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Over the last few decades, forest fires are increased due to deforestation and global warming. Many trees and animals in the forest
are affected by forest fires. Technology can be efficiently utilized to solve this problem. Forest fire detection is inevitable for forest
fire management. The purpose of this work is to propose deep learning techniques to predict forest fires, which would be cost-
effective. The mixed learning technique is composed of YOLOvV4 tiny and LiDAR techniques. Unmanned aerial vehicles (UAVs)
are promising options to patrol the forest by making them fly over the region. The proposed model deployed on an onboard UAV
has achieved 1.24 seconds of classification time with an accuracy of 91% and an F1 score of 0.91. The onboard CPU is able to make
a 3D model of the forest fire region and can transmit the data in real time to the ground station. The proposed model is trained on
both dense and rainforests in detecting and predicting the chances of fire. The proposed model outperforms the traditional

methods such as Bayesian classifiers, random forest, and support vector machines.

1. Introduction

Recent advancements in technology have overwhelmingly
shaped society, the economy, and the environment. With the
help of the various state-of-art technologies such as IoT,
blockchain, Al geospatial mapping, and so on, leading to the
fifth industrial revolution, which focuses more on solving
climate goals in line with the revolution [1]. New require-
ments in the ecological environment arise due to the ex-
peditious development of society. Among the various
natural disasters, fire hazard seems to own the characteristics
of spreading, and also, it becomes very challenging to
control, and thus, it results in heavy destruction that might
be irrevocable [2-4]. Over the past few years, there is a
tremendous increase in the count, occurrence, and severity
of wildfires across the world that has created a great impact
on the economy and ecosystem of the country. There are
various techniques such as watchtowers, spotter planes,

infrared, aerial patrols, and automatic detection systems to
detect fire events [1]. There is no need for the exposure of
humans to perilous activities when remote sensing is
deployed [5]. Various techniques are as follows:

(i) Usage of the satellite images to observe, detect, and
report fire events

(ii) Implementation of the wireless sensor networks to
observe the fire events exist in all areas.

Yet there are certain limitations associated with the
satellite images [6-8]. It has an inadequate resolution, and
hence, the data pertinent to the corresponding area would be
taken as an average, and it is restricted to a particular pixel
that results in the detection of small fires. The predominant
limitation is that the satellites cover only a limited area and
require a preprocessing time before the resurvey of the same
region. The other limitations such as the shortage of real-
time data and inadequate precision are inapt for persistent
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monitoring. There is a need for the infrastructure in advance
if WSNs are deployed [4]. There is more chance for the
destruction of the sensors during the fire, and this might lead
to more expensive restoration of the sensors [9]. Several
factors such as the static nature of the sensors, their cov-
erage, difficulty in maintenance, the deficit in power inde-
pendence, and nonscalability are the reasons for the sensor
networks to limit their efficiency. Therefore, unmanned
aerial vehicles (UAVs) are proposed to overcome the lim-
itations. The sovereignty, less cost, autonomous, and flexi-
bility make the UAV technology the best choice for fire
management efforts in the wildland. There are researchers
who put more effort into focusing on the development of
frameworks and techniques that could be associated with
UAVs. The motive of the implementation of UAV is to
detect the fire and its coverage in an optimal manner [3, 10].
The aim of this work is to develop a model to detect the fire
and its coverage area, and in addition, it also observes the fire
in the low region. Section 2 describes the related works
associated with fire detection. Section 3 elaborates on the
proposed model and architecture. Finally, the results and
discussion to prove the proposed model are covered in
Section 4. The last section concludes with a summary and
future scope.

2. Related Works

Detection of forest fire and smoke in wildland areas is done
through remote sensing-based methods such as satellites,
high-resolution static cameras fixed on the ground, and
unmanned aerial vehicles (UAVs).

The limitations of the satellites [11] are described as
follows:

(i) Images that are captured through the satellites have
poor resolution, and hence, it becomes difficult to
detect the particular area

(ii) Continuous information about the status of the
forest could not be obtained due to the restrictions
in the monitoring of forests

(iii) Weather might not be stable in all situations as it
might vary, and thus, it results in the collection of
noisy images

Optical/thermal cameras deployed on the observation
towers together with the other sensors such as smoke, tem-
perature, and humidity sensors might detect the hazards in the
closed environment rather than in the open environment as
these sensors need vicinity to the fire or smoke. The infor-
mation obtained through these sensors is not appropriate.
Distance covered by these methods could be limited, and to
cover alarge area, more sensors have to be deployed that might
incur expenses. Through the deployment of UAV, large areas
could be covered, and the images with high spatial and tem-
poral resolutions could be captured properly. The operational
cost is very low when compared with the other methods.

In [12], detection of forest fire is done through the
deployment of YOLOv4 to UAV-based aerial images. The
initial phase of the process is that the authors developed the
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hardware platform and proposed the YOLOv4 algorithm.
Frame detection rate through this method obtained is
3.2 fps, and the recognition rate achieved is 83%. This works
when the intensity of the fire is huge. The limitation of this
algorithm is that the detection rate is very less in the small
fire-spot areas. The authors have made use of the NetImage
classifier that has the combination of Yolov5 and Effi-
cientDet. The data set used comprises 10,581 images of
which 2,976 images are categorized as forest fire and 7,605 as
nonfire images. The model undergoes an adequate training
process, and an accuracy of 99.6% has been obtained with
the 476 fire images, and for 676 images that looked similar to
images that display fire, the accuracy achieved was 99.7%.
Yet the limitation is that it does not detect the smoke since it
is needed in the initial stage of the detection process.

In this work [2, 13], the detection of forest fire is done
automatically with the help the image processing methods.
The principle behind the proposed work is that the image
brightness and motion clues are used with the image pro-
cessing techniques that depend on histogram-based seg-
mentation. Initially, the hot objects are identified, and they
are recognized as the candidate regions. Next, the motion
vectors of the candidate regions are computed based on the
optical flow. Furthermore, the vectors are used to isolate the
fires from the other systems that might look similar to the
fire. Tracking of fire from IR images is done through the Blob
counter technique and morphological operations. Results
have shown that the proposed method does the extraction
and detection of the fire pixels effectively. Extraction of the
background from the video and determination of the proper
motion regions by analyzing the difference between the
subsequent frames is done through the ViBe method. Several
functions such as median filtering, color space conversion,
Otsu threshold segmentation, morphological operations,
and Blob counter are used [3, 14]. The fire and smoke areas
are identified through the extraction of both static and
dynamic features. Caffemodel that works based on deep
learning is the principle that is used to detect fire and smoke
areas. Apart from these, the degree of irregularity of the
smoke and fire is also analyzed.

The false alarm rate is reduced, and the original position
of the fire is also identified in this work by considering that
each and every frame image of the video is partitioned into
16 x 16 grids and the occurrences of each part of the fire and
smoke are recorded. The evidence is collected so as to decide
on the final detection. From the experimental results, it is
shown that the loss has been reduced, and fire and smoke are
detected. Various researchers have worked in exploring
forest fire detection in a diversified manner. In [4, 15-17],
fuzzy logic-based smoke detection and segmentation
schemes are introduced along with the principle of the
extended version of the Kalman filter. Segmentation of
smoke is done with fuzzy logic, and thus, the prospects of
occurrence of smoke are identified. This is done by observing
the difference in the background images and the intensity.
The extended version of the Kalman filter is used to eradicate
the effects that might be due to the disparities in the en-
vironmental conditions by reshaping the inputs of the fuzzy
smoke detection rule. The authors [18] have worked on the
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technique that works based on the principle of color and
motion. In this work, the UAV is equipped with obscure and
an optical camera which is used to detect the forest fire.

Cameras mounted are used to procure free flame in-
frared and visual pictures. Images could be combined with
the landscape information and meteorological data to ob-
serve the forest fire. With this technique, the false alert rates
of forest fire detection are decreased. A novel method based
on the new color index named Forest Fire Detection Index
(FFDI) has been proposed in [1, 19-21]. Index computation
is done based on vegetation categorization. The tones of the
flame and smoke are also detected that in addition is used to
form the regions of interest (Rol). The precision of the
detection is found to be 96.82% for the image sizes of
960 x 540 pixels that have been processed in 0.447 seconds.
The frame considered during the experimental investiga-
tions was 22 frames/second for smaller images, and it has
been extended to 54 frames/second. The precision rate at the
early detection stage has been observed as 96.62%. A deep
learning framework named Fire-Net has been devised in [9].
Here, the model is trained on Landsat-8 imagery so that the
detection of the active fires and burning biomass is done. The
images that are obtained have been represented effectively
with the help of optical fusion and thermal modalities.
Extraction of a deep set of features is facilitated by providing
more attention to the residual convolution and discrete
convolution blocks. From the experiments, the overall ac-
curacy is 97.35%, and the model is robust in the detection of
small fires. Continuous monitoring of the potential areas
that might be prone to fire should be monitored. In this work
[22-25], the design of UAVs has been done based on the
advantages of Al. Furthermore, the onboard processing
abilities have also been equipped. The inputs to the model
are the still images or the video input that are captured
through the cameras mounted on the drone [14, 26, 27]. The
drones are supported by both fixed and the rotary-wing. The
fixed-wing drone is used to monitor the area frequently. It
covers an altitude from 350 m to 5,500 m, and there might be
a chance of reporting a false alarm. As soon as the fixed-wing
drone detects the fire, an alarm is triggered that in turn
stimulates the rotary-wing drone. With the help of GPS
coordinates, it then examines the area. The second drone
decides whether to trigger the alarm based on its observa-
tions. The main advantage of the second drone is to decrease
the false alarm rate. Many research works have been carried
out for detecting fire through IR images, whereas a few
works are done on UAV platforms [28, 29].

From the various inferences, it has been understood that
most of the researchers have worked to increase the accu-
racy, and the area coverage was until 1,500 meters to the
maximum. To provide more accuracy and precision, the 3D
modeling of data is required, and further visualization of
forest fire images could be made very easy for interpretation.
The objective of this work is to deploy an efficient and robust
detection fire in the early stage. Hence, a deep learning
model is required so that the boundary region could be
extended, and the 3D modeling images must be considered
for the prediction process to augment the accuracy. The
contributions in this work are as follows:

(i) An efficient and robust 3D modeling is used to
augment the accuracy of the detection.

(ii) A deep learning technique YOLOv4 is combined
with the Otsu method along with LiDAR. The key
objective of utilizing the Otsu method is to repeat all
the values of the threshold and evaluate the extent of
the background and foreground pixels. The objec-
tive is to determine the threshold by examining the
region of the spread, and it should be minimum.

(iii) Traditional methodologies are found to be difficult
for performing the sampling since the constraints
are bound to the relative position. Hence, the ori-
entation of the images is required, and that is ob-
tained by computing the distance between the tree
and other entities with the help of LIDAR. Section 3
describes the proposed methodology.

3. Proposed Methodology

The flow of the proposed architecture is shown in Figure 1.
The video input is captured from the camera, and the other
inputs such as wind speed, wind directions, and IR image
sensing are calculated using the sensors mounted on the
UAV for navigation. These images are provided as input to
the deep learning models, and it checks for the existence of
the fire. The region is predicted clearly since there is a
possibility of more projections of the images provided to the
model due to the 3D modeling. Further detection is made,
and the details are stored in the database for further.

3.1. Autonomous Drone Routing

3.1.1. Drone Moment to the Target. In this whole operation,
navigation of UAVs is significant to patrol the risk-prone
areas and fire-detected areas. This work monitors the forest
area with the help of the navigational analysis technique
[27, 30]. To facilitate this, the drone makes the navigation.
UAVs have the following three navigational features [31]:

(i) Awareness: This provides details about UAV’s
neighborhood obstacles. The data is collected using
internal sensors

(ii) Basic Navigation: Collisions are avoided, and the
obstacles such as birds, trees, poles, and so on in the
forest farms are detected

(iii) Expanded Navigation: Advanced features such as
pathway planning and depth deployment are in-
cluded and play a crucial role in autonomous
navigation

This categorization of features is shown in Figure 2 that
could provide a better understanding of the navigation of
UAVs.

On detection of fire with YOLOV4 tiny, the autonomous
patrol in the affected area is found to influence the decisions
that must be considered for stopping the fire. The visual
servoing algorithm [8] operates for the autonomous drift of
UAYV towards the fire; it works as follows:
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Store the data into the database.

F1GURE 1: Proposed architecture flow.

Step 1. 'The location of the fire is requested, and it is captured
through the (YOLOV4 tiny-bounding box of fire). If the fire
is detected, go for step 2.

Step 2. Calculate the step size depending on the location of
the bounding box of fire that is relative to the midpoint of the
frame, along with the direction.

Step 3. Normalize the drone for drift by changing the roll
and angle of pitch of the current state.

Step 4. Set the next set point to control the flight and iterate
the process.

When the forest is very thick and it is in the GPS-denied
area, UAV makes use of hybrid-localization methods to
achieve the maximum performance of the task. Many re-
search works [31, 32] suggest the simultaneous localization
and mapping (SLAM) algorithm to use in GPS-denied areas.
The solitary idea of SLAM is to process mapping and lo-
calization concurrently and recursively. Using the Kalman
filter, SLAM overcomes the problem of feature evaluation.
SLAM algorithms develop the landmark-based navigation



Computational Intelligence and Neuroscience 5

UAV
NAVIGATION
FEATURES
—_—

Y

)
BASIC EXPANDED
NAVIGATION NAVIGATION

v
AWARENESS

SEMANTIC AUTONOMOUS
EVALUATION DRIFT

PATHWAY
GENERATION

COLLISION NEIGHBOURHOOD
EVASION DETECTTION
) AUTO
DI S%\?é{fl ON TAKE-OFF/ ‘—/NON-LINEAR DRIFT
LANDING
F1GURE 2: Categorization of navigation features of UAV.
system with the capability of virtual-map navigation; this The total payload of the UAV is 6,825 grams. The thrust

became a typical technique for the drone-based navigation  of the UAV is capable to fly with a 7,000-gram payload and is
application. Figure 3 given below depicts the structure of the  calculated as follows:

proposed localization solution based on vision. This structure .

operates the space and features on two different levels. It has 7(T) = =d’pvAv, (1)
three main modules: (1) hybrid feature extraction, (2) gen- 4

erating map, and (3) hybrid localization. The feature ex- where 1 =thrust of UAV, d = distance of
traction component combines two different methods to find a propeller = 0.6556 m, p =air density (1.225 m kg/cubic me-

location at two scales. The map generation component per- ter), and v =aerial velocity at propeller (m/s) =1/2Av.
forms feature compression and feature evaluation. The filters The power of the UAV is as follows:
extract the most appropriate features using an info-theoretic (Av)
method, then compress the features, and evaluate them. P(W) = S

. . . . . rpm powerfactor ( 2)
3.1.2. Technical Information of UAV. Flight planning is P (W) = PropellerConstant <m> ,

considered a salient feature in designing the architecture of
UAVs [33]. This planning illustrates the division of mass on
UAVs and provides a better understanding of the perfor-
mance analysis of UAVs. Specifically, maximum take-off  yphere Propeller Constant=1.11(for APC propeller) and
weights (MTOW) assess the UAV payload capacity at dif- P=pitch of propeller in air.

ferent heights above the ground. The payload of the UAV and The total mass lifted by the UAV is as follows:

the mass of onboard equipment are given in Table 1, and the

P (W) = PropellerConstant d*« p* rpm3,

components of the UAV are depicted in Figure 3. The battery —
used on the UAV reserves the UAV in GPS-enabled envi- g
ronments for 107 minutes of duration, whereas on the GPS- (3)
. . . . . . . 2 1/3
disabled environment, maximum flight time is 87 minutes. (n/zd pvp)
Figure 4 displays the digital anemometer, manifold CPU, m=-——"—,

g

IR sensors, and 12K camera.
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TaBLE 1: Specifications of the onboard equipment and masses.
S. No. Component Specification Mass in grams

1. Motor (x4) T motor u power u5 400 kv 815
2. Battery 6s-hv (lihv) 25,000 ma (22.8v) 1,568
3. 12K Camera (with IR) Blackmagic ursa mini pro 12k 2,742
4. Anemometer Breezesonic 345P-4 R 300
5. Sensors — 600
6. Structure DJI 100
7. Others (with CPU) — 700
8. Total payload 6,825

F1GURE 4: Digital anemometer manifold with CPU, IR sensors, and
12k camera.

where g =acceleration due to gravity.

Therefore, the maximum payload of the UAV is 8,000
grams.

Due to this high Power of UAV, it can take steep turns
with a very low pitch angle in any direction and is capable to
fly 350-400m above the ground with a range of
3,000-4,000 m.

The time of flight of a UAV is calculated as follows:

d
Tf = Cb ES (ﬁ),
where T =time of flight in hours, ¢, = capacity of battery

(mAh), d, =battery discharge, and AAAD = average ampere
draw (ampere) of the UAV=AUW * p/v.

(4)

3.2. Fire Detection and Fire Region Prediction

3.2.1. Fire Detection in the Forest Region. A classic UAV can
autonomously fly over the forest area and detect the forest
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fire and yaw around the burning forest fire area. The UAV is
well equipped with IR sensors, a 12K camera for image
accretion, and the onboard CPU, which can broadcast the
real-time video of the forest fire to the ground station using
the signals that are used for remote navigation. The ground
station would diagnose and take necessary measures to stop
the forest fire. In parallel, the ground station can also control
the UAV by sending the operational commands.

The onboard CPU has good computation power to
perform the forest fire detection using YOLOV4 tiny, which
has good detection speed with well-grounded accuracy [11].
The YOLOv4 tiny model is divided into two layers, that is,
the feature extraction layer and the processing layer. The
feature extraction layer is the combination of the DarkNet
and ResNet, similar to the feature-like pyramid network that
has the convolutional layer, batch-normalization layer, and
leaky ReLU layer. The problem of overfitting is shut out
using batch normalization. The combination of the con-
volutional layer, batch-normalization layer, and leaky ReLU
layer is called CBL. The combination of the convolutional
layer, batch-normalization layer, and mish activation
function is called CBM. The structure of CBL and CBM is
shown in Figure 5.

The five max-pooling layers of the network of 2 2 size
with stride = 2 give the reduced feature map of 1/32th size of
the original image. Since there is no fixed shape for fire and
smoke, size is varied. YOLO layers are operated for the
detection of fire using logistic regression. YOLOv4 tiny has
an advantage of high speed and accuracy, due to its speed-up
algorithm. The bounding boxes of YOLOv4 tiny can be
achieved using region proposal network (RPN) [11]. In-
tersection over union (IOU) score is considered the metric
and is used to obtain the bounding box. The distance
measure for the clustering is given in

D (boundingbox, centre) = 1 —IOU (boundingbox, centre).
(5)

The algorithm finds the bounding box as follows: image
is captured by the camera, and the target is drawn to fix the
center. The coordinate calculation of the image is given in
Equation 2.

BBx = 0(px) + Cx
BB, =0o(p,)+c, , (6)
BB,y = Cef by, = Cpe”

where (p,, p,» P> py) are the image center points and
(C,»Cy) are the bounding box center points.

Onboard IR sensors are cast to find the heat distribution
in the forest farm and then generate unichannel 2D images.
The forest fire is classified into three different regions based
on the temperature of the fire; it can be detected from the
UAYV by using highly accurate IR sensors that measure the
intensity of forest fire pixels and analyze the region they fall
under. The brightness of the pixels is converted into a graph,
and the local maxima are considered the high-intensity
region [12]. This histogram-based segmentation of pixels

helps in finding the regions of fire, by taking the advantage of
Otsu method. This method is defined to find a threshold that
can minimize the intraclass variance as a weighted sum as
follows:

0, (k) = 0, (K)o, (k) + w, (K)o (k), (7)

where the class probabilities are w, and wj, (foreground and
background) given by a threshold value and k, 02, and o} are
variances of both the classes.

Probabilities of classes a and b are calculated through h
histograms are as follows:

k-1

w, (k) =Y p(j),
j=0

o (8)
w, (k) = )" p(j).

=k

Intraclass variance is minimized to maximize interclass
variance. The architecture of YOLOv4 tiny is shown in
Figure 6.

3.2.2. Prediction of the Possibility of Forest Fire. When UAV
is patrolling over the forest region, it observes for the forest
fire; if the fire is found, it drifts to that affected area and
broadcasts all the data to the ground station and then helps
the people extinguish the fire. If there is no fire in the forest,
then UAV tries to find the possibilities of forest fire in that
region. In general, forest fire is caused either by man-made
errors or natural errors. The man-made errors that lead to
forest fire are campfires that are not completely turned off,
used and thrown mosquito coils, the smoked cigarettes
remain, and tribal traditions related to fire. The natural
causes that lead to forest fire are lightning [6, 7, 34],
combustion of dry vegetation, and volcanic activities. UAV
predicts the occurrence of forest fire based on any of the
above-stated situations [35]. UAV finds the possibilities of
fire such as oxygen, fuel, and heat (shown in Figure 7), while
it is patrolling and transmits the results to the ground
station.

3.3. 3D Modeling of Forest Fire. 3D modeling of the forest-
fire-affected area helps the ground station to diagnose and
analyzes the situation for extinguishing the fire and helps
know the direction of the forest fire; this information is very
crucial and reduces the time of extinguishing. Existing
techniques for forest fire modeling are empirical and en-
hancement of the modeling is needed [36]. The motivation
for generating a 3D forest fire model is from photogram-
metric research, which enables us to generate 3D models
from images with high accuracy. In this work, much effort is
spent on the creation of 3D images and LiDAR.

3.3.1. Construction of 3D Forest Fire Modeling. The spatial
resection technique of photogrammetry is used to estimate
the position of the trees in the forest by measuring evenly



Batch-
Normalization
Layer

= Convolutional
— Layer

Leaky ReLU

CBL Layer

(a)

Computational Intelligence and Neuroscience

Batch-
Normalization
Layer

Mish Activation
function

mmm Convolutional

CEM — Layer

(b

FIGURE 5: (a) CBL - combination of convolutional layer, batch-normalization layer, and leaky ReLU layer and (b) CBM - combination of
convolutional layer, batch-normalization layer, and mish activation function.

[ Stage 1 Stage 2 VSlageZ!
.2 2 N i P ‘3 -3
e
608" 608" { =-. ¥

Max Poolin

A Maxpool \
/ \

197197255

F1GURE 6: The architecture of YOLOV4 tiny.

distributed feature points across the 2D images of the forest.
The recovery of positions of tress from various directions is
called “relative orientation.” Many works have been done
using pixel correspondence from scaled tree positions.
Recent developments have been made to generate 3D
models using the 2D images using LiDAR for outdoor 3D
modeling. In this work, we have adopted some of the
techniques from [33]. Unlike well-designed interior images,
outdoor areas such as forest, farms, and parks contain many
objects. Due to relative positioning constraints for data
acquisition, sampling of the surfaces is difficult using the
traditional methods. Orientation of the images and distance
between the tress and other objects can be easily done using
LiDAR. To deal with the inconsistency of the data bottom-up
approach is used. LIDAR-generated 2D images are collected
perpetually from the LASER while flying in forest areas at a
high speed.

3.3.2. Terrestrial Image-Based 3D Modeling. Along with
accurate orientations methods, tie point measure, and
adjusting bundles allow sensor calibrations. Once the images
are aligned, the surface measure is performed using auto-
mated procedures. Automatic photogrammetric matching
algorithms are advanced and use multiple image inputs.
Dense point clouds are developed using these methods and
often ignore geometric constraints using smoothing. The
results are shown in Figure 8.

4. Experiments and Results

This model is first trained on a desktop and later loaded into
UAV-CPU for testing. It is trained over 100 images for
50,000 steps each. The performance of the UAV is shown in
Table 2. The comparison table of existing works and the
proposed model is given in Table 3.

A

FiGure 7: The fire triangle represents the three major components
(oxygen, heat, and fuel) that are necessary to generate a fire.

YOLOV4 tiny has acceptable FPS on the UAV CPU and
achieves real-time detection and analysis. Few of the aug-
mentation techniques such Mix-up and Mosaic are per-
formed to generate the random image pairs from training
data. The convolution layer in the network has good per-
formance in detecting smaller parts of images as shown
below. Figure 9 shows that the UAV is able to detect the fire
from low light intensity regions also using the Otsu method,
but the high smoke zones are misclassified as the high fog
zones, and fire is not detected in such cases. The model is
able to detect fire in ale environmental conditions such as
rainy, sunny, snow, and so on, and the training data of the
model contains all three examples in equal proportion to
avoid variance and bias. The other parameters such as the
wind speed and temperature of the regions are analyzed, and
fire is detected in such cases. Therefore, in order to improve
accuracy in the high smoke zones, we used IR sensors; by
utilizing the optical flow, fire is easily detected. The ex-
perimental results obtained demonstrate that the model is
capable of detecting forest fires and flame regions, 3D
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F1GURE 8: Generated 3D model of the forest fire.
TaBLE 2: Performance metrics of the proposed model.
S. No. Parameter Result
1 mAP@0.5 85.36%
2 mAP@0.75 82.45%
3 Average_IOU 83.17%
4 Precision 0.93
5 Recall 0.89
6 F1-score 0.91
TaBLE 3: Performance comparison of proposed model.
S. No. Metric [11] [12] [2] Proposed
1 Accuracy 87% 86.7% 89% 93.3%
2 Precision 0.87 0.86 0.89 0.93
3 Recall 0.78 0.81 0.83 0.89
4 Fl1-score 0.86 0.87 0.89 0.91

FiGgure 9: Continued.
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(d)

()

FIGURE 9: (a) Sample 3D models of a forest fire, (b) sample 3D models of a forest fire, and (c)-(f) testing results with the developed UAV

model.

modeling of the affected, area and forest fire tracking with
satisfactory results, while the problem of using satellite
imagery and low-level performance is significantly reduced
as well.

The 3D models of forest fire as shown in Figures 9(a) and
9(b) are made from the predicted models. Testing results are
shown in Figures 9(c)-9(f). The obtained results are worth
noting and help in the analysis of the affected area.

5. Conclusion and Future Scope

Evolution emerges in the processing, computation, and al-
gorithms. This strives many researchers to pay attention in
many domains where they work in the processing of

surveillance video streams so that abnormal or unusual
actions could be detected. The usage of UAVs is recom-
mended in the detection of forest fire due to the high mobility
and ensures the coverage areas at various altitudes and lo-
cations at a low cost. Hence, an efficient and scalable UAV is
used for detection. This work aims in developing the 3D
model for the captured scene. YOLOv4 tiny network is
deployed to detect the fire. The accuracy of the detection rate
achieved through this model is 91%. The proposed model
outperforms the other existing techniques in terms of
detecting in the early stage. However, this model is sensitive
to the forest with dense fogs and clouds. This is because
smoke appears as the same as fog, and the model may
misclassify the fog as smoke. As our future works, focus to
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meet practical detection and meet the necessity of early
detection including the generation of the mixed reality model
of the forest fire area that gives more information, and
prevention analysis will be made easy. The 3D modeling
techniques presented in this paper can also be extended to
various natural disaster prediction models.
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