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Abstract

Introduction Existing methods to detect breast cancer in
asymptomatic patients have limitations, and there is a need to
develop more accurate and convenient methods. In this study,
we investigated whether early detection of breast cancer is
possible by analyzing gene-expression patterns in peripheral
blood cells.

Methods Using macroarrays and nearest-shrunken-centroid
method, we analyzed the expression pattern of 1,368 genes in
peripheral blood cells of 24 women with breast cancer and 32
women with no signs of this disease. The results were validated
using a standard leave-one-out cross-validation approach.

Results We identified a set of 37 genes that correctly predicted
the diagnostic class in at least 82% of the samples. The majority
of these genes had a decreased expression in samples from
breast cancer patients, and predominantly encoded proteins
implicated in ribosome production and translation control. In
contrast, the expression of some defense-related genes was
increased in samples from breast cancer patients.
Conclusion The results show that a blood-based gene-
expression test can be developed to detect breast cancer early
in asymptomatic patients. Additional studies with a large sample
size, from women both with and without the disease, are
warranted to confirm or refute this finding.

Introduction
Early detection of breast cancer can improve the chances of

successful treatment and recovery. To date, mammographic

screening is the most reliable method to detect breast cancer

in asymptomatic patients. Although highly effective, it has sig-

nificant limitations, so that the development of more accurate,

convenient, and objective detection methods is needed. In the

absence of microcalcification, mammography often fails to

detect tumors that are less than 5 mm in size, and also mam-

mograms of women with dense breast tissue are difficult to

interpret. For example, in a study of over 11,000 women with

no clinical symptoms of breast cancer, the sensitivity of mam-

mography was only 48% for the subset of women with

extremely dense breasts, compared with 78% sensitivity for

the entire sample of women in the study [1]. In addition, when

an abnormality has been detected, further tests involving inva-

sive steps must complement mammography to establish

whether the detected abnormality is a cancer.

ANOVA = analysis of variance; EDTA = ethylenediaminetetraacetic acid; eEF = eukaryotic elongation factor; RACK1 = receptor for activated C kinase 
1; SSC = standard saline citrate (1 × SSC, 0.15 M NaCl, 0.015 M sodium citrate, pH 7.0).
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A vast amount of literature is already available describing the

potential use of large-scale gene expression analysis in dis-

ease diagnosis, including breast cancer [2-8]. However, most

published work with implications in cancer diagnosis has

involved clinical samples comprising either diseased tissues or

cells. Obtaining such samples for clinical purposes requires a

prior knowledge of both their presence and their location in the

body. A gene-expression-based test to detect cancers that

does not rely upon the availability of tissues or cells from the

diseased area has not yet been described.

It has recently been suggested that circulating leukocytes can

be viewed as scouts, continuously maintaining a vigilant and

comprehensive surveillance of the body for signs of infection

or other threats, including cancer [9]. In line with this view, we

show that peripheral blood can be used to develop a gene-

expression-based test for early detection of breast cancer. The

rationale for using blood cells as monitors for a malignant dis-

ease elsewhere in the body is based on the hypothesis that a

malignant growth will cause characteristic changes in the bio-

chemical environment of blood. These changes will affect the

expression pattern of certain genes in blood cells.

In this pilot study, we have analyzed gene-expression patterns

in peripheral blood cells of women diagnosed with breast can-

cer and women with no signs of this disease. We have identi-

fied a panel of genes with distinct expression patterns in

cancer versus noncancer samples. The results indicate that

breast cancer causes characteristic changes in the biochemi-

cal environment of blood already during early stages of dis-

ease development. Blood cells sense and respond to the

change by decreasing the expression of genes involved in pro-

tein synthesis and increasing the expression of defense-

related genes. We show that the expression pattern of the

identified genes can be used to discriminate and predict the

class of breast cancer and non-breast-cancer samples with

high accuracy. Our findings should pave way for the develop-

ment of a blood-based gene-expression test for early detec-

tion of breast cancer.

Materials and methods
Blood samples

Blood samples were collected from donors with their informed

consent under an approval from Regional Ethical Committee

of Norway (331-99-99138). All donors were treated anony-

mously during analysis. Blood was drawn from women with a

suspect initial mammogram, prior to any knowledge of whether

the abnormality observed during first screening was benign or

malignant. In all cases, the blood samples were drawn

between 8 a.m. and 4 p.m. From each woman, 10 ml blood

was drawn by skilled personnel either in vacutainer tubes con-

taining ethylenediaminetetraacetic acid (EDTA) as anticoagu-

lant (Becton Dickinson, Baltimore, MD, USA) or directly in

PAXgene™ tubes (PreAnalytiX, Hombrechtikon, Switzerland).

Blood collected in EDTA-containing tubes was immediately

stored at -80°C, while PAX tubes were left overnight at room

temperature and then stored at -80°C until use.

Preparation of cDNA arrays

One thousand four hundred thirty-five cDNA clones were ran-

domly picked from a plasmid library constructed from whole

blood of 550 healthy individuals (Clontech, Palo Alto, CA,

USA). Based on the sequence analysis of more than 500

cDNAs, redundancy among the randomly picked clones was

estimated to be about 20%. For amplification of inserts, bac-

terial clones were grown in microtiter plates containing 150 µl

Luria Broth media with 50 µg/ml carbenicillin, and incubated

overnight with agitation at 37°C. To lyse the cells, 5 µl of each

culture was diluted with 50 µl dH2O and incubated for 12 min

at 95°C. Of this mixture, 2 µl were subjected to a PCR reaction

using 40 µmol of 5' – and 3' – sequencing primers in the pres-

ence of 1.5 mM MgCl2. PCR reactions were performed with

the following cycling protocol: 4 min at 95°C, followed by 25

cycles of 1 min at 94°C, 1 min at 60°C, and 3 min at 72°C

either in a RoboCycler Temperature Cycler (Stratagene, La

Jolla, CA, USA) or DNA Engine Dyad Peltier Thermal Cycler

(MJ Research Inc, Waltham, MA, USA). The amplified prod-

ucts were denatured with NaOH (0.2 M, final concentration)

for 30 min and spotted onto Hybond-N+ membranes (Amer-

sham Pharmacia Biotech, Little Chalfont, UK), using a Micro-

Grid II workstation in accordance with the manufacturer's

instructions (BioRobotics Ltd, Cambridge, UK). The immobi-

lized cDNAs were fixed using a UV cross-linker (Hoefer Scien-

tific Instruments, San Francisco, CA, USA).

The printed arrays also contained controls for assessing back-

ground level, consistency, and sensitivity of the assay. These

were spotted at multiple positions in addition to the 1,435

cDNAs, and included controls such as PCR mix (without any

insert); controls of the SpotReport™ 10-array validation sys-

tem (Stratagene), and cDNAs corresponding to constitutively

expressed genes such as β-actin, γ-actin, glyceraldehyde-3-

phosphate dehydrogenase, human ornithine decarboxylase

and cyclophilin.

RNA extraction, probe synthesis, and hybridization

Blood collected in EDTA tubes was thawed at 37°C and trans-

ferred to PAX tubes, and total RNA was purified in accordance

with the supplier's instructions (PreAnalytiX). From blood col-

lected directly in PAX tubes, total RNA was extracted in the

tubes as above without any transfer to new tubes. Contaminat-

ing DNA was removed from the isolated RNA by DNAase I

treatment using a DNA-free kit (Ambion Inc, Austin, TX, USA).

RNA quality was determined visually by inspecting the integrity

of 28S and 18S ribosomal bands after agarose-gel electro-

phoresis. Only samples from which good-quality RNA was

extracted were used in this study. In our experience, blood col-

lected in EDTA tubes often resulted in poor-quality RNA,

whereas blood collected in PAX tubes almost always yielded

good-quality RNA. The concentration and purity of extracted
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RNA were determined by measuring the absorbance at 260

nm and 280 nm. From the total RNA, mRNA was isolated

using Dynabeads in accordance with the supplier's instruc-

tions (Dynal AS, Oslo, Norway).

Labeling and hybridization experiments were performed in 16

batches. The number of samples assayed in each batch varied

from six to nine. To minimize the noise due to batch-to-batch

variation in printing, only the arrays manufactured during the

same print run were used in each batch. When samples were

assayed more than once (replicates), aliquots from the same

mRNA pool were used for probe synthesis. For probe synthe-

sis, aliquots of mRNA corresponding to 4 to 5 µg of total RNA

were mixed together with oligodT25NV (0.5 µg/µl) and mRNA

spikes of the SpotReport™ 10-array validation system (10 pg;

Spike 2, 1 pg), heated to 70°C, and then chilled on ice. The

probes were synthesized by reverse transcription in 35 µl

reaction mix in the presence of 50 µCi [α33P]dATP, 3.5 µM

dATP, 0.6 mM each of dCTP, dTTP, dGTP, 200 units of

SuperScript II reverse transcriptase (Invitrogen, Life Technolo-

gies, Carlsbad, CA, USA), and 0.1 M DTT labeling for 1.5

hours at 42°C. After synthesis, the enzyme was deactivated for

10 min at 70°C and mRNA removed by incubating the reaction

mix for 20 min at 37°C in 4 units of Ribo H (Promega, Madison,

WI, USA). Unincorporated nucleotides were removed using

ProbeQuant G 50 columns (Amersham Biosciences, Piscata-

way, NJ, USA).

The membranes were equilibrated in 4 × standard saline cit-

rate (SSC) (1 × SSC, 0.15 M NaCl, 0.015 M sodium citrate,

pH 7.0) for 2 hours at 30°C and prehybridized overnight at

65°C in 10 ml prehybridization solution (4 × SSC, 0.1 M

NaH2PO4, 1 mM EDTA, 8% dextran sulfate, 10 × Denhardt's

solution, 1% SDS). Freshly prepared probes were added to 5

ml of the same prehybridization solution, and hybridization con-

tinued overnight at 65°C. The membranes were washed at

65°C with increasing stringency (2 × 30 min each in 2 × SSC,

0.1% SDS; 1 × SSC, 0.1% SDS; 0.1 × SSC, 0.1% SDS).

Quantification of hybridization signals

The hybridized membranes were exposed to Phosphoscreens

(super resolution) and an image file generated using Phos-

phoImager (Cyclone, Packard, Meriden, CT, USA). The identi-

fication and quantification of the hybridization signals, as well

as subtraction of local background values, were performed

using Phoretix™ software (Nonlinear Dynamics, Newcastle

upon Tyne, UK). For background subtraction, the median of

the line of pixels around each spot outline was subtracted from

the intensity of the signals assessed in each spot.

Data analysis

From the background-subtracted data for 1,435 genes,

1.25% of the lowest and 1.25% of the highest signals were

trimmed from each membrane. Since the cDNAs with signals

falling within this range varied between membranes, values of

67 cDNAs in total were removed from all membranes, and the

expression data for only 1,368 genes were further analyzed.

The data were normalized by dividing the value of each spot by

the mean of signals in each array followed by a cube-root

transformation. Supplementary Fig. 1 (left panel) (Additional

file 1) shows a clear batch effect in the cube-root-normalized

data (similar effects were also visible in the raw data). A simple

one-way analysis of variance (ANOVA) was performed to

adjust for the batch effects. Supplementary Fig. 1 (right panel)

(Additional file 1) shows that the systematic batch effects

were removed by the ANOVA adjustment. The batch-adjusted

data were then analyzed using the nearest-shrunken-centroid

method [10].

In this method, standard 'external' cross-validation is used to

determine the optimal shrinkage threshold. This optimal

threshold is then used with the full training set to construct the

centroid. As a result, for each value of the threshold, the esti-

mate of cross-validation error obtained is approximately unbi-

ased for the true test-error rate.

The leave-one-out cross-validation approach was used in this

work. The data were divided into M nonoverlapping subsets

(M = number of unique blood samples present). The model

was then trained M-1 times on these subsets combined, each

time leaving out one of the subsets (unique blood sample)

from the training data, but using only the omitted subset to

compute the prediction error. The errors obtained on all parts

were added together and used to compute the overall misclas-

sification error. It is well known that leave-one-out cross-valida-

tion provides an approximately unbiased and reliable estimate

of the misclassification rate that would be obtained from an

independent sample of patients [11,12]. In the terminology of

Ambroise and McLachlan [12], we used external cross-valida-

tion (as they recommend).

The raw and the batch-adjusted data for 1,368 genes in an

Excel file is provided in Supplementary Table 1 (Additional file

2) and Supplementary Table 2 (Additional file 3).

Results
We analyzed gene-expression patterns in 60 blood samples

obtained from 56 different women (Table 1). The experiments

were performed in 16 batches. To investigate the reproducibil-

ity of results, 13 samples from women with breast cancer and

23 samples from women with no breast cancer were analyzed

in different batches using aliquots from the same mRNA pool,

giving a total of 102 experimental samples.

The generated expression data was preprocessed and then

analyzed by the nearest-shrunken-centroid method [10]. A

standard leave-one-out cross-validation approach was used to

determine the optimal amount of shrinkage threshold. Since

we had 60 unique blood samples and for some of them exper-

iments were replicated more than once, for cross-validation
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the data were divided into 60 nonoverlapping subsets, where

each subset represented a unique blood sample and included

all the replicates present in the data set. A sample was judged

as correctly classified only when a majority of members in the

corresponding cross-validation segment were correctly classi-

fied. The minimum overall misclassification error was observed

at a threshold value of 2.28, yielding a subset of 37 genes (Fig.

1). At this threshold, 10 of the 57 samples were misclassified

and 3 samples were judged nondecisions, because there was

no majority for either the breast-cancer or non-breast-cancer

class (Table 2). A detailed prediction result is presented in

Table 1.

The prediction was highly accurate for samples from women

with early stages of breast cancer, stage 0 and stage I. Among

the 14 samples representing early stages, there was one non-

decision and 11 of 13 samples were correctly predicted. Five

of seven stage II and one of two stage III samples were cor-

rectly predicted.

Most of the cancer samples (22 of 24) analyzed in this study

were obtained from women who had cancer of ductal origin.

One woman, the origin of whose cancer was not known, had

a previous history of breast cancer and at the time of blood col-

lection the cancer had spread to supraclavicular and infracla-

vicular nodes. Another sample that did not belong to the ductal

group was obtained from a woman who had invasive lobular

carcinoma in one breast and a tubular adenocarcinoma in the

other. Unlike ductal carcinoma, which originates from cells lin-

ing ducts, lobular carcinoma originates from cells lining lob-

ules. Both samples were incorrectly predicted. It is possible

that cancer of other than ductal origin affects the expression

pattern of the selected 37 genes in blood cells differently than

ductal carcinomas.

Seventeen of 19 samples obtained from women with a sus-

pect first mammogram were correctly predicted (Table 1, sub-

group A2), indicating the expression profile of the selected 37

genes to be highly efficient in discriminating between cancer-

ous and noncancerous breast abnormalities. In two samples,

we were not able to make any diagnostic decision.

Among the 17 samples from women with no reported breast

abnormality, 13 were correctly predicted (Table 1, subgroup

A3). These included samples from breast-feeding women as

well as those drawn at different times in the menstrual cycle

from one woman. However, the three samples from pregnant

women and a sample from a woman with acute bacterial infec-

tion at the time of blood collection were all incorrectly pre-

dicted. The woman with acute bacterial infection was, in

addition, chronically infected with Epstein–Barr virus. It is

known that both pregnancy and chronic infection may elicit

Figure 1

Misclassification rate as a function of threshold value and the number of genes involvedMisclassification rate as a function of threshold value and the number of genes involved. The error was calculated using the majority rule. A nondeci-
sion was counted as an error. The upper graph shows that the minimum overall misclassification error was observed at a threshold value of 2.28. The 
lower graph shows the profile for misclassification error for breast-cancer (C) and non-breast-cancer (N) samples as a function of threshold value 
and the number of genes involved.
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Table 1

Gene-expression patterns in 60 blood samples obtained from 56 different women

Subgroup A1: Women with breast cancer

Sample ID Age (y) Stage Histology Grade Size (mm) Nodes Comments/ other 
disease if present

Times assayed Prediction 
(37 genes)

3 54 I IDC 1 11 0 # 2 +

5 67 0 DCIS 2 20 0 # 3 +

7 51 II IDC 3 20 1/7 # 2 +

8 84 II IDC 1 22 2/2 # 2 +

15 66 I IDC 2 15 0 Rheumatic disease 3 +

16 68 I IDC 1 7 0 # 1 +

17 66 II IDC 1 26 0 Epilepsy 1 -

27 48 I IDC 2 4 0 # 2 ND

31 47 I IDC 2 15 0 # 2 -

35 44 II IDC 2 25 0 # 1 +

36 50 I Multifocal IDC 1 5 × 14 0 # 1 -

38 n.a. 0 DCIS 2 9 0 # 1 +

39 65 I IDC 1 15 0 # 1 +

40 n.a. I IDC 2 14 0 Psoriasis 1 +

42 71 I IDC 1 8 0 # 1 +

44 55 III IDC 1 35 0 # 1 +

45 63 II IDC 3 23 0 # 1 -

48 65 IV - - - Metastases in supra- and 
infra- clavicular nodes

Breast cancer, 1982 1 -

49 65 I IDC 1 11 0 Type 2 diabetes 3 +

50 69 III ILC 2 50 2/19 # 2 -

51 50 II IDC 2 24 0 # 2 +

53 60 II IDC 2 23 0 # 2 +

59 63 I IDC 1 10 0 # 2 +

60 52 I IDC 1 3 0 # 2 +

Subgroup A2: Women with abnormal first mammography

Sample ID Age (y) Breast abnormality Comments / other 
disease if present

Times assayed Prediction 
(37 genes)

1 44 Benign density # 2 +

2 53 Benign microcalcifications Encapsulated cyst in 
left knee

2 +

4 45 Benign density # 2 +

11 46 Benign density Ulcerative colitis 
since 1983

2 +

12 44 Benign density # 2 +

13 50 Benign density Type 1 diabetes 2 +

14 47 Benign microcalcifications # 2 +

19 46 Benign density, cyst Crohn's disease 2 +

20 n.a. Benign density Rheumatic disease 1 +

28 44 Benign microcalcifications # 2 +

29 63 Benign density, cyst Fibromyalgia 2 ND

30 46 Benign density # 2 +
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responses that can mimic breast cancer. During late preg-

nancy, similar to breast cancer, cells of mammary epithelial

buds divide to form ducts infiltrating breast stroma and build a

local blood supply. Also, both breast cancer and chronic infec-

tions are known to induce inflammatory responses in the body.

We also calculated the misclassification error, taking an aver-

age of the class probability for each sample in all 60 cross-val-

idation segments as compared with our previous approach in

which a sample was judged as correctly classified only when

a majority of members in the corresponding cross-validation

segment were correctly classified. Thus, each segment repre-

sented an average class probability for each sample, and we

predicted each sample to the class with the highest average

probability. The main purpose of adopting this approach was

to be able to make a unanimous decision with respect to class

membership. The minimum error rate using the average-class

approach was obtained at a threshold value of 2.42 and

involved a subset of only 25 genes, giving a further reduction

of 12 genes (Supplementary Fig. 2) (Additional file 4). Also, 10

(7 breast cancer and 3 non-breast-cancer samples) of the 60

samples were misclassified, which is a slightly better result

than that obtained with 37 genes, where there were 3 nonde-

cisions (Supplementary Fig. 3) (Additional file 5).

32 59 Benign tumor, fibroadenoma # 2 +

34 45 Benign density Type 2 diabetes 2 +

41 50 Fibrosis, benign Size histology 60 
mm

1 +

43 51 Radial scar Size histology 10 
mm

1 +

52 47 Benign density # 2 ND

54 52 Benign microcalcifications Cancer, large 
intestine, 1992

1 +

58 46 Benign density # 2 +

Subgroup A3: Women with no reported breast abnormality

Sample ID Age (y) Comments Times assayed Prediction 
(37 genes)

6 42 # 3 +

9 30 Breast feeding 2 +

10 34 Breast feeding 3 +

21 26 # 1 +

22 - # 1 +

18* 18 Week 1 2 +

23* Week 2 1 +

24* Week 3 1 +

26* Week 4 2 +

25* Week 5 1 +

33 34 Pregnant, 8 months 3 -

37 51 Acute bacterial 
infection in 
addition to chronic 
Epstein–Barr virus 
infection

1 -

46 27 Pregnant, 6 months 1 -

47 29 Pregnant, 9 months 1 -

55 43 # 1 +

56 43 # 2 +

57 22 # 2 +

Sample detail. Stage 0, in situ carcinoma; Stage I, invasive carcinoma with tumor size <20 mm; Stage II, invasive carcinoma with tumor size >20-50 
mm; Stage III, invasive carcinoma with tumor size >50 mm. Stage IV, cancer spread to distant parts. *, Blood samples taken on five consecutive 
weeks from the same woman; -, incorrectly predicted; #, no relevant information available; +, correctly predicted; DCIS, ductal carcinoma in situ; 
IDC, invasive ductal carcinoma; ILC, invasive lobular carcinoma; n.a., not available; ND, nondecision.

Table 1 (Continued)

Gene-expression patterns in 60 blood samples obtained from 56 different women
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Table 3 shows the shrunken t-statistic scores of the selected

37 predictive genes for comparing breast-cancer class to non-

breast-cancer class, the genes in the public databases to

which they show sequence similarity, and their putative biolog-

ical function. The relative expression of 12 predictive genes

with highest scores is presented in Fig. 2. The majority of the

predictive genes (29 of 37) had a decreased expression (pos-

itive score) in the samples from breast cancer patients. The

identity of predictive genes was determined by partially

sequencing the corresponding spotted cDNA clones and

searching for gene similarities in public databases.

Sequence analysis revealed that 8 of 35 predictive genes con-

tained redundant information. Since the arrayed cDNAs were

derived from randomly picked clones from a library con-

structed from whole blood from 550 healthy individuals, we

had expected a redundancy of about 20% among the selected

genes. Of the 35 genes, 18 (51%) encoded ribosomal pro-

teins. In comparison, the frequency of cDNAs representing

ribosomal proteins was estimated to be only about 8% among

the arrayed cDNAs. All genes encoding ribosomal proteins

had reduced expression in samples from breast cancer

patients, indicating a decrease in ribosome production in the

blood cells of these patients. Also, genes encoding a transla-

tion elongation factor, eEF1 and RACK1 (receptor for

Table 2

Confusion matrix of prediction results using 37 genesa

True/Predicted C N Error rateb

C 17 6 0.26

N 4 30 0.12

aWhen there was no majority for either the breast-cancer or non-breast-cancer class, the prediction was regarded as a nondecision. bTotal error 
rate = 0.18; 3 nondecisions. C, breast-cancer samples; N, non-breast-cancer samples.

Figure 2

Relative expression of 13 predictive genes with the highest scores in breast-cancer and non-breast-cancer samplesRelative expression of 13 predictive genes with the highest scores in breast-cancer and non-breast-cancer samples. Red circles represent samples 
from women with breast cancer and green circles represent samples from women with no signs of breast cancer. The number on the upper axis rep-
resents the position ID of predictive genes in the array (Table 3).
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Table 3

Details of the identified 37 predictive genes

Accession no. Gene similarity Putative cellular function Position ID Scorea

BC000514 Ribosomal protein L13a Ribosome production 19AM 0.8377

BC007512 Ribosomal protein L18a Ribosome production 31AJ 0.7321

BC019093 Guanine nucleotide binding protein, beta polypeptide 
2-like; RACKs (receptors for activated C kinase)

Protein translation 12AM 0.6972

BC009696 Interferon induced transmembrane protein 2 Cell – environment interaction, 
Immune response

12Q -0.6962

BC047681 S100 calcium binding protein A9 (Calgranulin B) Defence; inhibition of casein kinase II 31J -0.6444

BC066901 H3 histone, family 3B (H3.3B) Chromatin remodelling 5AK -0.6394

BC034149 Ribosomal protein S3 Ribosome production 23V 0.639

AK026634 Highly similar to HUMTI227HC, mRNA for TI-227H - 21AH 0.627

BC047681 S100 calcium binding protein A9 (Calgranulin B) Defence; inhibition of casein kinase II 24AQ -0.627

BC001126 Ribosomal protein S14 Ribosome production 28T 0.6231

NM_000980 Ribosomal protein L18a Ribosome production 31AF 0.6215

AY495316 Cytochrome c oxidase subunit, COX 1 Mitochondrial electron transport chain 15AK 0.6112

NM_001016 Ribosomal protein S12 Ribosome production 22S 0.6102

- - - 20AG 0.5839

BC016378 Ribosomal protein S11 Ribosome production 8S 0.5827

AY495316 Cytochrome c oxidase subunit, COX 1 Mitochondrial electron transport chain 27AG 0.5729

AF077043 Ribosomal protein L36 Ribosome production 3AR 0.5699

AF346981 Mitochondrial 16S rRNA Ribosome production 25P 0.5507

BC013857 H3 histone, family 3A Chromatin remodelling 3T -0.5496

M22146 Ribosomal protein S4 Ribosome production 31U 0.5176

BC016857 Ferritin, heavy polypeptide 1 Iron storage; defence against ROS 6N -0.5134

BC053370 Ribosomal protein SA Ribosome production 2G 0.5113

BC010165 Ribosomal protein S2 Ribosome production 2V 0.5071

BC009689 Cyclin D-type binding protein E2F-mediated transcription 21O 0.4978

BC018641 Eukaryotic translation elongation factor 1α (eEF1A) Protein translation 4AA 0.4974

D87735 Ribosomal protein L14 Ribosome production 19H 0.486

- - - 6AQ 0.4837

BC016857 Ferritin, heavy polypeptide 1 Iron storage; defence against ROS 3AB -0.481

BC012146 Ribosomal protein L3 Ribosome production 32AM 0.4776
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activated C kinase), were expressed at a lower level in sam-

ples from cancer patients, indicating reduced protein transla-

tion activity in these samples. RACK1 plays a key role in the

joining of 60S and 40S subunits into a functionally active 80S

ribosome complex [13].

Among the eight predictive genes with increased expression

in samples from breast cancer patients, two encoded histone

replacement protein H3.3, which is thought to be involved in

chromatin remodelling [14], and six encoded proteins that may

play a role in defense-related functions. Four genes with

increased expression encoded ferritin and calgranulin B. Ferri-

tin is involved in intracellular storage and sequestration of iron.

Increased expression of ferritin has been shown to reduce the

accumulation of reactive oxygen species in response to oxi-

dant challenge in HeLa cells [15]. Calgranulin B is expressed

by blood cells both during infection and during inflammation

and may play a role in host defense [16]. Interferon-induced

transmembrane protein 2 has been implicated in the immune

response, while human granule proteoglycan peptide core is

assumed to form stable complexes with proteases and other

granule-localized proteins to prevent their intragranular autoly-

sis and facilitate their concerted action extracellularly [17].

Interestingly, most predictive genes identified in this study

belonged to the family of genes that exhibited altered expres-

sion in neutrophils after stimulation by nonvirulent and virulent

bacterial stimuli [18,19].

Discussion
This is a first report demonstrating that breast cancer affects

gene-expression patterns in peripheral blood cells during early

stages of disease development. The results presented repre-

sent an initial phase in the development of a blood-based

gene-expression test for breast cancer detection. A larger

number of samples, from both women with and women

without the disease, should be further analyzed before the clin-

ical efficacy of our finding can be evaluated. However, the

results clearly show that by analyzing the expression pattern of

selected genes in blood cells, a diagnostic test for breast can-

cer detection can be efficiently developed.

In the present study, we examined gene-expression patterns in

peripheral blood cells as a whole, rather than specific cellular

subsets. It has recently been shown that individual variations

in gene-expression pattern in peripheral blood could be traced

to altered relative proportions of the specific blood cell sub-

sets [9]. If there were systematic differences in the relative pro-

portions of peripheral blood cell types in women with breast

cancer and those without this disease, such differences might

explain the observed gene-expression patterns. Interestingly,

Whitney and colleagues [9] found that transcripts involved in

protein synthesis were over-represented in lymphocytes and

monocytes as compared with granulocytes. The reduced

expression of transcripts involved in protein synthesis and the

increased expression of transcripts involved in defense

responses in breast cancer patients may reflect a systematic

shift in favor of granulocytes as compared with lymphoid cells

in the peripheral blood of breast cancer patients. However, to

our knowledge, no such systematic shift during breast cancer

development has been reported, and the subject requires fur-

ther investigation. Alternatively, changes in the expression pat-

tern of genes involved in protein synthesis, chromatin

remodelling, and defense-related genes in the blood samples

of breast cancer patients may indicate systematic activation of

certain blood cell subsets such as neutrophils in these

patients.

Our ability to correctly assign the class of samples from

women with Crohn's disease, rheumatic disease, or diabetes

as non-breast-cancer suggests that breast cancer affects the

expression pattern of identified predictive genes differently

from some of the diseases associated with anemia and

chronic inflammation. The correct prediction of two samples

from a woman with ductal carcinoma in situ further suggested

BC001126 Ribosomal protein S14 Ribosome production 25R 0.4759

BC006784 Ribosomal protein S14 Ribosome production 24AJ 0.4695

J03223 Human secretory granule proteoglycan peptide core Defence (may neutralize hydrolytic 
enzymes)

11H -0.4681

AY147037 Myeloid/lymphoid or mixed-lineage leukemia 5 cDNA Chromatin remodeling and cellular 
growth suppression

30AP 0.4669

CD246392, EST Agencourt_14095501 NIH_MGC_172 cDNA - 8AK 0.4666

AY339570 Cytochrome c oxidase subunit, COX 1 Mitochondrial electron transport chain 2E 0.4662

U43701 Human ribosomal protein L23a Ribosome production 8G 0.4629

AY495252 Mitochondrial 16S rRNA Ribosome production 8AF 0.4625

The position of genes in the array is shown as well as their scores, the accession number of sequences in public databases that match them, and 
their known or putative cellular function. aThe score is a shrunken t-statistic for comparing breast-cancer class to non-breast-cancer class. A positive 
score means that expression was greater in the noncancer sample than the cancer sample; a negative score means that expression was greater in 
the cancer sample than the noncancer sample. -, no information available; ROS, reactive oxygen species.

Table 3 (Continued)

Details of the identified 37 predictive genes
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that malignant lesions, though confined within the breast duct,

may induce similar changes in the expression pattern of these

genes to the changes seen during the more advanced stages

of breast cancer (stages I to III). However, incorrect prediction

of a sample obtained from a woman with invasive lobular car-

cinoma and tubular adenocarcinoma and from a woman where

the cancer had spread to supraclavicular and infraclavicular

nodes indicates that malignancy in itself is not a prerequisite

condition for the observed changes in the expression pattern

of the identified predictive genes.

The efficient prediction of samples derived from patients

whose cancer had not yet spread to lymph nodes shows that

a blood-based gene-expression test can be developed for

breast cancer detection in asymptomatic patients. As com-

pared with existing methods, an accurate method for breast

cancer detection based on peripheral blood as a clinical sam-

ple will be highly desirable because of the easy accessibility

and the less invasive procedure for obtaining samples. The

test could be integrated as an adjunct to already established

methods and be used to improve their efficacy. For example, a

blood-based gene-expression test could assist mammography

in discriminating between benign and malignant breast abnor-

malities. It could become a part of routine screening programs,

especially when the patient has an increased risk for breast

cancer.

It is important that any test intended for use in breast cancer

diagnosis has a low rate of both false positives and false neg-

atives. Based on the expression pattern of identified 37 genes,

the prediction achieved corresponded to a false positive rate

of 0.12 and false negative rate of 0.26. Since, the main goal of

this work was to see whether the information about breast can-

cer is present in peripheral blood samples in the form of

changed gene-expression patterns, we analyzed only a limited

number of gene candidates in this study. The genes analyzed

corresponded to clones that were randomly picked from a

plasmid library constructed from whole blood of 550 individu-

als. The motivation for this approach for selecting gene candi-

dates was based on the assumption that if the expression

pattern of certain genes in blood cells is affected during early

stages of breast cancer, the genes affected would most likely

include ones involved in cell maintenance and general metab-

olism. Since such genes are expressed at high level in a cell,

they would be frequently represented in a cDNA library and

selected preferentially when randomly picked. It is our view

that expression techniques such as microarrays, where the

expression of thousands of genes can be monitored simulta-

neously, can further be used to screen for better predictive

genes and develop more accurate diagnostic models.

We envisage blood-based gene-expression tests to have the

potential of becoming a versatile and powerful tool for detec-

tion of disease, including other forms of cancers. As with

breast cancer, other diseases may also cause characteristic

changes in the biochemical environment of blood and affect

the gene-expression patterns in blood cells. Specific gene-

expression-based models can then be developed and used for

diagnostic purposes.

Conclusion
The results presented show that breast cancer even during

early stages of disease development affects the expression

pattern of certain genes in peripheral blood cells. By identify-

ing these genes and analyzing their expression pattern, it is

possible to develop a blood-based gene-expression test for

early detection of breast cancer. Additional studies with a

large sample size, both from women with and without the dis-

ease, are warranted to confirm or refute this finding.
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