl pre-reaction volume for Sapphire 
Chips (CN C14012, Stilla Technologies) was prepared consisting of 5.4 μl of 
template, 13.5 μl of 2× qScript XLT One-Step RT-PCR, and N1 primers and probe 
(2019-nCov RUO kit, CN 100006713, Integrated DNA Technologies). Droplet 
production and PCR were performed on the Naica Geode. Reverse transcription 
(48 °C for 50 min) was followed by denaturation (94 °C for 3 min) and 40 cycles 
(94 °C for 30 s, 57 °C for 1 min) of denaturation and annealing/extension. The Naica 
Prism3 using the Crystal Reader and Crystal Miner software were used for analysis 
(Stilla Technologies).

On the basis of the dPCR measurements, each RNA sample was then diluted 
in an RNA extract produced from SARS-CoV-2-free wastewater (November 2019, 
Lausanne) to a final concentration of 200 gc µl−1. Wild-type and Alpha solutions 
were then mixed at wild-type to variant ratios of 10:1, 50:1 and 100:1, and each 
mixture was sequenced 5 times.

Replicate experiment. RNA extracts of 25 samples taken in the Lausanne and 
Zurich WWTPs between 8 December 2020 and 4 January 2021 were processed and 
sequenced a second time. For 23 RNA extracts, sequencing data were successfully 
produced for both experiments. Another replicate experiment was performed, for 
which RNA extract was produced as described above from two samples obtained 
from the Lausanne WWTP on 7 January 2020. The extracts were pooled and 
subsequently divided into 9 replicate samples for sequencing.

Patient sequences. Per-patient SARS-CoV-2 consensus sequences were 
downloaded from GISAID31 for all samples collected in Switzerland between 24 
February 2020 and 13 February 2021, and not identified as either Alpha, Gamma 
or Beta (see Supplementary Information for the list of accession numbers).

Validation experiment for the Delta variant. We used COJAC as described 
above to call characteristic mutations co-occurring on amplicons 76 (22917G and 
22995A, characteristic of B.1.617*) and 91 (27638C and 27752T, characteristic of 
B.1.617.2) to detect the Delta variant. For each treatment plant, we compared the 
wastewater sequencing results to clinical consensus sequences of the respective 
canton for the time period between January and October 2021, which we 
downloaded from GISAID31 through the LAPIS API of Cov-Spectrum32. We 
restricted the clinical sequencing data to samples from the Viollier (AG) laboratory 
(by selecting sequences where ‘originatingLab‘=‘Viollier AG‘)19.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Wastewater sequencing data (depleted from human-derived reads) are available 
on the European Nucleotide Archive (ENA) under project accession number 
PRJEB44932. Source data are provided with this paper.

Code availability
The code for the automated data analysis is available at https://github.com/
cbg-ethz/pangolin. The bioinformatics pipeline V-pipe for the analysis of viral 
sequencing data is available at https://github.com/cbg-ethz/V-pipe/. The program 
COJAC for detecting mutation co-occurrence is available at https://github.com/
cbg-ethz/cojac/ and also as a package in bioconda at https://bioconda.github.io/
recipes/cojac/README.html. The R and Python notebooks used in this Article 
are available at https://github.com/cbg-ethz/cojac/tree/master/notebooks. Updated 
version of the notebooks and detailed description are available at https://github.
com/cbg-ethz/cowwid.
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Extended Data Fig. 1 | Geographical locations of wastewater treatment plants (WWTPs) surveyed for this study. Geographical locations of wastewater 
treatment plants (WWTPs) surveyed for this study. WWTP catchment areas are highlighted in light red. Cantons in which the WWTPs are located are 
highlighted in grey. Population numbers are for the WWTP catchment areas and surrounding cantons, respectively. Location of the ski resort is illustrative. 
Source: Federal Office of Topography. Wastewater treatment plant catchments of Switzerland: Eawag (2014) updated from https://www.dora.lib4ri.ch/
eawag/islandora/object/eawag%3A5599.
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Extended Data Fig. 2 | Logistic growth model fitted to variant proportions derived from wastewater and clinical samples. Dots with error bars represent 
daily empirical proportions of Alpha-positive clinical samples (orange), or average empirical proportions of Alpha-characteristic substitutions in 
wastewater (blue). Error bars are 95% Wilson confidence intervals. Solid lines represent maximum likelihood fitted values of the logistic model used to 
infer transmission advantage. Shaded areas represent 95% confidence bands.
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