
Dartmouth College Dartmouth College

Dartmouth Digital Commons Dartmouth Digital Commons

Computer Science Technical Reports Computer Science

9-1-1996

Early Experiences in Evaluating the Parallel Disk Model with the Early Experiences in Evaluating the Parallel Disk Model with the

ViC* Implementation ViC* Implementation

Thomas H. Cormen
Dartmouth College

Melissa Hirschl
Dartmouth College

Follow this and additional works at: https://digitalcommons.dartmouth.edu/cs_tr

 Part of the Computer Sciences Commons

Dartmouth Digital Commons Citation Dartmouth Digital Commons Citation
Cormen, Thomas H. and Hirschl, Melissa, "Early Experiences in Evaluating the Parallel Disk Model with the
ViC* Implementation" (1996). Computer Science Technical Report PCS-TR96-293.
https://digitalcommons.dartmouth.edu/cs_tr/135

This Technical Report is brought to you for free and open access by the Computer Science at Dartmouth Digital
Commons. It has been accepted for inclusion in Computer Science Technical Reports by an authorized
administrator of Dartmouth Digital Commons. For more information, please contact
dartmouthdigitalcommons@groups.dartmouth.edu.

https://digitalcommons.dartmouth.edu/
https://digitalcommons.dartmouth.edu/cs_tr
https://digitalcommons.dartmouth.edu/cs
https://digitalcommons.dartmouth.edu/cs_tr?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.dartmouth.edu/cs_tr/135?utm_source=digitalcommons.dartmouth.edu%2Fcs_tr%2F135&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dartmouthdigitalcommons@groups.dartmouth.edu

Dartmouth College Computer Science Technical Report

PCS-TR96-293

(Revised September 1996)

Early Experiences in Evaluating the Parallel Disk Model

with the ViC* Implementation

Thomas H. Cormen�

Melissa Hirschly

Dartmouth College

Department of Computer Science

fthc, hersheyg@cs.dartmouth.edu

Abstract

Although several algorithms have been developed for the Parallel Disk Model (PDM), few
have been implemented. Consequently, little has been known about the accuracy of the PDM in
measuring I/O time and total running time to perform an out-of-core computation. This paper
analyzes timing results on multiple-disk platforms for two PDM algorithms, out-of-core radix
sort and BMMC permutations, to determine the strengths and weaknesses of the PDM.

The results indicate the following. First, good PDM algorithms are usually not I/O bound.
Second, of the four PDM parameters, one (problem size) is a good indicator of I/O time and
running time, one (memory size) is a good indicator of I/O time but not necessarily running
time, and the other two (block size and number of disks) do not necessarily indicate either I/O
or running time. Third, because PDM algorithms tend not to be I/O bound, using asynchronous
I/O can reduce I/O wait times signi�cantly.

The software interface to the PDM is part of the ViC* run-time library. The interface is a
set of wrappers that are designed to be both e�cient and portable across several underlying �le
systems and target machines.

1 Introduction

Since its introduction in 1990, the Parallel Disk Model (PDM) of Vitter and Shriver [VS90, VS94]

has become the predominant model for developing and analyzing algorithms that operate on data

�Supported in part by funds from Dartmouth College and in part by the National Science Foundation under Grants

CCR-9308667 and CCR-9625894. Portions of this work were performed while visiting the Parallel Data Laboratory

of the Carnegie Mellon University School of Computer Science.
ySupported in part by a Dartmouth College Fellowship and in part by the National Science Foundation under

Grants CCR-9308667 and CCR-9625894.

To appear in Parallel Computing.

1

stored on multiple disks. Although a variety of PDM algorithms have appeared in the literature,

there have been few implementations of any of them. (A notable exception is Vengro�'s TPIE

project [Ven94, Ven97].)

The ViC* project at Dartmouth will implement virtual memory for the data-parallel language

C* [TMC93] with the PDM as its underlying abstract disk model. ViC* contains two major

components: a compiler that takes a C* program with some variables declared outofcore and

produces a C program with explicit I/O and library calls, and a run-time library that implements

the I/O and library calls.

This paper presents our early experiences in evaluating how accurate a model the PDM is, based

on two sophisticated algorithms for the PDM (radix sort and performing BMMC permutations

[CSW94]) that we implemented with the ViC* run-time library. We ran these algorithms on two

platforms: a uniprocessor with eight disks and a network of eight workstations.

To evaluate any computational model, one needs an implementation of that model and rep-

resentative programs for the model. The ViC* implementation of the PDM is portable across a

wide variety of hardware and software platforms. The two algorithms we have chosen are relatively

easy to implement, and they are representative of PDM algorithms in the literature in that they

perform multiple discrete passes over the data. Moreover, these algorithms are useful; for example,

the BMMC permutation code is at the heart of an e�cient out-of-core Fast Fourier Transform

implementation [CN96].

The PDM is designed to measure I/O complexity. That is, it measures how many parallel disk

accesses an algorithm makes, in terms of four parameters:

� N : the problem size,

� M : the random-access memory size,

� B: the size of each disk block,

� D: the number of disks.

Each parallel disk access reads or writes one block of B records from or to each of the D disks.

Because disk-access latencies are so much higher than memory-access times (on the order of 10

milliseconds versus 100 nanoseconds, or a factor of about 100,000), the PDM places a premium on

minimizing the number of parallel disk accesses.

On the other hand, the PDM measures only I/O complexity. Computation and interprocessor

communication incur no cost in this model.

In reality, however, one might expect computation and interprocessor communication to be

signi�cant costs. Examination of most algorithms developed for the PDM, including the two in

this paper, reveals that they tend to operate in discrete passes over the data by reading in a large

amount of data in parallel, processing the data in memory (perhaps entailing interprocessor com-

munication), and writing out the data in parallel. (The reads or writes are sometimes interspersed

with the in-memory processing.) The I/O transfer size is typically the same each time for a given

run of an algorithm and depends on the values of the four PDM parameters. Each parallel read and

write, therefore, induces some computation and communication. The time for such a processing

step is usually at least a linear function of the I/O transfer size.

Our implementation of the two algorithms yielded the following �ndings about the accuracy of

the PDM:

2

� Good PDM algorithms are usually not I/O bound. That is, the sum of the computation and

communication time is usually comparable to the I/O time and often exceeds it.

� The PDM parameter for the problem size (N) is a fairly good indicator of I/O time and total

running time.

� The PDM parameter for the memory size (M) is a fairly good indicator of I/O time. It is

also a good indicator of running time on a uniprocessor, but not as good on a multiprocessor.

� The PDM parameters for the block size (B) and number of disks (D) are poor indicators

of both I/O time and total running time. The parameter D can be a good indicator of I/O

time on a multiprocessor depending on the system con�guration. Optimal values of these

parameters depend on the underlying system, which limits the applicability of the PDM

when the values of these parameters are varied.

We also found that using asynchronous I/O was an e�ective means of reducing I/O wait times in

compute-bound programs. When I/O time is less than computation time, as is often the case in

good PDM algorithms, asynchronous I/O hides most of the I/O latency.

The remainder of this paper is organized as follows. Section 2 presents the Parallel Disk Model

and brie
y surveys I/O-complexity results for it. Section 3 discusses how we designed the ViC* run-

time library to implement the PDM e�ciently and portably. Section 4 de�nes the class of BMMC

permutations and outlines the algorithm for performing them on the PDM. Section 5 describes

an out-of-core radix sort algorithm for the PDM. Section 6 presents extensive timing results for

these two PDM algorithms on a uniprocessor with 8 data disks and for the BMMC algorithm on

an 8-node network of workstations. Finally, Section 7 summarizes the timing results to evaluate

how well the PDM models real systems.

2 The Parallel Disk Model

This section describes the Parallel Disk Model and gives some I/O complexity results for it.

Figure 1 shows the Parallel Disk Model, or PDM. In the PDM, N records are stored on D disks

D0;D1; : : : ;DD�1, with N=D records stored on each disk. The records on each disk are partitioned

into blocks of B records each.1 When a disk is read from or written to, an entire block of records

is transferred. Disk I/O transfers records between the disks and a random-access memory (which

we shall refer to simply as \memory") capable of holding M records. Any set of M records is a

memoryload. Each parallel I/O operation transfers up to D blocks between the disks and memory,

with at most one block transferred per disk, for a total of up to BD records transferred. The

most general type of parallel I/O operation is independent I/O, in which the blocks accessed in a

single parallel I/O may be at any locations on their respective disks. A more restricted operation

is striped I/O, in which the blocks accessed in a given operation must be at the same location on

each disk.

The PDM is also notable for what it does not include. It does not specify how many processors

there are, nor how they are connected, and it does not distinguish between shared and distributed

1A block might consist of several sectors of a physical device or, in the case of RAID [CGK+88, Gib92, PGK88],

sectors from several physical devices.

3

D0 D1 D2 DD–1

memory

…

processors

Figure 1: The Parallel Disk Model. Records are stored on disks D0;D1; : : : ;DD�1, with an equal number
of records on each disk. The records on each disk are partitioned into blocks of B records each (not shown
here). Disk I/O transfers records between disks and memory that can hold M records. Processor and
memory organization are unspeci�ed. An algorithm's cost is the number of parallel I/O operations, each of
which transfers one block per disk.

D0 D1 D2 D3 D4 D5 D6 D7

stripe 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
stripe 1 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
stripe 2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
stripe 3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Figure 2: The layout of N = 64 records in a parallel disk system with B = 2 and D = 8. Each box
represents one block. The number of stripes is N=BD = 4. Numbers indicate record indices.

memories. Additionally, as we noted in Section 1, the PDM does not consider the time to process

data in memory as part of its cost model.

We measure an algorithm's e�ciency by the number of parallel I/O operations it requires.

Although this cost model does not account for the variation in disk access times caused by head

movement and rotational latency, programmers often have no control over these factors. The

number of disk accesses, however, can be minimized by carefully designed algorithms. Optimal

algorithms have appeared in the literature for fundamental problems such as sorting [Arg95, BGV96,

NV93, NV95, VS94], general permutations [VS94], and structured permutations [Cor92, Cor93,

Wis96], as well as higher-level domains such as Fast Fourier transform [CN96, VS94], matrix-

matrix multiplication [VS94], LUP decomposition [WGWR93], computational geometry problems

[AVV95, GTVV93], and graph algorithms [CGG+95].

We place some restrictions on the PDM parameters. We assume that B, D, M , and N are

exact powers of 2. In order for the memory to accomodate the records transferred in a parallel I/O

operation to all D disks, we require that BD �M . Also, we assume that M < N , since otherwise

we can just perform all operations in memory.

The PDM lays out data on a parallel disk system as shown in Figure 2. A stripe consists of

the D blocks at the same location on all D disks. We indicate the index of a record as a (lgN)-bit

vector x with the least signi�cant bit �rst: x = (x0; x1; : : : ; xlgN�1). Record indices vary most

4

rapidly within a block, then among disks, and �nally among stripes.

Since each parallel I/O operation accesses at most BD records, any algorithm that must access

all N records requires
(N=BD) parallel I/Os, and so O(N=BD) parallel I/Os is the analogue

of linear time in sequential computing. Vitter and Shriver, followed by others, showed an upper

bound of �
�
N
BD

lg(N=B)

lg(M=B)

�
parallel I/Os for sorting. This bound is asymptotically tight, because it

matches the lower bounds proven earlier by Aggarwal and Vitter [AV88] using a model with one

disk and D independent read/write heads, which is at least as powerful as the PDM. The quantity

�
�
lg(N=B)

lg(M=B)

�
represents the number of passes over the data required to sort.

The I/O complexity of �
�
N
BD

lg(N=B)

lg(M=B)

�
appears to be the analogue of the �(N lgN) bound seen

for so many sequential algorithms on the standard RAM model. Not only does sorting have this

tight I/O bound, but Vitter and Shriver also showed that Fast Fourier transforms do as well.

There are, however, problems that can be solved in linear time on the RAM model but require

�
�
N
BD

lg(N=B)

lg(M=B)

�
parallel I/Os on the PDM. One such problem is performing general permutations.

An algorithm that is e�cient on the PDM has two characteristics. First, each access to a block

uses all the records in that block. It is ine�cient to incur the cost of a disk access just to access a

few records in a block. Second, disk accesses are organized to balance the load evenly across the

D disks. That is, the algorithm should perform parallel I/O operations as de�ned above. Ensuring

that each set of D block accesses is for blocks on the D distinct disks is a challenge for the PDM

algorithm designer.

3 The ViC* implementation of the PDM

ViC* is designed for e�cient data-parallel computation on out-of-core data. It stores each out-of-

core parallel variable in a separate �le in some underlying �le system, which may be a parallel �le

system. Implementation of out-of-core operations in ViC* is guided by two principles:

1. Out-of-core operations should be e�cient in terms of the PDM.

2. The system should be portable to permit implementation across a wide variety of parallel

computers and networks of workstations.

This section describes how we designed the ViC* run-time library with these considerations in

mind.

Figure 3 shows the overall architecture of the ViC* run-time library. In addition to supporting

out-of-core computation, the ViC* run-time system will include the entire C* run-time library

for in-core parallel computation. The boxes at the top of the �gure denote these large sets of

functions. Both in-core and out-of-core functions will require interprocessor communication. We

have de�ned a set of macros for interprocessor communication and implemented them for three

underlying communication models: MPI [GLS94, SOHL+96], PVM [GBD+94], and a uniprocessor.

Switching between models is as simple as recompiling with a di�erent macro set and relinking with

a di�erent library.

The ViC* API

A more interesting question is how to implement the PDM abstraction in a portable fashion. We

have done so by de�ning an application programmer interface (API) that we call the ViC* API. It

5

network of
workstations IBM SP-2

other
platforms

Intel
Paragon uniprocessor

SPFS 1.5 Galley SIO API UFS

MPI or PVM

ViC* API

Standard C*
library ViC* library

Figure 3: The overall architecture of the ViC* run-time library. The bottom row represents target machines,
and all other layers represent software. The standard C* library for in-core computation uses MPI or PVM
for interprocessor communication. Lightly shaded lines show some of the platforms that have MPI or PVM
implementations. The ViC* library for out-of-core computation contains calls to MPI or PVM and the
ViC* API. Wrappers for the ViC* API exist for SPFS 1.5 (which runs on a network of workstations), Galley
(running on a network of workstations and the IBM SP-2), and the Unix �le system (UFS) on a uniprocessor,
and they will be written for the SIO API, which will run on several platforms.

is perhaps a misnomer, in that we do not expect application programmers to actually use it. We

believe, however, that it will be useful in writing the ViC* run-time library. The ViC* compiler

will produce direct calls to it as well.

The ViC* API is derived from two other interfaces. The primary in
uence is the Whiptail File

System API [SW95], which was also designed to support the PDM. A secondary in
uence is the

low-level �le-system API currently being developed by the Scalable I/O (SIO) Initiative Working

Group on Operating Systems.

As Figure 3 shows, a particular implementation of the ViC* API will be as a set of wrapper

functions on top of an existing �le system interface. We have already implemented it on three

systems:

� Scotch Parallel File System (SPFS version 1.5) [GSC+95]:

SPFS uses a client-server model in which computing processes are clients and servers provide

access to storage. It provides a Unix-like linear view of each parallel �le. SPFS runs on a

network of workstations.

� Galley File System [NK96a, NK96b]:

Like SPFS, Galley is a parallel �le system that uses a client-server model. Unlike SPFS,

Galley allows applications a more sophisticated view of the parallel �le system. In particular,

6

its interface provides for access to speci�c disks. Galley was developed to run on a network of

IBM RS6000 workstations and on the IBM SP-2, and it has also been ported to a network of

DEC Alpha workstations (running Digital Unix) and to a network of PCs (running FreeBSD

and Linux).

� Uniprocessor:

The ViC* API runs on single DEC Alpha workstations, of both the desktop variety and a

DEC 2100 server (named \adams") at Dartmouth. The DEC 2100 has two 175-MHz Alpha

processors, 320 megabytes of shared memory, and nine 2-gigabyte disk drives of which eight

are used for data. The disks are distributed among three SCSI chains on a DEC RAID

controller. The operating system (Digital Unix V3.2D-1, a variant of OSF-1) may choose to

run a ready thread on either CPU. The ViC* wrappers for adams are the same as for a single

desktop workstation; there are no MPI or PVM calls. The underlying �le system is UFS.

Although the ViC* wrappers make no special use of the second processor on adams, they

do spawn a thread for each disk to service I/O requests for that disk for the duration of the

program. Consequently, there is a high degree of concurrency on adams as disk-server threads

often run on a separate processor from the main computation thread. Each disk contains its

own set of UFS �les.

As of this writing, we have working implementations of the ViC* API for uniprocessors and

for Galley. The Galley implementation is on \Fleet," a network at Dartmouth of eight IBM

RS6000 nodes connected by a 100-Mbit/second FDDI network; we use the MPI versions of the

communication macros. We have written the wrappers for SPFS 1.5 and successfully run programs

with them, but problems with software outside the ViC* system temporarily prevent ViC* from

working reliably with SPFS 1.5. Consequently, this paper contains no timing results for ViC* on

top of SPFS 1.5.

The SIO interface is still being de�ned, and so no implementations of it yet exist. We expect the

ViC* wrappers for the SIO API to be especially easy to write once the interface is �nalized. Our

understanding is that implementations for the IBM SP-2 and Intel Paragon are planned; because

MPI or PVM already runs on these parallel machines, porting ViC* to them should be a simple

task at some future date.

In the remainder of this section, we highlight some features of the ViC* API. We omit discussion

of several straightforward �le-management functions, including the ViC_open() function, which

returns a �le descriptor.

Con�guration

The ViC* API provides to the run-time library an abstraction that each processor owns at least

one disk. (Here, a \disk" might be a disk server, as in Galley or SPFS 1.5.) Figure 4 shows an

example in which each of four processors owns two disks. ViC* provides this abstraction even when

there are more processors than disks; in this case, multiple processors share a given disk. The only

restriction is that the number of disks must be an integer multiple of the number of processors or

vice versa.

Only underlying C types (char, int, long int, double, etc.) map to PDM records in the

ViC* run-time library. The ViC* compiler breaks structures and arrays2 into their underlying

2C* uses shapes, which are orthogonal to arrays, to express parallelism.

7

processor 0

D0 D1

processor 1

D2 D3

processor 2

D4 D5

processor 3

D6 D7

physical stripe 0

1

2

3

4

5

6

7

physical stripe 0

1

2

3

2BD records, 4 bytes each

2BD records, 2 bytes each

logical stripe 0
records 0 to BD–1

logical stripe 1
records BD to 2BD–1

0 to
B–1

B to
2B–1

2B to
3B–1

3B to
4B–1

4B to
5B–1

5B to
6B–1

6B to
7B–1

7B to
BD–1

BD to
BD+B–1

BD+B to
BD+2B–1

BD+2B to
BD+3B–1

BD+3B to
BD+4B–1

BD+4B to
BD+5B–1

BD+5B to
BD+6B–1

BD+6B to
BD+7B–1

BD+7B to
2BD–1

logical stripe 0
records 0 to BD–1

logical stripe 1
records BD to 2BD–1

0 to
B–1

B to
2B–1

2B to
3B–1

3B to
4B–1

4B to
5B–1

5B to
6B–1

6B to
7B–1

7B to
BD–1

BD to
BD+B–1

BD+B to
BD+2B–1

BD+2B to
BD+3B–1

BD+3B to
BD+4B–1

BD+4B to
BD+5B–1

BD+5B to
BD+6B–1

BD+6B to
BD+7B–1

BD+7B to
2BD–1

Figure 4: An example with P = 4 processors and D = 8 disks that shows how records of di�ering sizes
map to disks in ViC*. Shown are two parallel variables. The top one has elements that are 2 bytes each,
and the bottom one has 4-byte elements. Each shaded rectangle is a B-byte physical block, and each of the
parallel variables occupies 2 logical stripes. Each logical block consists of 2 and 4 physical blocks for the
2-byte and 4-byte element types, respectively. For each of the parallel variables, elements 0 to B � 1 and
BD to BD+B � 1 are on disk D0, elements B to 2B � 1 and BD+B to BD+ 2B � 1 are on disk D1, and
so on.

components and stores the components separately. Records, therefore, are relatively small; the

largest record is the size of a long double. Block sizes are typically quite a bit larger, starting at

512 bytes or so and going as high as the SPFS 1.5 striping unit size of 64 KB. Record sizes and

block sizes are powers of 2. Consequently, each block contains multiple records, and each record

resides on exactly one block.

Because not all record types are the same size and a computation might use records of di�ering

sizes, we needed to devise a way of working with records of various but small sizes. To understand

this issue, consider an index i into parallel variables. We want the processor number to which

all records at index i map to be the same, regardless of the record size. For example, if we are

casting a parallel variable x of 2-byte short int to a parallel variable y of 4-byte int, we need the

ith elements of x and y to meet at the same processor. A further consideration is that the data

layout across multiple disks should be close to the PDM order shown in Figure 2 so that we can

sequentially access the elements of a parallel variable by accessing it stripe by stripe.

Figure 4 shows our solution. We distinguish between physical stripes and logical stripes. A

physical stripe consists of one physical block of B bytes|not necessarily B records|from each

disk.3 A record whose size is k bytes resides in a logical block consisting of k consecutive physical

blocks on the same disk. A logical block, therefore, contains B records. For a k-byte record size,

3Again, a physical block might actually consist of several disk sectors.

8

a logical stripe consists of k consecutive physical stripes or, equivalently, a set of logical blocks at

the same k locations on their respective disks. The jth record in a logical block occupies bytes jk

through (j + 1)k� 1. With this layout scheme, the processor and disk that a record maps to are a

function of only the record index and the parameters P (the number of processors), D, and B. All

read and write functions in the ViC* API take as parameters a logical stripe number and a record

size so that they can determine physical stripe numbers; all calls to these functions ask for at least

one logical block each time.

The small record size is necessary for this scheme to work in practice. The size of each logical

block is the record size times the physical block size. If record sizes could be large, logical block

sizes could be very large, and we might not be able to allocate space for many logical stripes before

running out of memory on a typical workstation.

Striped access

The functions ViC_read_stripes() and ViC_write_stripes() provide synchronous access (they

do not return until the I/O operation completes) to a set of consecutive logical stripes. Each takes

the following parameters: a �le descriptor of an open �le, the number of the �rst logical stripe to

access, the number of consecutive logical stripes to access, the record size in bytes, and the address

of a bu�er in memory to read into or write from.

When a processor calls ViC_read_stripes() or ViC_write_stripes(), it reads or writes its

portion of the stripe on the disk(s) it owns. No interprocessor synchronization (i.e., barrier) is

needed. Each processor runs at its own speed.

The functions ViC_async_read_stripes() and ViC_async_write_stripes() are asyn-

chronous versions of the above functions. They take an additional parameter, which is a pointer

to a \handle" that they give back to the caller. This handle is passed later on in a call to

ViC_async_status() to wait for the operation to complete or to poll its status.

Independent access

The functions ViC_read_indep() and ViC_write_indep() provide synchronous, independent I/O.

Like the striped-access functions, no interprocessor synchronization is needed. Each takes the

following parameters: a �le descriptor of an open �le, a count of how many read or write requests

are being made, the record size in bytes, an array of bu�er addresses in memory, an array of disk

numbers for this processor, and an array of logical stripe numbers. Each of the latter three arrays

contains one entry for each I/O request, and each I/O request is for one logical block. There is no

prohibition against repeating a disk number in the array of disk numbers, and so an I/O request

might not be truly independent; we view this situation as a performance issue rather than one of

correctness.

The functions ViC_async_read_indep() and ViC_async_write_indep() are the asynchronous

independent-access functions. Like their synchronous counterparts, they take a pointer to a handle

that is passed to ViC_async_status() later on.

4 The BMMC permutation algorithm for the PDM

In order to exercise the ViC* API's implementation of the PDM, we needed to implement a sophis-

ticated PDM algorithm. Moreover, we wanted to use one that requires independent I/O for optimal

9

performance. (If all parallel I/O operations are striped so that none are independent, then a RAID

level 3 disk organization is e�cient.) We chose the BMMC permutation algorithm of [CSW94]. This

section de�nes the class of BMMC permutations, summarizes the BMMC permutation algorithm,

and describes some issues in the implementation of the algorithm.

BMMC permutations

Any permutation is de�ned by a bijection of a set f0; 1; : : : ;N � 1g onto itself. We say that

each source index in f0; 1; : : : ; N � 1g maps to a distinct target index in f0; 1; : : : ;N � 1g. The

mapping for a BMMC (bit-matrix-multiply/complement) permutation on N elements is speci�ed

by a (lgN) � (lgN) characteristic matrix A = (aij) whose entries are drawn from f0; 1g and is

nonsingular (i.e., invertible) over GF(2).4 The speci�cation also includes a complement vector

c = (c0; c1; : : : ; clgN�1). Treating each source index x as a (lgN)-bit vector, we perform matrix-

vector multiplication over GF(2) and then form the corresponding (lgN)-bit target index y by

complementing some subset of the resulting bits: y = Ax � c, or
2
6666664

y0
y1
y2
...

ylgN�1

3
7777775
=

2
6666664

a00 a01 a02 � � � a0;lgN�1

a10 a11 a12 � � � a1;lgN�1

a20 a21 a22 � � � a2;lgN�1

...
...

...
. . .

...

algN�1;0 algN�1;1 algN�1;2 � � � algN�1;lgN�1

3
7777775

2
6666664

x0
x1
x2
...

xlgN�1

3
7777775
�

2
6666664

c0
c1
c2
...

clgN�1

3
7777775
:

As long as the characteristic matrix A is nonsingular, the mapping of source indices to target indices

is one-to-one.

Although not all permutations are BMMC, many permutations often encountered in practice

are. The class of BPC (bit-permute/complement) permutations is the subclass of BMMC per-

mutations in which the characteristic matrix is a permutation matrix, containing one 1 in each

row and in each column. Matrix transpose (with power-of-2 dimensions), bit reversal (used in

performing FFTs), vector reversal, and matrix reblocking are all BPC, and hence BMMC, per-

mutations. Gray-code permutations, inverse Gray-code permutations, and permutations used by

fast cosine transforms [MW95] are BMMC (but not BPC). BMMC permutations are closed under

composition so that, for example, the composition of bit-reversal and Gray-code permutations is

BMMC.

We generally focus on the matrix-multiplication portion of BMMC permutations rather than

on the complement vector. A key technique used to perform BMMC permutations is factoring a

characteristic matrix into multiple matrix factors, each of which is nonsingular and of a desired

form. If we factor a characteristic matrix A as A = A(k)A(k�1)A(k�2)
� � �A(1), then we can perform

the BMMC permutation characterized by A by performing, in order, the BMMC permutations

characterized by A(1);A(2); : : : ;A(k). That is, we perform the permutations characterized by the

factors of a matrix from right to left.

Summary of the BMMC algorithm for the PDM

Each factor produced by the BMMC algorithm of [CSW94] characterizes a restricted form of BMMC

permutation that can be performed in one pass over the data. (We refer the reader to [CSW94]

4Matrix multiplication over GF (2) is like standard matrix multiplication over the reals but with all arithmetic

performed modulo 2. Equivalently, multiplication is replaced by logical-and, and addition is replaced by exclusive-or.

10

D0 D1 D2 D3 D4 D5 D6 D7

M/BD consecutive logical stripes
in source file

M records in source buffer

M records in target buffer

read into source buffer

permute into target buffer

write to target file

M/B blocks in target file
spread evenly among disks

Figure 5: Processing a memoryload in an MLD permutation. Each small square represents a record.
The M records are read from M=BD consecutive logical stripes of the source �le into a source bu�er in
memory, permuted into a target bu�er (to avoid clutter, we have drawn only some of the arrows showing
this in-memory permutation), and written out to M=B blocks of the target �le spread evenly among the
disks.

for details about the forms of the matrix factors.) Each pass copies records from a source �le to a

target �le stored across the D disks. Regardless of the number of matrix factors, only two �les are

needed over the course of the algorithm, since we can repeatedly swap the roles of the source and

target �les from pass to pass.

The restricted form of BMMC permutation used in the algorithm is known as MLD (memory-

load-dispersal) because it can be performed as Figure 5 shows. Given an e�ective memory size ofM

records, process each ofN=M memoryloads by reading inM records, permute them in memory, and

write them out. In an MLD permutation, theM records read in reside onM=BD consecutive logical

stripes of the source �le, and so we can call ViC_read_stripes() or ViC_async_read_stripes() to

read them. On the other hand, when they are written out to the target �le, they are not necessarily

in consecutive logical stripes. An MLD permutation has the desirable property, however, that the

records written are clustered into M=B blocks that are evenly distributed among the disks, with

11

M=BD blocks on each disk. Hence we can call ViC_write_indep() or ViC_async_write_indep()

to write them out.

By \e�ective" memory size, we mean that the size of each memoryload|and hence the value of

the PDM parameterM for the algorithm|is smaller than the physical memory size. The reason is

that once the records are read into memory, we need additional memory to process them. Records

are read into a source bu�er and permuted into a separate target bu�er within each processor, from

where they are written out. That reduces the e�ective memory size to half the physical memory

size. If we are also using asynchronous I/O, we need to allocate two more memoryload-sized bu�ers:

one to hold the memoryload that we are reading ahead, and one to hold the memoryload that we

are writing behind. That further reduces the e�ective memory size to a quarter of the physical

memory size.

The number of MLD factors is at most
l

rank

lg(M=B)

m
+ 2, where
 is the lower left lg(N=B)� lgB

submatrix of the characteristic matrix, and the rank is computed over GF (2). (Note that because of

the dimensions of
, its rank is at most lgmin(N=B;B).) This number of factors is asymptotically

optimal and is very close to the best known exact lower bound.

The last (i.e., leftmost) MLD factor has an even more restricted form. Not only does it read

memoryloads by reading M=BD consecutive logical stripes, but it also writes them by writing

M=BD consecutive logical stripes. Hence we can write them by calling ViC_write_stripes() or

ViC_async_write_stripes(). We call such permutations MRC (memory-rearrangement/comple-

ment).

Implementation notes

We conclude this section by noting a couple of further implementation details. First, we have

designed the interprocessor communication portion of each MLD factor to be e�cient. All pro-

cessors store a copy of the characteristic matrix for the MLD permutation, which means that by

agreeing upon the order in which records are sent, only the records|and not their source or target

indices|need be sent. This optimization saves on network bandwidth. Using factoring techniques

like those in [CSW94], we order the interprocessor communication into rounds in which each send-

ing processor sends to a unique receiving processor. We also designed a technique whereby the two

processors agree on the order of the source indices of the records in the transmitted bu�er.

A second optimization applies to both uniprocessor and multiprocessor systems. To move each

record to its place in the target bu�er, a processor must compute the record's target index from

its source index. Done naively, this computation would require a matrix-vector multiplication of a

(lgN)�(lgN) matrix by a (lgN)-vector. This matrix-vector multiplication requires �(lg2N) time,

and so we would spend �(N lg2N) time in each pass computing target indices. We can reduce this

time to �(N) per pass, which is optimal. Observe that in any practical situation, lgN � 64, and

so we can store each matrix column in one or two long ints. We can exclusive-or a column into

a (lgN)-bit vector, also packed into one or two words, using �(1) bitwise operations. Next, note

that we may choose source indices in any order. By choosing a Gray-code order, in which each

source index di�ers from the previous one in only one bit position, each target index di�ers from

the previous one by the exclusive-or of one matrix column. As we have just noted, that exclusive-or

operation takes �(1) time. Moreover, we can compute which column to use in only �(1) amortized

time; see [CB95] for details. Thus, we spend only �(1) amortized time per record in each pass.

12

5 Radix sort for the PDM

The other PDM algorithm that we have implemented and measured is an out-of-core, bucketized

radix sort. This section describes the out-of-core radix sort algorithm and our implementation of

it. This description is oriented toward a uniprocessor with multiple disks.

Several other sorting algorithms for the PDM have appeared in the literature [Arg95, BGV96,

NV93, NV95, VS94]. These use independent I/O and are asymptotically optimal. By contrast,

our radix sort algorithm is suboptimal but it uses only striped I/O. Vengro� [Ven97] has observed

that for realistic ranges of PDM parameters, asymptotically optimal PDM algorithms often require

more parallel I/Os than do suboptimal algorithms. This is because the asymptotically optimal

sorting algorithms tend to have high constant factors. The constant factors for radix sort, on the

other hand, are relatively low. Radix sort has the further advantage that it is considerably simpler

to implement than any of the optimal sorting algorithms.

Summary of the bucketized radix sort algorithm for the PDM

Our out-of-core, bucketized radix sort algorithm bears some similarity to the usual in-core radix

sort method (see [CLR90, pp. 178{179] for a related algorithm). We make a number of passes over

the data, where each pass examines K sort-key bits. We shall show in a moment how to choose the

value of K. The �rst pass examines the least signi�cant K bits, the second pass examines the next

group of K bits, and so on. If there are L sort-key bits altogether, then dL=Ke passes are required.

The jth pass performs a stable sort based on the jth group of K bits. In particular, we place each

record into one of 2K buckets based on the value of the K bits. Once all records have been placed

into buckets, we concatenate the buckets in order of the K-bit values 0; 1; : : : ; 2K � 1 to produce

a sequence of items sorted according to the least signi�cant jK key bits. The correctness of this

method relies on stability: records placed into the same bucket in some order in one pass must be

processed in the same order in the next pass. The time per pass is O(N + 2K) for N records, and

so the total time is O(dL=Ke (N + 2K)). We choose K to minimize this time.

Like the BMMC algorithm, out-of-core radix sort moves the data from a source �le to a target

�le. It makes a number of passes, each of which rearranges the data. We swap the roles of the

source and target �les from pass to pass.

For out-of-core radix sort, it is important to minimize the number of passes, since each pass

requires each record to be read and written once. Therefore, we wish to maximize K. We carve

memory into 2K =M=4BD buckets, so that K = lg(M=4BD).

Bucketized radix sort has two phases: census and distribution. In the census phase, we calculate

how many records will fall in each bucket on each pass. We do so by reading the data into memory,

one stripe at a time, and surveying each record to see which bucket it will fall into on each pass.

The census information is later used to see how many stripes worth of data will be written out for

each bucket.

The distribution phase performs the dL=Ke passes over the data. We read one stripe at a time

into an input bu�er and copy each record from the input bu�er to its appropriate bucket. If the

addition of a record to a bucket completes a stripe within that bucket, the stripe is then written

out. The census information tells us where in the target �le to write the stripe. At the end of each

pass of the distribution phase, we write out any stripes that have not already been written.

Each pass performs dN=BDe striped reads and dN=BDe striped writes. The distribution phase

consists of dL= lg(M=4BD)e passes, and the census phase requires dN=BDe striped reads. The

13

total number of parallel I/Os is thus
�
N
BD

� �
2
l

L
lg(M=4BD)

m
+ 1

�
.

Implementation notes

From the above description, it would seem that we should be able to use as many as M=BD

buckets, rather than only M=4BD. Like the BMMC algorithm, however, the use of asynchronous

I/O changes the e�ective memory size for our radix sort algorithm. When we use asynchronous

I/O, we allocate bu�ers for three stripes worth of data per bucket. The �rst two stripe bu�ers are

a double bu�er for writing behind.

The third stripe bu�er of each bucket is only written once in each pass. Its purpose bears more

explanation. We have no guarantee that any bucket starts or ends at a stripe boundary. In fact,

most buckets start and end in the middle of stripes. When a bucket ends in the middle of a stripe,

it shares that stripe with the beginning of the next nonempty bucket. The census information tells

us where these bucket boundaries are. The third stripe bu�er contains the last partial stripe of data

from that bucket and the �rst partial stripe of data from the next nonempty bucket. By careful

bookkeeping, we limit the number of partially �lled stripes that are written to one per pass rather

than one per bucket per pass.

To maintain that the number of buckets is a power of 2, we useM=4BD rather thanM=3BD as

the above description would suggest. Our out-of-core radix sort implementation with synchronous

I/O also usesM=4BD buckets; unlike our BMMC code, it is written without sensitivity to whether

I/O is synchronous or asynchronous when making decisions based on memory size.

The census pass yields another useful optimization. If a pass places all records into the same

bucket, then we skip that pass. In the common situation in which all N keys have equal high-order

bits, this optimization can save several passes. The experiments we report in Section 6 use keys

in which all bits are randomly chosen, and so this optimization does not a�ect the timings in this

paper.

6 Timing results

This section presents timing results for the radix sort and BMMC permutation algorithms. We ran

the BMMC algorithm on two platforms: adams with the uniprocessor ViC* wrappers and Fleet

with the Galley implementation of the ViC* API. The in-core portion of out-of-core radix sort does

not parallelize well, and so we ran radix sort only on adams. For radix sort, all runs were on 4-byte

records, and for BMMC permutations, all runs were on 8-byte records. All characteristic matrices

and complement vectors were randomly generated by repeated calls to the Unix random() function

until the matrix so produced was nonsingular. For radix sort, keys are 4-byte integers generated by

random(), and each record consists only of its key. All code was written in C and compiled with

gcc. On adams, we used optimization level -O2, and on Fleet we used optimization level -O1.

We varied the PDM parameters di�erently on adams and Fleet. On adams, we varied the

problem sizes from 221 up to 229 records. Memory sizes varied from 224 bytes to 227 bytes. Most

runs on adams were with all 8 disks, but we also measured the e�ect of using 1, 2, and 4 disks.

Physical block sizes varied from 28 bytes to 214 bytes.

On Fleet, we could choose anywhere from 1 to 8 compute processors (CPs) and from 1 to 8

I/O processors (IOPs). Each IOP serves a disk (so that D is the number of IOPs), and it may be

coresident with a CP. In order to allow each disk its maximum I/O bandwidth, we always kept the

14

number of CPs and IOPs equal, i.e., P = D. The system runs fastest when CPs and IOPs reside

on distinct processors, however. With 8 nodes, we performed most runs with 4 nodes as CPs and

the other 4 nodes as IOPs. We did perform runs with 1, 2, and 8 IOPs as well. (With 8 IOPs, each

IOP must be coresident with a CP.) The maximum number of records and maximum memory size

for the entire system vary with the number of CPs. Our runs varied the problem sizes from 219 to

224 records per CP, and memory sizes varied from 222 bytes to 225 bytes per CP. As in our adams

runs, physical block sizes varied from 28 bytes to 214 bytes.

All I/O timings start upon calling ViC* synchronous read or write functions and end when they

return. I/O timings, therefore, include software overhead from the ViC* wrappers, �le system, and

operating system. They also include any bene�cial �le-cache e�ects. Because even synchronous

write calls return before actually writing the data to disk, write times are lower than read times

once the problem size becomes large enough to negate �le caching for reads. Nevertheless, the times

we report here are what the programs observe.

It was impractical for us to produce timings for all combinations of PDM parameters in the

ranges that make sense for adams and Fleet. On adams, for example, with 9 di�erent values of N ,

4 values of M , 4 values of D, and runs for synchronous vs. asynchronous I/O, we would have to

run a program 288 times to try each combination once. Multiply that by the range of block sizes

we might consider, and realize that some of these runs take over an hour, and it becomes apparent

why we must choose our timing runs judiciously. Consequently, we varied block sizes by holding

all other parameters except for the problem size �xed, and we did the same when we varied the

number of disks.

BMMC permutations

Figure 6 shows running times for the BMMC permutation algorithm on adams. One plot shows

problem sizes of 221 to 225 records, or 224 to 228 bytes. The other plot shows problem sizes of 226

to 229 records, or 229 to 232 bytes. We have separated these plots in order to maintain resolution in

the faster runs for smaller problem sizes. All runs in Figure 6 use a physical block size of B = 210

and D = 8 disks.

For each problem size, there is a pair of bars. For now, we focus on the left bars of each pair,

which breaks down the running time with synchronous I/O. The total height gives the total running

time with synchronous I/O and a memory size of 224 bytes. The left bars are comprised of four

stacked rectangles. From bottom to top, the heights of these rectangles give the time spent reading

memoryloads, the time spent writing memoryloads, the time spent permuting in memory, and all

other time spent. The sum of the read and write times is, with a few exceptions, just over half of

the total time. I/O and computation are approximately balanced in the BMMC algorithm.

Figure 6 also shows the e�ect and limits of �le caching in the underlying Unix �le system on

adams. (Recall that the ViC* wrappers make calls to UFS.) For problem sizes up to 223 records,

read times are very small. They begin to jump at 224 records, and they are relatively high from

225 records and up. Why? The physical memory size of adams is 320 megabytes, and a problem

size of 225 records is 256 megabytes in each of the source and target �les. At this problem size, for

most records, between the time that the record is written and the time it is next read, more bytes

than the size of the physical memory have passed through the �le cache, and so the record is not

present in the �le cache.

Write times are lower than read times starting at 225 records. Again, this behavior is due to

15

Number of 8-byte records

S
ec
o
n
d
s

225224223222221

300

250

200

150

100

50

0

Number of 8-byte records

229228227226

5000

4500

4000

3500

3000

2500

2000

1500

1000

500

0

Figure 6: Breakdown of time spent on adams in performing BMMC permutations with synchronous I/O,
and the total time with asynchronous I/O. The timings are shown in two parts in order to maintain
resolution in the faster runs for smaller problem sizes. The horizontal axis is the problem size, as a number
of 8-byte records, and the vertical axis is time in seconds. For each run shown here, the memory size is
224 bytes, the physical block size is 210 bytes, and 8 disks are used. For each problem size, the left side
shows time using synchronous I/O, and the right side shows the total time using asynchronous I/O. The left
sides are comprised of four rectangles stacked on top of each other; the height of all four together gives the
total running time. The bottom rectangle represents the total time spent reading memoryloads, the next
rectangle shows the time spent writing memoryloads, the next rectangle represents time spent permuting
in memory, and the top rectangle (usually quite small) encompasses all other time spent. \Error bars"
represent variations observed in the total time for memory sizes ranging from 224 through 227 bytes (but not
exceeding the problem size in bytes).

�le caching. UFS write calls do not guarantee that the data has actually gone out to disk by the

time they return.

The total time follows the prediction of the PDM quite well. Each run with synchronous I/O

in Figure 6 uses 2 passes. With the number of passes held �xed, the PDM predicts that the total

time is linear in the number of records. Except for the jump at 225 records from �le caching no

longer yielding a bene�t, we see that the total time approximately doubles each time the number

of records doubles.

Figure 7 shows analogous timings on Fleet with 4 CPs and 4 IOPs, so that P = D = 4. The

memory size is 224 bytes per CP, or 226 bytes altogether. Physical block sizes are 212 bytes. From

bottom to top, the stacked rectangles represent read time, write time, communication time outside

the I/O calls, compute time, and all other time. The sum of read and write times is about half of

the total time on Fleet, so that I/O and computation/communication are balanced. There appears

16

Number of 8-byte records

S
ec
o
n
d
s

226225224223

900

800

700

600

500

400

300

200

100

0

Figure 7: The analogue of Figure 6 for Fleet. For each run shown here, the physical block size is 212 bytes
and there are 4 CPs, 4 IOPs, and 224 bytes of memory per CP, or 226 bytes of memory altogether. The left
sides are comprised of �ve rectangles stacked on top of each other; from bottom to top, they represent read
time, write time, communication time outside the I/O calls, compute time, and all other time. \Error bars"
represent variations observed in the total time for memory sizes ranging from 222 through 225 bytes per CP,
or 224 to 227 bytes in total.

to be some �le caching, as evidenced by the jump in read times from 224 records to 225 records.

As was the case with adams, each run took 2 passes and the total time increases approximately

linearly with the number of records, as the PDM predicts.

The right bar of each pair in Figures 6 and 7 shows the total time for the BMMC permuta-

tion with asynchronous I/O. Figures 8 and 9 show the percentage of total time saved by using

asynchronous I/O at various problem and memory sizes. For large enough problem sizes, the asyn-

chronous time is quite a bit lower than the synchronous time. An apparent exception is the case for

229 records on adams, in which the asynchronous time for M = 224 bytes is only marginally lower

than the synchronous time. This phenomenon is an outcome of our discussion in Section 4 on the

e�ective memory size. Recall that the number of passes is at most
l

rank

lg(M=B)

m
+ 2, where
 is the

lower left lg(N=B) � lgB submatrix of the characteristic matrix. For N = 229 and B = 210, the

submatrix
 has rank lgmin(N=B;B) = 10. When the memory size is 224 bytes, we use M = 220

with synchronous I/O; we lose a factor of 8 because of the conversion from bytes to records, and

we lose another factor of 2 because we need to allocate both source and target bu�ers in memory.

In this case,
l

rank

lg(M=B)

m
= d10=10e = 1. With asynchronous I/O, however, we lose another factor

of 2 from the e�ective memory size because we must allocate bu�ers to hold the memoryloads that

we are reading ahead and writing behind. Hence, we reduce the e�ective memory size to M = 219.

Now
l

rank

lg(M=B)

m
= d10=9e = 2. With this particular combination of PDM parameters, therefore,

asynchronous I/O incurs the expense of an additional pass. It is testimony to the bene�t of over-

17

mem size = 227
mem size = 226
mem size = 225
mem size = 224

Number of 8-byte records

P
er
ce
n
t
o
f
ti
m
e
sa
v
ed

229228227226225224223222221

40

35

30

25

20

15

10

5

0

Figure 8: Percentage of total time for BMMC permutations saved with asynchronous I/O on adams at
various problem and memory sizes with 8 disks and a physical block size of 210 bytes.

mem size = 227
mem size = 226
mem size = 225
mem size = 224

Number of 8-byte records

P
er
ce
n
t
of
ti
m
e
sa
v
ed

226225224223222221

40

30

20

10

0

-10

-20

Figure 9: The analogue of Figure 8 for Fleet with 4 CPs, 4 IOPs, and a physical block size of 212 bytes.

lapping I/O and computation that the algorithm manages to run faster with asynchronous I/O in

this case.

Because the BMMC algorithm spends much of its time performing I/O, the bene�ts of asyn-

chronous I/O are limited, especially at large problem sizes. Figures 10 and 11 show the percentage

of time spent doing I/O and the percentage of time saved by using asynchronous I/O, at a memory

size of 225 bytes on adams (so that the number of passes would not change between synchronous

and asynchronous I/O) and 226 bytes on Fleet. If all I/O latency was hidden by asynchronous I/O,

then the two curves would coincide. When I/O time dominates, asynchronous I/O cannot hide all

of it. Because I/O implies communication in Fleet (CPs and IOPs communicate via the network),

we cannot fully overlap I/O with communication that occurs outside the I/O. Figure 11 also plots

the percentage of time spent in computation. Observe that the percentage of time saved by using

asynchronous I/O is close to the computation percentage, which implies that we are able to overlap

18

I/O percentage
async I/O savings

Number of 8-byte records

P
er
ce
n
t
o
f
ti
m
e

229228227226225224223222

70

60

50

40

30

20

10

0

Figure 10: Percentage of time spent in the BMMC algorithm doing I/O and percentage of time saved by
using asynchronous I/O on adams at various problem sizes. The memory size was 225 bytes, the physical
block size was 210 bytes, and there were 8 disks.

computation percentage
I/O percentage

async I/O savings

Number of 8-byte records

P
er
ce
n
t
o
f
ti
m
e

226225224223

55
50
45
40
35
30
25
20
15
10
5

Figure 11: The analogue of Figure 10 for Fleet, with a 4 CPs, 4 IOPs, a physical block size of 212 bytes,
and a memory size of 226 bytes. Percentage of time spent in computation is also included here.

as much I/O with pure computation as possible.

Figures 6 and 7 show \error bars" for the synchronous and asynchronous total times, represent-

ing variations among memory sizes ranging from 224 bytes to 227 bytes on both adams and Fleet.

Except for cases in which asynchronous I/O induced an additional pass, variations due to di�ering

memory sizes on adams were small. We observe higher variations on Fleet, even though all runs

shown in Figure 7 use exactly 2 passes. Although none of our �gures show why, these variations are

due mainly to di�erences in communication time (outside the I/O calls). Changing the memory

size produces di�erent interprocessor communication patterns with varying performance.

Like the synchronous running times, asynchronous running times are approximately linear in

the number of records. Exceptions occur at problem sizes for which �le caching stops yielding a

bene�t and for which asynchronous I/O incurs an additional pass. Note, however, that the bottom

error bar for asynchronous I/O on adams with 229 records, which occurs with a memory size of 226

19

bytes, is about double the asynchronous time for 228 records. In this case, the algorithm avoids the

additional pass once the memory size reaches 227 bytes.

Next we consider the physical block size. According to the PDM, increasing the block size

makes each pass use fewer parallel I/O operations, since it takes N=BD of them to read or write

each record once. This predicted e�ect is balanced by the block size's e�ect on the number of

passes, however. Recalling that the number of passes has a denominator of lg(M=B), we see that

if the block size gets large enough, it will induce more passes.

Figures 12 and 13 show how changing the physical block size changes the running time. Although

relatively small block sizes|29 bytes or smaller|may produce fewer passes, the time per pass

increases markedly. The PDM predicts this behavior, although the e�ect of the increased I/O time

is ameliorated by the computing time. Once the physical block size reaches 210 bytes, however,

the time per pass does not change signi�cantly. On adams, therefore, 210 bytes, corresponding to

a logical block size of 213 bytes with 8-byte records, appears to be the block size of choice. This

size|213 bytes|happens to be the system page size. On Fleet, the best physical block size is 212

bytes, corresponding to a logical block size of 215 bytes, which is in fact the Galley block size.

It appears that the PDM is fairly accurate in predicting the e�ect of the block size up to a

fundamental block size for the system, but it is inaccurate beyond that.

The PDM predictions about the number of disks are far less accurate on adams. Figure 14

shows total read and write times for 1, 2, 4, and 8 disks. Problem sizes range from 221 records

to 226 records, which is the largest problem size that �ts on 1 disk. The PDM predicts that for a

given problem size, I/O times would be inversely proportional to the number of disks. As Figure 14

shows, this is not the case on adams. Figure 16 shows read and write bandwidths. The PDM

predicts that for a given problem size, I/O bandwidth would increase linearly with the number of

disks. Again, the �gure shows this not be the case on adams.

On Fleet, the PDM predictions about the number of disks are somewhat better. Figure 15

shows total read and write times for 1, 2, 4, and 8 CPs and IOPs. Problem sizes range from

222 to 224 records per CP. Because problem sizes are expressed per CP, perfect I/O scalability, as

predicted by the PDM, would mean equal I/O times for the various numbers of IOPs. The times

for 1, 2, and 4 IOPs are fairly close (except for 1 IOP with 223 records), but read times for 8 IOPs

are signi�cantly higher. Because CPs and IOPs are coresident at this size, they contend with each

other for local resources, the CPU in particular. Figure 17 shows read and write bandwidths for

Fleet. They increase linearly with the number of IOPs, except for the read bandwidth at 8 IOPs,

which is about the same as the read bandwidth for 4 IOPs.

Radix sort

We found that radix sort's behavior on adams �t the PDM somewhat better than the BMMC

algorithm did.

Figure 18 shows the breakdown of running time into read time, write time, compute time, and

other time for radix sort with synchronous I/O, and it also shows the total time with asynchronous

I/O. Here, the memory size is 227 bytes; with 4-byte records, it is not until we reach 226 records

that the problem size exceeds the memory size. All measured times increase close to linearly with

the problem size. The only real di�erence is a jump in the read time between 224 and 225 records.

Note that this size, in bytes, is the same point at which �le caching began to yield no bene�t in

the BMMC algorithm.

20

phys block size = 214
phys block size = 213
phys block size = 212
phys block size = 211
phys block size = 210
phys block size = 29
phys block size = 28

Number of 8-byte records

S
ec
o
n
d
s

229228227226225

14000

12000

10000

8000

6000

4000

2000

0

phys block size = 214
phys block size = 213
phys block size = 212
phys block size = 211
phys block size = 210
phys block size = 29
phys block size = 28

Number of 8-byte records

S
ec
o
n
d
s

229228227226225

7000

6000

5000

4000

3000

2000

1000

0

Figure 12: Total time (top) and time per pass (bottom) for BMMC permutations on adams with varying
numbers of records and physical block sizes and synchronous I/O. All runs shown are for 8 disks and a
memory size of 224 bytes.

phys block size = 214
phys block size = 213
phys block size = 212
phys block size = 211
phys block size = 210
phys block size = 29
phys block size = 28

Number of 8-byte records

S
ec
o
n
d
s

225224223

1400

1200

1000

800

600

400

200

0

Figure 13: Total time on Fleet for BMMC permutations with varying numbers of records and physical
block sizes and synchronous I/O. All runs shown are for 4 CPs, 4 IOPs, and a total memory size of 227

bytes. Each run shown here takes 2 passes, so that there is no need to plot time per pass.

21

Number of 8-byte records

S
ec
o
n
d
s

224223222221

45

40

35

30

25

20

15

10

5

0

Number of 8-byte records

226225

700

600

500

400

300

200

100

0

Figure 14: Read and write times on adams for BMMC permutations on 8-byte records with 1, 2, 4, and 8
disks. Read times for 1, 2, 4, and 8 disks, respectively, are on the left side of each set, and write times for
the same ordering are on the right side of each set. Problem sizes vary as shown, the memory size is �xed
at 224 bytes, and the physical block size is 210 bytes.

Number of 8-byte records

S
ec
o
n
d
s

224223222

450

400

350

300

250

200

150

100

50

0

Figure 15: The analogue of Figure 14 for Fleet. In each case, the number of CPs and IOPs is kept equal,
and they vary among 1, 2, 4, and 8. Problem sizes vary as shown but are per CP, the total memory size is
225 bytes per CP, and the physical block size is 212 bytes. Unlike Figure 14, here scalability is represented
by equal times for a given problem size per CP.

22

8 disks write
4 disks write
2 disks write
1 disk write
8 disks read
4 disks read
2 disks read
1 disk read

Number of 8-byte records

B
y
te
s
re
a
d
or
w
ri
tt
en
p
er
se
co
n
d

226225224223222221

4.5e+07

4e+07

3.5e+07

3e+07

2.5e+07

2e+07

1.5e+07

1e+07

5e+06

0

Figure 16: Read and write bandwidths on adams for BMMC permutations with varying numbers of disks
and problem sizes. The memory size for each run is 224 bytes, and the physical block size is 210 bytes.

8 disks write
4 disks write
2 disks write
1 disk write

8 disks read
4 disks read
2 disks read
1 disk read

Number of 8-byte records

B
y
te
s
re
ad
or
w
ri
tt
en
p
er
se
co
n
d

224223222

2e+07

1.8e+07

1.6e+07

1.4e+07

1.2e+07

1e+07

8e+06

6e+06

4e+06

2e+06

0

Figure 17: The analogue of Figure 16 for Fleet. The memory size for each run is 225 bytes per CP, and the
physical block size is 212 bytes.

23

Number of 4-byte records

S
ec
o
n
d
s

225224223222221

300

250

200

150

100

50

0

Number of 4-byte records

229228227226

5000

4000

3000

2000

1000

0

Figure 18: Breakdown of time spent on adams in performing out-of-core radix sort with synchronous I/O,
and the total time with asynchronous I/O. This plot is organized in the same manner as Figure 6 but
without showing variations among memory sizes. There are 8 disks, the memory size is �xed at 227 bytes,
and the physical block size is 211 bytes, which corresponds to a logical block size of 213 bytes.

8 disks write
4 disks write
2 disks write
1 disk write

8 disks read
4 disks read
2 disks read
1 disk read

Number of 4-byte records

B
y
te
s
re
ad
or
w
ri
tt
en
p
er
se
co
n
d

227226225224223

2e+07

1.8e+07

1.6e+07

1.4e+07

1.2e+07

1e+07

8e+06

6e+06

4e+06

2e+06

0

Figure 19: Read and write bandwidths on adams for radix sort with varying numbers of disks and problem
sizes. The memory size for each run is 227 bytes, and the physical block size is 211 bytes.

24

I/O percentage
async I/O savings

Number of 4-byte records

P
er
ce
n
t
o
f
ti
m
e

229228227226225224223222221

50
45
40
35
30
25
20
15
10
5
0

Figure 20: Percentage of time spent in radix sort doing I/O and percentage of time saved by using asyn-
chronous I/O on adams at various problem sizes. The memory size is 227 bytes, the physical block size is
211 bytes, and there are 8 disks.

Because we used a memory size of 227 bytes in our radix sort runs, �le caching has a lesser

e�ect than we saw in the BMMC algorithm. Figure 19 shows read and write bandwidths for

varying numbers of disks at this memory size. File caching for reads ends when the problem size

reaches the memory size of 227 bytes. Figure 19 also shows some scalability in read bandwidth as

the number of disks increases, but no scalability in write bandwidth.

Radix sort makes e�ective use of asynchronous I/O because it is not as I/O bound as the BMMC

algorithm. Figure 20 shows the percentage of time spent doing I/O and the percentage of time

saved by using asynchronous I/O at the 227-byte memory size. The percentages are quite close,

indicating that I/O costs are successfully hidden by the asynchronous version.

Memory size a�ects radix sort's running time pretty much as predicted by the PDM. Figure 21

shows total time and time per pass with di�ering memory sizes. The time per pass does not change

much with memory size. The number of passes depends heavily on the memory size, as is apparent

from the out-of-core radix sort description in Section 5. Simply put, the more memory, the better,

as the PDM predicts.

Finally, we consider the physical block size. As with the BMMC algorithm, the PDM predicts

that a larger block size yields a tradeo� between faster passes but more of them. Figure 22 shows

the reality on adams, which is overall the same as for BMMC permutations: use the physical block

size for which the logical block size equals the page size. Note the sudden jump in time per pass

and total time for radix sort at a physical block size of 29 bytes. We believe that this jump is

analogous to the jump in Figure 12 with a physical block size of 28 bytes. Because the record size

we used for radix sort is half that of the BMMC algorithm, the logical block sizes are then the

same. The jump is more pronounced for radix sort because all its accesses are for a stripe at a time

but some of the BMMC code's accesses are for memoryloads of consecutive logical stripes. These

are combined by the ViC* wrappers into larger accesses. The access size, therefore, is large enough

in these cases that the block size does not matter.

25

mem size = 227, 4 passes
mem size = 226, 4 passes
mem size = 225, 5 passes
mem size = 224, 6 passes
mem size = 223, 7 passes
mem size = 222, 8 passes

Number of 4-byte records

S
ec
o
n
d
s

228227226225224223222221

3500

3000

2500

2000

1500

1000

500

0

mem size = 227
mem size = 226
mem size = 225
mem size = 224
mem size = 223
mem size = 222

Number of 4-byte records

S
ec
o
n
d
s

228227226225224223222221

500
450
400
350
300
250
200
150
100
50
0

Figure 21: Total time (top) and time per pass (bottom) for radix sort on adams with varying numbers of
records and memory sizes and asynchronous I/O. All runs shown are for 8 disks and a physical block size of
211 bytes.

7 Conclusion

The primary goal of the ViC* project is to provide an system for out-of-core data-parallel computing

in a transparent, e�cient, and portable manner. That it enables us to evaluate the PDM is a side

bene�t.

As side bene�ts go, however, it is a valuable one. The experiences we have reported in this

paper have led us to new ways of looking at the PDM. The most surprising result to us is that the

algorithms we implemented were not as heavily I/O bound as we had expected. With 8 disks and

the best block size on a fast uniprocessor, the BMMC permutation algorithm with synchronous

I/O spent no more than 64% of its time waiting for I/O. Considering how much higher disk-access

times are than memory-access times, our intuition was that we would have seen �gures upward of

80%. The out-of-core radix sort algorithm, which performs a more complex computation, is even

less I/O bound. With 8 disks and the best block size on a fast uniprocessor, it spent no more than

31% of its time waiting for I/O.

We view our results as containing both good news and bad news about the PDM. First, the

good news:

� Well designed algorithms for the PDM are likely to not be I/O bound. The purpose of the

26

phys block size = 214, 6 passes
phys block size = 213, 5 passes
phys block size = 212, 4 passes
phys block size = 211, 4 passes
phys block size = 210, 4 passes
phys block size = 29, 3 passes

Number of 4-byte records

S
ec
o
n
d
s

228227226225224223222221

9000
8000
7000
6000
5000
4000
3000
2000
1000

0

phys block size = 214
phys block size = 213
phys block size = 212
phys block size = 211
phys block size = 210
phys block size = 29

Number of 4-byte records

S
ec
o
n
d
s

228227226225224223222221

3000

2500

2000

1500

1000

500

0

Figure 22: Total time (top) and time per pass (bottom) for radix sort on adams with varying numbers of
records and physical block sizes and asynchronous I/O. All runs shown are for 8 disks and a memory size of
227 bytes.

PDM is to alleviate the I/O bottleneck at the level of algorithm design and implementation,

and it appears likely to achieve this goal.

� PDM algorithms that are not I/O bound have the potential to have their I/O wait times

reduced by using asynchronous I/O. There are two disclaimers to this bene�t. First, setting

aside additional bu�ers for asynchronous I/O reduces the e�ective memory size at the disposal

of a PDM algorithm, which may in turn lead to the algorithm requiring extra passes over the

data. Second, in order for an algorithm to hide read latencies, the identities of the blocks

to be read must be known well enough in advance. In particular, if an algorithm cannot

determine which blocks to read next until it has processed a memoryload, then it will not

hide read latencies well.

� I/O times seem to follow the PDM predictions based on the parameters for problem size and

memory size.

� Total run times seem to follow the PDM predictions based on the parameter for problem size.

� As the ViC* API demonstrates, we can implement a PDM interface in a portable and e�cient

fashion.

27

The bad news is that the PDM's predictions do not follow its other two parameters, block size

and number of disks, all that well. Too small a block size can increase run times more than the

PDM predicts, and too large a block size fails to yield improved times per pass. The block size is

a fundamental parameter of the underlying system, and the algorithm designer has little leeway in

picking its value.

As we found on the uniprocessor, adding disks does not necessarily increase I/O bandwidth.

A moment's re
ection reveals why. To travel between the disks and the memory, bits go over a

set of wires. These wires may be a network, they may be SCSI cables, or they may just be ports

into the memory. Whatever they are, they can carry only so many bits per second. Because the

PDM does not include a notion of limited network bandwidth, it considers each additional disk as

delivering more I/O bandwidth. Once enough disks are added, they provide only the bene�t of

more capacity and not more performance. Unlike memory, adding more disks does not necessary

help. We observed this behavior even on Fleet once IOPs became coresident with CPs. One should

be aware of the I/O system's bandwidth limits before adding more disks.

We also found that the memory size can a�ect communication time, and hence overall running

time, in a way that the PDM cannot account for. Of course, it is not really reasonable to expect

the PDM to account for changes in communication time since it is designed to model only I/O

times.

Future work

These results suggest two research directions.

First, can we develop a model that more accurately models I/O, computation, and communi-

cation, yet does not overwhelm the algorithm designer with parameters? Perhaps a hybrid of the

PDM and Bulk Synchronous Processing (BSP) models [Val90] would be suitable. Or perhaps any

accurate model would be too complex to design algorithms on.

Second, although we have measured two algorithms developed for the PDM, we have not de-

termined whether they run any faster than what would be the simplest out-of-core implementation

of all: running the standard in-core algorithm in the presence of traditional demand-paged virtual

memory. A BMMC algorithm would then be quite easy to code up, and sorting would be even

easier|just use the Unix qsort() function. Indeed, we attempted to run Unix qsort() on 512

megabytes of data on adams. The program crashed due to a lack of swap space. One of our future

experiments will be to recon�gure the disks on adams to use the 8 data disks as a RAID for virtual-

memory swap space and run simple in-core algorithms. We expect these runs to be far slower than

our PDM algorithms. After all, in-core algorithms are not designed to make e�cient use of multiple

disks or of disk blocks. Moreover, RAIDs improve bandwidth but not latency. In-core algorithms

on native virtual memory have one advantage, however: reduced �le-system overhead. Based on

out-of-core FFT experiments in [CN96], we doubt that this advantage is enough to overcome the

e�ciency of PDM algorithms.

Acknowledgments

We thank Garth Gibson and Jim Zelenka for their help in implementing ViC* on top of SPFS;

they made many changes to SPFS at our request. Erik Riedel and Adam Beguelin helped us get

started with PVM, and Nils Nieuwejaar got us started with MPI. Hugo Patterson provided valuable

ideas on data presentation. Nils Nieuwejaar and David Kotz graciously responded to our numerous

28

questions about the Galley File System. Len Wisniewski provided insights that led to the two

optimizations for the BMMC algorithm described in the implementation notes. Len, Alex Colvin,

and Anna Poplawski provided comments throughout the ViC* API design. Discussions with Mike

Goodrich led to the question about whether we can design a more accurate but still useful model

for I/O, computation, and communication. David Kotz and anonymous referees provided many

valuable comments on our presentation. The purchase of adams was made possible in part by an

equipment grant from Digital Equipment Corporation.

References

[Arg95] Lars Arge. The bu�er tree: A new technique for optimal I/O-algorithms. In 4th

International Workshop on Algorithms and Data Structures (WADS), pages 334{345,

August 1995.

[AV88] Alok Aggarwal and Je�rey Scott Vitter. The input/output complexity of sorting and

related problems. Communications of the ACM, 31(9):1116{1127, September 1988.

[AVV95] Lars Arge, Darren Erik Vengro�, and Je�rey Scott Vitter. External-memory algo-

rithms for processing line segments in geographic information systems. In Paul Spi-

rakis, editor, Proceedings of the Third Annual European Symposium on Algorithms

(ESA '95), volume 979 of Lecture Notes in Computer Science, pages 295{310. Springer-

Verlag, September 1995.

[BGV96] Rakesh D. Barve, Edward F. Grove, and Je�rey Scott Vitter. Simple randomized

mergesort for parallel disks. In Proceedings of the 8th Annual ACM Symposium on

Parallel Algorithms and Architectures, pages 109{118, June 1996.

[CB95] Thomas H. Cormen and Kristin Bruhl. Don't be too clever: Routing BMMC permu-

tations on the MasPar MP-2. In Proceedings of the 7th Annual ACM Symposium on

Parallel Algorithms and Architectures, pages 288{297, July 1995.

[CGG+95] Yi-Jen Chiang, Michael T. Goodrich, Edward F. Grove, Roberto Tamassia, Dar-

ren Erik Vengro�, and Je�rey Scott Vitter. External-memory graph algorithms. In

Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, pages

139{149, January 1995.

[CGK+88] Peter Chen, Garth Gibson, Randy H. Katz, David A. Patterson, and Martin Schulze.

Two papers on RAIDs. Technical Report UCB/CSD 88/479, Computer Science Divi-

sion (EECS), University of California, Berkeley, December 1988.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to

Algorithms. The MIT Press, Cambridge, Massachusetts, 1990.

[CN96] Thomas H. Cormen and David M. Nicol. Performing out-of-core FFTs on parallel

disk systems. Technical Report PCS-TR96-294, Dartmouth College Department of

Computer Science, August 1996.

29

[Cor92] Thomas H. Cormen. Virtual Memory for Data-Parallel Computing. PhD thesis, De-

partment of Electrical Engineering and Computer Science, Massachusetts Institute of

Technology, 1992. Available as Technical Report MIT/LCS/TR-559.

[Cor93] Thomas H. Cormen. Fast permuting in disk arrays. Journal of Parallel and Distributed

Computing, 17(1{2):41{57, January and February 1993.

[CSW94] Thomas H. Cormen, Thomas Sundquist, and Leonard F. Wisniewski. Asymptotically

tight bounds for performing BMMC permutations on parallel disk systems. Technical

Report PCS-TR94-223, Dartmouth College Department of Computer Science, July

1994. Preliminary version appeared in Proceedings of the 5th Annual ACM Symposium

on Parallel Algorithms and Architectures. Revised version to appear in SIAM Journal

on Computing.

[GBD+94] Al Geist, Adam Beguelin, Jack Dongarra, Weichang Jiang, Robert Manchek, and

Vaidy Sunderam. PVM: Parallel Virtual Machine|A User's Guide and Tutorial for

Networked Parallel Computing. The MIT Press, 1994.

[Gib92] Garth A. Gibson. Redundant Disk Arrays: Reliable, Parallel Secondary Storage.

The MIT Press, Cambridge, Massachusetts, 1992. Also available as Technical Re-

port UCB/CSD 91/613, Computer Science Division (EECS), University of California,

Berkeley, May 1991.

[GLS94] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable Parallel

Programming with the Message-Passing Interface. The MIT Press, 1994.

[GSC+95] Garth A. Gibson, Daniel Stodolsky, Fay W. Chang, William V. Courtright II, Chris G.

Demetriou, Eka Ginting, Mark Holland, Qingming Ma, LeAnn Neal, R. Hugo Patter-

son, Jiawen Su, Rachad Youssef, and Jim Zelenka. The Scotch parallel storage systems.

In Proceedings of the IEEE CompCon Conference, pages 403{410, March 1995.

[GTVV93] Michael T. Goodrich, Jyh-Jong Tsay, Darren E. Vengro�, and Je�rey Scott Vitter.

External-memory computational geometry. In Proceedings of the 34th Annual Sympo-

sium on Foundations of Computer Science, pages 714{723, November 1993.

[MW95] Sean S. B. Moore and Leonard F.Wisniewski. Complexity analysis of two permutations

used by fast cosine transforms. Technical Report PCS-TR95-266, Dartmouth College

Department of Computer Science, October 1995.

[NK96a] Nils Nieuwejaar and David Kotz. The Galley parallel �le system. In Proceedings of the

10th ACM International Conference on Supercomputing, pages 374{381, May 1996.

[NK96b] Nils Nieuwejaar and David Kotz. Performance of the Galley parallel �le system. In

Fourth Workshop on Input/Output in Parallel and Distributed Systems, pages 83{94,

May 1996.

[NV93] Mark H. Nodine and Je�rey Scott Vitter. Deterministic distribution sort in shared

and distributed memory multiprocessors. In Proceedings of the 5th Annual ACM

Symposium on Parallel Algorithms and Architectures, pages 120{129, June 1993.

30

[NV95] Mark H. Nodine and Je�rey Scott Vitter. Greed sort: Optimal deterministic sorting

on parallel disks. Journal of the ACM, 42(4):919{933, July 1995.

[PGK88] David A. Patterson, Garth Gibson, and Randy H. Katz. A case for redundant arrays

of inexpensive disks (RAID). In ACM International Conference on Management of

Data (SIGMOD), pages 109{116, June 1988.

[SOHL+96] Marc Snir, Steve W. Otto, Steven Huss-Lederman, David W. Walker, and Jack Don-

garra. MPI: The Complete Reference. The MIT Press, 1996.

[SW95] Elizabeth A. M. Shriver and Leonard F. Wisniewski. An API for choreographing

data accesses. Technical Report PCS-TR95-267, Dartmouth College Department of

Computer Science, November 1995.

[TMC93] Thinking Machines Corporation. C* Programming Guide, May 1993.

[Val90] Leslie G. Valiant. A bridging model for parallel computation. Communications of the

ACM, 33(8):103{111, August 1990.

[Ven94] Darren Erik Vengro�. A transparent parallel I/O environment. In Proceedings of the

DAGS '94 Symposium, pages 117{134, July 1994.

[Ven97] Darren Erik Vengro�. The Theory and Practice of I/O-E�cient Computation. PhD

thesis, Brown University Department of Computer Science, 1997. To appear.

[VS90] Je�rey Scott Vitter and Elizabeth A. M. Shriver. Optimal disk I/O with parallel block

transfer. In Proceedings of the Twenty Second Annual ACM Symposium on Theory of

Computing, pages 159{169, May 1990.

[VS94] Je�rey Scott Vitter and Elizabeth A. M. Shriver. Algorithms for parallel memory I:

Two-level memories. Algorithmica, 12(2/3):110{147, August and September 1994.

[WGWR93] David Womble, David Greenberg, Stephen Wheat, and Rolf Riesen. Beyond core:

Making parallel computer I/O practical. In DAGS '93, June 1993.

[Wis96] Leonard F. Wisniewski. Structured permuting in place on parallel disk systems. In

Proceedings of the Fourth Annual Workshop on I/O in Parallel and Distributed Sys-

tems (IOPADS), pages 128{139, May 1996.

31

	Early Experiences in Evaluating the Parallel Disk Model with the ViC* Implementation
	Dartmouth Digital Commons Citation

	tmp.1600290363.pdf.QBu4m

