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Background. San Francisco has the highest rate of tuberculosis (TB) in the U.S. with recurrent outbreaks among the homeless

and marginally housed. It has been shown for syndromic data that when exact geographic coordinates of individual patients

are used as the spatial base for outbreak detection, higher detection rates and accuracy are achieved compared to when data

are aggregated into administrative regions such as zip codes and census tracts. We examine the effect of varying the spatial

resolution in the TB data within the San Francisco homeless population on detection sensitivity, timeliness, and the amount of

historical data needed to achieve better performance measures. Methods and Findings. We apply a variation of space-time

permutation scan statistic to the TB data in which a patient’s location is either represented by its exact coordinates or by the

centroid of its census tract. We show that the detection sensitivity and timeliness of the method generally improve when exact

locations are used to identify real TB outbreaks. When outbreaks are simulated, while the detection timeliness is consistently

improved when exact coordinates are used, the detection sensitivity varies depending on the size of the spatial scanning

window and the number of tracts in which cases are simulated. Finally, we show that when exact locations are used, smaller

amount of historical data is required for training the model. Conclusion. Systematic characterization of the spatio-temporal

distribution of TB cases can widely benefit real time surveillance and guide public health investigations of TB outbreaks as to

what level of spatial resolution results in improved detection sensitivity and timeliness. Trading higher spatial resolution for

better performance is ultimately a tradeoff between maintaining patient confidentiality and improving public health when

sharing data. Understanding such tradeoffs is critical to managing the complex interplay between public policy and public

health. This study is a step forward in this direction.
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INTRODUCTION
TB is one of the top four diseases for infection-induced mortality in

the world today [1]. There are currently about 54 million people

infected with the bacterium Mycobacterium tuberculosis with approx-

imately 8 million new infections occurring each year. TB kills

nearly 2.4 million people worldwide annually. In the U.S. alone,

there are about 12.5 million people who have been infected by TB

[2], with the city of San Francisco having the highest rate in the

U.S. Although in recent years the incidence of TB has been

declining in the San Francisco general population (see Figure 1A),

it has remained relatively constant in the homeless population (see

Figure 1B).

Spatial investigations of disease outbreaks seek to identify and

determine the significance of spatially localized disease clusters by

partitioning the underlying geographic region. The level of such

regional partitioning can vary depending on the available

geospatial data on cases including towns, counties, zip codes,

census tracts, and exact longitude-latitude coordinates. When

exact patients’ locations have been used in cancer surveillance, the

detection sensitivity was not appreciably higher than that obtained

with larger and more conventional regional partitions such as

census block groups [3], though the benefit of localized rate

variation (i.e. geographic excess or shortfalls in cancer incidence

for small areas) was shown in an earlier study [4]. In other works,

there were few performance differences observed for larger

aggregation comparisons such as block group, census tract, zip

code, and town [5,6].

More recently, Olson et al, using the method of space scan

statistic [7] applied to syndromic data, has shown that when

patients’ exact locations are used, higher detection sensitivity is

achieved as compared to center points of larger geographical

regions such as zip codes and census tracts [8]. The authors

demonstrated that the advantage in using higher resolution cluster

detection results primarily in a reduced distortion effect that is

induced by the use of large detection windows (i.e. spatial scanning

windows), as compared to smaller detection windows. This

problem occurs when, for example, two cases are geographically

close to one another, while they reside in two separate zip codes (or

census tracts). In such situations, if the geographic partitioning is

by zip code (or census tract), the detection window has to be rather

large to encompass both administrative regions because the cases
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are represented by the centroids of these regions, while a smaller

detection window can capture such localized cases when the exact

individual addresses are used.

In space-time surveillance of disease outbreaks, however, the

interdependency between both time and space are manifested by

disease clusters that are localized in time and space. Such disease

localizations can be investigated through dynamic partitioning of

the underlying geographic regions, where different degrees of

spatial resolution can be coupled with varying levels of temporal

scale to examine both the detection sensitivity and timeliness (i.e.

the speed by which an outbreak is detected after it has occurred).

While the benefits of using higher spatial resolutions, such as

patients’ individual addresses, have been examined in the context

of spatial epidemiology, the spatio-temporal effects of disease

localizations have not been studied under different degrees of

spatial aggregation. As such, the effect of varying degrees of spatial

aggregation on detection timeliness has not been investigated. At

the same time, any detection method must rely on a pool of

historical data to both establish a baseline of normal disease

variability and estimate the model parameters. However, the

amount of available data varies across surveillance programs, and

historical data are often in short supply. Therefore, in addition to

detection sensitivity and timeliness, the dependency on the amount

of historical data must also be examined when varying spatial

resolution

In this work, we use a modification of a space-time

permutation scan statistic [7,9–12] to examine the effect of

varying degrees of spatial resolution (census tracts of patients’

residences versus exact locations) on the detection sensitivity,

detection timeliness, and the amount of data needed for training

the model, applied to the TB data on the San Francisco homeless

population for 1991–2002, using both simulated and confirmed

outbreaks. This study is population-based and prospective, where

historical data and documented outbreaks are used, but the

detection algorithm is applied to the data as would be run in a

real-time environment.

MATERIALS AND METHODS

Data
The San Francisco Department of Public Health (SFDPH), TB

Control Program (TBCP), routinely collects comprehensive

information on TB cases and their contacts including demograph-

ics (e.g., age, gender, race), personal risk factors (e.g., intravenous

drug use, HIV status, alcohol intake), laboratory results (e.g., skin

test, chest x-ray), time of diagnosis, and primary residence

addresses. For the homeless population, the geospatial information

typically includes addresses fir shelters and single room occupan-

cies (SRO-a building that houses tenants in single rooms where

kitchen and bathrooms are shared for each floor). The SFDPH

TBCP takes all possible means to document reported individuals

infected with TB in the homeless population within San Francisco

County, such that the dates of occupancies at shelters are recorded

on a daily basis. This type of infrastructure enhances the SFDPH

TBCP’s ability to track homeless individuals to a primary

residence and identify potential locations of TB transmission

between individuals. As a result, the residences that are registered

with the SFDPH TBCP can be used as a stable residence location

for a homeless individual, given by the start and end dates

recorded in their database and presented in this work.

In addition to the above data types, advances in molecular

biology have made it possible to identify different bacterium

fingerprints with the technique of restriction fragment length

polymorphism (RFLP) and polymorphic GC-rich repetitive-

sequence (PGRS) methodologies [13,14]. With these technologies,

it is possible to both identify and track specific subpopulations that

have been infected with the same bacterial strain. This information

can aid in outbreak investigation to identify patterns and hubs of

transmission often hidden in a network of complex interactions

between primary infected cases and their contacts [15,16].

The dataset for this study consists of comprehensive information

on 392 individuals that have been diagnosed by the SFDPH

TBCP with active TB and identified as homeless over the time

Figure 1. Number of TB cases in San Francisco for the years of 1991–2002: (A) general population, (B) homeless population. Each tick on the x-axis
is a summation of TB cases over a three month interval. Grey dashed lines separate each year.
doi:10.1371/journal.pone.0001284.g001
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period of 1991–2002. The primary residences of these individuals

were used to identify their geographical coordinates (latitudes and

longitudes) using ArcGIS v9.0 (ESRI). The census tract informa-

tion for identifying the tracts in which the homeless individuals

reside, were obtained from generalized extracts from the Census

Bureau’s TIGER geographic database provided by the US Census

Bureau (http://www.census.gov/geo/www/cob/index.html).

There were a total of 76 unique census tracts covered by the

study population. TB case data is kept electronically in a patient

management database maintained by the SFDPH TBCP. All case

information, including address of residence and homeless status at

the time of diagnosis, was downloaded directly from the database.

Census tract information was obtained from the 2000 census.

Confirmed outbreaks— p9 cluster
During 1991–2002, an epidemic strain of TB took hold among the

homeless population in San Francisco. According to the SFDPH

TBCP, an outbreak is defined as 1–2 TB cases, localized in time

and geographic area. Both RFLP and PGRS analyses were

conducted on infected cases to identify the particular strain and

associate it with previously identified molecularly similar clusters.

This investigation resulted in 47 unique homeless individuals being

identified as infected carriers of this previously unobserved strain,

referred to as the p9 cluster. This cluster arose at two separate time

periods, with the first outbreak starting in the fall of 1995, peaking

in 1996 and disappearing by the spring of 1999, with a second

outbreak rapidly appearing in the fall of 2001, peaking in the

summer of 2002, and disappearing in the spring of 2003. Since this

cluster has now been identified as two ‘waves’ of true outbreaks,

these cases were used for evaluation of the detection algorithm.

More specifically, we used the dates of these confirmed p9

outbreaks to assess both the sensitivity and timeliness of the

detection algorithm presented here when using census tract

centroids versus individual addresses.

Modified space-time permutation scan statistic
A variation to the space-time permutation scan statistic introduced

by Kulldorff et al. [10] using a square grid approach provided by

Neill et al. [17] is implemented here for space-time investigation of

TB outbreaks in the San Francisco homeless population. Briefly,

the method can be described as follows. Instead of using circles of

multiple radii as spatial bases for scanning cylinders [10], a square

grid approach [17] is employed here. The method iteratively runs

varied sizes of squares ranging from 0.02 km to 1 km in width,

akin to varied radii sizes of circles in [10]. In every iteration of the

algorithm, overlapping grids containing p squares, each of area r2

are placed over the entire region, where the grid overlap is

permitted at half the width of each square, representing the spatial

domain. That is to say, for a particular row using a specified

square size, each square is overlaid upon an adjacent square with

half of the width of both squares overlapping. Then, for the next

row, the same procedure is implemented, where the width of a

square in the subsequent row overlaps with the adjacent square in

the same row (half the width) and the square from the preceding

row (half the height). Figure 2 illustrates an example of such a

geographic partitioning approach using three overlapping squares

overlaid on a map of the Northwest quadrant of San Francisco.

The time domain, analogous to Kulldorff et al. [10], is represented

by the height of such (square) cylinders. For each square, the

expected number of cases, conditioned on the observed marginals

is denoted by m where m is defined as the summation of expected

number of cases in a cylinder, given by m~
P

(s,t)[A

mst where s is

the spatial cluster and t is the time span used, and

mst~
1

N
(
X

s

nst)(
X

t

nst), where N is the total number of cases

and nst is the number of cases in either the space or time window

(according to the summation term). The observed number of cases

for the same cylinder is denoted by n. It is important to note that

because we do not have an accurate account of the population

at risk (e.g. the size of homeless population), the expected values

are derived from the TB case counts. Then the Poisson

generalized likelihood ratio (GLR), which is used as a measure

for a potential outbreak in the current cylinder, is given by

n

m

� �n
N{n

N{m

� �

(N{n)

[18]. To assign a degree of significance to the

GLR value for each cylinder, Monte Carlo hypothesis testing [19]

is conducted, where the observed cases are randomly shuffled,

though the spatial and temporal marginals are unchanged, and the

GLR value is calculated for each square [10]. This process of

randomly shuffling is conducted over 999 trials and the random

GLR values are ranked. A p-value for the original GLR is then

assigned by its relative ranking within the random GLR values.

For our space window, we restricted the width of squares to

range from 0.02 km to 1 km, while the time window was varied

from 1 to 6 months, where one month is approximated by a fixed

four week interval. This resulted in a total of 441 space scanning

squares sampled for the census tract centroids, and a total of 4,234

for individual addresses.

For our time window, the TB case count is much lower than the

daily data feeds typical of surveillance systems used to monitor

emergency room visits due to the influenza-like illnesses or

pharmacy sales, for example. To compensate for the smaller

proportion of total cases, daily counts were aggregated into

monthly (approximately 4 weeks) case counts resulting in a total of

144 data points (months). This agglomeration of cases is necessary

since the notion of early detection of outbreaks of a chronic disease,

such as TB, with long incubation period [20] requires a longer

Figure 2. An illustration of partitioning the map of San Francisco
using the overlapping square grid approach. Three overlapping
squares, representing three spatial scanning windows in the detection
method, are overlaid upon the northwest quadrant of San Francisco.
The map is partitioned by census tracts. A single square size and only a
few census tract centroids (blue ‘x’ symbols) are represented in this
example for illustrative purposes.
doi:10.1371/journal.pone.0001284.g002
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time scale. This is in contrast to syndromic surveillance of acute

infectious disease (such as influenza-like illnesses), where early

detection encompasses only hours to days after the start of an

outbreak (see [21–25]) and the case counts are much greater for

this shorter time period. The scan statistic is shown to handle both

densities of cases. Finally, the amount of historical data used for

training the model and parameter estimations varied from 1–

18 months spanning the years of 1991–2002.

Reduction of overlapping signals
Due to the number of likelihood ratios calculated, multiple testing

correction becomes an important procedure for determination of

significant signals. The Monte Carlo hypothesis testing step is

designed to correct for this. However, there are instances where

multiple signals with similar significance are detected (i.e. not

having adequate power to use enough precision for distinguishing

two p-values) that also share a high degree of similar information

(due to the stochastic nature of process by which the p-value is

calculated), such that a procedure for reduction of such redundant

information is required. For example, a geographical square with a

GLR of y that has two cases within the one month window may

intersect with another square, with the same GLR value of y (based

on the acceptable precision ) for the same time window, that is

larger in size, contains three cases, and encompasses the first

square. Under such circumstances when there is a 100% intersect

of a smaller square with a larger square for the exact same time

period and similar significance measure, a unique signal is

reported by retaining the smaller square. This procedure was

performed on all significant signals using the above criteria

RESULTS

Confirmed outbreaks—detection sensitivity and

timeliness
Here we examine the detection sensitivity and timeliness of the

method using the two levels of geographical resolution (i.e. census

tract centroids and individual addresses) applied to the confirmed

outbreaks of the p9 cluster (Table 1 and Figure 3). As stated

previously, this outbreak arose at two separate time periods: 1)

1995–1999, reaching a peak in TB infections in 1996, and 2) late

in 2001–2002, reaching a peak in TB infections in the summer of

2002. To provide parity between the two methods, some

assumptions were made in the case where both approaches were

detecting the same signal, with overlapping, yet slightly different

start and end dates. If the start or end dates for a significant signal

under one geographic resolution overlapped the dates for the

other, we considered them the same signal. That is, the detection

method identified the same signal under both geographic

constraints. The initial increase in cases that occurred in 1995,

as well as the continuation of this outbreak through 1996, 1997,

and the large resurgence in 2002 were detected under both spatial

resolutions (see Table 1). These p9 clusters are accurately detected

at three separate time points (1995–1996, 1997, and 2002) that are

consistent with the documented outbreaks of this epidemic strain.

It should be noted that the two outbreaks detected in 2002 using

individual addresses overlap the single outbreak detected in 2002

using census tract centroids, so this is treated as a single detection

by each method.

With exception to the significant cluster that is detected within

the dates of 11/26/96–12/17/96 using individual addresses (likely

indicating increased sensitivity as compared to using census tract

centroids), there is not a considerable difference in the detection

sensitivity of the two. One could argue that this additional cluster

that was detected using individual addresses in 1996 (and not

detected by census tract centroids) is evidence that supports overall

better performance with individual addresses (as compared to

census tract centroids), with confirmed p9 outbreaks. By assessing

sensitivity as a ratio of the number of detected (and confirmed)

outbreaks to the total number of confirmed outbreaks, the use of

individual addresses detects 100% of the confirmed outbreaks,

whereas the use of census tract centroids detects 75% of the

confirmed outbreaks. Irrespective of this last point, the detection

timeliness is improved when using individual addresses. Here, the

timeliness is assessed by the detection time window, which

constitutes the number of weeks that are used within the height

of the scanning window to calculate the expected and observed

number of cases (used for the generalized likelihood ratio).

When examining the time window for similar signals under the

two spatial resolutions, the detection method using individual

addresses generally requires smaller time windows than that of

census tract centroids. As can be seen from Table 1, the significant

signal detected within the dates of 5/13/97–8/26/97 using

individual addresses is detected approximately one month prior

to the same outbreak that is detected using census tract centroids.

In addition, the end date of this time window, using individual

addresses, is approximately two months earlier. This earlier end

date pattern is also demonstrated for the 2002 outbreak as well,

even when the use of individual addresses identifies a significant

cluster with two separate date blocks. For detection of identical

outbreaks, the use of individual addresses (as compared to census

tract centroids) is advantageous in reporting the significant cluster

in a shorter time interval.

Simulated outbreaks—detection sensitivity and

timeliness
Given the sparse nature of the TB data on the homeless, limited

number of outbreaks (as defined by the SFDPH TBCP) in the

data, and nearly similar detection sensitivity measures obtained

using the two spatial resolutions in the previous section, we next set

out to examine the performance of the space-time detection

method (previously described) to TB data infused with simulated

outbreaks. By introducing simulated outbreaks into the real data,

while we compensate for the relatively low TB case counts in many

geographic regions, we can provide a comprehensive evaluation of

detection performance and identify the inflection points in the

sensitivity of the detection algorithm. Since the spread of real TB

Table 1. Detection timeliness and sensitivity of the method
applied to the confirmed p9 outbreaks using census tract
centroids and individual addresses.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Outbreak Individual addresses Census tract centroids

Start date End date Start date End date

1 10/31/1995 4/9/1996 10/31/1995 4/9/1996

2 11/26/1996 12/17/1996

3 5/13/1997 8/26/1997 6/10/1997 10/21/1997

4 7/2/2002 9/17/2002 7/2/2002 11/12/2002

9/24/2002 10/15/2002

The dates detected by the space-time permutation scan statistic are in
agreement with the two documented ‘waves’ of the p9 outbreak in San
Francisco County. With the exception of the first outbreak, the time windows
are consistently shorter when exact coordinates are used. While the detection
timeliness is greatly improved using exact coordinates, the detection sensitivity
is only slightly greater using individual addresses than census tract centroids.
doi:10.1371/journal.pone.0001284.t001..
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cases in some regions is rather sparse and non-uniform, we chose

to implement a ‘supervised’ random dispersal of simulated cases. If

numerous simulated cases are added to regions containing very

few (or none) real TB cases, this can introduce a bias, or artificial

case density structure that can lead to an inaccurate representation

of the case spatial spread in the population at risk (i.e. TB homeless

population), which would affect the clusters detected by the

algorithm. To address this, the spatial structure of the real TB case

spread was used as a guide when adding the random simulated

cases. We applied (with supervision) a uniform addition of

simulated cases to the background of real TB cases, to maintain

a case density approximately consistent with the actual case

structure.

Similar to the approach demonstrated in [8], the spatial

scanning window size was increased from the smallest size of

0.02 km to the largest size of 1 km, while keeping the time window

fixed, since our first interest was to establish the difference in

detection sensitivity between census tract centroids and individual

addresses based on a spatial resolution. A geographic region was

first chosen that contained five real TB cases within a 0.2 km

range. The simulated points were distributed in multiple adjacent

administrative regions (census tracts) ranging from 1 to 4. A total

of six simulated cases were then randomly placed in one

administrative region and the percentage of significant clusters

detected was calculated as the amount of cases (i.e. simulated and

actual) detected divided by the total number of cases in the one

administrative region. These six simulated cases were then split

into two adjacent administrative regions, each containing three

simulated cases (in addition to the actual cases) and the same

calculation was performed. Next, the six simulated cases were split

into three administrative regions, where two cases each were

partitioned into three separate administrative regions (with actual

cases), and the calculation was performed again. Finally, the six

cases were assigned to four separate administrative regions (two

regions containing two cases and two regions containing one case

each, along with the actual cases), and the calculation was

performed a final time. This approach was conducted a total of 12

separate times, starting each iteration with a new region of size

0.2 km, containing approximately five total real TB cases. Then

the average percentage of significant clusters detected across all 12

iterations was calculated. This entire process was conducted first

with a spatial scanning window using census tract centroids, then

Figure 3. Significant signals detected by the method applied to the confirmed p9 outbreaks using individual addresses (A–E) and census tract
centroids (F–H). San Francisco map is partitioned by census tract where tracts shaded red represent the location of the significant signal detected for
the specified dates in Table 1. To protect patient confidentiality, only the census tracts in plots A–E are shaded, as opposed to highlighting the exact
locations.
doi:10.1371/journal.pone.0001284.g003
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again with a spatial scanning window using individual addresses to

compare the detection sensitivity between the two, while keeping

the time window fixed.

When the scanning window is small, the method attains greater

detection sensitivity using individual addresses regardless of the

number of regions within which the cases are added (see

Figure 4A–B). As the scanning window size is set to 0.2 km

(Figure 4C) and increased to larger values (Figure 4C–E), this

trend continues only for the cases distributed over the multiple

administrative regions (i.e. 3 and 4). The census tract centroids

have greater detection sensitivity when cases are distributed over

fewer administrative regions (1 and 2) using scanning window sizes

of 0.2 km and greater. At the largest scanning window size (1 km),

there are very few cases detected using either of the spatial

resolutions, due to the convergence of the cluster grid and overall

detection region.

The speed of detection (i.e. detection timeliness) is one of the

most important performance measures for disease surveillance. In

the space-time permutation scan statistic, the time window is

varied at time spans ranging from one month to six months and

anchored on the last month of the time window, using data

restricted up to that point. This methodology provides a pseudo-

real time scan, prospectively, where it is assumed that data is only

available up to the point of running the space-time permutation

scan statistic. Outbreaks that occur in a short time interval for a

specific geographic region or adjacent regions are detected within

the small time window size, whereas, those outbreaks that have

more sparse case counts with time (i.e. spread out over a longer

time span than 1–2 months) for a specific geographic region or

adjacent regions, are detected within a larger time window size. In

the context of a disease such as TB with chronic characteristics, we

denote that an outbreak is detected early if it is identified within

months (less than a year) from the start of the outbreak. To assess

the differential detection timeliness of the method using individual

addresses and census tract centroids, additional cases were

simulated (similar to how this was conducted before), where this

time, the spatial window was fixed at 0.2 km and the time window

was increased from 1–6 months, anchoring the scanning window

on the last month of the scan date. The spatial window of size

0.2 km was selected because this window size gave similar

sensitivity results using both individual addresses and census tract

centroids in the spread across four administrative regions, for the

fixed time analysis example (examined above). Using the same

conditions, geographic regions, and the same frequency of

simulated cases as above, the approach was repeated, though for

this analysis, the simulated cases were added over a time span of

six months, one case for each month. This process was repeated 12

times, choosing the same starting geographic regions as were

selected in the fixed time simulation method above, and the signal

p-values (calculated from the Monte Carlo hypothesis test) were

recorded for the administrative regions that had successive

simulated cases added at each time window. Then the average

p-value was calculated across the 12 simulations and these values

were transformed (-log), as is often done to give a more linear

measure for comparison between values. This approach (where the

time window is varied and the spatial window is fixed) was used to

evaluate the detection timeliness of the method between using

individual addresses and census tract centroids.

As can be seen in Figure 5, at increasing time windows greater

than two months, more significant clusters are detected with the

use of individual addresses. At time windows less than three

months, no noticeable difference is observed between the two

methods. Both individual addresses and census tract centroids

demonstrate a linear relationship with time after two months. So

when using a fixed space window and increasing the time domain,

the method, using individual address, detects more significant

clusters at a time window greater than two months.

Historical data requirement
The accuracy of surveillance algorithms is often determined by

assessments on retrospective data. Documented outbreaks in the

past are used as ground truth to measure model performance.

Depending on the algorithm, the larger the pool of historical data,

the more reliable are the performance measures, since the

Figure 4. Average detection sensitivity of the method applied to
simulated outbreaks. Cases were simulated in one to four adjacent
census tracts using a fixed time window with increasing spatial window.
The percentage of outbreaks detected are reported using individual
addresses (blue bars) and census tract centroids (red bars) for spatial
window sizes of (A) 0.02 km, (B) 0.1 km, (C) 0.2 km, (D) 0.5 km, and (E)
1 km, where in each case, simulated outbreaks were added to
increasing number of census tracts (1 to 4) . This simulation was
conducted on 12 separate geographic regions of 0.2 km in range and
the average detection percentage was calculated. For each plot, the
horizontal axis is scaled to the maximum detection sensitivity
percentage to better visualize the primary comparison between
individual addresses and census tract.
doi:10.1371/journal.pone.0001284.g004
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assessment of normal variability improves with measurements over

time We assessed the accuracy of the algorithm using the two

spatial resolutions by simulating increasing cases on a background

of real TB cases, using varying amounts of historical data. First, we

randomly selected a geographic region, and simulated 1–8 cases

using 4 weeks (approximately 1 month) of historical data. Then we

did this again increasing the amount of historical data from

4 weeks to 72 weeks (approximately 18 months), evaluated at four

week intervals. The percentage of simulated cases with the

background of real cases in the scan window was then recorded,

as well as the detection p-value, calculated from the Monte Carlo

hypothesis test, for that scan window. For example, if three cases

are simulated within a background of three cases, this region has

had a 100% (3/3) increase in cases, 50% (3/6) consisting of

simulated cases, and the detection p-value calculated may be 0.20.

Now if three more simulated cases are added to the previous three

simulated cases and the background of three cases, this region now

has had a 200% (6/3) increase in cases, 67% (6/9) consisting of

simulated cases, and the detection p-value calculated may be 0.01.

We implemented this methodology using the p-values (Figures 6A

and 6B y-axis) and simulated case percentages (Figures 6A and 6B:

x-axis), for census tract centroids (Figure 6A) and individual

addresses (Figure 6B) starting with only one month of historical

data to draw upon, all the way up to 18 months. Then this

procedure was repeated 1,000 times for different randomly

selected regions.

We conducted this evaluation by fixing the spatial window at

0.2 km and repeatedly increasing the height of the cylinder (time

window) from one to six months, while for each time window the

amount of historical data was increased from one to 18 months.

Figures 6A and 6B illustrate the respective sensitivity of detection

method using census tracts and exact coordinates to the amount of

historical data where the time window was fixed at one month.

The results for time windows of 2–6 months were similar to those

of the one month window, so we have only reported the one

month window results in Figure 6.

Figures 6A and 6B illustrate the sensitivity of significant signals

to the amount of historical data required to detect outbreaks

within a one-month window. The orange dashed lines represent

what we designate as a significant ‘‘weak’’ and ‘‘strong’’ signal,

corresponding to p-values of 0.001 and 0.0001, respectively.

Though both of these p-value thresholds are considered to indicate

Figure 6. Sensitivity of detection of simulated outbreaks with varied
amounts of historical data using (A) census tract centroids and (B)
individual addresses. To determine the significance of detected
simulated outbreaks with varying amount of historical data a fixed
time window of one month was used. The orange dashed lines
represent what the authors designate as significant ‘‘weak’’ and
‘‘strong’’ signals corresponding to p-values of 0.001 and 0.0001,
respectively.
doi:10.1371/journal.pone.0001284.g006

Figure 5. Average detection timeliness of the method applied to
simulated outbreaks using a fixed spatial window of 0.2 km with
increasing time window. The average -log2 transformed p-value was
calculated across the same 12 geographic regions as those used in
Figure 4 for individual addresses (blue bars) versus census tract
centroids (red bars) with increasing counts of simulated cases, one for
each month.
doi:10.1371/journal.pone.0001284.g005
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a significant signal, we find that there are advantages for this

example in using both thresholds. When limiting the historical

data to small quantities, no significant clusters are detected at the

‘‘strong’’ signal threshold (i.e. p-value,0.0001), whereas at the

lower ‘‘weak’’ signal threshold, the use of all intervals of historical

data provide significant clusters detected. On the other hand,

when only using the ‘‘weak’’ signal threshold, the point of

saturation (i.e. maximization of cluster detection scores) is not

observed. As a result, we find that both p-value thresholds can be

considered significant in this simulation example for cluster

detection, with the difference in threshold values providing

different comparison information.

When the availability of historical data is limited to only 2–

3 months, using individual addresses provide a more sensitive

measure than census tracts. With the use of census tracts, there is

neither a ‘‘weak’’ nor ‘‘strong’’ significant signal detected with two

months of historical data, as opposed to the ‘‘weak’’ signal

observed for individual addresses. In addition, with three months

of historical data, the use of individual addresses demonstrate

detection of a ‘‘weak’’ signal when simulated cases were added at

90%, whereas, the use of census tracts allows detection of the

‘‘weak’’ signal, requiring simulated cases to be added at 95%.

When the availability of historical data is limited to six months, the

method detects a ‘‘weak’’ signal at 90% of simulated cases using

census tracts, while it detects a ‘‘strong’’ signal at about the same

90% using individual addresses. Note that increased detection

sensitivity is implied when the detection method identifies fewer

simulated cases using smaller amounts of historical data under

individual addresses.

DISCUSSION
We investigated the effect of varying the spatial resolution in a

variant of a widely used space-time detection technique on the

sensitivity and timeliness of identifying both simulated and

confirmed TB outbreaks, and examined the dependency of these

performance measures on the amount of historical data required.

We showed that when exact patients’ locations are used and the

method was applied to real TB outbreaks, both the detection

sensitivity and timeliness are improved and smaller amount of

historical data is required compared to when census tracts are used

as the spatial base for geographic partitioning. When outbreaks are

simulated, while the detection timeliness is consistently improved

and smaller amount of historical data is required for training the

model, depending on the size of the spatial scanning window

(squares) the detection sensitivity varies. Specifically, when the size

of the scanning window is sufficiently large and the simulated cases

are placed into one or two census tracts, the detection method

identifies more outbreaks using census tracts. Such a dichotomy in

detection sensitivity and the results of Figure 4 warrant some

discussion.

First, when individual patients’ coordinates are used as basis for

geographic partitioning, the detection method consistently per-

forms better, irrespective of the number of census tracts to which

the simulated cases are assigned, if the size of the scanning window

is sufficiently small (,0.2 km). Second, when the size of the spatial

scanner is sufficiently large (0.2 km or larger) and the simulated

cases are assigned to one or two census tracts, then the method

performs better under census tract-based partitioning. Third,

when the size of the spatial scanner is sufficiently large (0.2 km or

larger) and the simulated cases are placed in more than two census

tracts (three or four), then the detection sensitivity is better using

individual coordinates and further enlarging of the width of the

spatial scanning window does not result in better performance

using census tracts (see Figure 4).

When simulating cases for the sensitivity comparison, the real

TB cases were infused with simulated cases distributed (in a

‘supervised’ random fashion) within 1–4 census tracts. This was

conducted in such a manner as to maintain the underlying

distribution of the real TB cases and not bias the spread of cases

around any particular region. While the observed dichotomy in

detection sensitivity when outbreaks were simulated should be

systematically studied in future works, insights gained from this

study as to how the distribution of cases may impact the detection

performance, and thus the choice of spatial resolution, can be

shared here. To approximately measure the disease case-spread

with respect to each other as well as with respect to the center of

tracts, under both simulated and confirmed outbreaks, we

estimated the mean and standard deviation (SD) for two

distributions: (1) distribution of distance between cases and the

center of their census tracts, and (2) pairwise distance distribution

of cases. The first set of statistics gives an indication of the extent of

case-spread with respect to the center of their census tracts while

the second is an indication of the extent of case spread with respect

to each other. Qualitatively, if cases on average are closer to the

center of their census tracts than to each other, then presenting

each patient by the census tract center should introduce minimal

distortion in the actual case distribution, compared to when they

are further, which then depending on the SD values, the detection

method may perform similarly under the two spatial resolutions.

When data were infused with simulated cases, the statistics for

the first distribution were mean= 0.32 km and SD=0.60, and for

the second distribution, mean= 0.45 km and SD=0.38. For the

confirmed outbreaks, the statistics for the first distribution were

mean=0.15 km and SD=0.20, and for the second distribution,

mean=0.29 km and SD=0.20. In both cases, the mean for the

first distribution is smaller than that of the second, which implies

that on average, cases are closer to the center of their census tracts

than to each other. At the same time, under simulated outbreaks,

the SD value is larger for the first distribution than for the second.

A larger SD for the first distribution under simulated outbreaks

implies that there are areas (census tracts) in the region that may

contain very few or no cases, while there are other tracts with

more cases, and thus some level of clustering in the latter tracts

exist. Therefore, it is no surprise that the method performs better

using census tracts when a fixed number of simulated cases are

added to one or two census tracts, amplifying the existing

clustering effect, and when the spatial base is sufficiently large to

encompass such clusters. Under confirmed outbreaks, a smaller

mean value for the first distribution is accompanied with a value of

SD that is the same for the second distribution, implying similar

clustering effect under the two distributions. This is perhaps why

the detection sensitivity was not significantly improved when exact

coordinates were used and the method was applied to sparse and

small numbers of confirmed outbreaks (see Table 1).

To summarize, while using exact patients’ coordinates, the

detection method almost invariably was able to identify localized

clusters of smaller sizes earlier in time, which is a critical property

of real time surveillance for timely containment of disease

outbreaks. A larger improvement in sensitivity was obtained when

the cases were randomly generated. This is a sensible result,

because the real TB case distribution in the event of an actual

outbreak is not expected to characterize a uniform distribution.

Factors affecting the spread and transmission of TB in the

homeless population, such as localization of shelters and SROs to

specific geographic regions, and the high prevalence of intrave-

nous drug use and HIV among the homeless, result in spatial

clusters of TB that are topologically different from those attained

under a random distribution of cases in space. Thus, we infer that
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systematic characterization of the extent and topology of disease

case-spread derived from historical data can widely benefit real

time surveillance and guide public health investigations with

respect to detection and control of infectious diseases. While the

decision on which spatial resolution results in improved detection

sensitivity may depend on localization properties of historical case

spread, we showed that the detection timeliness is consistently

improved when the detection method uses patients’ coordinates as

the spatial base for search.

Finally, trading higher spatial resolution for increased perfor-

mance is ultimately a tradeoff between maintaining patient

confidentiality and improving public health. While these features

are critical to real time surveillance, maintaining patient

confidentiality introduces a challenge to the timely investigation

of outbreaks. The complex interplay between public policy and

public health may be better managed by understanding and

balancing the associated risks in each problem domain. As critical

as this topic of debate may be, it is outside the scope of this work.
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