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Abstract

Purpose: CT screening can reduce death from lung cancer. We
sought to improve the diagnostic accuracy of lung cancer screen-
ing using ultrasensitive methods and a lung cancer–specific gene
panel to detect DNA methylation in sputum and plasma.

Experimental Design: This is a case–control study of subjects
with suspicious nodules onCT imaging. Plasma and sputumwere
obtained preoperatively. Cases (n ¼ 150) had pathologic confir-
mation of node-negative (stages I and IIA) non–small cell lung
cancer. Controls (n¼ 60) had non-cancer diagnoses. We detected
promoter methylation using quantitative methylation-specific
real-time PCR andmethylation-on-beads for cancer-specific genes
(SOX17, TAC1, HOXA7, CDO1, HOXA9, and ZFP42).

Results: DNA methylation was detected in plasma and spu-
tum more frequently in people with cancer compared with
controls (P < 0.001) for five of six genes. The sensitivity and

specificity for lung cancer diagnosis using the best individual
genes was 63% to 86% and 75% to 92% in sputum, respec-
tively, and 65% to 76% and 74% to 84% in plasma, respec-
tively. A three-gene combination of the best individual genes
has sensitivity and specificity of 98% and 71% using sputum
and 93% and 62% using plasma. Area under the receiver
operating curve for this panel was 0.89 [95% confidence inter-
val (CI), 0.80–0.98] in sputum and 0.77 (95% CI, 0.68–0.86)
in plasma. Independent blinded random forest prediction
models combining gene methylation with clinical information
correctly predicted lung cancer in 91% of subjects using sputum
detection and 85% of subjects using plasma detection.

Conclusions: High diagnostic accuracy for early-stage lung
cancer can be obtained using methylated promoter detection in
sputum or plasma. Clin Cancer Res; 23(8); 1998–2005. �2016 AACR.

Introduction
TheNational Lung Screening Trial (NLST) demonstrated a 20%

reduction in lung cancer mortality using low-dose CT screening
(1). This survival benefit comes at the price of detecting many
indeterminate pulmonary nodules with an overall false-positive
rate of 96.4% (1, 2). The likelihood that a nodule is malignant
increases with size (3), with a challenge in management for the
indeterminate nodules from 7 to 29 mm, with a risk of malig-
nancy between 1.7% and 22% (3). This has led to a cautious
adoption of CT screening, because complications, and even
deaths, result from further diagnostic procedures (4). One
approach to improve the specificity of CT screening involves the
use of cancer-specific biomarkers from sputum and plasma.
Previous studies have examinedDNAmethylation as a biomarker
for cancer risk, but limited sensitivity and/or specificity were
insufficient for lung cancer screening (5–16).

Reduced sensitivity of methylation detection may occur from
technical limitations. Extraction methods for DNA have been
inefficient for small amounts of DNA (17, 18), a particular
problem for bodily fluids. We recently developed methylation-
on-beads (MOB), which reduces sample loss thereby poten-
tially increasing sensitivity (19, 20). Another issue for detection
is the use of loci with low frequencies of altered DNA meth-
ylation, leading to an inability to detect changes in biofluids.
We recently identified 6 genes (SOX17, TAC1, HOXA7, CDO1,
HOXA9, ZFP42) using The Cancer Genome Atlas (TCGA;
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ref. 21) with highly prevalent DNA methylation in lung squa-
mous and adenocarcinoma, but not in normal lung tissue
(22, 23) one of which (CDO1) has been described elsewhere
(22, 23). These were chosen solely on the basis of high fre-
quency cancer-specific methylation and developed into assays
using MOB and real-time methylation-specific PCR (qMSP) to
determine the diagnostic accuracy for lung cancer detection in
sputum and plasma.

Materials and Methods
Study population

The study population consists of a prospective, observational
cohort of 651 participants, initiated in 2007 within the Johns
Hopkins Lung Cancer Specialized Programof Research Excellence
(SPORE). From this cohort, 210 study patients had early-stage
node-negative tumors (T1–T2N0) and samples adequate for
analysis. Institutional Review Board approval was obtained prior
to study initiation (NA_00005998), and all patients signed
informed consent. Surgical resection with curative intent and
pathologic analyses of suspected lung cancer lesions were com-
pleted in all patients and staged according to revised TNM
guidelines classification criteria (24). Cases had pathologically
confirmed lung cancer. Controls were defined as patients histo-
logically confirmed not to have cancer. Pack-years of cigarette
smoking was defined as the average number of packs smoked per
day times the number of years smoked. Nodule size was obtained
from the pathologic report, and nodule volume was calculated
using the ellipsoid volume formula (Volume ¼ 4/3 � p � radius
A � radius B � radius C).

Plasma and sputum collection
Prior to surgery, 20 mL of plasma was collected in tubes

containing sodium heparin (Becton Dickinson) and then stored
at �80�C. For sputum collection, 2 cups containing Saccoman-
no's fixative solution were used for each patient as previously
described (8, 11, 25). Subjects were asked to provide an early
morning spontaneous sputumat home in 2 cups for 3 consecutive

days within 1 week prior to pulmonary resection (11, 26). Five
milliliters of sputum was collected, washed with Saccomanno's
solution, vortexed, centrifuged, and stored at �80�C (8).

DNA isolation and bisulfite conversion
DNA extraction from tumor, plasma, and sputum was per-

formed using MOB, a process that allows DNA extraction and
bisulfite conversion in a single tube via the use of silica super
magnetic beads (20). This approach yields a 1.5- to 5-fold
improvement in extraction efficiency compared with tradition-
al conventional techniques (27). We optimized the protocol
previously described for plasma (27), using 1.5 mL of plasma
and 375 mL (800 units/mL, NEBL p8107s) of proteinase K. For
DNA extraction from sputum, we modified the protocol used
for plasma by adding 200 mL of sample to 300 mL of Buffer AL
and 40 mL of proteinase K and by incubating them together
at the same temperature (50�C for 2 hours). After digestion,
300 mL of isopropyl alcohol (IPA) and 150 mL of beads were
added. The lysate was incubated and rotated for 10 minutes
before adding 5 mL of carrier RNA and incubating for an
additional 5 minutes (27).

DNA methylation analysis
The genomic sequence for the genes and 1,000 bases

upstream was obtained from the UCSC genomic browser web-
site (28). The primers and hybridization probes for methylation
analysis were designed on the basis of this sequence by using
Primer3 (v.0.4.0; refs. 29, 30). All primer and probe sequences
are listed in Supplementary Table S1. The analysis was per-
formed using real-time qMSP and normalized to a control
b-actin assay (18). Each reaction was performed in a 25-mL
PCR mixture consisting of 2 mL of bisulfite-converted DNA, 300
nmol/L R-sense primer, 300 nmol/L F-anti-sense primer, 100
nmol/L probe, 100 nmol/L of fluorescein reference dye (Life
Technologies), 1.67 mmol/L dNTPs (VWRQuotation), and 1 mL
of Platinum Taq DNA Polymerase (Invitrogen). Master mix
contained 16.6 mmol/L (NH4)2SO4, 67 mmol/L Tris, pH
8.8, 6.7 mmol/L MgCl2, and 10 mmol/L b-mercaptoethanol in
a nuclease-free deionized water solution. Amplification reac-
tions were performed using 96-well plates (MicroAmp) in
triplicate. Thermocycling conditions were: 95�C for 5 minutes,
50 cycles at 95�C for 15 seconds, and 65�C for 1 minute and
72�C for 1 minute. An ABI StepOnePlus Real-Time PCR system
was used (Applied BioSystems, examples shown in Supplemen-
tary Fig. S1).

With the extremely low levels of DNA methylation in plasma
and sputum, replicates for some samples produced no detect-
able methylation as expected. To incorporate this information
into the final quantification of methylation, we calculated
the 2�DCt for each methylation detection replicate comparing
it to the mean Ct for b-actin (ACTB). For replicates which were
not detected (ND), a CT of 100 was used, creating a near zero
value for 2�DCt. The mean 2�DCt value was calculated with the
formula:

m 2�DCt ¼ 2�DCt replicate 1 þ 2�DCt replicate 2 þ 2�DCt replicate 3
� �

3

Statistical analysis
Quantitative data are expressed as median (interquartile

range) for continuous, nonparametric variables and frequency

Translational Relevance

The National Lung Screening Trial demonstrated a 20%
reduction in lung cancer mortality using low-dose CT
screening. Diagnostic accuracy of screening could be
improved using cancer-specific biomarkers from sputum
and plasma. We developed methylation-on-beads (MOB),
reducing sample loss with potentially increased sensitivity.
We used MOB and real-time quantitative methylation-spe-
cific PCR (qMSP) to detect the promoter methylation using
genes frequently methylated in SOX17, TAC1, HOXA7,
CDO1, HOXA9, and ZFP42. This study demonstrates that
high diagnostic accuracy of early-stage NSCLC can be
obtained using a panel of methylated promoter genes in
plasma and sputum and that the methylation level of these
genes is associated with a high lung cancer risk independent
of age, pack-year, and nodule size. This panel could be used
to identify patients at high risk for lung cancer, reducing
false-positive results, unnecessary tests, and improving the
diagnosis of lung cancer at an earlier stage.
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(percentage) for categorical variables. For intergroup compar-
ison, the Wilcoxon rank-sum test was used for continuous data
and the Fisher exact test for categorical data.

Data were analyzed using 2 approaches. The first approach is
the receiver operating curve (ROC) analysis using the 2�DCt

values for individual genes to determine the performance of
each individual marker (R statistic software, version 3.0.2;
ref. 31). The area under the curve was reported with 95%
confidence intervals (CI). The 3 best-performing genes were
selected for diagnostic accuracy for lung cancer detection, on
the basis of ROC curves and were used for combined detection.
Sensitivity and specificity values were obtained from the pre-
sence or absence of detectable methylation as a cutoff.

The second approach utilized a nonparametric machine learn-
ingmethod, random forest, to estimate the prediction accuracy in
an independent validation dataset by combining themethylation
data and clinical risk factors: nodule size, age, pack-year, chronic
obstructive pulmonary disease (COPD) status, and forced vital
capacity (FVC) values. Subjects were randomly selected as a
training set (67%) and a test set (33%). A statistician (P. Huang),
blinded to the diagnoses of the test set, used the training set to
build 3 random forest prediction models: (i) used sputum,
clinical, and demographic variables, (ii) used plasma and clinical
variables, and (iii) used only clinical and demographic variables.
The random forest model consisted of 5,000 trees, each using
a random sample of the training data. The remaining training
data were used for internal cross-validation. Each random forest
model provides 2 predictions: the cancer status (a binary predic-
tion) and the probability of cancer (a continuous prediction). The
2 random forest models were then applied to the test set data.
Prediction accuracy was reported as the proportion of test set
subjects correctly predicted by the random forest classification
models, allowing calculation of sensitivity, specificity, and ROC
analysis.

Results
Characteristics of the patients

Two hundred and ten patients fulfilled inclusion criteria,
with 150 node-negative early-stage lung cancer subjects and 60
controls with non-cancerous lung lesions (Table 1). Clinical
and demographic variables were similar in cases and controls
with the exception of age, number of pack-year, and nodule size
(cm) as well as volume (cm3). Subjects with lung cancer were
older than controls (67 vs. 73 years, P ¼ 0.007), smoked more
(30 vs. 19.5 pack-years, P ¼ 0.01), and had larger nodules (2.0
vs. 1.5 cm, P ¼ 0.01). The proportion of smokers, former
smokers, and never smokers was not different between cases
and controls.

Detection of DNA methylation
We first measured DNAmethylation for these genes in tumor

tissue, confirming our previous study suggesting these genes
were methylated in the majority of lung tumors (Fig. 1).
Methylation in sputum was detected more frequently in all
6 genes in patients with cancer compared with controls (Fig. 1),
which for some patients was quantitatively similar to lung
tumor tissues, but in some cases was at levels previously below
conventional methods of detection. For 5 of the 6 genes
(SOX17, TAC1, HOXA7, CDO1, and ZFP42), this was statisti-
cally significant (P < 0.001), whereas HOXA9 showed a lack of

specificity. Methylation of all 6 genes was detected more
frequently in plasma in cases compared with controls (P <
0.001). The worst performing gene was HOXA9 in plasma,
which showed a lack of specificity as was seen in the sputum.
We determined the sensitivity and specificity in this cohort
using the presence or absence of detectable methylation as a
cutoff, without considering the quantitation of methylation.
This resulted in good sensitivity and specificities (Table 2),
showing that the sensitivity and specificity for lung cancer
diagnosis using individual genes from sputum ranged from
63% to 93% and 42% to 92%, respectively, and from plasma
from 33% to 91% and 52% to 94%, respectively.

Gene methylation and lung cancer diagnostic accuracy
ROC curves for lung cancer detection were obtained for each

single gene; using the normalized methylation DCt values
calculated as described in Materials and Methods (Supple-
mentary Table S2, ROC curves in Supplementary Figs. S2 and
S3). By determining the best quantitative cutoff, the sensitivity
and specificity for lung cancer diagnosis from single methyl-
ated genes in sputum ranged 63% to 93% and 42% to 92%,
respectively, and in plasma from 33% to 91% and 52% to
94%, respectively, and was very similar to that obtained
reported in Table 2, with the exception of HOXA9 where
quantitative cutoffs improved performance. The AUC values
were 0.56 to 0.89 in sputum samples and 0.60 to 0.78 in
plasma samples.

The genes with the largest AUC in sputum were: TAC1: AUC,
0.84; 95%CI, 0.74–0.94;HOXA7: AUC, 0.77; 95%CI, 0.67–0.86;

Table 1. Baseline characteristics of the 210 subjects

Patient characteristics
Cancer

(N ¼ 150)
Control
(N ¼ 60) P

Age at surgery (IQR), y 68 (62–75) 63 (55–73) 0.007
Gender
Male (%) 63 (42%) 33 (55%) 0.094
Female (%) 87 (58%) 27 (45%)

Race
White (%) 120 (80%) 51 (85%) 0.087
Black (%) 19 (13%) 3 (5%)
Other (%) 11 (7%) 6 (10%)

Stage
IA–IB (%) 136 (91%) NA NA
IIA (%) 14 (9%) NA

Histology
Adenocarcinoma (%) 121 (81%) NA NA
Squamous cell (%) 26 (17%) NA
Adenosquamous (%) 3 (2%) NA

Smoking status
Current (%) 27 (18%) 7 (12%) 0.176
Former (%) 87 (58%) 34 (57%)
Never (%) 31 (21%) 19 (32%)

Pack-year (IQR) 30 (10–50) 20 (0–35) 0.010
COPD (%) 41 (27%) 12 (20%) 0.370
FEV1 % predicted (IQR) 84 (70–99) 85 (70–100) 0.861
FVC % predicted (IQR) 92 (80–103) 87 (80–110) 0.682
FEV1/FVC % ratio (IQR) 73 (68–78) 77 (70–79) 0.080
Nodule size, cm 2 (1.5–3) 1.5 (1.1–3) 0.01
<1 6 (4%) 13 (22%) 0.001
1–2 52 (35%) 19 (32%)
>2 92 (61%) 28 (47%)

Nodule volume, cm3 4.19 (1.77–14–14) 1.6 (0.52–18.12) 0.001

NOTE: Nodule size % <1, 1–2, >2 cm.
Abbreviations: FEV1, forced expiratory volume in 1 second; IQR, interquartile
range.
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and SOX17: AUC, 0.84; 95% CI, 0.75–0.94 (Fig. 2A), with
sensitivities and specificities for TAC1 at 86% and 75%; HOXA7
at 63% and 92%; and SOX17 at 84% and 88, respectively. The
positive (PPV) and negative predictive values (NPV) for these
3 geneswere: for TAC1, 93%and58%; forHOXA7, 97%and40%;
and for SOX17, 96% and 60%, respectively.

In plasma, the genes with the largest AUC were: CDO1: AUC,
0.68; 95% CI, 0.58–0.77; TAC1: AUC, 0.78; 95% CI, 0.70–0.86;
and SOX17: AUC, 0.78; 95% CI, 0.70–0.86 (Fig. 2B), with
corresponding sensitivities and specificities forCDO1 at 65% and
74%; TAC1 at 76% and 78%; and SOX17 at 73% and 84%,
respectively. The PPV and NPV for these genes were: for CDO1,
86% and 46%; for TAC1, 90% and 57%; and for SOX17, 92% and
55%, respectively.

The sensitivity and specificity obtained from the combination
of the 3 best performing markers (TAC1, HOXA17, and SOX17)
in sputum was 98% and 71%, respectively, with a corresponding

ROC AUC of 0.89 (95% CI, 0.80–0.98; Fig. 2C). In plasma, the
combination of CDO1, TAC1, and SOX17 showed a sensitivity,
specificity, and AUCof 93%, 62%, and 0.77 (95%CI, 0.68–0.86),
respectively (Fig. 2D).

Smokers' subset analysis
As CT screening for lung cancer is currently recommended

for current and ex-smokers, we explored the diagnostic accuracy
when only smokers were considered (n ¼ 155; 114 with cancer
and 41 without cancer; Supplementary Table S4). The results in
only smokers were similar to the entire study population for
the prevalence of methylated patients, sensitivity, specificity, and
AUC (Supplementary Table S5). AUC in smokers only was 0.89
(95% CI, 0.79–0.99) for the combination of the methylation
status of the best 3 genes from sputum and AUC was 0.85 (95%
CI, 0.76–0.94) from the best 3 genes from plasma (Supplemen-
tary Table S5).

Figure 1.

Methylation detection values of the studied genes. This scatter plot shows the converted DCt methylation values in a logarithmic scale. These values show
a bimodal distribution with the lower group the values corresponding to those samples with no detectable amplification (ND). The majority of lung
tumor samples have high levels of methylation, as expected from the previous study. Plasma and sputum samples from patients with cancer have
detectable methylation that varies from levels nearing that of tumor samples to those at the limits of detection (10�5 to 10�6), whereas samples from other
patients are undetectable. The majority of controls have undetectable methylation at these loci, although some patients do have detectable methylation that
is quantitatively similar to patients with cancer. HOXA9 methylation is detectable in most control patients, especially in the sputum, suggesting that this
change is present in the lung epithelium and not as specific for the detection of cancer.
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Independent prediction accuracy performance
While the above analysis looked at individual gene meth-

ylation in cases and controls to detect cancer, independent
blinded random forest prediction models were used to con-
sider all DNA methylation biomarkers in combination with
clinical risk factors. Risk factors included in the first 2 random
forest prediction models were methylation Ct values from
all 6 genes, age, pack-year, COPD status, and FVC values.
The methylation Ct values were not included in the last
prediction model. The randomly selected training dataset has
140 subjects with 99 (70.7%) cancers and 41 (29.3%) con-
trols. The independent test set has 70 subjects with 51
(72.9%) cancers and 19 (27.1%) controls. In the variable of
importance output of the first 2 random forest prediction
models, methylation Ct values were ranked as more important
variables than demographic and clinical variables (Supple-
mentary Fig. S4). Supplementary Table S3 summarizes the
prediction accuracies of these 3 models when they were
applied to the independent test set patients. With sputum
samples, the random forest model correctly predicted lung
cancer in 91% of subjects in the test subset. The correspond-
ing AUC was 0.85 (95% CI, 0.59–1.0; Fig. 3). The sensitivity
and specificity of the prediction in the testing subset from the
ROC curve were 0.93 and 0.86, respectively. Using plasma
samples, the random forest model correctly predicted lung
cancer in 85% of subjects in the testing subset. The corre-
sponding AUC was 0.89 (95% CI, 0.79–0.99; Fig. 3). The
sensitivity and specificity of the prediction in the testing
subset from the ROC curve were 0.93 and 0.67, respectively.
Using clinical and demographic risk factors alone, the accu-
racies were lower than the first 2 models with a diagnostic
accuracy of 68%, AUC of 0.64, PPV of 75%, and NPV of 38%
(Fig. 3; Supplementary Table S3).

Discussion
High diagnostic accuracy for early-stage lung cancer can be

obtained using a panel of methylated promoter genes and an
ultrasensitive detection strategy on the basis of MOB in
sputum or plasma., This assay has several characteristics
which make it clinically useful: (i) the sensitivity and spec-

ificity in sputum and plasma exceeds the diagnostic accuracy
required by most clinical standards (32, 33); (ii) it can be
performed with minute quantities of DNA from sputum
or plasma; and (iii) it can help distinguish malignant versus
benign nodules, addressing the current problem of high false-
positive scans in lung cancer screening. This discrimination
is independent of age, pack-year, and even nodule size,
which allows the detection of early-stage lung cancer in
smokers. Finally, as a PCR-based assay, it is simple and
relatively inexpensive.

Previous studies have sought to improve lung cancer risk
assessment by the use of molecular biomarkers obtained from
plasma and sputum (8, 10, 11, 25, 26, 34, 35). However none
of these tests have been used clinically because their achieved
sensitivities and specificities were usually not high enough for
clinical decision making (8, 10, 11, 25, 26, 34–38). With
improvements in DNA extraction methods and processing for
methylation detection, along with the use of highly prevalent
cancer-specific methylation targets, we have overcome these
limitations. Direct comparisons between serum and plasma for
detection of DNA methylation have not been conducted in this
study, but the use of plasma may reduce the amount of
lymphocyte DNA present for analysis.

Despite the improved sensitivity of this approach, there are
some patients with undetectable DNA methylation in either
blood or sputum. In examining these nondetectable patients,
this is not related to clinical characteristics, including smoking
status (see similar detection in only smokers, Supplementary
Data). This does not appear to be related to PCR failure or assay
efficiency, which was assessed for each assay using appropriate
controls (Materials and Methods). We also examined whether
tumor size and therefore tumor burden affected our ability to
detect DNAmethylation in the plasma or sputum. There was no
statistical difference in tumor size between patients with cancer
with or without detectable DNA methylation. (Supplementary
Table S6), and notably nodules less than 2 cm were readily
detected.

In this study, detection of methylation in sputum samples
was slightly better than the detection of these same genes
in plasma. The access of early cancers to the airways may
be one explanation for this difference. Indeed, changes in

Table 2. Gene methylation detection in sputum and plasma

Cancer (N ¼ 90) Control (N ¼ 24)
Sputum n Sensitivity n Specificity PPV NPV

SOX17 76 84% 3 88% 96% 60%
TAC1 77 86% 6 75% 93% 58%
HOXA7 57 63% 2 92% 97% 40%
CDO1 70 78% 8 67% 90% 44%
HOXA9 84 93% 22 8% 79% 25%
ZFP42 78 87% 9 63% 90% 56%
TAC1, HOXA7, SOX17 88 98% 7 71% 93% 89%

Cancer (N ¼ 125) Control (N ¼ 50)
Plasma n Sensitivity n Specificity PPV NPV
SOX17 91 73% 8 84% 92% 55%
TAC1 95 76% 11 78% 90% 57%
HOXA7 42 34% 4 92% 91% 36%
CDO1 81 65% 13 74% 86% 46%
HOXA9 108 86% 27 46% 80% 58%
ZFP42 105 84% 23 54% 82% 57%
CDO1, TAC1, SOX17 116 93% 19 62% 86% 78%
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the airways form the basis for the AEGIS Study, which reported
an improved diagnostic yield of bronchoscopy using gene
expression classifiers from epithelial cells collected during
bronchoscopy (38). The AUC, sensitivities, and specificities
reported in the AEGIS Study were lower than we report here. In
our model where methylation markers from plasma were
considered simultaneously with age and number of pack-
years, we observed a predictive accuracy close to that of
sputum. This suggests that plasma could substitute for sputum
in lung cancer detection in those cases where sputum cannot
be obtained.

According to theNLST, the chances of having lung cancerwith a
positive CT screening are less than 5% (1, 2). This is because lung
cancer with CT screening in the NLST study yielded a 71%
sensitivity but a 63% specificity with a 96.4% false-positive rate
(1, 2). Our current findings suggest that methylation detection
with a few genes from either plasma or sputum could potentially

guidemanagement of positive CT screening results. Although our
study included some patients who would not meet current lung
cancer screening guidelines (non-smokers), we observed similar
detection rates when only smokers were analyzed. Replication
and external validation of our findings in a large, prospective,
multicenter case–control trial are essential before this approach
can be adopted.

This study shows that high sensitivity and specificity detec-
tion of early-stage NSCLC can be obtained using a panel of
methylated promoter genes in plasma and sputum and that
the methylation level of these genes is associated with a high
lung cancer risk independent of age, pack-year, and nodule
size. If confirmed in a validation study, this panel could be
used as an adjunct to CT screening, identifying patients at high
risk for lung cancer, reducing false-positive results, unneces-
sary tests, and improving the diagnosis of lung cancer at an
earlier stage.
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Figure 2.

ROC curves for lung cancer detection. A, ROC curves comparing the 3 genes with the largest areas under the curve for sputum. B, ROC curves comparing the
3 genes with the largest areas under the curve for plasma. C, ROC of the combined methylation status of the genes from sputum with the largest area
under the curve. D, ROC of the combined methylation status of the genes from plasma with the largest area under the curve.
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Figure 3.

ROC curves for cancer predictions. ROC curves assessing the accuracy of the predictions for lung cancer performed on the testing subset by using as
predictors the DCt values for all 6 genes, age, pack-year, COPD status, and FVC values. The left plot is obtained using sputum samples, the middle
one using plasma samples, and the right one using the ROC curve for the clinical predictors alone.
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