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Early detection of type 2 
diabetes mellitus using machine 
learning‑based prediction models
Leon Kopitar 1*, primoz Kocbek 2, Leona cilar2, Aziz Sheikh4,5 & Gregor Stiglic2,3

Most screening tests for T2DM in use today were developed using multivariate regression methods 
that are often further simplified to allow transformation into a scoring formula. The increasing volume 
of electronically collected data opened the opportunity to develop more complex, accurate prediction 
models that can be continuously updated using machine learning approaches. This study compares 
machine learning-based prediction models (i.e. Glmnet, RF, XGBoost, LightGBM) to commonly used 
regression models for prediction of undiagnosed T2DM. The performance in prediction of fasting 
plasma glucose level was measured using 100 bootstrap iterations in different subsets of data 
simulating new incoming data in 6-month batches. With 6 months of data available, simple regression 
model performed with the lowest average RMSE of 0.838, followed by RF (0.842), LightGBM (0.846), 
Glmnet (0.859) and XGBoost (0.881). When more data were added, Glmnet improved with the highest 
rate (+ 3.4%). The highest level of variable selection stability over time was observed with LightGBM 
models. Our results show no clinically relevant improvement when more sophisticated prediction 
models were used. Since higher stability of selected variables over time contributes to simpler 
interpretation of the models, interpretability and model calibration should also be considered in 

development of clinical prediction models.

Type 2 diabetes mellitus (T2DM) is very common and is responsible for very considerable morbidity, mortality. 
Furthermore, it is a substantial �nancial drain both on individuals/families, health systems and societies. Of 
major concern is that the incidence and prevalence of T2DM are increasing rapidly—globally. In 2017, it was 
estimated that 425 million people had any type of diabetes (approx. 5.5% of worldwide population) of which 90% 
had T2DM and according to projection estimations the prevalence is going to increase substantially in the com-
ing years; by 2,045, for example, a 48% increase of prevalence from the above numbers is expected or in absolute 
numbers an estimated 629 million people (approx. 6.6% of the worldwide population) are expected to be su�ering 
from any type of  diabetes1. T2DM can lead to substantially increased risk of macrovascular and microvascular 
disease, especially in those with inadequate glycaemic  control2. Progression of T2DM from impaired fasting 
glucose is typically slow and more importantly, its symptoms may remain undetected for many years. Delays in 
diagnosis are an important contributory factor to poor control and risk of  complications3.

Data mining is nowadays applied to various �elds of science, including healthcare and medicine. O�en applied 
are pattern recognition, disease prediction and classi�cation using various data mining  techniques4. Due to the 
increased prevalence of T2DM, various techniques have been used to build predictive models and models for 
early disease diagnosis, such as logistic and Cox proportional hazard regression  models5–7, Random  Forest8,9, 
boosted  ensembles10,11, etc. �e study by Damen et al.12 showed that logistic regression was used in most (n = 
363) models for risk estimation in the general population. Even though there are multiple techniques available 
to build prediction models, prediction accuracy and data validity are o�en not realistic for model application in 
practice. Models also perform well in speci�c dataset where they were developed but are frequently not able to 
adapt su�ciently well with used in other  datasets5.
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Screening tools have been developed to identify individuals at high risk of developing T2DM with a view to 
modifying their risk factors through lifestyle modi�cation and/or drugs. Traditional screening approaches to 
identify patients with undiagnosed T2DM are based on standard regression techniques. It is important to inves-
tigate whether using machine learning-based approaches can yield superior results to the currently employed 
methods. Speci�cally, conventional logistic regression is still predominantly used for development of screening 
 tools12. �ere have however been a number of important developments in relation to machine learning methods 
in recent years that can now be tested for predictive modelling through interrogation of electronic healthcare 
record (EHR) data; these techniques include AdaBoost, random forest, support vector regression, decision  tree13 
and neural network-based on Stacked Denoising Autoencoders (SDA)14.

Our choice of prediction models was based on the three conceptually di�erent families of prediction models: 
boosting, bagging and linear regression. �is approach contributes to the credibility of the research since it reveals 
potentially hidden patterns that would remain hidden in the case where all applied methods used conceptually 
similar approach.

�e aim of this study was to investigate whether novel machine learning-based approaches o�ered any advan-
tages over standard regression techniques in early prediction of impaired fasting glucose (IFG) and fasting plasma 
glucose level (FPGL) values. Additionally, we were interested in the impact that continuous streams of new 
data, as is the case with EHRs, brings to the performance of prediction models. �e performance of the model 
was not measured only using the prediction performance metrics such as AUC or AUPRC, but also by assess-
ing the stability of selected variables over time. In the case of high variable selection stability we might get an 
insight in con�dence of the model interpretability which could be of great help in decision on which prediction 
model to choose. �erefore, we simulated the incoming data in 6-month intervals and continuously compared 
machine learning-based prediction models with the traditionally employed regression models. In this study 
we hypothesized that when the new data becomes available in the EHR system it not only improves prediction 
performance, but also the stability of the variable importance ranking, although not equally in di�erent machine 
learning prediction models.

Methods
All methods were performed in accordance with the relevant guidelines and regulations. Due to the prior 
anonymisation of the data, this study belongs to the low risk records based research, meaning the informed 
consent by the patients was not  needed15 as declared by the Ethical Commission at the University of Maribor 
Faculty of Health Sciences (approval reference number 038/2018/1779-3/501).

Study design and research data. We undertook a retrospective study of predictive models’ derivation 
and validation using EHR data collected at preventive healthcare examinations of healthy population in 10 Slo-
venian primary healthcare institutions. Anonymisation of data was performed at the site of data collection and 
later pooled into a single database.

Study setting and sample. �e initial dataset comprised of EHRs from 27,050 adult individuals with no 
prior diagnosis of T2DM collected between December 2014 and September 2017. We removed cases and vari-
ables containing over 50% of missing values. �e details of the variable and case removal process are provided in 
the following section on predictor variables.

Predictor variables. Initially, the dataset consisted of 111 variables including a group of variables related to 
the FINDRISC (FR)  questionnaire16 such as variables representing physical activity (at least 30 min during the 
day), fruit and vegetable consumption as well as keeping a track of medical history including the history of anti-
hypertensive drug treatment, history of high blood glucose levels and family history of diabetes. Consequently, 
all cases with any missing FR variable were removed from the dataset to allow comparison to the FR-based 
model that was developed for Slovenian population by Stiglic et al.17.

In the next step, outliers were detected and marked as missing values, where measurements that were outside 
of the X± (3 × SD), on the assumption of a normal distribution, were de�ned as outliers. �e dataset was then 
pre-processed by removing variables and cases with 50% or more missing values. In addition to FR variables, the 
reduced dataset included variables that could be grouped in the following four groups: lipid pro�le lab results 
(HDL, LDL, total cholesterol and triglycerides), social determinants of health (consumption of alcohol, smoking, 
dietary habits, stress), cardiovascular variables (blood pressure measurements, atrial �brillation history) and 
history of other health conditions (stroke, hypertension, colon cancer).

In the �nal step, �ve di�erent subsets of data were extracted based on the time when they were collected—i.e. 
�rst 6, 12, 18, 24 and 30 months, herea�er referred to as T6, T12, T18, T24 and T30. At this stage, the information 
on the date of the examination was removed from all �ve datasets. All missing values in each of the �ve datasets 
were imputed using the Multiple Imputation by Chained Equations (MICE) missing data imputation  method18. 
More speci�cally, missing values of numerical variables were imputed by a Bayesian linear regression method, 
while logistic regression was used in case of binary or dichotomous variables and polytomous regression was 
used in case of factor variables with more than 2  levels18. Each method was performed in 20 iterations, which 
was previously shown to be a su�cient number of iterations for an e�ective  imputation18.

Outcome. �e key outcome of this study was a prediction of the current FPGL value (regression problem) 
based on physiological and other variables representing answers from the preventive healthcare check-up exami-
nations. A cut-o� of 6.1 mmol/L (FPGL used to determine IFG in Slovenia) was used as a threshold for the use 
of additional classi�cation metrics that were used for detailed comparison of performance for di�erent predic-
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tion models (classi�cation problem). Application of a cut-o� value resulted in a slightly unbalanced diagnostic 
problem in each of �nal subsets (Table 1).

Statistical analysis and model validation. Prediction models were built and validated on each of the 
�ve �nal subsets separately to simulate new incoming data. Validation was conducted using 100 bootstrap runs 
to estimate the variability in the results. In each bootstrap iteration, a di�erent set of samples was selected using 
random sampling with replacement where unselected samples were used to test the prediction models.

�e following �ve prediction models were compared: linear regression model (lm), regularised generalised 
linear model (Glmnet) with Least Absolute Shrinkage and Selection Operator (Lasso) regression (L1)19,20, Ran-
dom Forests (RF)21, eXtreme Gradient Boosting (XGBoost) with tree booster which uses regression tree as a 
weak  learner22 and Light Gradient Boosting Machine (LightGBM) with objective set as L1 loss  regression23. All 
methods were performed in accordance with the relevant guidelines and regulations.

Glmnet and lm are both linear regression methods where regularisation is used to prevent over�tting of mod-
els in  Glmnet20. Glmnet o�ers di�erent approaches to handle this problem: L1 regularisation (Lasso regression), 
L2 regularisation (Ridge regression) and Elastic-Net (a combination of Lasso-Ridge)  penalty19. In this study, we 
utilised Lasso method, which should ensure better performance in datasets with highly correlated and sparse 
predictor variables, but on the other hand it can result in higher instability of the selected variables. Glmnet and 
lm tackle the least-squares problem in di�erent ways. �roughout a regularisation path Glmnet applies cyclical 
coordinate descent algorithm in order to solve the penalised weighted least-squares problem of �nding the local 
minimum. It works in a way that optimises the objective function for each parameter. �e algorithm repeats 
the optimisation until convergence is  achieved19. On the other hand, lm solves the problem of �nding the local 
minimum by applying QR  decomposition24 that is o�en used to solve the linear least squares problem.

LightGBM and XGBoost are ensemble methods based on Gradient Boosting Decision Tree (GBDT) or alter-
natively Gradient Boosting Machine (GBM)22,23. Gradient boosting is a technique where new models are added to 
correct the errors made by existing models—in this case, regression trees. Models improve the accuracy by �tting 
negative gradients, named also as residual  errors23, which in regression symbolises a di�erence between expected 
and predicted value. XGBoost is known for its scalability in all settings, support for sparse data representation 
and provides higher computational speed and lower memory consumption than most other methods. On other 
hand, LightGBM tries to achieve similar functionality by employing two techniques called Gradient-based One-
Side Sampling (GOSS) and Exclusive Feature Bundling (EFB). It is known that samples whose absolute value 
of gradients is larger, deliver lower training error and hence contribute to information gain more than samples 
whose absolute value of gradients is small. �e �rst technique (GOSS) reduces the number of samples with 
keeping all instances whose absolute value of gradient is large and randomly sampling instances whose absolute 
values of gradients are small. Meanwhile EFB technique reduces the number of variables. Using GOSS and EFB, 
LightGBM pro�ts in lower memory consumption and computational speed in comparison to  XGBoost23.

In contrast, RF is an ensemble method based on the bagging technique. In bagging, decision trees are con-
structed independently. A feature of RF is that at the decision tree level, each node is divided with the best variable 
in a random subset of variables. �is step injects some randomness to the overall model. �e �nal result is then 
derived from majority voting (classi�cation) or averaging (regression) results of all trees in  RF25.

It is important to note that we used lm as a baseline model with a �xed set of variables. More speci�cally, 
lm was always built using only seven FR variables representing di�erent questions, which were previously used 
in development of a simpli�ed screening tool for undiagnosed T2DM and IFG in the Slovenian  population17.

Predictive models were validated using the following performance metrics: root mean square error (RMSE) 
for prediction of numerical value of FPG level and AUC (area under the receiver-operating characteristic curve), 
AUPRC (area under the precision-recall curve) for prediction of unbalanced discrete outcome (positive and 
negative class).

Both prediction metrics (AUC and AUPRC) are suitable choices for model evaluation when we deal with 
imbalanced datasets. AUC represents a probability that a randomly selected positive instance is ranked higher 
than a randomly selected negative instance. AUPRC focuses on positive class and is of high importance in health-
care where positive class can represent a relatively small fraction of the population. In our study, the positive class 
represents 27.6% of all instances.. Since the focus in detecting IFG or impaired glucose tolerance (IGT) is on 
positive class we also used sensitivity (true positive rate) and positive predictive value as a performance metric 
for dichotomous output values. In addition, a percentage of positive predictive values was also observed as an 
alternative validation metric to assess the performance of di�erent models from the economic perspective as it 

Table 1.  Summary information for participants with normal fasting glucose (NFG) and impaired fasting 
glucose (IFG) used in the study for each period separately.

PERIOD IFG FPGL ≥ 6.1 mmol/L (n = 1049, 28.2%) NFG FPGL < 6.1 mmol/L (n = 2674, 71.8%) Number of samples (n)

T6 257 (28.9%) 635 (72.2%) 892

T12 426 (26.4%) 1185 (73.6%) 1611

T18 634 (26.8%) 1735 (73.2%) 2369

T24 798 (27.4%) 2117 (72.6%) 2915

T30 1020 (28.5%) 2560 (71.5%) 3580
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represents the rate of participants sent for further testing based on their screening results. Models’ performance 
di�erences (in AUC and AUPRC) were quanti�ed with the method developed by Delong et al.26.

Variable importance. To compare the stability of the results over all �ve datasets, we measured variable impor-
tance for each of 58 predictor variables and each of the �ve prediction methods. Variable importance measures 
used to rank variables for each prediction model are summarised in Table 2.

Ethics approval and consent to participate. �e study was approved by the Ethical Commission at 
the University of Maribor Faculty of Health sciences with the reference number 038/2018/1779-3/501. As the 
data was anonymized already at the healthcare centers and due to the nature of the data needed for this study 
(routinely collected data) no consent from the participants was needed. Results were reported following the 
‘Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis’ (TRIPOD)45 
and ‘Guidelines for Developing and Reporting Machine Learning Predictive Models in Biomedical Research’46 
statements.

Consent for publication. None required.

Results
Data pre-processing. Routinely collected data from EHR in ten healthcare centers in Slovenia was used 
in this study. �e �ow diagram of data pre-processing can be used as a reference while reading through this 
paragraph (Fig.  1). Out of a total of 27,050 patients, 3,758 patients had all FR survey questions completed. 
A�er manually removing variables like ‘Region’, ‘Finnish Diabetes Risk Score (FINDRISC) groups’ and various 
precomputed scores [for age, body mass index (BMI), waist circumference, FINDRISC], we reduced the number 
of variables from 111 to 103. For each variable, outlier values were marked as missing. Additionally, with exclu-
sion of all variables whose proportion of missing values was above 50%, we reduced the number of variables 
to 61. Similar �ltering was also performed on individual records level. �e majority (3,723) of 3,758 records 
complied with the rule of less than 50% missing values. At this stage, 89.4% (3330) of records consisted of at least 
one missing value. Variability of missing data across di�erent time periods prior to data imputation was minimal 
(T6: 9.95%, T12: 9.36%, T18: 9.04%, T24: 9.00%, T30: 8.96%).

A�er pre-processing, the experimental data consisted of 3,723 participants with a mean age of 54.45 ± 11.69 
years and 61 variables, including date, department and FPGL level that were not used in model derivation. 
More speci�c information on the data can be found in the summary table (Table 1). Expectedly, patients whose 
FPGL was equal or higher than 6.1 mmol/L, were on average older, heavier and had larger waist circumference 
compared to those with normal FPGL. �e IFG group included 40.2% women in comparison to NFG group 
with 59.2% women. �is con�rms our �ndings from earlier study in Slovenian population where we proposed 
stricter threshold values for screening in male  populations27.

To simulate the new incoming data, we formed di�erent subsets (T6, T12, T18, T24, T30), we eliminated the 
variable ‘Date’ in each of them and carried out imputations. Finally, prediction models [Glmnet, LightGBM, 
XGBoost and Random Forest (RF)] were trained and tested on the �nal 58 variables.

Model performance. Initially, at T6, linear regression model (lm) performed with the lowest average Root 
mean square error (RMSE) of 0.838 (95% CI 0.814–0.862), followed by RF at 0.842 (95% CI 0.818–0.866), Light-
GBM at 0.846 (95% CI 0.821–0.871), Glmnet at 0.859 (95% CI 0.834–0.884) and XGBoost with the highest 
RMSE of 0.881 (95% CI 0.856–0.907). When more samples were added, every single model showed improve-
ment. Considering the time period before each addition of new data, Glmnet ( T6RMSE = 0.859) improved at the 
highest rate (+ 3.43%) with an average decrease in RMSE of −0.040 ± 0.017, followed by XGBoost ( T6RMSE = 
0.881) having an average decrease of −0.028 ± 0.018 (+ 3.2%). On the other hand, lm’s performance ( T6RMSE 
= 0.838) improved at the slowest rate (+ 2.7%) with an average decrease in RMSE of −0.016 ± 0.015 over the 

Table 2.  Description of methods used for calculating variable importance.

Prediction model Variable importance method

lm Variables were ranked according to the absolute value of β-coe�cients. Only variables that were statistically signi�cant 
were selected to build a �nal model in each bootstrap iteration

RF

Variables were ranked according to the increase in mean squared error (MSE), more precisely, the percentage of 
increase in MSE was calculated ( �MSE). For each predictor variable this method calculates the di�erence between 
MSE of Out-of-bag (OOB) data and the predicted MSE a�er each of predictor variable is permuted. �e average dif-
ference over all trees is then normalised by standard deviation (SD) and provided as a result ( �MSE). A higher value 
represents a higher importance of a corresponding variable

XGBoost Variables were ranked based on the average gain in 100 bootstrap iterations where gain represents a contribution in 
accuracy brought by a corresponding variable to a model

Glmnet Fitted coe�cients of variables were �rst standardised (i.e. each coe�cient was multiplied by the standard deviation of 
the variable) and then ranked according to the coe�cients value

LightGBM

Variables were ranked on the basis of the average gain over 100 bootstrap iterations where gain is a variable contribu-
tion to the model, measured by a variance a�er splitting. In LightGBM, the split point is determined by the estimated 
variance gain which is applied over a smaller subset. A study by Ke et al. provides more detailed information on 
calculating an estimated variance gain
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observed period (T6–T30). At the �nal time point with 30 months of available data, RF performed with the 
lowest average RMSE of 0.745 (95% CI 0.733–0.757), just slightly lower than Glmnet with 0.747 (95% CI 0.734–
0.759), where XGBoost showed the highest RMSE of 0.760 (95% CI 0.748–0.772). XGBoost performed with the 
highest average RMSE among all models for all �ve datasets. However, based on the observed trend in RMSE it 
would be possible for XGBoost to perform better than other models when more data would be available.

In terms of area under the receiver-operating characteristic curve (AUC) metric, Glmnet outperformed all 
compared methods on datasets T18–T30. �e AUC of 0.818 (95% CI 0.813–0.822) on the data collected within 
the �rst 6 months was lower than the AUC of the RF model that achieved an AUC of 0.819 (95% CI 0.815–0.823). 
Using the T30 dataset, Glmnet maintained the best results with the AUC of 0.859 (95% CI 0.857–0.861), com-
pared to lm with the AUC of 0.854 (95% CI 0.852–0.856), RF with 0.852 (95% CI 0.850–0.854), LightGBM with 
0.847 (95% CI 0.845–0.849) and XGBoost with 0.844 (95% CI 0.842–0.846), respectively.

Similarly, lm and Glmnet showed higher value of area under the precision-recall curve (AUPRC) than other 
models. On average, lm marginally surpassed Glmnet in every single time period. �e best performance in 
AUPRC was achieved at T30 where lm and Glmnet achieved an AUPRC of 0.747 (95% CI 0.743–0.751) and 
0.740 (95% CI 0.736–0.744), respectively.

To assure that mentioned di�erences among models are signi�cant, we decided to quantify the performance 
di�erences (in AUC and AUPRC) between all pairs of prediction models (see SI Table S1 online) using a method 
proposed by DeLong et al.26. In none of the time periods, neither of the used prediction model pairs showed a 
non-signi�cant di�erence in both performance metrics. Initially at the T6, there are some prediction model pairs 

Figure 1.  Flow diagram of data pre-processing.
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with a signi�cant di�erence in only one of the mentioned metrics [(Glmnet-lm (AUC), RF-lm (AUC), Glmnet-RF 
(AUC), LightGBM-RF (AUPRC), LightGBM-XGBoost (AUPRC)]. A�er the �rst addition of the new samples 
(T12) some model pairs became signi�cantly di�erent in both metrics (RF-lm, Glmnet-RF, LightGBM-XGBoost). 
In the latest time period (T30), signi�cant di�erences were noticed between all prediction model pairs except 
LightGBM-RF (see SI Table S1 online).

Interestingly, Glmnet and XGBoost were the only models whose average sensitivity (SENS) consistently 
increased with each additional batch of available data. On average, the sensitivity of Glmnet and XGBoost 
improved by 1.2% and 5.5%, respectively. It is important to note that XGBoost was at T6 predicting with the 
lowest sensitivity of 0.702 (95% CI 0.694–0.710) in comparison to Glmnet ( T6SENS = 0.729 (95% CI 0.720–0.738)) 
and other prediction models. On average, the highest sensitivity was achieved by Glmnet a�er the last addition 
of data (T30) with 0.764 (95% CI 0.759–0.760).

�e percentage of positively predicted outcomes decreased over time when more data became available and 
was approaching the true percentage of positive samples.

Variable importance. �e highest variable importance score was observed for the variable of previously 
observed hyperglycemia (Fig. 2). It was ranked as the most important variable in three out of four prediction 
models over all �ve datasets. Interestingly, the same variable was not ranked in the top 10 positions for the fourth 
prediction model (LightGBM). Patient age was found as the second most important variable in three models 
(RF, XGBoost, Glmnet). Across all datasets (T6–T30), Level of high-density lipoprotein (HDL) cholesterol was 
ranked between second and fourth position for RF, XGBoost and LightGBM.

Another laboratory clinical measurement, ‘Triglycerides’ was constantly ranked in the top �ve positions, with 
exception at T12 (model Glmnet) where its rank dropped to the eight position for a short time. It was interest-
ing to note a decrease in ranking for ‘Use of antihypertensive drugs’ and especially ‘Status of physical activity’ 
with increasing sample size. In general, LightGBM resulted in the most stable performance in terms of variable 
importance-based ranking. �is �nding was important as high variability of variable ranking over time compli-
cates interpretation of derived models meaning that reinterpretation would o�en be needed.

Model calibration. Next, we compared model calibration and observed di�erences in results based on vis-
ual inspection of actual vs predicted FPGL (Fig. 3). �e normal coe�cients of determination ( R2)28 indicate that 
none of the models were close to the moderate performance as regressors. A general guideline suggests that the 
R
2 values of 0.75, 0.50 and 0.25 are considered as substantial, moderate and weak levels of predictive  accuracy29. 

Looking at R2 , no signi�cant di�erences between prediction models were found. As expected R2 increased for 
each model with the increased sample size. Taking into an account the average R2 values (T6, T18, T30), it is 
noticeable that the largest and steadiest improvement step was achieved by XGBoost (T6–T18: + 0.052, T18–
T30: + 0.050) (Table 3). �e same observation re�ects in prediction models’ performance metrics AUC (Table 4), 
AUPRC (Table 5), as well as in metric RMSE (Table 6).

Table 3.  Coe�cients of determination ( R2 ) of prediction models at three time points (T6, T18 and T30). 
Results are shown as average values with corresponding 95% CI.

R
2

Prediction model T6 T18 T30

lm 0.310 [0.301, 0.319] 0.326 [0.319, 0.332] 0.358 [0.351, 0.365]

Glmnet 0.281 [0.269, 0.293] 0.330 [0.322, 0.337] 0.366 [0.358, 0.373]

LightGBM 0.293 [0.284, 0.302] 0.316 [0.308, 0.323] 0.348 [0.341, 0.355]

RF 0.305 [0.297, 0.314] 0.340 [0.333, 0.348] 0.369 [0.362, 0.376]

XGBoost 0.241 [0.232, 0.249] 0.293 [0.286, 0.300] 0.343 [0.336, 0.349]

Table 4.  Area under the curve (AUC) of prediction models at three time points (T6, T12, T18, T24 and T30). 
Results are shown as average values with corresponding 95% CI.

AUC 

Prediction model T6 T12 T18 T24 T30

lm 0.817  [0.812, 0.821] 0.813  [0.809, 0.816] 0.835  [0.833, 0.838] 0.842  [0.840, 0.844] 0.854  [0.852, 0.856]

Glmnet 0.818  [0.813, 0.822] 0.815  [0.811, 0.819] 0.841  [0.839, 0.844] 0.847  [0.845, 0.850] 0.859  [0.857, 0.861]

LightGBM 0.807  [0.803, 0.812] 0.808  [0.804, 0.811] 0.827  [0.825, 0.830] 0.837  [0.834, 0.839] 0.847  [0.845, 0.849]

RF 0.819  [0.815, 0.823] 0.810  [0.807, 0.814] 0.833  [0.831, 0.836] 0.840  [0.838, 0.843] 0.852  [0.850, 0.854]

XGBoost 0.789  [0.784, 0.794] 0.785  [0.782, 0.789] 0.820  [0.817, 0.823] 0.833  [0.831, 0.835] 0.844  [0.842, 0.846]
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Figure 2.  Variable importance. Ranking of variables for Glmnet (A), LightGBM (B), Random Forest (C) and 
XGBoost (D) over the observed period (T6–T30).

Table 5.  Area under the precision-recall curve (AUPRC) of prediction models at three time points (T6, T12, 
T18, T24 and T30). Results are shown as average values with corresponding 95% CI.

AUPRC

Prediction model T6 T12 T18 T24 T30

lm 0.671  [0.664,0.678] 0.642  [0.636,0.648] 0.697  [0.693,0.702] 0.717  [0.713,0.721] 0.747  [0.743,0.751]

Glmnet 0.658  [0.651,0.666] 0.634  [0.627,0.641] 0.696  [0.692,0.701] 0.710  [0.705,0.715] 0.740  [0.736,0.744]

LightGBM 0.641  [0.633,0.649] 0.616  [0.610,0.623] 0.673  [0.668,0.678] 0.695  [0.690,0.699] 0.723  [0.719,0.727]

RF 0.648  [0.640,0.656] 0.614  [0.607,0.621] 0.683  [0.678,0.688] 0.694  [0.690,0.699] 0.723  [0.719,0.727]

XGBoost 0.632  [0.623,0.640] 0.600  [0.594,0.607] 0.656  [0.651,0.661] 0.685  [0.680,0.689] 0.715  [0.711,0.719]

Table 6.  Root mean square error (RMSE) of prediction models at three time points (T6, T18 and T30). Results 
are shown as average values with corresponding 95% CI.

RMSE

Prediction model T6 T18 T30

lm 0.838 [0.814, 0.862] 0.790 [0.774, 0.806] 0.751 [0.738, 0.763]

Glmnet 0.859 [0.834, 0.884] 0.788 [0.772, 0.804] 0.747 [0.734, 0.759]

LightGBM 0.846 [0.821, 0.871] 0.796 [0.780, 0.813] 0.758 [0.745, 0.770]

RF 0.842 [0.818, 0.866] 0.782 [0.766, 0.798] 0.745 [0.733, 0.757]

XGBoost 0.881 [0.856, 0.907] 0.809 [0.793, 0.825] 0.760 [0.748, 0.772]
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Figure 3.  Actual vs. predicted plots. Visualisation of actual vs. predicted values for all predictive models (lm, 
Glmnet, LightGBM, RF, XGBoost) in three time points (T6, T18 and T30) reveal discrepancies in calibration of 
the compared models. Additional classi�cation performance results in terms of TP, FP, TN and FN are provided 
where it can be seen that lm, Glmnet and RF outperformed both boosting based methods by identifying more 
TP as well as TN cases. Model-time point combinations are represented in the following way: lm 6, 18 and 30 
months (A–C), Glmnet 6, 18 and 30 months (D–F), LightGBM 6, 18 and 30 months (G–I), RF 6, 18 and 30 
months (J–L), XGBoost 6, 8 and 30 months (M–O).
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By observing the scatter plots we noticed that in the two most basic models (i.e. lm and Glmnet) the samples 
around the FPGL of 6.1 mmol/L were most clearly separated, thus separating the normal blood glucose level 
and IFG participants in two groups.

In addition, we noticed that fasting glucose levels predicted by the XGBoost on the data collected in the �rst 
six months rarely crossed the threshold of 7.0 mmol/L. Consequently, such a predictive model would be of very 
limited use if applied to the undiagnosed T2DM prediction.

Discussion
We compared performance, calibration and interpretability of machine learning-based prediction models to 
multivariable regression models when predicting FPGL and presence of T2DM. Machine learning methods in 
combination with other concepts introduced in the learning healthcare systems approach have a potential to 
deliver better care and management of T2DM to health care providers, service users and lay people. However, 
when introducing novel prediction models, one should take into consideration not only the predictive perfor-
mance, but also calibration and interpretability of the models where the bene�ts and drawbacks of the machine 
learning methods need to be taken into consideration.

Di�erent data mining approaches were used in studies to predict T2DM, diabetic complications, genetic 
background, health care and management of  T2DM30. Similar methods have also been used in prognosis and 
prediction of other diseases, such as  cancer31–33 and cardiovascular  diseases34,35. However, it is always di�cult to 
select the most appropriate machine learning methods for a speci�c problem one is trying to solve. In this study, 
we therefore selected ensemble-based methods that were recently used in similar studies and demonstrated the 
best results, especially in terms of performance. �e pool of available machine learning methods is too wide to 
test all or the majority of them. Additionally, each of the machine learning-based approaches can be tuned by 
changing the values of parameters needed to build a predictive model and improve its performance. So even 
with a limited number of machine learning models included in a study there is practically an in�nite number of 
possible parameter combinations. �erefore, we aimed to set the parameters in a way where the computational 
complexity and performance would be as balanced as possible. Consequently, it is also very important to plan 
a robust validation strategy where training and testing set are separated also in the parameter tuning process 
which additionally increases the time complexity.

A limitation of this study is that we only used one database with a limited number of available variables and 
a large amount of missing data. Another limitation relates to the population studied. As the participants at the 
preventive examinations consisted of predominantly working population, the dataset did not include older people 
in whom T2DM is more prevalent. On the other hand, the working population represents the most appropriate 
population for early interventions in lifestyle to avoid later complications.

In one of the recent studies, Christodoulou et al. conducted a systematic review where in 71 studies the 
performance of machine learning models did not signi�cantly surpass the performance of logistic  regression36. 
Similarly, our study shows no signi�cant improvement when using sophisticated prediction models. Similar 
studies have included di�erent variables in prediction models that were adjusted to the characteristics of speci�c 
population. Our results show that highest ranked variables in prediction of T2DM include hyperglycemia his-
tory, age, HDL cholesterol, triglycerides, physical activity and antihypertensive drugs (Fig. 2). Both variables, 
history of high blood glucose levels (HG History) and age (Age) are present in most screening tests, which was 
con�rmed in our study for all prediction models except LightGBM. In the case of LightGBM, the most signi�cant 
variables included triglycerides and blood cholesterol levels. An elevated level of triglycerides is present at 60% 
up to 70% of diabetic  patients37. Additionally, a recent study by Alexopoulos et al.38 recommends treatment of 
triglycerides as an emerging target in diabetes care. However, from a clinical perspective, questions related to 
the laboratory results are not convenient as a part of a screening test, since they are time consuming, expensive 
and di�cult to obtain in some environments.

Similar results were found in the previous research conducted in  Slovenia17, where the most important vari-
ables were hyperglycemia history, gender, age, physical activity, waist circumference, (BMI), diabetes in family, 
fruit and vegetables consumption and antihypertensive drugs. Variables as age, parental history of diabetes and 
BMI were statistically signi�cant predictors of T2DM already in �e Framingham O�spring  Study39. Recent stud-
ies synthesised in the literature review conducted in 2017 have found that main factors in developing T2DM are 
following: age, gender, height, BMI, waist circumcise, blood pressure, HDL cholesterol and  others40,41. Observing 
the variables that were selected using machine learning techniques (Fig. 2), we can conclude that there are major 
di�erences in comparison to simpler models like multiple logistic regression or in comparison to similar studies 
based on predictive models in Slovenia and elsewhere.

Most of the top ranked variables are present in all four lists. However, there are variables that were not selected 
in a speci�c model, but there are usually other, so called, proxy variables that were selected instead. For example, 
LightGBM based models did not rank HG History in the top 10 variables which was the case in all other models. 
On the other hand LightGBM based model ranked all four lab results and BMI in the top 5 most in�uential 
variables which rarely happened in other models.

It is also interesting that LightGBM based models resulted in higher stability in ranking the in�uential vari-
ables in comparison to conceptually similar XGBoost based models as both methods follow the idea of boosting 
the prediction models. However, there is a technical detail that could explain the results of LightGBM which uses 
leaf-wise instead of level-wise decision tree growth used in  XGBoost23. In leaf-wise tree growth the number of 
selected variables is smaller and the tree can be built faster. Consequently, the variability of selected variables is 
smaller in comparison to approaches where the complete level of nodes is expanded in parallel.

Comparison based on the increasing number of available cases to build prediction models has previously been 
studied by Yang et al.42 who compared machine learning methods on the same sample with di�erent training 
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sizes. Despite high variance in the results, it was demonstrated that with increased sample size, R2 also increased, 
while RMSE decreased, indicating that the model explained more variability of the response variable and a better 
�t with increased sample  size42. Similar �ndings were presented in a study by Johansson, et al. where prediction 
models that were trained on a progressively increasing training dataset performed more accurately [lower mean 
absolute error (MAE) and higher R2 ] than the �xed model build on the initial set of initially available data. 
Furthermore, they concluded that MAE and R2 are alone insu�cient for determining public health  utility43. 
Results from both studies are in concordance with the results obtained in this study where we showed that the 
sample size increased from 0.26 (T6) to 0.36 (T30) for Glmnet, from 0.28 (T6) to 0.34 (T30) for LightGBM, from 
0.29 (T6) to 0.36 (T30) for RF and from 0.29 (T6) to 0.35 (T30) for lm prediction model. Furthermore, Olivera 
et al.44 suggested that the best prediction models are those created by using machine learning algorithms, such 
as arti�cial neural networks and logistic regression.

Modern modelling techniques allow us to predict many di�erent health related outcomes. �ere is an obvi-
ous di�erence in predictive performance of such predictive models, which di�er because of di�erent datasets, 
techniques and methods for developing those  models44. Our study showed that we can expect very limited per-
formance gain when predicting undiagnosed pre-diabetes and T2DM or FPGL using machine learning-based 
approaches in comparison to logistic regression-based model. Similar results were obtained in a recent study 
by Christodoulou et al.36. �erefore, one should base a decision on which predictive model to choose on model 
calibration, interpretability and stability of results over time and not just predictive performance. Based on the 
results presented in this study, LightGBM is a reasonable choice when stable performance in terms of variable 
importance-based ranking is the most desirable characteristic. �e RF model provided a balanced combination 
of good interpretability and performance in terms of reducing the incorrectly predicted negative levels (False 
Negatives). In addition, RF constantly performed well in terms of RMSE at the beginning, and all the way up 
to the �nal dataset with all available data. However, both regression-based models achieved very similar results 
and would still represent an optimal choice in our case, especially as they are simple to interpret and implement 
in practice.

conclusions
We studied di�erences in performance, calibration and interpretability of machine learning-based prediction 
models and multivariable regression models. Our results show that using new data in the EHR system to rebuild 
prediction models not only improves prediction performance, but also stability of the variable importance rank-
ing, although not equally in di�erent machine learning prediction models. Our results found no clinically relevant 
improvement when employing machine learning-based models over the more conventional regression models in 
terms of predictive performance. Even with calibration of the models, visualisation of the observed versus actual 
FPGL showed some advantages in using simpler models. When observing the stability of variable ranking based 
on relative importance of variables, one can notice that a method like LightGBM results in much more stable 
results in comparison to other methods, which were more prone to high variance in variable importance. Both 
regression-based methods also proved as comparable alternatives. Since regression-based prediction models 
have been regularly used in clinical practice they could represent a better alternative in some clinical environ-
ments. �e results in this study show signi�cant improvement in terms of AUC, AUPRC and RMSE for all tested 
methods as the amount of collected data increases. For all tested predictive models in most of the experiments, 
we were able to show that additional data availability positively correlates with improved predictive performance 
and more stable variable importance-based ranking of variables. �e opportunity of updating models arises as 
additional routine data become available over time. Future research needs to explore the implementation of 
di�erent approaches of building ensemble methods. In this case, stacking and blending of di�erent prediction 
models could be taken into consideration. However, such systems bring along even more challenges in terms of 
interpreting the results that should support decisions of the healthcare experts.

Data availability
�e dataset analysed during the current study is not publicly available due to non-disclosure of microdata 
agreement between the data providers and the researchers but are available from the corresponding author on 
reasonable request and with agreement of data providers.
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