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Abstract—The early detection of cybersecurity events such as
attacks is challenging given the constantly evolving threat land-
scape. Even with advanced monitoring, sophisticated attackers
can spend more than 100 days in a system before being detected.
This paper describes a novel, collaborative framework that assists
a security analyst by exploiting the power of semantically rich
knowledge representation and reasoning integrated with differ-
ent machine learning techniques. Our Cognitive Cybersecurity
System ingests information from various textual sources and
stores them in a common knowledge graph using terms from
an extended version of the Unified Cybersecurity Ontology. The
system then reasons over the knowledge graph that combines a
variety of collaborative agents representing host and network-
based sensors to derive improved actionable intelligence for
security administrators, decreasing their cognitive load and
increasing their confidence in the result. We describe a proof
of concept framework for our approach and demonstrate its
capabilities by testing it against a custom-built ransomware
similar to WannaCry.

I. INTRODUCTION

A wide and varied range of security tools and systems are

available to detect and mitigate cybersecurity attacks, includ-

ing intrusion detection systems (IDS), intrusion detection and

prevention systems (IDPS), firewalls, advanced security appli-

ances (ASA), next-gen intrusion prevention systems (NGIPS),

cloud security tools, and data center security tools. However,

cybersecurity threats and the associated costs to defend against

them are surging. Sophisticated attackers can still spend more

than 100 days [8] in a victim’s system without being detected.

23,000 new malware samples are produced daily [33] and

a company’s average cost for a data breach is about $3.4

million according to a Microsoft study [20]. Several factors

ranging from information flooding to slow response-time,

render existing techniques ineffective and unable to reduce

the damage caused by these cyber-attacks.

Modern security information and event management (SIEM)

systems emerged when early security monitoring systems

like IDSs and IDPSs began to flood security analysts with

alerts. LogRhythm, Splunk, IBM QRadar, and AlienVault are

a few of the commercially available SIEM systems [11]. A

typical SIEM collects security-log events from a large array

of machines in an enterprise, aggregates this data centrally, and

analyzes it to provide security analysts with alerts. However,

despite ingesting large volumes of host/network sensor data,

their reports are hard to understand, noisy, and typically

lack actionable details [39]. 81% of users reported being

bothered by noise in existing systems in a recent survey on

SIEM efficiency [40]. What is missing in such systems is a

collaborative effort, not just aggregating data from the host and

network sensors, but also their integration and the ability to

reason over threat intelligence and sensed data gathered from

collaborative sources.

In this paper, we describe a cognitive assistant for the early

detection of cybersecurity attacks that is based on collabo-

ration between disparate components. It ingests information

about newly published vulnerabilities from multiple threat

intelligence sources and represents it in a machine-inferable

knowledge graph. The current state of the enterprise/network

being monitored is also represented in the same knowledge

graph by integrating data from the collaborating traditional

sensors, like host IDSs, firewalls, and network IDSs. Unlike

many traditional systems that present this information to

an analyst to correlate and detect, our system fuses threat

intelligence with observed data to detect attacks early, ideally

before the exploit has started. Such a cognitive analysis not

only reduces the false positives but also reduces the cognitive

load on the analyst.

Cyber threat intelligence comes from a variety of textual

sources. A key challenge with sources like blogs and security

bulletins is their inherent incompleteness. Often, they are

written for specific audiences and do not explain or define

what each term means. For example, an excerpt from the

Microsoft security bulletin is “The most severe of the vulnera-

bilities could allow remote code execution if an attacker sends

specially crafted messages to a Microsoft Server Message

Block 1.0 (SMBv1) server.” [22]. Since this text is intended

for security experts, the rest of the article does not define or

describe remote code execution or SMB server.

To fill this gap, we use the Unified Cybersecurity Ontol-

ogy [36] (UCO)1 to represent cybersecurity domain knowl-

edge. It provides a common semantic schema for information

from disparate sources, allowing their data to be integrated.

Concepts and standards from different intelligent sources like

STIX [1], CVE [21], CCE [24], CVSS [9], CAPEC [23],

CYBOX [25], and STUCCO [12] can be represented directly

using UCO.

We have developed a proof of concept system that ingests

information from textual sources, combines it with the knowl-

1https://github.com/Ebiquity/Unified-Cybersecurity-Ontology



edge about a system’s state as observed by collaborating hosts

and network sensors, and reasons over them to detect known

(and potentially unknown) attacks. We developed multiple

agents, including a process monitoring agent, a file monitoring

agent and a Snort agent, that run on respective machines and

provide data to the Cognitive CyberSecurity (CCS) module.

This module reasons over the data and stored knowledge graph

to detect various cybersecurity events. The detected events

are then reported to the security analyst using a dashboard

interface described in section V-D. We also developed a

custom ransomware program, similar to Wannacry, to test the

effectiveness of our prototype system. Its design and working

are described in section VI-A. We build upon our earlier work

in this domain [26].

The rest of this paper is organized as follows. Section II

identifies key challenges in cybersecurity attack detection fol-

lowed by a brief discussion of related work in Section III. Our

cognitive approach to detect cybersecurity events is described

in Section IV. Implementation details of our prototype system

and a concrete use case scenario to demonstrate our system’s

effectiveness are in Sections V and VI, before we discuss our

future directions in Section VII.

II. BACKGROUND

Despite the existence of several tools in the security space,

attack detection is still a challenging task. Often, attackers

adapt themselves to newer security systems and find new ways

past them. This section describes some challenges in detecting

cybersecurity attacks.

A critical issue which affects the spread and associated

costs of a cyber-attack is the time gap between an exploit

becoming public and the systems being patched in response.

This is evident with the infamous Wannacry ransomware.

The core vulnerability used by Wannacry (Windows SMB

Remote Code Execution Vulnerability) was first published by

Microsoft Security Bulletin [22] and Cisco NGFW in March

2017. Later in April 2017, Shadow Brokers (a hacker group)

released a set of tools including Eternal Blue2 and Double

Pulsar which used this vulnerability to gain access to victim

machines. It was only by mid-May that the actual Wannacry

ransomware started to spread3 internally using these tools. A

large-scale spread of Wannacry that affected over two hundred

thousand machines could have been mitigated if it had been

quickly identified and affected systems had been patched.

Variations of the same cyber-attack is another challenge

faced by existing attack detection systems. Many enterprise

tools still use signatures and policies specific to attacks for

detection. However, smart attackers evade such systems by

slightly modifying existing attacks. Sometimes, hackers even

use combinations of tools from other attacks to evade them.

An example is the Petya ransomware4 attack, which was

discovered in 2016 and spreads via email attachments and

infected computers running Windows. It overwrites the Master

2https://en.wikipedia.org/wiki/EternalBlue
3https://en.wikipedia.org/wiki/WannaCry ransomware attack
4https://blog.checkpoint.com/2016/04/11/decrypting-the-petya-ransomware/

Boot Record (MBR), installs a custom boot loader, and forces

a system to reboot. The custom boot-loader then encrypts the

Master-File-Table (MFT) records and renders the complete

file system unreadable. The attack did not result in large-

scale infection of machines. However, another attack surfaced

in 2017 that shares significant code with Petya. In the new

attack, named NotPetya5, attackers use Eternal Blue to spread

rather than using email attachments. Often, the malware itself

is encrypted and similar code is hard to detect. By modifying

how they spread, systems used to detect potential behavioral

signatures can also be bypassed.

Yet another challenge in attack detection is a class of attacks

called Advanced Persistent Threats (APTs). These tend to be

sophisticated and persistent over a longer time period [18][34].

The attackers gain illegal access to an organization’s network

and may go undetected for a significant time with knowledge

of the complete scope of attack remaining unknown. Unlike

other common threats, such as viruses and trojans, APTs

are implemented in multiple stages [34]. The stages broadly

include a reconnaissance (or surveillance) of the target network

or hosts, gaining illegal access, payload delivery, and execution

of malicious programs [3]. Although these steps remain the

same, the specific vulnerabilities used to perform them might

change from one APT to another. Hence, new approaches for

detecting threats (or APTs) should have the ability to adapt to

the evolving threats and thereby help detect the attacks early

on.

Our prototype system, detailed in Section IV ingests knowl-

edge from different threat intelligence sources and represents

them in such a way that it can be directly used for attack

detection. Such fast adaptation capabilities help our system

cater to changing threat landscapes. It also helps to reduce the

time gap problem described earlier. Moreover, the presence of

the knowledge graph and reasoning based on them helps to

identify variations in attacks.

III. RELATED WORK

A. Security & Event Management

As the complexity of threats and APTs grow, several

companies have released commercial platforms for security

information and event management (SIEM) that integrate

information from different sources. A typical SIEM has a num-

ber of features such as managing logs from disparate sources,

correlation analysis of various events, and mechanisms to

alert system administrators [35]. IBM’s QRadar, for example,

can manage logs, detect anomalies, assess vulnerabilities, and

perform forensic analysis of known incidents [15]. Its threat

intelligence comes from IBM’s X-Force [27]. Cisco’s Talos

[5] is another threat intelligence system. Many SIEMs6, such

as LogRhythm, Splunk, AlienVault, Micro Focus, McAfee,

LogPoint, Dell Technologies (RSA), Elastic, Rapid 7 and

5https://www.csoonline.com/article/3233210/ransomware/
petya-ransomware-and-notpetya-malware-what-you-need-to-know-now.html

6https://www.gartner.com/reviews/market/security-information-event-management/
compare/logrhythm-vs-logpoint-vs-splunk



Comodo, exist in the market with capabilities including real-

time monitoring, threat intelligence, behavior profiling, data

and user monitoring, application monitoring, log management

and analytics.

B. Ontology based Systems

Obrst et al. [29] detail a process to design an ontology for

the cybersecurity domain. The study is based on the diamond

model that defines malicious activity [16]. Ontologies are

constructed in a three-tier architecture consisting of a domain-

specific ontology at the lowest layer, a mid-level ontology that

clusters and defines multiple domains together and an upper-

level ontology that is defined to be as universal as possible.

Multiple ontologies designed later-on have used the above

mentioned process.

Oltramari et al. [31] created CRATELO as a three layered

ontology to characterize different network security threats.

The layers include an ontology for secure operations (OSCO)

that combines different domain ontologies, a security-related

middle ontology (SECCO) that extends security concepts, and

the DOLCE ontology [19] at the higher level. In Oltramari

et al. [30], a simplified version of the DOLCE ontology

(DOLCE-SPRAY) is used to show how a SQL injection attack

can be detected.

Ben-Asher et al.[2] designed a hybrid ontology-based model

combining a network packet-centric ontology (representing

network-traffic) with an adaptive cognitive agent. It learns how

humans make decisions while defending against malicious

attacks. The agent is based on instance-based learning theory

using reinforcement learning to improve decision making

through experience. Gregio et al. [13] discusses a compre-

hensive ontology to define malware behavior.

Each of these systems and ontologies looks at a narrow

subset of information, such as network traffic or host system

information, while SIEM products do not use the vast capabili-

ties and benefits of an ontological approach and systems to rea-

son using them. In this regard, Cognitive CyberSecurity (CCS)

takes a larger and more comprehensive view of security threats

by integrating information from multiple existing ontologies

as well as network and host-based sensors (including system

information). It creates a single representative view of the data

for system administrators and then provides a framework to

reason across these various sources of data.

This paper significantly improves our previous work [37],

[38], [26] in this domain, where semantic rules were used to

detect cybersecurity attacks. CCS uses the Unified Cybersecu-

rity Ontology that is a STIX-compliant schema to represent,

integrate and enhance knowledge about cyber threat intelli-

gence. Current extensions to it help linking standard cyber

kill chain phases to various host and network behaviors that

are detected by traditional sensors like Snort and monitoring

agents. Unlike our previous work, these extensions allow our

framework to assimilate incomplete text from sources so that

cybersecurity events can be detected in a cognitive manner.

IV. COGNITIVE APPROACH TO CYBERSECURITY

This section describes our approach to detect cybersecurity

attacks. It is inspired by the cognitive process used by humans

to assimilate diverse knowledge. Oxford dictionary defines

cognition [7] as “the mental action or process of acquiring

knowledge and understanding through thought, experience,

and the senses”. Our cognitive strategy involves acquiring

knowledge and data from various intelligence sources and

combining them into an existing knowledge graph that is

already populated with cyber threat intelligence data about

attack patterns, previous attacks, tools used for attacks, indi-

cators, etc. This is then used to reason over the data from

multiple traditional and non-traditional sensors to detect and

predict cybersecurity events.

A novel feature of our framework is its ability to assimilate

information from dynamic textual sources and combine it

with malware behavioral information, detecting known and

unknown attacks. The main challenge with the textual sources

is that they are meant for human consumption and the infor-

mation can be incomplete. Moreover, the text is tailored to

a specific audience who already have some knowledge about

the topic. For instance, if the target audience of an article is

a security analyst, the line “Wannacry is a new ransomware.”

carries more semantic meaning than the text itself. Based on

their background knowledge, a security analyst can expand

the previous description and infer the following actions that

Wannacry may perform:

• Wannacry tries to encrypt sensitive files;

• A downloaded program may have initiated the encryp-

tion;

• Either downloaded keys or randomly generated keys are

used for encryption; and

• Wannacry modifies many sensitive files.

However, a machine cannot infer this knowledge from the

text alone. Our cognitive approach addresses this issue by

integrating the experiences or security threat concepts (attacks

patterns, the actions performed and associated information

like source and target of attack) in a knowledge graph, and

combining it with new and potentially incomplete textual

knowledge using standard reasoning techniques.

To address the challenge of structurally storing and pro-

cessing such knowledge about the cybersecurity domain, we

use the intrusion kill chain, a general pattern observed in

most cybersecurity attacks. Hutchins et al. [14] described an

intrusion kill chain with the following seven steps.

• Reconnaissance: Gathering information about the target

and various existing attacks (e.g., port scanning, collect-

ing public information on hardware/software used, etc.)

• Weaponization: Combining a specific trojan (software

to provide remote access to a victim machine) with an

exploit (software to get first unauthorized access to the

victim machine, often exploiting vulnerabilities). Trojans

and exploits are chosen taking the knowledge from the

reconnaissance stage into consideration.



• Delivery: Deliver the weaponized payload to the vic-

tim machine. (e.g., email attachments, removable media,

HTML pages, etc.)

• Exploitation: Execution of the weaponized payload on

the victim machine.

• Installation: Once the exploitation is successful, the at-

tacker gains easier access to victim machine by installing

the trojan attached.

• Command and Control (C2): The trojan installed on the

victim machine can connect to a Command and Control

machine and get ready to receive various commands to

be executed on the victim machine. Often APTs use such

a strategy.

• Actions on Objectives: The final step is to carry out

different malicious actions on the victim machine. For

example, a ransomware starts searching and encrypting

sensitive files while data ex-filtration attacks send sensi-

tive information to the attackers.

Many attacks conform to these seven steps. Hence, we

represent the steps in a knowledge graph and link them to

related information like potential tools and techniques used

in each step, indicators from traditional sensors which detects

them and so on. For example, we associate the tool nmap with

the reconnaissance step and when its presence is detected by

traditional network detectors like Snort, we infer a potential

reconnaissance step.

A well-populated knowledge graph links many concepts

and standard deductive reasoning techniques can be used

for inference. Such reasoning over the knowledge-graph and

network data can find other steps in the cyber kill chain, if they

are present, similar to a human analyst. It should be pointed

out that not all attacks apply all seven steps during their life-

time. For example, some attacks are self-contained such that

there is no requirement of a command and control setup. Our

system’s confidence that an attack is happening increases as

more indicators are inferred.

There are many other advantages of representing cyber-

security attack information around a cyber kill chain. First,

it helps easily assimilate information from textual sources

into the knowledge graph. For example, the same exploit

Eternal Blue is detected in the Weaponization stage for major

attacks like those of Wannacry, NotPetya and Retefe. Let us

assume that the knowledge graph already has information

about Eternal Blue, perhaps because it was added as a part

of a previous attack. Now with the new information that

NotPetya uses Eternal Blue for exploitation, several things

can be inferred, such as the indicators that give evidence for

NotPetya’s activities even if they are not explicitly specified

in the graph.

Another advantage is that it helps in detecting variations

of existing attacks. To evade attacks, attackers often employ

different tools that can perform similar activities. For example,

if there is a signature that specifies nmap is used in an attack,

adversaries may try to evade detection by using another scan-

Fig. 1. Cognitive CyberSecurity Architecture contains modules that process
different kinds of data, storing it in a structured representation and reasoning
over it. The broad patterns or rules to detect attacks are defined by security
experts.

ner, like Angry IP Scanner7 Solar Winds8. Our technique will

still detect a reconnaissance with the help of other indicators –

the graph links nmap to these tools as their purpose is similar

– that helps to reduce evasive tactics.

Moreover, some new attacks are permutations of

tools/techniques used in older ones. There are many

situations where similar tools are used, or vulnerabilities

are exploited in different attacks. For instance, Petya and

NotPetya share similar Action-on-Objectives (encryption of

MFT). The former uses phishing to spread while the latter

uses Eternal Blue. Since we combine information about

different attacks and fuse it with textual information, we can

also detect such new attacks.

A detailed example of our inference approach is presented

here. Let us assume that a blog reported a new ransomware

7https://angryip.org/
8https://www.solarwinds.com/



that uses nmap for reconnaissance and Eternal Blue for

exploitation. Our knowledge graph is already populated with

common information that includes “Eternal Blue uses mal-

formed SMB packets for exploitation”, “a generic ransomware

modifies sensitive files”, “ransomware increases the processor

utilization” and so on. Let’s also consider that our sensors

detected sensitive file modifications, malformed SMB packets,

and a nmap port scan. This data independently cannot detect

the presence of a ransomware attack with high confidence

because they may occur for other reasons such as files being

modified by a user or incorrect SMB packets transmitted due

to a bad network. However, when we process the information

from a source like a blog that a new ransomware uses Eternal

Blue for exploitation, it provides the missing piece of a jigsaw

puzzle that indicates the presence of an attack with better

confidence.

A. Attack Model

To constrain the system, we make some assumptions about

the attacker. First, the attacker does not have complete inside

knowledge of the system being attacked. This implies that

the person performs some probing or reconnaissance. The

second assumption is that not all attacks are completely new.

Attackers reuse published (in security blogs, dark market,

etc.) vulnerabilities in software/systems to perform different

malicious activities like Denial-of-Service (DoS) attacks, data

ex-filtration or unauthorized access. Finally, we assume that

our framework has enough traditional sensors to detect basic

behaviors in networks (NIDS) and hosts (HIDS).

We categorize attackers into three categories that differ in

their knowledge and sophistication: script kiddies, intermedi-

ate and advanced state actors. Often, script kiddies use well-

known existing techniques and tools and try to execute simple

permutations of known approaches to perform intrusions. On

the other hand, intermediate attackers modify known attacks

or tools significantly and try to evade direct detection, but

attack behaviors remain generally the same. Adversaries that

are state actors or experts mine new vulnerabilities and design

zero-day attacks. Our system tries to defend effectively against

the first two categories. It is difficult to defend against the third

category of attackers until information about these attacks is

added to the knowledge graph.

V. SYSTEM ARCHITECTURE

In this paper, we describe a cybersecurity cognitive assistant

to detect cybersecurity events by amalgamating information

from traditional sensors, dynamic online textual sources and

knowledge graphs. The system architecture of our cybersecu-

rity cognitive assistant is shown in Figure 1. There are three

major input sources to our framework: dynamic information

from textual sources, traditional sensors, and human experts.

The Intel-Aggregate module captures information from blogs,

websites and even social media, and converts them to semantic

web RDF representation. The data is then delivered to the CCS

(Cognitive CyberSecurity) module which is the brain of our

framework where actionable intelligence is generated to assist

Fig. 2. STIX representation of Wannacry Ransomware

the security analyst. The various components are described in

the following sections.

A. CCS Framework Inputs

The first input is from textual sources. This input can either

be structured information in formats like STIX, TAXII, etc.

(from threat intelligence sources like US-CERT and Talos)

or plain text from sources like blogs, twitter, Reddit posts,

and dark-web posts. Part of a sample threat intelligence in

STIX format shared by US-CERT on wannacry is presented

in Figure 2. We use an off-the-shelf Named-Entity Recognizer

(NER) trained on cybersecurity text from Joshi et al. [17]

for extracting entities from plain text. The next input is from

traditional network sensors (Snort, Bro, etc.) and host sensors

(Host intrusion detection systems, file monitoring modules,

process monitoring modules, firewalls, etc.). We use the logs

from these sensors as input to our system. Finally, human

experts can define specific rules to detect complex behaviors

or complex attacks. Input from human experts is vital because

an analyst’s intuitions are often used for identifying potential

intrusions. Capturing such intuitions makes our framework

better. Moreover, analysts can specify standard policies being

used in the organization. For example, an analyst can specify

if a white-listing policy (i.e. only IP addresses from a specific

list are accepted by default) is enforced or not, should IP

addresses with geo-location corresponding to specific locations

be considered spurious, etc. All these inputs are then sent to

the Intel-Aggregate module for further processing.

B. Cognitive CyberSecurity Module

The Cognitive CyberSecurity (CCS) module aggregates and

infers cybersecurity events using different inputs to the system

and is considered as the brain of our framework. The outputs of

this module are actionable intelligence for the security analyst.

The core of this module is knowledge representation. We use

an extension of UCO (Unified CyberSecurity Ontology) using

a W3C standard OWL format to represent knowledge in the

domain. We extend UCO such that it can reason over the

inputs from various network sensors like Snort, IDS, etc. and



information from the cyber-kill chain. We also use SWRL

(Semantic Web Rule Language) to specify rules between

entities. For instance, SWRL rules are used to specify that an

attack would be detected if different stages in the kill chain

are identified for a specific IP address. The information in

the knowledge graph is general such that experts can easily

add new knowledge to it. They can directly use different

known techniques as indicators because our knowledge graph

already has knowledge on how to detect them (either directly

from sensors or using complex analysis of these sensors). For

example, an expert can mention port scan as an indicator and

the reasoner will automatically infer that Snort can detect it

and looks for Snort alerts.

The statistical analytics and graph analytics sub-modules

check for anomalous events in the data stream by building

association rules between events detected by a sensor and

then clustering them to analyze trajectory patterns of events

generated in the stream. Also, a hidden markov model (HMM)

is used to learn the pattern (from existing annotated data) and

isolate patterns in the stream that are similar. Any standard

technique can be utilized to generate indicators as long as

they are in the form of standard OWL triplets that can be fed

to the CCS knowledge graph. An RDF/OWL reasoner (like

JENA [4]) is also part of the CCS module that will reason

over the knowledge graph generating actionable intelligence.

A concrete proof of concept implementation for this model is

described in Section V-D.

C. Intel-Aggregate Module

The Intel-Aggregate (IA) Module is responsible for the

conversion of various traditional and non-traditional network

sensor inputs to the standard semantic web OWL format.

Various inputs to our system are mentioned in Section V-A.

However, they will produce outputs in different formats and

will be incompatible with our framework’s knowledge graph

(represented using UCO). To be consistent with entities and

classes defined in UCO, the data need to be transformed. This

module takes in all inputs to the cognitive framework, maps

them to UCO classes and generates their corresponding well-

formed OWL statements. The IA module is part of all the

sensors which are attached to the framework.

D. Proof of Concept Implementation

Our proof of concept cybersecurity cognitive assistant has

an architecture similar to real-world systems like Symantec’s

Data Center Security and Crowd Strike. Its master node is the

CCS module, which detects various cybersecurity events and

coordinates with and manages a configurable set of cognitive

agents which run on host systems collecting various statistics,

as shown in Figure 3. The cognitive agents that are run in

different systems report their respective states to the CCS

module which integrates the information and draws inferences

about possible cybersecurity events.

1) Cognitive Agents: A full agent is a combination of the

Intel-Aggregator (IA) module and a traditional sensor. The

Intel-Aggregator module is developed in such a way that it

Fig. 3. In our CCS proof of concept architecture each agent is responsible
for processing data from a specific sensor / aggregator.

can be customized to work with multiple traditional sensors

collecting and sending information to the CCS module as RDF

data supported by the UCO schema for further processing. The

experimental implementation included process monitoring and

file monitoring agents and a Snort agent as described below.

• Process Monitoring Agent: This agent combines a custom

process monitor and an IA module, and runs on all host

machines in the network. It monitors different processes

in the machine, their parent hierarchy while gathering

statistics like memory and CPU usage. It also notes

the files that are being accessed and/or modified by the

process, paying special attention to restricted files. The

agent converts all this information into RDF data using

the IA module and reports them to the CCS module.

We implement our process monitoring tool with the

Python psutil [32] module. The monitor maintains its own

process table (list of all processes in the system) so that

it can monitor the state of each process, i.e., if it has been

created or is running or it has exited.

• File Monitoring Agent: A custom file monitor is attached

to an IA module that is similar to a process monitoring

agent and also runs on all host machines aggregating

various file-related statistics. To avoid monitoring all

files and directories, we maintain a list of sensitive ones

when detecting suspicious files. Suspicious files are new

files created or modified by a new process, large files

that are downloaded from the Internet or files copied

from mass storage devices. Information sent to the CCS

module includes the process that modified the file, size,

how it was created, and other file meta-data. The file

monitoring agent is implemented in Python using the

Watchdog observer library that allows us to monitor all

file operations on sensitive directories. Similar to the

processing monitoring agent, it converts the file operation

information to an RDF representation and reports them

to the CCS module.

• Snort Agent: This agent is a combination of a Snort log

processor and an IA module. It reads Snort’s output log

file and generates RDF triples consistent with the CCS



Fig. 4. The CCS Dashboard’s sections provide information on sources and targets of network events, file operations monitored and sub-events that are part
of the APT kill chain. An alert is generated when a likely complete APT is detected after reasoning over events.

module’s knowledge graph.

2) CCS Module: The CCS module is the brain of our

approach which uses cognitive analytics to detect attacks using

information from agents. It uses an Apache Fuseki server [10]

configured with a SWRL rule engine and Jena reasoner. This

module gets inputs from all of the agents, performs deductive

reasoning over them and feeds output to a dashboard Web

interface. The dashboard dynamically displays the information

such as source and target IPs, detected activities from sensors

and complex events that are observed. When a full-scale attack

is detected, the dashboard raises attack alerts as shown in

Figure 4.

VI. USE CASE SCENARIO

We tested the effectiveness of our system with a concrete

use case of a ransomware attack. We describe the custom

ransomware attack designed for the use case scenario, the

network topology used in the test, the series of steps taken

by the cognitive assistant while detecting the attack, and our

evaluation of our cognitive assistant.

A. Custom Ransomware Design

Our custom ransomware targets Windows 7 machines which

have the CVE-2017-0143 vulnerability [6], a buffer overflow

related to SMB protocol. We use the exploit from Metasploit

for this CVE to get access to the victim machine. Once the

custom ransomware gains access, it downloads the malware

script from the attacker’s machine to the victim machine. The

downloaded malware script then performs the following steps.

1) Download an executable to encrypt files;

2) Download a public key from the attacker machine;

3) Discover the sensitive files and folders in the victim’s

machine using a compiled list of potential locations

such as the Default Thunderbird email client storage

location, default Outlook location, documents folder and

default downloads folder, and avoiding system files,

since encrypting them may hamper booting;

4) Split the selected files into chunks and generate a

random key for each chunk;

5) Encrypt files from each chunk using AES (chosen be-

cause RSA implementations are not normally used to

encrypt large files) and the corresponding random key;

6) Securely delete raw files corresponding to the encrypted

data files;

7) Create a file with all of the encrypted file locations and

corresponding random keys used for their encryption;

8) Encrypt this newly generated file using RSA and the

downloaded attacker public key; and

9) Delete the raw text file with chunk info securely;

B. Proof of Concept Network Architecture

To deploy our system and infect it using the custom ran-

somware described in section VI-A, we created a network with

three different machines, as shown in Figure 5.

1) Attack Machine: The attack machine is an Ubuntu

16 loaded with custom scripts and a webserver. The attack

script is responsible for scanning the network for vulnerable



Fig. 5. Proof of Concept Network Architecture

machines and identifying their IP addresses. Once the IP list

is compiled, it begins the attack by sending malformed SMB

packets and get access to the victim machine. The next step is

to download the ransomware script from the attack machine

to the victim machine and start it executing. The machine

will also run a webserver, which hosts the ransomware script,

encryption software, etc. along with a mechanism to generate,

send and save public-private key pairs for each of the requested

IP addresses.

2) Victim Machine: Our evaluation uses an exploit for

CVE-2017-0143, as described in section VI-A, which targets

Windows 7 machines. Hence, we choose a fresh installation

of Windows 7 SP1 as the victim machine. The only additional

software we installed on it were the file monitoring and process

monitoring agents described in Section V-D1. We also added

“valuable” files into folders like Documents and Pictures.

3) CCS Master Machine: The core detection techniques

are installed on the CCS master machine, which runs the

two major components. The first is a Fuseki server loaded

with Jena, a standard OWL DL reasoner, the modified UCO

Ontology and related SWRL rules. The second is the CCS

module, which extracts new information about host machine

activities and possible new attacks, runs the analysis, and

dynamically updates the CCS dashboard. In addition, we run

Snort and a Snort agent in this machine, though Snort can also

be run on another machine since the snort agent will take care

of sending its information to the CCS Master module.

C. Proof of Concept Timeline

We implemented the associated modules of CCS and created

a network described in Section VI-B. Our next goal is to check

if we can detect the ransomware attack or not. Our knowl-

edge graph is updated with common knowledge, including

the cyber-kill chain and knowledge mentioned in section IV

about cyber-attacks. We demonstrate that even such simple

information could be used for detecting newer attacks using

this experimental system. Figure 6 shows the timeline of the

attack performed and the actions from our CCS module. Each

step in it is detailed below.

• Step 1: Attacker performs a port scan on the victim

machine using Nmap;

• Step 2: Snort agent detects port scan and reports to the

CCS module;

• Step 3: Attacker uses the attack script to exploit the

victim machine (using “Eternal Blue”)

• Step 4: Snort agent detects malformed SMB packets in

the network;

• Step 5: On successful exploitation, the attacker injects

malware into the victim machine;

• Step 6: The first attack script starts running the malware

from the victim machine

• Step 7: As described in section VI-A, the malware now

initiates downloads of encryption software, keys, etc.;

• Step 8: Encryption software and keys get downloaded

into the victim machine. The next task from the malware

is the detection of sensitive files and their encryption

using the downloaded tool;

• Step 9: Snort detects downloads from unknown / poten-

tially bad IP addresses;

• Step 10: The file monitoring agent detects new files

downloaded from the Internet;

• Step 11: While performing encryption, the malware

modifies many sensitive files and the file monitoring agent

reports it to the CCS module; and

• Step 12: When encryption is performed on larger files,

the processor usage showed larger values and the process

monitoring agent reports it to the CCS module.

In this test, the CCS Knowledge graph has the information

about a new ransomware attack from textual sources. The

new information from textual sources are “Wannacry is a

ransomware” and “Wannacry uses malformed SMB packets

to exploit”. In the attack timeline, at Step 2, Snort reports

a port scan which will be inferred by the CCS module as a

potential reconnaissance step. At step 4, when Snort detects

some mal-formed packets in the network, it is not conclusive

to tell that it is an attack as it might just be some error packets.

Subsequent steps, Steps 9 through 12, detect downloads

from unknown sources, sensitive file modification and in-

creased processor usage. From the knowledge graph, we know

the typical characteristics and indicators of a ransomware

attack’s “Action-on-objective” include multiple instances of

sensitive file modification accompanied by high processor

usage caused by encryption.

However, these can also occur because of normal usage.

For example, the user may have manually modified the files,

downloaded and installed new applications that make Inter-

net connections, and then run them. The presence of these

indicators taken alone cannot be used to reliably detect a

ransomware. However, the CCS system already knows about a

new ransomware attack using malformed SMB packets from

textual sources. This information when combined with data

from various sensors, the CCS system infers that an attack

similar to Wannacry attack is happening in the system and it

is displayed on the dashboard as shown in Figure 4.



Fig. 6. Timeline of the proof of concept ransomware attack showing each step being executed with its source and target.

VII. CONCLUSION

In this paper, we described the design and implementation

of a collaborative cognitive assistant to detect cybersecurity

events and attacks. Our technique assimilates and interprets

often incomplete textual information from a variety of sources

such as security bulletins, CVE’s and blogs, and represents it

as a knowledge graph using terms from the Unified Cyberse-

curity Ontology. It represents the data from traditional host and

network sensors, as well as any analysis generated by machine

learning techniques, in the same knowledge graph. It reasons

over this knowledge to detect complex cybersecurity-relevant

events and to predict attacks that may be occurring.

We also developed a proof of concept CCS system which

features a cognitive dashboard where cybersecurity events

are reported to the security analysts. The capability of our

system is demonstrated by testing it against a custom built

ransomware, that uses the SMB vulnerability to infect victims

similar to the infamous Wannacry ransomware. Our technique

reduces the cognitive load on the analyst to interpret complex

events occurring in large enterprises by fusing information

from multiple sources and reasoning over it much like a human

analyst.

In ongoing work, we are addressing the scalability of our

system by adding more sensors and concepts that define the

behavior of various processes running on typical networks. We

are revising our UCO schema to improve its ability to represent

and reason about temporally-qualified data and information,

manage and use data provenance, and support STIX version

2.0. We are also implementing a system to add new cyber

threat intelligence data to the knowledge graph on a continuous

manner from feeds from TAXII servers [28].
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