
Early Exit Optimizations for
Additive Machine Learned Ranking Systems

B. Barla Cambazoglu
Yahoo! Research
Barcelona, Spain

barla@yahoo-inc.com

Hugo Zaragoza
Yahoo! Research
Barcelona, Spain

hugoz@yahoo-inc.com

Olivier Chapelle
Yahoo! Research

Sunnyvale, CA, USA
chap@yahoo-inc.com

Jiang Chen
Yahoo! Labs

Sunnyvale, CA, USA
jiangc@yahoo-inc.com

Ciya Liao
Yahoo! Labs

Sunnyvale, CA, USA
ciyaliao@yahoo-inc.com

Zhaohui Zheng
Yahoo! Labs

Sunnyvale, CA, USA
zhaohui@yahoo-inc.com

ABSTRACT
Some commercial web search engines rely on sophisticated
machine learning systems for ranking web documents. Due
to very large collection sizes and tight constraints on query
response times, online efficiency of these learning systems
forms a bottleneck. An important problem in such systems
is to speedup the ranking process without sacrificing much
from the quality of results. In this paper, we propose op-
timization strategies that allow short-circuiting score com-
putations in additive learning systems. The strategies are
evaluated over a state-of-the-art machine learning system
and a large, real-life query log, obtained from Yahoo!. By
the proposed strategies, we are able to speedup the score
computations by more than four times with almost no loss
in result quality.

Categories and Subject Descriptors
H.3.3 [Information Storage Systems]: Information Re-
trieval Systems

General Terms
Algorithms, Performance

Keywords
Web search, machine learning, early exit, optimization

1. INTRODUCTION
A traditional problem in web search is to estimate the

relevance of a set of documents to a given user query, rank
the documents in decreasing order of their relevance, and
present the k most relevant documents to the user. Due to
inadequacy of simple statistical scoring schemes [3] in satis-
fying user expectations, some major search engines employ

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WSDM’10, February 4–6, 2010, New York City, New York, USA.
Copyright 2010 ACM 978-1-60558-889-6/10/02 ...$10.00.

complex scoring functions learned by machine learning sys-
tems [7, 9, 28]. Such systems are trained offline by using a
training set made up of hundreds of features. Typically, the
objective in learning is to minimize a metric that estimates
the overall error between editorially assigned document rel-
evance scores and the relevance scores predicted by the ma-
chine learning system. In the online phase, given a query,
documents are scored using the previously trained system.
The top k documents are then ranked in decreasing order of
predicted scores and returned to the user.

The scoring process needs to be fast enough so that query
response time constraints can be satisfied (typically, a few
hundred milliseconds for web queries). In practice, it is not
possible to score every document using expensive machine
learned ranking techniques. Therefore, a two-phase scor-
ing scheme is usually employed. In the first phase, a sim-
ple but inaccurate scoring technique (e.g., a BM25 variant)
is used for selecting a small subset of potentially relevant
documents from the entire collection. In the second phase,
selected documents are rescored by a complex but accurate
machine learned ranking architecture, similar to what we
described. The final ranking is determined by the document
scores computed in the second phase.

Many machine learned ranking architectures are based on
additive ensembles (e.g., boosted decision trees [33]), where
many scorers are executed sequentially in a chain and score
contributions of individual scorers are accumulated to com-
pute the final document scores. That is, each document goes
through the entire chain of scorers receiving a partial contri-
bution to its final predicted score. Predicted ranks of doc-
uments are continually refined as more scorers are applied.
Since the scoring process is online and the number of scorers
is high, efficiency of this process is important. If the process
is not optimized, only a limited number of documents can
be scored within the allowed time. Any optimization that
aims to speed up the scoring process, however, should not
lead to an intolerable loss in result quality.

Two features of web search allow short-circuiting the scor-
ing process in additive ensembles. First, document relevance
follows a skewed distribution. For most queries, typically,
there are very few highly relevant documents, but many ir-
relevant documents. Second, most users view only the first
few result pages (e.g., 10 or 20 results). Hence, it may be
possible to terminate scoring of documents that are unlikely
to be ranked within the top k earlier. This way, unneces-

411

sary score computations for many, potentially less relevant
documents are avoided, speeding up the ranking process.

The above-mentioned approach requires estimating via
predictive functions, which we refer to as early exit func-
tions, the likelihood of a document being ranked in the final
top k documents. In this paper, our focus is on devising such
functions for additive machine learning systems. We make
a formal definition of the problem and state its differences
from the existing vector-space ranking optimizations in tra-
ditional IR literature. We propose four different early exit
functions and evaluate their performance using a state-of-
the-art machine learning system based on gradient boosted
decision trees. As the data set, we use a large, real-life query
and result log obtained from Yahoo!.

The proposed early exit functions lead to considerable
speed improvements under no or little loss in result quality.
The performance improvements achieved by this work can
be valuable for large-scale search engines in different ways.
First, given the same amount of time, more documents can
be scored by the second phase ranking, i.e., accurate ma-
chine learning systems. Second, more costly but precise
ranking systems can now be afforded, potentially improving
the result quality [8]. Third, if the quality is not a major
concern, response times can be decreased, query throughput
can be increased, or hardware costs can be reduced.

The rest of the paper is organized as follows. In Section 2,
we formally state the early exit problem. Section 3 surveys
the related work in the literature and compares our work
with existing early exit optimizations in vector-space rank-
ing. Proposed early exit functions are described in Section 4.
The experimental setup is described in Section 5. Section 6
presents various performance results. We discuss further re-
search issues and the limitations of our work in Section 7.
The paper is concluded in Section 8.

2. RANKING AND EARLY EXITING IN AD-
DITIVE ENSEMBLES

2.1 Ranking in Additive Ensembles
Additive ensembles are used in several of the most suc-

cessful machine learning algorithms. These include kernel
methods and SVMs [26], boosting [15], bagging [4], and gen-
eralized additive models [17]. In additive ensembles, the
final score s(xi) of an object xi (e.g., a query-document
pair) is computed by a sum over many, simple scorers as

s(xi)=
PN

j=1 fj(xi), where fj is a scorer that belongs to an

ensemble F = 〈f1, . . . , fN 〉 of N scorers, each executed in
a sequence. The scorers in F are expected to be sorted in
decreasing order of importance before the execution.

In ranking, we have a set D = {d1, . . . , dM} of M docu-
ments that we want to rank according to their relevance to
a query q. For each document di, the ensemble produces
a score s(di, q) =

PN
j=1 fj(di, q), indicating the relevance of

di to q. Then, scores are sorted in decreasing order, and
documents with the top k scores are returned to the user.

If we assume that the cost of computing fj(di, q) is a con-
stant c for all (di, q) and all fj (this is usually the case),
then the cost of computing s(di, q) is cN . The total cost of
scoring all documents in collection D against the query then
becomes C(D)= cMN . For tasks with tight constraints on
execution time (e.g., web search), this cost is not affordable
if both M and N are high (e.g., M >100, 000 and N >1000).

e1f1 f2

di di
f3 f4

didi

∑
3

j=1 fj(di)
∑

1

j=1 fj(di)

∑
4

j=1 fj(di)e2

Figure 1: An additive ensemble with early exits.

2.2 Early Exits
In ranking, the main objective is to have documents cor-

rectly ranked, i.e., scores do not need to be very accurate as
long as the final ordering of documents is correct. Moreover,
in web search, users are most often interested only in doc-
uments at high ranks (i.e., top k). It is relatively more im-
portant to correctly select these documents. Finally, scorers
in additive ensembles are typically sorted in decreasing im-
portance order (or can always be sorted explicitly). These
together make it possible to speed up the scoring process
in additive ensembles as score computations can be short-
circuited, i.e., some documents are not scored by all scorers.

In general, we can early exit the score computation of a
pair (di, q) at any position `<N , computing a partial final

score ŝ(di, q) =
P`

j=1 fj(di, q) using only the first ` scorers.
This decision requires estimating the likelihood that di will
end up within the top k documents and accordingly either
continuing the score accumulation for (di, q) or exiting at
some position `, right after scorer f` is executed. We refer to
functions responsible for this decision as early exit functions.

In its most general form, an early exit function F`(di, q, H)
at position ` takes as input the scored (document, query)
pair and some history information H about all previous de-
cisions. Although it is possible to place an exit function at
every position 1 ≤ ` < N , for computational efficiency, it
makes sense to place the early exit functions selectively and
sparsely over a sequence e=〈e1, . . . , eL〉 of L positions such
that L� N . Fig. 1 shows an example additive ensemble
composed of four scorers and two early exit functions.

Given all these, we can now define an early exit strategy
E := (e, {F`}`∈e) as a sequence of early exit positions and
corresponding early exit functions. The cost of ranking a
collection D by an exit strategy E is given by C(D, E) =

c
PM

i=1 p(di, q), where p(di, q) is the position at which the
score computation of (di, q) is terminated. Note that this
equation excludes the cost of executing the exit functions.
If the exit functions are costly or there are many positions
where we try to exit early, then the cost of exit functions
should also be considered in estimating the total cost.

Unfortunately, terminating score computations early may
degrade result quality as some documents, now, will not be
in their optimal ranks, i.e., there is a compromise between
speed and quality. Let us call R∗

q the ground-truth result set

obtained in case of full score computation and RE
q the result

set obtained using the exit strategy E . Also, let χk(R∗
q ,RE

q)
be a function that measures the relevance loss in top k (e.g.,
loss in P@k) with RE

q relative to R∗
q . The early exit prob-

lem in additive ensembles can now be stated as finding an
exit strategy E that minimizes the expected relevance loss
Eq{χk(R∗

q , RE
q)} while satisfying C(D, E)≤γ, where γ is the

maximum allowed execution cost. In other words, the objec-
tive is to minimize the relevance loss due to early exits while
guaranteeing a given maximum execution cost requirement1.

1Alternatively, we can minimize C(D, E) constraining
Eq{χk(R∗

q , RE
q)} or minimize both jointly.

412

3. RELATED WORK

3.1 Machine Learned Ranking
Document retrieval has traditionally been based on a man-

ually designed ranking function (e.g., BM25). However, web
page ranking is considered as a supervised learning problem,
and several machine learning algorithms have already been
applied to it. One of the earliest publications in the context
of web page ranking is [7], where a neural network is trained
on pairwise preferences. Pairwise learning is now one of the
most popular techniques: it can be used directly with linear
functions [9] or it can be combined within the boosted de-
cision tree framework [33]. Recent work has addressed the
possibility of directly optimizing ranking measures such as
MAP [32] or NDCG [28]. Finally, it is noteworthy that a
simple regression on regression labels [11] turns out to be
competitive compared to more advanced techniques [20].

3.2 Early Exit Optimizations in ML
A few early exit optimizations have already been proposed

in the machine learning community. One example is the face
detection algorithm in [30], which is based on a cascade of
simple classifiers. In this algorithm, a classifier is executed
and if its prediction is positive (i.e., a face is detected), then
another classifier is triggered. Otherwise, the execution is
short-circuited. This process continues until all classifiers
agree that there is a face. This approach is shown to save a
lot of computational power.

In the context of nonlinear support vector machines (a
particular case of additive ensembles), two algorithms have
been proposed to reduce the online evaluation cost of the
decisions [12, 25]. These works are based on the idea that
the points that are far away from the decision boundary can
be classified very quickly with high confidence. To best of
our knowledge, there are no prior works addressing early
exit optimization issues in additive ensembles.

3.3 Early Exit Optimizations in IR
There are many works on early exit optimization for query-

document similarity computations using inverted indices [3].
These works aim to increase search efficiency without de-
grading the quality of results, typically, by limiting the num-
ber of postings processed and the number of documents that
are candidates for top k. They mainly differ in the way they
process postings and early exit criteria they employ.

Buckley and Lewit [6] proposed an algorithm that tra-
verses posting lists in decreasing order of idf values and quits
processing of lists when it is guaranteed that no new docu-
ment can achieve a score high enough to enter the final top
k. Wong and Lee [31] considered also the maximum tf value
in each list while sorting the lists. Moreover, postings are
stored in decreasing order of tf values, and lists are accessed
from disk in units of disk pages, allowing concurrent traver-
sal of lists. They proposed two simple heuristics for predict-
ing the point where the top k document set is stabilized to
exit scoring computations early. Persin [24] used early exit
strategies within a posting list. He used frequency-sorted
indices, where all postings after the first posting with a tf-
idf score contribution less than a certain update threshold
are not processed. His strategy also involved an insertion
threshold for limiting the size of the candidate set.

Harman and Candela [16] suggested fully scoring all docu-
ments in posting lists of the terms with an idf value less than

a certain fraction of the maximum idf of any term in the vo-
cabulary. In processing the remaining lists, only the scores
of the previously scored documents are updated. Moffat and
Zobel [22] extended this idea by replacing the threshold on
lists with a threshold on the number of score accumulators
allocated. In their quit heuristic, once the number of accu-
mulators reached a prespecified threshold, the computation
is halted. Their continue heuristic is similar, but after the
threshold is reached the remaining lists are continued to be
processed, updating only the previously allocated accumula-
tors. Later, Anh et al. [1] proposed a scheme combining the
quit mechanism of [22] with impact-sorted lists, where fully
computed scores are stored in postings. Anh and Moffat [2]
extended the continue heuristic and impact-sorted lists with
an additional phase, in which the top k accumulators are
further continued to be refined by score updates.

Unlike the above-mentioned term-at-a-time scoring ap-
proaches, a separate thread of works investigated document-
at-a-time scoring. Brown [5] suggested maintaining the top-
weighted n documents for each document-id-sorted list. Post-
ings in low-idf lists are not considered in score updates if
the corresponding document is not in the top document set
of the list and does not appear in a high-idf list. Turtle
and Flood [29] presented a heuristic for document-at-a-time
processing on frequency-sorted lists. Strohman et al. [27]
combined the ideas in [5] and [29] under a new algorithm.

Further related work can be found in [13], [14], and [18].

3.4 Comparison with Works in IR
It is possible to make an analogy between machine learn-

ing scorers and posting lists as postings provide precom-
puted partial score information (i.e., weights) for documents.
Despite this analogy, scorers and posting lists differ in a
number of ways. First, the number of scorers are in the or-
der of thousands [20], whereas the number of lists is equal
to the query length, which is typically low. Second, a scorer
contributes to every document’s score, whereas a list con-
tributes to a subset of documents. Third, scores provided
by lists are independent of the query. However, scorers may
use features that result in query-dependent scores.

The main idea behind optimizations for both vector-space
ranking and machine learned ranking is the same: form the
top k document set as fast as possible, without sacrificing
from result quality. However, due to the following reasons,
existing optimizations in vector-space ranking are not di-
rectly applicable to the early exit problem described in this
work. First, it is not possible to employ a heuristic similar to
sorting postings within a list in decreasing weight order [1,
24, 31] or keeping additional score information [5, 27]. This
is because no information is available about the score con-
tributions generated by the scorers before the execution as
scores become available at run-time. Second, the assump-
tion about monotonically increasing scores [6] is not valid
since scorers can assign both negative and positive scores.
Hence, the documents highly scored by early scorers may
end up with low scores (although not very likely). Third, in
most IR works, the primary objective is to reduce relatively
expensive costs such as disk accesses [6], decompression of
postings [22], or sorting the candidate document set [16].
However, features used by the scorers are already in the
memory and individual scorers are cheap. Therefore, ex-
pensive early exit algorithms cannot be afforded. Also, fre-
quency and placement of early exit functions is an issue.

413

Algorithm 1 A generic algorithm for EST.

Require: k: number of documents requested
Require: st[1 . . . N]: array of score thresholds
1: D ← {1 . . . M} . set of documents not exited
2: for d = 1 to M do
3: for p = 1 to N do
4: score[d]← score[d] + SCORE(p, d)
5: if score[d] < st[p] then
6: D ← D − {d} . early exit for document d
7: break
8: return the highest scored k documents in D

4. EARLY EXIT ALGORITHMS

4.1 Traversal Order
In additive ensembles, two different traversal orders are

possible in score computations. Scores can be separately
computed for each document by iterating on all scorers,
i.e., a document-ordered traversal strategy (DOT), where
the outer loop iterates on documents and the inner loop it-
erates on scorers. Alternatively, scores can be separately
computed for each scorer by iterating on all documents, i.e.,
a scorer-ordered traversal strategy (SOT), where the outer
loop iterates on scorers and the inner loop iterates on doc-
uments. In DOT, at every iteration of the outer loop, we
obtain the complete score information for a partial set of
documents. In SOT, on the other hand, we obtain a partial
score information for the entire set of documents. Certain
early exit functions may require a particular traversal order.

Both techniques have their advantages and disadvantages.
In general, DOT provides good cache hit rates in accessing
feature vectors. Also, it is memory efficient as the feature
vector of a document can be deallocated after the document
is scored (i.e., after an iteration of the outer loop). SOT,
on the other hand, requires keeping all feature vectors in
memory until the last scorer is executed and has low cache
utilization. However, the strategies adopting SOT result in
better early exit performance as we will discuss.

4.2 Algorithms
In this section, we present the proposed early exit func-

tions. All of our functions have a threshold value that needs
to be tuned in an offline manner. Early exits are achieved
based on score comparisons determined by these fixed thresh-
olds. We evaluate four early exit functions, each with a
different type of thresholding: score, capacity, rank, and
proximity. We name the functions according to the type
of thresholding as EST, ECT, ERT, and EPT, respectively.
Among our functions, EST can work under both DOT and
SOT schemes. However, ERT and EPT require the SOT
scheme, and ECT is only meaningful with the DOT scheme2.

During the discussion and in the algorithms provided, for
simplicity, we assume that there exists an early exit function
between every two scorers (in the experiments, however, we
place the exits sparsely). Scores are accumulated in the
scores array, and eliminated documents are removed from
the initial candidate set D. Only the documents with a fully
computed score, i.e., the ones that are still in D when all
scoring computations terminate can appear in the top k re-

2In fact, ECT under the SOT scheme is equivalent to ERT
as it will be clear later.

Algorithm 2 A generic algorithm for ECT.

Require: k: number of documents requested
Require: ct[1 . . . N]: array of heap capacity thresholds
1: D ← {1 . . . M} . set of documents not exited
2: for p = 1 to N do
3: H[p]← ∅ . initialize maximum score heaps
4: for d = 1 to M do
5: for p = 1 to N do
6: score[d]← score[d] + SCORE(p, d)
7: if SIZE(H[p]) < ct[p] then
8: PUSH(H[p], score[d])
9: else

10: if score[d] < MIN(H[p]) then
11: D ← D − {d} . early exit for document d
12: break
13: else
14: POP (H[p])
15: PUSH(H[p], score[d])
16: return the highest scored k documents in D

sults. If there are less than k documents with fully computed
scores, then the best (highest) partial scores can be used for
filling the remaining slots (not shown in the algorithms).

4.2.1 Early Exits Using Score Thresholds (EST)
A naive approach is to filter the documents based on the

scores they have accumulated so far, i.e., we quit scoring
the documents with low scores. In EST (Algorithm 1), exits
are based on comparisons between accumulated scores and
offline-computed score thresholds. That is, at each position
p, we compare the current document score with the lowest
(worst) permitable score threshold st[p]. If the accumulated
score is less than st[p], we quit scoring the document, i.e.,
no further score update is performed by remaining scorers.

4.2.2 Early Exits Using Capacity Thresholds (ECT)
Statically computed score thresholds in EST may lead to

poor exit decisions for many documents as distribution of
scores vary depending on individual queries. A solution is
to adjust the lowest permitable score threshold dynamically,
during the score computation, i.e., based on previously ob-
served document scores for the query. In ECT, at every
exit position, a maximum score heap is maintained in order
to record the best partial document scores observed so far
at the current exit position. The capacity of the heap at
position p is determined by threshold ct[p].

During score computations (Algorithm 2), the first ct[p]
document scores are unconditionally inserted into the heap.
This is a warm-up period for collecting information about
the score distribution. Afterwards, documents are elimi-
nated based on comparisons between their current scores
and the current worst score in the heap, i.e., if the docu-
ment score is lower than the minimum score in the heap, we
stop scoring the document. Otherwise, we pop the minimum
score from the heap and push the current document score.

In this strategy, the order in which the documents are
scored is very important. A good scoring order could be the
decreasing order of document relevance as this scoring order
increases the likelihood of early exits. However, since this
order is not available (in fact, this is our objective), scores
assigned priori by a cheaper scoring function can be used to
obtain a reasonable scoring order for documents.

414

Table 1: Comparison of early exit functions

Exit functions
EST ECT ERT EPT

Threshold used score capacity rank proximity
Traversal order DOT or SOT DOT SOT SOT
Time complexity at position p O(M) O(M log ct[p]) O(M) O(M)

Total space complexity O(F) O(F +
PN

p=1 ct[p]) O(MF) O(MF)

Algorithm 3 A generic algorithm for ERT.

Require: k: number of documents requested
Require: rt[1 . . . N]: array of rank thresholds
1: D ← {1 . . . M} . set of documents not exited
2: for p = 1 to N do
3: for d = 1 to M do
4: if d ∈ D then
5: score[d]← score[d] + SCORE(p, d)
6: d′ ← SELECT(D, rt[p])
7: for d = 1 to M do
8: if d ∈ D then
9: if score[d] < score[d′] then

10: D ← D − {d} . early exit for document d
11: return the highest scored k documents in D

4.2.3 Early Exits Using Rank Thresholds (ERT)
The weakness of ECT is that the exit decisions are based

on only a partial set of previously seen document scores.
Only a partial ranking information can be utilized due to the
DOT scheme employed. In fact, having the complete rank
information for documents is quite valuable as eventually
getting the final document ranks right is the main objective.
ERT, like any exit function using the SOT scheme, has the
advantage of utilizing the global ranking information.

Early exits decisions in ERT (Algorithm 3) are based on
comparisons between the current ranks of documents (com-
puted over all documents) and offline-computed rank thresh-
olds. At position p, the documents that survived previous
exit tests are ranked in decreasing order of their scores. The
documents having a rank better than an offline-computed
rank threshold rt[p] are allowed for further scoring. The
rest of the documents are eliminated. Algorithm 3 shows
an efficient version which uses the linear-time selection al-
gorithm [10] (SELECT) for finding the document at rank
rt[p] (instead of sorting the documents) and prunes the doc-
uments based on this pivot document’s score.

4.2.4 Early Exits Using Proximity Thresholds (EPT)
EPT (Algorithm 4) is similar to ERT in that document

ranks are utilized. In EPT, however, the pivot document
rank is always fixed to k. At an exit position p, the deci-
sion of eliminating a document is made based on an offline-
computed score proximity threshold pt[p]. The idea is to
keep scoring the documents that have a score close enough
to the score of the document at the kth rank. Therefore,
only the documents that are within the first k ranks as well
as documents that are within a score proximity of the kth
document’s score are continued to be scored by later scor-
ers. The rest of the documents are early exited. In a sense,
EPT is a hybrid scheme that combines the currently avail-
able rank and score information.

Algorithm 4 A generic algorithm for EPT.

Require: k: number of documents requested
Require: pt[1 . . . N]: array of difference thresholds
1: D ← {1 . . . M} . set of documents not exited
2: for p = 1 to N do
3: for d = 1 to M do
4: if d ∈ D then
5: score[d]← score[d] + SCORE(p, d)
6: d′ ← SELECT(D, k)
7: for d = 1 to M do
8: if d ∈ D then
9: if score[d] < score[d′]− pt[p] then

10: D ← D − {d} . early exit for document d
11: return the highest scored k documents in D

4.3 Comparison of Functions
Early exit functions differ in several aspects, which are

summarized in Table 1. Although the worst-case time com-
plexities of ERT and EPT are equal to that of EST, in prac-
tice, EST is much faster as it involves only a single score
comparison per document, whereas ERT and EPT require
many comparisons per document during the SELECT oper-
ation. Note that, in early exit functions using SOT, feature
vectors cannot be deallocated throughout the execution, and
this may become an issue if F (the size of feature vectors)
and M are both high (especially, if query processing is multi-
threaded and many queries are concurrently processed).

4.4 Rank-Preserving Early Exit Algorithms
In this work, we prefer not to discuss algorithms that guar-

antee correctness of the top k results (with respect to rank-
ing without optimization). This is because we aim to keep
the algorithms as general as possible, instead of tuning for
a specific type of scorers. Depending on properties of scor-
ers, it may be possible to devise algorithms that preserve
ranking. For example, in the framework of gradient boosted
decision trees, which we consider in Section 6, the minimum
and maximum score contributions of each scorer are known
priori. Thus, a simple rank-preserving algorithm can be de-
veloped as follows. For each scorer p, we compute (offline)
the sum of the maximum possible score contributions of suc-
ceeding scorers, i.e., we compute mp =

PN
q=p+1 fmax

q , where
fmax

q is the maximum contribution of scorer q. In ranking,
a document d can then be eliminated at scorer p whenever
score[d]+mp < MIN(H[N]) holds. Unfortunately, this al-
gorithm does not perform well in the framework we adopt
as the difference between the minimum and maximum score
contributions is high and scores are not skewed across the
scorers (unlike posting lists, discussed in Section 3). Hence,
we prefer not to report results for this algorithm.

415

20 200 400 600 800 1000 1200
Number of scorers

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
M

ea
n

sc
or

e
Max. target document score
Avg. target document score
Min. target document score
Avg. document score
Min. document score

a) Score variation

20 200 400 600 800 1000 1200
Number of scorers

0

5

10

15

20

25

30

35

40

45

M
ea

n
ra

nk

Max. target document rank
Top-20 document threshold
Avg. target document rank
Min. target document rank

b) Rank variation for target documents

Figure 2: Score and rank variation.

5. EXPERIMENTAL FRAMEWORK
We use 7400 web queries, randomly and uniformly sam-

pled from query logs of Yahoo!. All queries are evaluated
over the entire web index of the same search engine. For each
query, we obtain the highest-ranked 20 documents, i.e., the
documents listed in the first two result pages. Since 75.2%
of page views are for the first two result pages [19], this is a
reasonable number (at the moment, this percentage must be
even higher due to continuous improvements in web search
relevance). We also obtain 200 additional good documents,
sampled from the same web index, using a simple ranking
function based on a linear combination of a BM25 variant
with a link analysis metric (a very good predictor according
to [23]). We then mix the two document sets as an effort
towards simulating a scenario where all top documents fall
into the same node in a large search cluster. Hence, result
qualities provided by our experiments will be stricter bounds
for cases where top documents are more evenly distributed.

Documents are evaluated using a learning system based on
gradient boosted decision trees [33], composed of N =1200
scorers (decision trees). The system is trained by hundreds
of proprietary features3. The number of scorers is chosen
depending on the point where the error rate observed over a
large training data set saturates. Note that offline pruning
of scorers is not feasible as almost all scorers are needed to
refine the scores of very highly ranked documents.

Our decision of using gradient boosted decision trees is
based on the following. First, they are currently the state-
of-the-art in machine learning with very high accuracy rates
in regression and classification. Second, they are very well
suited to the ranking problem in web search as they can be
trained by large training sets. Third, they are fast enough to
be used in a time-constrained problem like query processing.

To form a baseline for our experiments, we rank all 220
documents using our system (i.e., full score computation
without any early exits) and select the top 20 documents for
every query. We refer to these documents as “target docu-
ments”. In our experiments, we evaluate the quality of dif-
ferent early exit functions by counting the number of target
documents missing in the resulting top 20 documents (effec-
tively, we compute the value 20×(1−P@20)). In all plots,

3Due to their commercial value, we refrain from disclosing
the training features. Moreover, the techniques proposed in
this work are independent of the feature set used. Interested
reader may refer to [21] for a representative set of features.

reported values are averaged over all queries. We should
note that, in the experiments conducted, missing target doc-
uments are mostly borderline documents near the 20th rank.
Therefore, we do not report precision values at low k values
(e.g., P@5) or DCG@20 values as there is no or insignificant
amount of relevance loss with respect to these metrics.

Figs. 2a and 2b display variation of average, minimum,
and maximum document scores and ranks with increasing
number of scorers, respectively. As seen in Fig. 2a, there is
high score variation at very early scorers. This is because
the first scorer tries to assign an average score to documents
as an effort to minimize the estimated error. But, the follow-
ing scorers quickly differentiate between more relevant and
less relevant documents. As more scorers are executed, av-
erage, minimum, and maximum scores stabilize very quickly
for both target documents and the documents in the entire
input set. Similarly, according to Fig. 2b, the average doc-
ument rank stabilizes very quickly for the target document
set. However, the maximum rank is always higher than 20,
i.e., there are target documents not within the final top 20
until the latest scorers execute. Note that the plots show
only the average behavior over all queries. Both score and
rank variation can be quite different for individual queries.

6. PERFORMANCE
All of the early exit functions we described require a thresh-

old to be set in an offline manner. In our experiments, we
refrain from using highly tuned thresholds. Instead, we are
more interested in observing the general behavior of exit
functions with varying thresholds. This allows us to under-
stand the impact of threshold selection on the performance.
Moreover, the problem of determining the optimum thresh-
olds does not have a trivial solution (but, the thresholds can
be tuned empirically). We discuss this issue in Section 7.

6.1 Experiments with Single Exit Position
As the first experiment, in order to understand the gen-

eral performance behavior, we place a single exit function
at every possible exit position and observe the performance
with different thresholds. In other words, we try all possi-
ble (threshold, exit position) combinations via brute force
evaluation. Thresholds are empirically selected from a wide
range that let us explore the quality-performance trade-off
and trends in detail. Selected thresholds are as follows:

416

20 100 200 300 400 500 600 700 800 900 1000 1100 1200
Early exit position

0

100

200

300

400

500

600

700

800

900

1000

1100

1200
N

um
be

r
of

 s
co

re
rs

 e
xe

cu
te

d

st=1.00
st=1.50
st=2.00
st=2.50
st=3.00

a) Early exits with score thresholds (EST)

20 100 200 300 400 500 600 700 800 900 100011001200
Early exit position

0
20
40
60
80

100
120
140
160
180
200
220

N
um

be
r

of
 d

oc
um

en
ts

 e
ar

ly
 e

xi
te

d

20 100 200 300 400 500 600 700 800 900 1000 1100 1200
Early exit position

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

N
um

be
r

of
 s

co
re

rs
 e

xe
cu

te
d

ct=150
ct=100
ct=50
ct=30
ct=20

b) Early exits with capacity thresholds (ECT)

20 100 200 300 400 500 600 700 800 900 100011001200
Early exit position

0
20
40
60
80

100
120
140
160
180
200
220

N
um

be
r

of
 d

oc
um

en
ts

 e
ar

ly
 e

xi
te

d

20 100 200 300 400 500 600 700 800 900 1000 1100 1200
Early exit position

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

N
um

be
r

of
 s

co
re

rs
 e

xe
cu

te
d

rt=150
rt=100
rt=50
rt=30
rt=20

c) Early exits with rank thresholds (ERT)

20 100 200 300 400 500 600 700 800 900 100011001200
Early exit position

0
20
40
60
80

100
120
140
160
180
200
220

N
um

be
r

of
 d

oc
um

en
ts

 e
ar

ly
 e

xi
te

d

20 100 200 300 400 500 600 700 800 900 1000 1100 1200
Early exit position

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

N
um

be
r

of
 s

co
re

rs
 e

xe
cu

te
d

pt=0.9
pt=0.7
pt=0.5
pt=0.3
pt=0.1

d) Early exits with proximity thresholds (EPT)

20 100 200 300 400 500 600 700 800 900 100011001200
Early exit position

0
20
40
60
80

100
120
140
160
180
200
220

N
um

be
r

of
 d

oc
um

en
ts

 e
ar

ly
 e

xi
te

d

Figure 3: Number of documents early exited (inner plot) and number of scorers executed (outer plot).

• EST: st ∈ {1.0, 1.5, 2.0, 2.5, 3.0},
• ECT: ct ∈ {150, 100, 50, 30, 20},
• ERT: rt ∈ {150, 100, 50, 30, 20},
• EPT: pt ∈ {0.9, 0.7, 0.5, 0.3, 0.1}.

For each exit position, Fig. 3 (inner plots) shows the num-
ber of documents eliminated. Interestingly, the behavior is
very similar for EST and EPT as there is a sharp incline at
early positions. This can be explained by the initial decline
in average scores (Fig. 2a), which render documents more
likely to be subject to elimination. A slight initial decline
is observed for ECT. For ERT, the number of eliminated
documents is fixed as it is independent of the query (exactly
M−rt[p] documents are discarded at each position p).

Fig. 3 (outer plots) shows the average number of scorers
executed. For example, for EST with ct=1.5, if we place an
exit function at position 100, then about 600 scorers are ex-
ecuted on average. Data values in these plots are calculated
using corresponding values in inner plots: if e[p] documents
are exited at position p, we can compute the average number
of scorers executed (Navg) by the following formula

Navg =
p× e[p] + N × (M − e[p])

M
.

In our case, execution costs of individual scorers are compa-
rable, and the overhead of early exit functions is negligible.
Hence, the average number of scorers executed provides a
good estimate of the total execution time.

Fig. 4 (outer plots) provides the number of target docu-

ments missing in the final top 20 documents due to early
exits. We observe that EPT results in very little loss of tar-
get documents relative to other exit functions, among which
EST performs the worst. However, the number of missing
target documents is not indicative on its own as the number
of scorers executed should also be considered. Hence, we also
display the trade-off between the two, in Fig. 4 (inner plots),
where each data value represents, for every (threshold, exit
position) pair tested, the number of scorers executed and the
corresponding number of missing target documents. As seen
from the figure, if thresholds are set too tight, the number of
missed documents can grow quickly with little reduction in
the number of scorers executed. If they are set too loose, on
the other hand, because many documents will not be elimi-
nated, desired efficiency improvements may not be achieved.

6.2 Experiments with Multiple Exit Positions
In practice, multiple functions can be placed at different

positions. However, selection of the optimum number of exit
functions and positions (also the thresholds) is not a trivial
problem. In the mean time, selection of these parameters
is a relatively less important problem. In practice, thresh-
olds and exit positions can be tuned by brute force search
over some training data. Even if this approach can be com-
putationally expensive, it is still feasible as the tuning is
performed infrequently (in fact, only when the ensemble is
modified) and in an offline manner.

In this work, we are not interested in tuning parameters.
Instead, we observe the effect of exit positions and thresholds

417

20 100 200 300 400 500 600 700 800 900 1000 1100 1200
Early exit position

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0
N

um
be

r
of

 ta
rg

et
 d

oc
um

en
ts

 m
is

se
d

st=3.00
st=2.50
st=2.00
st=1.50
st=1.00

a) Early exits with score thresholds (EST)

20 100 200 300 400 500 600 700 800 900 1000 1100 1200
Number of scorers executed

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
um

be
r

of
 ta

rg
et

 d
oc

um
en

ts
 m

is
se

d

20 100 200 300 400 500 600 700 800 900 1000 1100 1200
Early exit position

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
um

be
r

of
 ta

rg
et

 d
oc

um
en

ts
 m

is
se

d

ct=20
ct=30
ct=50
ct=100
ct=150

b) Early exits with capacity thresholds (ECT)

20 100 200 300 400 500 600 700 800 900 1000 1100 1200
Number of scorers executed

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
um

be
r

of
 ta

rg
et

 d
oc

um
en

ts
 m

is
se

d

20 100 200 300 400 500 600 700 800 900 1000 1100 1200
Early exit position

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
um

be
r

of
 ta

rg
et

 d
oc

um
en

ts
 m

is
se

d

rt=20
rt=30
rt=50
rt=100
rt=150

c) Early exits with rank thresholds (ERT)

20 100 200 300 400 500 600 700 800 900 1000 1100 1200
Number of scorers executed

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

N
um

be
r

of
 ta

rg
et

 d
oc

um
en

ts
 m

is
se

d

20 100 200 300 400 500 600 700 800 900 1000 1100 1200
Early exit position

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.30

N
um

be
r

of
 ta

rg
et

 d
oc

um
en

ts
 m

is
se

d

pt=0.1
pt=0.3
pt=0.5
pt=0.7
pt=0.9

d) Early exits with proximity thresholds (EPT)

20 100 200 300 400 500 600 700 800 900 1000 1100 1200
Number of scorers executed

0.00

0.03

0.06

0.09

0.12

0.15

0.18

0.21

0.24

0.27

0.30

N
um

be
r

of
 ta

rg
et

 d
oc

um
en

ts
 m

is
se

d

Figure 4: Number of target documents missed versus scorers executed (inner plot) and number of target
documents missed as exit position increases (outer plot).

on performance by conducting experiments with multiple,
heuristically selected exit positions and thresholds. These
experiments give us a good idea about the relative perfor-
mance of our early exit functions.

For selecting the early exit positions, we follow a simple
heuristic that models the gap between two exit positions by
a polynomial function. For example, for the constant func-
tion x0, the exit positions are placed at equal distances. As
the degree of the polynomial increases, placement becomes
more skewed towards the early scorers, i.e., exit functions
are more densely placed at earlier positions. The following
list shows the placement functions used and the resulting
exit positions (we place four early exit functions and posi-
tions are rounded to the nearest multiple of 20):

• x0 : p1[1 . . . 4] = {40, 340, 620, 920},
• x1 : p2[1 . . . 4] = {40, 160, 400, 740},
• x2 : p3[1 . . . 4] = {40, 80, 240, 600},
• x3 : p4[1 . . . 4] = {40, 60, 160, 460}.

Figs. 5a and 5b compare the exit functions in terms of the
number of scorers executed and target documents missed for
a variety of thresholds and placement functions. Each curve
in the figures is composed of four data points, which corre-
spond to the above-mentioned placement functions. Hori-
zontally, first data points in all curves correspond to place-
ments by the polynomial x3, the second data points corre-
spond to x2, and so on. As an example, the leftmost data

point in Fig. 5a is obtained by running EST with parame-
ters p4 and st while the rightmost data point is obtained by
running EPT with parameters p1 and pt. Two different sets
of thresholds (loose and tight) are tried (displayed in the
legends of the figures). Tight thresholds favor result quality
while loose thresholds are better for improving efficiency.

According to Fig. 5, we observe that EPT, ERT, and ECT
all perform considerably better than EST. Among them,
EPT performs slightly better than ERT and ECT, with
almost no loss in result quality and reducing the number
of scorers by about four times. For example, by executing
only 300 scorers on average, EPT results in almost no tar-
get document loss (Fig. 5a). However, a point that needs to
be considered is the caching effect mentioned in Section 4.1.
Since ECT employs DOT, in practice, it has the potential to
outperform EPT when real execution times are considered.

6.3 Distribution of Queries
All results reported so far are averages over all queries.

It is also interesting to observe the distribution of queries
according to the number of target documents missed. Fig. 6
shows in what percentage of queries the same number of
target documents is missed. Since queries for which more
than three documents are missed are relatively rare, their
percentages are summed and displayed as a single number.
The results displayed in the figure are obtained using pa-
rameter p3 and loose thresholds (see Fig. 5a).

418

S

S

S

S

C
C

C

C
R

R

R

R

PPP
P

50 100 150 200 250 300 350 400 450 500
Number of scorers executed

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6
N

um
be

r
of

 ta
rg

et
 d

oc
um

en
ts

 m
is

se
d

EST, st[]={1.5, 2.0, 2.5, 3.0}S S

ECT, ct[]={100, 50, 30, 20}C C

ERT, rt[]={100, 50, 30, 20}R R

EPT, pt[]={0.7, 0.5, 0.3, 0.1}P P

a) Loose thresholds (more missing target documents)

S

S

S

S

CCC
C

RR
R

R

PPPP

150 200 250 300 350 400 450 500 550 600 650
Number of scorers executed

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

N
um

be
r

of
 ta

rg
et

 d
oc

um
en

ts
 m

is
se

d

EST, st[]={1.0, 1.5, 2.0, 2.5}S S

ECT, ct[]={150, 100, 50, 30}C C

ERT, rt[]={150, 100, 50, 30}R R

EPT, pt[]={0.9, 0.7, 0.5, 0.3}P P

b) Tight thresholds (fewer missing target documents)

Figure 5: Performance of early exit functions with varying threshold values and placement strategies.

According to Fig. 6, EPT achieves results identical to the
case with no early exit optimization for 94% of queries. It
misses more than two target documents in only six queries.
The poor performance of EST is more clearly visible in this
figure. In the worst case of EST, we observe a query with
only one correctly selected target document. Although their
distributions are relatively similar, ECT outperforms ERT,
conforming with Fig. 5a. However, in the worst case, ECT
is close to EST with 17 missed target documents.

0 1 2 >2
Number of target documents missed

0

10

20

30

40

50

60

70

80

90

Pe
rc

en
ta

ge
 o

f
qu

er
ie

s

EST
ECT
ERT
EPT

Figure 6: Percent dissection of queries according to
the number of missed target documents.

7. DISCUSSION
Limitations and over-simplifications of this work needs to

be pointed out. First, herein, we assumed that execution
costs of scorers are similar. Although the costs of scorers
(i.e., basically, the average depths of decision trees) are sim-
ilar in our case, this may not be true for other additive sys-
tems. Hence, costs of scorers need to be taken into account.
One simple heuristic could be to reorder the scorers (offline)
in decreasing order of importance/cost ratios, rather than
solely based on importance. Going further, we could even
try to modify the learning algorithm in such a way that it
purposely places cheaper scorers at early positions.

Second, the behavior of early exits on a large search cluster
could be interesting to investigate. In our work, as an effort
towards simulating a worst-case scenario, where all top 20

documents are stored in the same child node in a large search
cluster, we mixed two result sets of different qualities. In
practice, relevant documents will be distributed on many
search nodes, each having only a few relevant documents.
This may further improve the performance gains achieved
by early exit optimizations.

Third, instead of tuning the exit functions, we tried to
demonstrate the general behavior via empirically selected
thresholds and exit positions. One possible research direc-
tion would be to automate the tuning process by an al-
gorithm that estimates the (threshold, position) pair that
achieves the maximum benefit in early exiting.

Fourth, we believe that conditional ensembles can also
benefit from early exit optimizations. Further research is
needed to understand whether the proposed techniques are
directly applicable to such ensembles and how they perform.

Fifth, in this work, we have not considered any constraints
on execution time. In practice, however, there may be upper
bounds on the processing time of queries, and the bounds
may vary depending on the query. It would be interesting
to extend these algorithms to encapsulate such constraints.

Sixth, the query set we used in experiments are randomly
and uniformly sampled. In a real-life search engine setting,
however, most frequently submitted queries are caught by
the result cache and can be answered without any need for
scoring. Ideally, our query set should have been sampled
from queries that cannot be answered by the result cache.

8. CONCLUSIONS
We presented and evaluated four different early exit op-

timization strategies for improving performance of additive
machine learning ensembles, which are used by some search
engines for ranking purposes. The proposed strategies are
found to achieve considerable speedups in online execution
times of additive ensembles (with the EPT approach, the
improvement is up to four times with almost no loss in qual-
ity). These results show that early exit optimizations have
the potential to be of great value for large-scale search en-
gines as we have mentioned in Section 1. We plan to continue
this research with the issues given in Section 7.

9. ADDITIONAL AUTHORS
Additional authors: Jon Degenhardt (Yahoo! Labs, email:

jondeg@yahoo-inc.com).

419

10. REFERENCES
[1] V. N. Anh, O. Kretser, and A. Moffat. Vector-space

ranking with effective early termination. In Proc. 24th
Int’l ACM SIGIR Conf. on Research and Development
in Information Retrieval, pages 35–42, 2001.

[2] V. N. Anh and A. Moffat. Pruned query evaluation
using pre-computed impacts. In Proc. 29th Int’l ACM
SIGIR Conf. on Research and Development in
Information Retrieval, pages 372–379, 2006.

[3] R. Baeza-Yates and Ribeiro-Neto. Modern information
retrieval. Addison-Wesley, 1999.

[4] L. Breiman. Bagging predictors. Machine Learning,
24(2):123–140, 1996.

[5] E. W. Brown. Fast evaluation of structured queries for
information retrieval. In Proc. 18th Int’l ACM SIGIR
Conf. on Research and Development in Information
Retrieval, pages 30–38, 1995.

[6] C. Buckley and A. Lewit. Optimizations of inverted
vector searches. In Proc. 8th Int’l ACM SIGIR Conf.
on Research and Development in Information
Retrieval, pages 97–110, 1985.

[7] C. Burges, T. Shaked, E. Renshaw, A. Lazier,
M. Deeds, N. Hamilton, and G. Hullender. Learning to
rank using gradient descent. In Proc. 22nd Int’l Conf.
on Machine learning, 2005.

[8] B. B. Cambazoglu, V. Plachouras, and
R. Baeza-Yates. Quantifying performance and quality
gains in distributed web search engines. In Proc. 32nd
Int’l ACM SIGIR Conf. on Research and Development
in Information Retrieval, pages 411–418, 2009.

[9] Y. Cao, J. Xu, T. Liu, H. Li, Y. Huang, and H. Hon.
Adapting ranking SVM to document retrieval. In
Proc. 29th Int’l ACM SIGIR Conf. on Research and
Development in Information Retrieval, pages 186–193,
2006.

[10] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to algorithms (2nd ed.). MIT
Press, 2001.

[11] D. Cossock and T. Zhang. Subset ranking using
regression. In Proc. Conf. on Learning Theory, 2006.

[12] D. DeCoste. Anytime interval-valued outputs for
kernel machines: fast support vector machine
classification via distance geometry. In 19th Int’l Conf.
on Machine Learning, 2002.

[13] R. Fagin. Combining fuzzy information from multiple
systems. Journal of Computer and System Sciences,
58(1):83–99, 1999.

[14] R. Fagin. Combining fuzzy information: an overview.
ACM SIGMOD Record, 31(2):109–118, 2002.

[15] Y. Freund and R. E. Schapire. Experiments with a
new boosting algorithm. In Proc. Int’l Conf. on
Machine Learning, pages 148–146, 1996.

[16] D. Harman and G. Candela. Retrieving records from a
gigabyte of text on a minicomputer using statistical
ranking. Journal of the American Society for
Information Science, 41(8):581–589, 1990.

[17] T. Hastie and R. Tibshirani. Generalized Additive
Models. Chapman & Hall/CRC, 1990.

[18] R. Kumar, K. Punera, T. Suel, and S. Vassilvitskii.
Top-k aggregation using intersections of ranked
inputs. In Proc. of the Second ACM Int’l Conf. on
Web Search and Data Mining, pages 222–231, 2009.

[19] R. Lempel and S. Moran. Predictive caching and
prefetching of query results in search engines. In Proc.
12th Int’l World Wide Web Conf., pages 19–28, 2003.

[20] P. Li, C. Burges, and Q. Wu. Mcrank: Learning to
rank using multiple classification and gradient
boosting. In J. Platt, D. Koller, Y. Singer, and
S. Roweis, editors, Advances in Neural Information
Processing Systems 21, pages 897–904. MIT Press,
Cambridge, MA, 2008.

[21] T.-Y. Liu, J. Xu, T. Qin, and W. X. andHang Li.
Letor: benchmark dataset for research on learning to
rank for information retrieval. In SIGIR 2007
Workshop on Learning to Rank for Information
Retrieval, 2007.

[22] A. Moffat and J. Zobel. Self-indexing inverted files for
fast text retrieval. ACM Transactions on Information
Systems, 14(4):349–379, 1996.

[23] M. Najork, H. Zaragoza, and M. J. Taylor. Hits on the
web: how does it compare? In Proc. 30th Int’l ACM
SIGIR Conf. on Research and Development in
Information Retrieval, pages 471–478, 2007.

[24] M. Persin. Document filtering for fast ranking. In
Proc. 17th Int’l ACM SIGIR Conf. on Research and
Development in Information Retrieval, pages 339–348,
1994.

[25] S. Romdhani, P. Torr, B. Schölkopf, and A. Blake.
Fast face detection, using a sequential reduced support
vector evaluation. In Proc. Int’l Conf. on Computer
Vision, 2001.

[26] B. Schölkopf and A. J. Smola. Learning with Kernels.
MIT Press, 2002.

[27] T. Strohman, H. Turtle, and W. B. Croft.
Optimization strategies for complex queries. In Proc.
28th Int’l ACM SIGIR Conf. on Research and
Development in Information Retrieval, pages 219–225,
2005.

[28] M. J. Taylor, H. Zaragoza, N. Craswell, S. Robertson,
and C. Burges. Optimisation methods for ranking
functions with multiple parameters. In Proc. 15th Int’l
Conf. on Information and Knowledge Management,
pages 585–593, 2006.

[29] H. Turtle and J. Flood. Query evaluation: strategies
and optimizations. Information Processing &
Management, 31(6):831–850, 1995.

[30] P. A. Viola and M. J. Jones. Robust real-time face
detection. Int’l Journal of Computer Vision,
57(2):137–154, 2004.

[31] W. Y. P. Wong and D. K. Lee. Implementations of
partial document ranking using inverted files.
Information Processing & Management,
29(5):647–669, 1993.

[32] Y. Yue, T. Finley, F. Radlinski, and T. Joachims. A
support vector method for optimizing average
precision. In Proc. 30th Int’l ACM SIGIR Conf. on
Research and Development in Information Retrieval,
pages 271–278, 2007.

[33] Z. Zheng, H. Zha, T. Zhang, O. Chapelle, K. Chen,
and G. Sun. A general boosting method and its
application to learning ranking functions for web
search. In J. Platt, D. Koller, Y. Singer, and
S. Roweis, editors, Advances in Neural Information
Processing Systems 20, pages 1697–1704. 2008.

420

