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Aiming at the problem of early fault diagnosis of rolling bearing, an early fault detection method of rolling bearing based on a
multiscale convolutional neural network and gated recurrent unit network with attention mechanism (MCNN-AGRU) is
proposed. )is method first inputs multiple time scales rolling bearing vibration signals into the convolutional neural network to
train the model through multiscale data processing and then adds the gated recurrent unit network with an attention mechanism
to make the model predictive. Finally, the reconstruction error between the actual value and the predicted value is used to detect
the early fault. )e training data of this method is only normal data. )e early fault detection in the operating condition
monitoring and performance degradation assessment of the rolling bearing is effectively solved. It uses a multiscale data
processing method to make the features extracted by CNNmore robust and uses a GRU network with an attention mechanism to
make the predictive ability of this method not affected by the length of the data. Experimental results show that theMCNN-AGRU
rolling bearing early fault diagnosis method proposed in this paper can effectively detect the early fault of the rolling bearing and
can effectively identify the type of rolling bearing fault.

1. Introduction

As one of the key parts in rotatingmachinery, rolling bearing
mainly plays a role in undertaking stress and transferring
load in the system. Because of its long-term operation under
high-speed, high-load working conditions, the rolling
bearing has become the most easily damaged part of me-
chanical equipment [1]. Once the rolling bearing is dam-
aged, it will have a very serious impact on the mechanical
equipment, so it is of great significance to study rolling
element bearings failure mechanisms.

)e typical life curve of the rolling bearings is shown in
Figure 1. )ere are four stages: (1) running-in stage, (2)
normal operation stage, (3) early weak fault occurrence and
healing stage, and (4) severe fault stage. )e early faults are
too weak to detect and once an early failure occurs, and the
rolling bearings will deteriorate rapidly after a short period
of the “healing stage”; it will lead to serious consequences. If
the fault can be detected and remedied at an early stage, that

would avoid bigger safety problems and reduce losses.
)erefore, the early fault detection of rolling bearings is very
important [2–5]. And there are two problems to be faced in
the detection of early faults: (1) )e early faults are too weak
to detect, and it is more difficult to extract the features. (2)
)ere are less early fault data, which is not enough to train
the model.

)e current methods for diagnosing rolling bearing
faults can be roughly divided into two categories [6]. )e
first category is model-based fault diagnosis methods, which
mainly uses expert knowledge to analyse the fault frequency
[7–9] or establish a degradation model [10, 11] to isolate
early faults. However, this method relies on the subjective
choice of people and the accuracy of the model; it requires
high experience. )e model is only designed for specific
fields, which limits the scope of application to a certain
extent. )e second category is fault diagnosis methods based
on data [12–14]. As the field of fault diagnosis enters the era
of “big data,” a series of data-based methods have emerged.
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)e data-based method relies on the neural network to
extract the features of the data on its own, eliminating the
artificial subjectivity and dependence on the human expe-
rience, which is more in line with the monitoring of today’s
large-scale industry.

)ere are some statistical methods based to isolate early
faults, mainly including principal component analysis
(PCA) [6], autoregressive models [15], a neural network with
multiple hidden layers [16, 17], support vector machine
(SVM) [18, 19], K nearest neighbour (KNN) algorithm [20],
and local outlier factor (LOF) algorithm [21, 22]. But these
methods rely on well-selected features to classify faults.

In recent years, with the rapid development and wide
application of deep learning; it has become the focus of fault
diagnosis. )ere are some typical networks such as deep
neural network (DNN) [23], deep belief network (DBN)
[24], autoencoder (AE) [25], convolutional neural network
(CNN) [26], and recurrent neural network (RNN) [27].
Although the accuracy of DBM and DNN is improved
compared with shallow artificial neural networks, there is
still the problem of artificial extraction of time series fea-
tures, ignoring the characteristics of data timing. AE belongs
to unsupervised learning, which is mainly used for data
dimensionality reduction or feature extraction. It usually
needs to be applied to the field of load forecasting after
combining with other models. CNN is a neural network with
convolution calculation and depth structure. Convolution
and pooling are used to extract data features, which reduces
the error caused by artificial feature extraction. It is widely
used in image, voice, and other fields. However, it is difficult
for a single CNN network to extract the weak features of
early faults, so a multiscale convolution neural network is
introduced to extract more comprehensive features. But it is
difficult for an only MCNN model to learn the timing dy-
namics of retained data. RNN introduces the cyclic structure
into the network so that it canmodel the dynamic time series
data better than other neural networks [28]. Gated recurrent
unit (GRU) is a special RNN. GRU and long short-term
memory network (LSTM) [29–31] are solving the problem of
gradient disappearance in RNN.)ey can consider the long-
term and short-term dependence in time series more
completely. Compared with LSTM, GRU has a faster con-
vergence speed and no difference in accuracy. However,

when the input time series is long, RNN series networks such
as LSTM and GRU are prone to lose sequence information
and it is difficult to model the structure information between
data, which affects the accuracy of the model [32]. )e at-
tention mechanism is a resource allocation mechanism,
which can assign different weights to input features so that
the features containing important information will not
disappear with the increase of step size, highlight the in-
fluence of more important information, and make the model
easier to learn the long-distance interdependence in the
sequence [33].

However, although there are data-based early fault de-
tection methods, early fault detection still faces the following
challenges: (1) how to extract comprehensive and robust
features from early fault signals; (2) consider the timing
characteristics of bearing vibration signals to detect
anomaly; (3) and when the data input length is too long,
there is a problem of missing information.

Because of the above problems, this paper proposes an
early fault diagnosis method of MCNN-AGRU.)is method
uses MCNN to extract the features of the rolling bearing at
different time scales and filter out certain noise in the
multiscale calculation to obtain more robust and compre-
hensive features of the bearing. )e GRU network with an
attention mechanism can learn the long-term dependence
characteristics of the data, and the features containing
important information will not disappear with the increase
of the step size, thereby highlighting the influence of more
important information, making the model easier to learn the
long-term sequence. )e interdependence of distance [34]
solves the problem of information loss caused by too long
data. Finally, a large amount of normal operating data of
rolling bearings is used to construct a predictive model of the
normal operating state of rolling bearings. )e model can
learn the distribution of normal data through training and
use the learned prediction value and the reconstruction error
of the true value to measure the operating state of the rolling
bearing and perform early alarm.

)e main contributions of this paper are as follows: (1)
proposing an early fault diagnosis method that only needs to
use the normal bearing data to train the model, which solves
the problem of less early bearing fault data; (2) using
multiscale data processing methods to make the features
extracted by CNNmore robust; (3) and using GRU network
with an attention mechanism to make model predictive
ability independent of the length of the data.

)e main structure of the paper is as follows: the second
part introduces the basic theoretical knowledge. )e third
part proposes the MCNN-AGRU method. )e fourth part
verifies the performance of the scheme through simulation.
Finally, the conclusion is in the fifth section.

2. Fundamental Theory

2.1. Multiscale Data Processing. At present, most feature
extraction methods directly use the raw vibration signals of
rolling bearings to input into the neural network, but the
features extracted from single time scale data are not
comprehensive [35], so multiscale data processing methods
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Figure 1: Typical life curve of rolling bearing.
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are used. As shown in Figure 2, this paper uses a multiscale
data processing layer to process the original vibration signal
and obtains vibration signals of multiple time scales by
moving without overlapping windows and calculating the
arithmetic average. )e data preprocessed in this way can
filter out high-frequency disturbance and random noise to a
certain extent. )e specific operation of this method is as
follows: a segment of vibration signal X � x1, . . . ,{
xn, . . . , xN} is given, N is the length of the original input
data, s is the number of multiscale processing scales, and xn
is the nth vibration value of the original signal. If the
multiscale output signal is assumed to be ys,j, the calculation
process of the multiscale processed data is shown in

ys,j �
1

s
∑
js

n� (j− 1)s+1

xn, 1≤ j≤N
s
. (1)

)e data length after multiscale data processing is N/s.
)e range of s selected in this paper is 1∼4.

2.2. Convolutional Neural Network. )e convolutional
neural network is a multilevel neural network, including
filtering level and classification level. Among them, the
filtering stage is used to extract the features of the input
signal, the classification stage classifies the learned features,
and the two-stage network parameters are obtained through
joint training [36]. )e filter stage includes a convolutional
layer and a pooling layer, and uses an activation function to
perform nonlinear operations on it. )e convolution layer
uses the convolution kernel to perform convolution oper-
ations on the local area of the input signal and generate
corresponding features. )e most important feature of the
convolutional layer is weight sharing; that is, the same
convolution kernel will traverse the input once with a fixed
step. Weight sharing reduces the network parameters of the
convolutional layer and avoids overfitting caused by too
many parameters. )e main purpose of the pooling layer is
to reduce the parameters of the neural network and extract
the features obtained by the convolutional layer twice. )e
one-dimensional convolution process is shown in Figure 3.
)e convolution kernel moves the input signal according to
the step length to extract the features, and then the obtained
features are pooled to obtain more advanced features.

2.3. Gated Recurrent Unit Network. Gated recurrent unit
network (GRU) is a variant of the recurrent neural network
(RNN). RNN is a type of recurrent neural network that takes
sequence data as input, recursively in the evolution direction
of the sequence, and all recurrent units are connected in a
chain [37]. As shown in Figure 4, the GRU network consists
of an update gate and a reset gate. )e main function of the
update gate is to control the extent to which the state in-
formation from the previous moment is brought into the
current state. )e larger the value of the update gate, the
more state information from the previous moment is
brought in [38]. )e main function of the reset gate is to
determine the degree of discarding previous information.

)e smaller the value, the more information is ignored. )e
GRU expression is as follows:

zt � σ Wz · ht− 1, xt[ ]( ), (2)

rt � σ Wr · ht− 1, xt[ ]( ), (3)

h̃t � tanh W · rt
∗ht− 1, xt[ ]( ), (4)

ht � 1 − zt( )∗ht− 1 + zt
∗h̃t. (5)

In the above formula, σ represents the Sigmoid activa-
tion function.)e parameters in the formula areW,Wz, and
Wr.

2.4. Attention Mechanism. )e attention mechanism is a
resource allocation mechanism that simulates the attention
of the human brain. At a certain moment, the human brain
will focus its attention on the areas that need to be focused,
reducing or even ignoring the attention to other areas to get
more attention. Needing to pay attention to the details of
information and suppressing other useless information, its
core idea is to change the attention to information inge-
niously and reasonably, ignore irrelevant information and
amplify the required information. )e attention mechanism
allocates sufficient attention to key information through
probability allocation, highlights the impact of important
information, and improves the accuracy of the model. )e
structure of the attention mechanism is shown in Figure 5.
Among them, xt(t∈[1, n]) represents the input of the GRU
network, ht(t∈[1, n]) corresponds to the hidden layer output
of each input through GRU, αt(t∈[1, n]) is the attention
probability distribution value of the attention mechanism to
the GRU hidden layer output, and y is the GRU output value
of the attention mechanism introduced.

2.5. Support Vector Data Description. Support vector data
description (SVDD) is a single-valued classification algo-
rithm, which can distinguish target samples from nontarget
samples. At present, the SVDD algorithm is mainly used for
abnormal state detection and fault identification that only
define the normal working state space to judge whether the
working state is normal or not. Given a training sample
xi ∈Rd, i � 1, 2, . . . , N{ }, the goal of SVDD is to determine a
hyperspherical body that can surround all training samples
with a minimum volume. Assuming that a and R are the
center and radius of the hypersphere, respectively, the SVDD
optimization problem can be expressed as follows:

minR2
+ C∑ ξi, (6)

φ xi( ) − a


 2 ≤R2
+ ξi, ξi ≥ 0,∀i. (7)

C is the constant used to control the degree of pun-
ishment for misdivided samples. ξi is the relaxation factor.
φ(xi) is the mapping from sample space to feature space.
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)e Lagrange operator is used to solve the above opti-
mization problem, and the following dual form can be
obtained:

maxL �∑
n

i�1

αiφ xi( )φ xi( ) − ∑
n

i,j�1

αiαjφ xi( )φ xj( ), (8)

where αi is the Lagrange multiplier, 0≤ αi ≤C(∑iαi � 1).
In order to improve the adaptability of the algorithm, the

Gaussian kernel function K(xi, xj) is introduced to replace

the inner product operation on φ(xi) to improve the gen-
eralization ability of SVDD. )e Gaussian kernel function is
as follows:

K xi, xj( ) � φ xi( ) · φ xj( ) � e− ‖xi－ xj‖2/σ , (9)

where σ is the Gaussian kernel parameter, which has a great
impact on the detection performance of SVDD.

To solve the above maximum optimization problem, the
solution set {αi} can be obtained; then, the center and
minimum radius of the sphere can be obtained by the
following formula:

a �∑
i

αiφ xi( ), (10)

R2
� K xk, xk( ) − 2∑

n

i�1

αiK xi, xk( ) + ∑
n

i,j�1

αiαjK xi, xj( ),

(11)
where xk is an arbitrary support vector.

For test sample Z, its thresholding algorithm is

f(z) �‖z − a‖2 � 2∑
n

i�1

αiK xi, z( ) − ∑
n

i,j�1

αiαjK xi, xj( ).

(12)
When f(z)≥R2, the sample is the normal sample;

otherwise, it is the abnormal sample.

3. MCNN-AGRU Early Fault Detection Method

Most fault diagnosis methods based on deep learning are
learning and classifying the serious faults, but there are a few
methods for the early fault of bearings. )e MCNN-AGRU
method proposed in this paper solves this problem. MCNN
can extract data features of different scales to increase the
number of data sets and filter out part of the noise in the
process to extract more robust features. )e GRU network
with the attention mechanism can solve the problem of
information loss and the difficulty of taking into account the
relationship between data and information when a single
GRU network inputs data with too long sequence.)erefore,
the MCNN-AGRU early fault detection method proposed in
this paper is improved compared with the previous methods
in feature extraction and timing processing. )e experiment
proves that the early fault of the bearing can be detected
accurately and quickly.

3.1. MCNN-AGRU Fundamental. )e structure of the
MCNN-AGRU model proposed in this paper is shown in
Figure 6, which is mainly divided into three parts: the
multiscale input layer, multiscale feature extraction layer,
and prediction layer. First, the original vibration data is
transformed into data of four time scales after multiscale
preprocessing, as shown in Figure 7. )en, input the data of
these four scales into the CNN network to extract the fea-
tures, finally concatenate the features extracted from the data
of the four scales to obtain the comprehensive feature, and
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Figure 5: Attention mechanism structure.
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then input it into the GRU network with the attention
mechanism through the fully connected layer. )e output is
obtained after weighting.

)e algorithm flow chart of the model is shown in
Figure 8, including offline modelling and online monitoring.
)e offline modelling phase uses historical normal data to
train MCNN and GRU network with an attention

mechanism. When training the GRU network, GRU be-
comes a sequence generator, and the network outputs a
prediction sequence with the same dimensions as the input
data. During online monitoring, real-time data is input to
the MCNN-AGRU model, and the forecast data at the next
moment is output. )e reconstruction error of the forecast
data and the real data at the next moment is judged by the
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Figure 6: MCNN-AGRU model structure.
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support vector data description (SVDD) to determine the
current operating status of the rolling bearing. If the result is
normal, continue monitoring; otherwise, perform an alarm.

Each layer in the model is described as follows:

(1) Multiscale input layer: )e input layer processes the
original data through multiple scales to obtain four
different scale inputs and inputs them into four
different convolutional neural networks. )e orig-
inal data is X � x1, . . . , xn, . . . , xN{ }.

(2) Multiscale feature extraction layer: In this layer, two
pairs of convolutional pooling layers are used for
feature extraction for data of each scale, and the
extracted features are connected in series to form a
comprehensive feature. )e input of the first con-
volutional layer is a signal of length L � N/s, and a
convolution kernel of length m is selected to move
on the data to extract features. )erefore, the output
zi of the i node in the feature graph is

zi � σ w
Τyi: i+m− 1 + b( ), (13)

(i) where wΤ represents the weight matrix, b is the bias,
yi: i+m− 1 represents the subsignal of length m
starting from the i-th period in the original data y,
and σ represents the activation function. ReLU
activation is used here.)e function can prevent the
gradient from disappearing and speed up the
function convergence. Sliding the convolution
kernel from the beginning to the end, the j-th
feature can be seen as

zj � z1, z2, z3, . . . , zL− m+1[ ]. (14)

(ii) After that, the pooling layer is used to further extract
the features obtained by the convolutional layer, the
max-pooling with a pooling length of p is adopted
for calculating the local max value over the input
feature map, and the k features are combined to
obtain

hk � h1, h2, h3, . . . , hL− m/p+1[ ], (15)

hj � max
(j− 1)p+1≤i≤jp

zi{ }. (16)

(iii) )e features after the pooling layer are expressed as
hk′ , and then the features are connected in series to
get

q
(s)
� h1
′ , h2
′ , h3
′ , . . . , hK2

′[ ]. (17)

(iv) Finally, the features obtained from the four scales
are connected in series to obtain comprehensive
features:

q � q
(1), q(2), q(3), q(4)[ ]. (18)

(3) Prediction layer: )e prediction layer is composed
of the GRU layer, attention mechanism layer, and
output layer. )e GRU layer learns the feature
vectors extracted by the multiscale feature extrac-
tion layer. By building a single-layer GRU structure,
the proposed features are fully learned to capture its
internal changing laws.)e output of the GRU layer
is denoted as H, and the output at step t is expressed
as

ht � GRU HC,t− 1,HC,t( ), t ∈ [1, i]. (19)

)e input of the attention mechanism layer is the output
vector H that has been activated by the GRU network layer.
)e probability corresponding to different feature vectors is
calculated according to the weight distribution principle,
and the better weight parameter matrix is continuously
updated and iterated. )e calculation formula of the weight
coefficient of the attention mechanism layer can be
expressed as
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Figure 8: MCNN-AGRU early failure detection process.
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et � u tanh wht + b( ), (20)

αt �
exp et( )
∑tj�1 ej

, (21)

st �∑
i

t�1

αth, (22)

where et represents the attention probability distribution
value determined by the output vector ht of the GRU net-
work layer at time t; u and w are weight coefficients; b is the
bias coefficient; and the output of the attention layer at time t
is represented by st. Finally, the input of the output layer is
the output of the attention mechanism layer. )e output
layer calculates the output with a prediction step length ofm
through the fully connected layer. )e prediction formula
can be expressed as

yt � σ wost + bo( ). (23)

Among them, yt represents the predicted output value at
time t;wo is the weight matrix; and bo is the deviation vector.
)e activation function σ is Sigmoid.

)e reconstruction error is calculated as follows:

E �
yt − xt
xt

. (24)

Only normal data is used to train MCNN-AGRU to
make the model have the ability to predict the normal be-
haviour of the system along the time axis model in the
process of detecting the early fault of the bearing. When the
online data is input into themodel, the model can predict the
value of the next time of the data and calculate the recon-
struction error with the actual value of the next time. )e
bearing has different reconstruction error when different
faults occur. For example, when the system is normal, the
reconstruction error is very small. When the system is ab-
normal, the reconstruction error will increase obviously.
More importantly, the reconstruction errors of different
types of early faults are also different. )erefore, we have
reason to believe that the running state of the system can be
judged by the reconstruction error. Various types of vi-
bration signals and normal vibration signals are input into
MCNN-AGRU to get the reconstruction error, and ab-
normal reconstruction error and normal reconstruction
error are used to train SVDD to indicate the running state of
the system.

4. Experimental Results and Analysis

)is section verifies the accuracy and feasibility of the
proposed MCNN-AGRU method through two sets of ex-
periments on the self-built mechanical failure comprehen-
sive simulation experiment platform and a full life cycle data
set from the intelligent maintenance system (IMS) of the
University of Cincinnati [39, 40].

4.1.MCNN-AGRUFaultClassificationExperiment. )is part
mainly uses experiments to verify the accuracy of the
model’s classification. )e data set was acquired from the
self-built mechanical failure comprehensive simulation ex-
periment platform. )is test stand consists of a motor, a
rotor, a principle axis, a vibration sensor, and different kinds
of rolling bearings (shown in Figure 9). )e fault data set
consists of four categories: normal state (N), the inner ring
failure (IRF), the outer ring failure (ORF), and the rolling
elements failure (REF). For the same fault, the degree is
0.2mm, and the motor speeds is 1800 RPM. Digital data was
collected at 12,000 samples per second.

)is data set is used to evaluate the fault diagnosis
performance of the algorithm. It contains four operating
states common to the rolling bearing (N, IRF, ORF, REF).
Each state has 120000 points, of which 80000 is selected for
training data, 20000 for validation set, and 20000 for test set,
and then test data of four operating states are entered into
the trained model and judge the state of the system by the
reconstructed error. )e detailed information is listed in
Table 1. For the proposed method, all structural hyper-
parameters are shown in Table 2.

Figure 10 shows the test results of the model. )e black
dots indicate the normal state, the green triangle indicates
the rolling element failure, the blue square indicates the
inner ring failure, and the pink cross indicates the outer ring
failure. (1) )e reconstruction error of the normal state
fluctuates less than 2.5, and the reconstruction error of the
abnormal state (rolling element failure, outer ring failure,
and inner ring failure) is 2.5 to 20. It can be seen that there is
a clear difference between the reconstruction error of the
normal state and the abnormal state, which means that the
model can distinguish the normal state from the abnormal
state very well and has a good abnormality detection ability.
(2) )e reconstruction error range of rolling element failure
is 2.5 to 5, the reconstruction error of inner ring failure
fluctuates about 7.5, and the reconstruction error of outer
ring failure ranges from 12 to 20. It can be seen that the
model can distinguish three different types of faults well,
indicating that the model has good fault classification
capabilities.

4.2. MCNN-AGRU Fault Prediction Experiment. )is ex-
periment is mainly used to verify the fault prediction
ability of the model. To verify the performance of the
model extended to the early state recognition of the
rolling bearing, it is first necessary to analyse the oper-
ating characteristics of the rolling bearing throughout its
life cycle. )is article uses the full life cycle data of
bearings from the Intelligent Maintenance Center of the
University of Cincinnati for analysis. As shown in Fig-
ure 11, the bearing test bench carries four bearings on a
shaft, which is driven by an AC motor. )e speed is
maintained at 2000 r/min. A radial load of 6000 lbs is
applied to the shaft and bearing through a spring
mechanism to accelerate bearing aging. )e oil circula-
tion system can measure the flow and temperature of
lubricating oil. Besides, the electromagnet installed in the
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oil return pipe will collect debris in the oil to prove the
performance degradation of the bearing system. When
the accumulated debris attached to the electromagnet
exceeds a certain level, the system will stop running. A
vibration acceleration sensor is installed on each bearing
box. )e data sampling rate is 20 kHz, sampling once
every ten minutes. And there are 20480 points in each
sample.

)is paper chooses the data of experiment C in the IMS
full life cycle experiment as the training set of this model to
train the model. )is experiment started on April 8th and
ended on April 18th. After the accelerated aging test with
applied load, the outer ring failure occurred on the 3#
bearing. )e data contains the vibration acceleration signals
of the 3# bearing from normal operation to the occurrence of
outer ring failure and contains 1399 samples in total. )e
data sampling rate is 20 kHz and each vibration signal
snapshot length contains 20480 points. )e first 800 samples
are the healthy running data of 3# bearing. Select the first 500
samples of the sample file as the training data of the model,
and the last 300 samples are validation data. )e last 599
samples are used to test the performance of the model, and
the last 599 samples contain the degradation process data of
the 3# bearing. To ensure that the data input model has a
certain physical meaning, 600 sampling points for roughly
one revolution by calculating the sampling frequency and
motor speed are obtained. )erefore, the data is rearranged
and the data is input into the model for training and testing
according to the cycle.

Figure 12 shows the performance of 3# bearing data in
Experiment C. It uses normal data to train the model so that
the model can learn the data changes of the rolling bearing in
the health condition and use the reconstruction error be-
tween the actual value and the predicted value to measure
the running state of the bearing. It can be seen from the

partial enlargement of Figure 13 that the model first showed
abnormal condition in the 8250th cycle. )en, the vibration
signal returned to normal.)is consists of the failure process
of rolling bearings. When an early fault occurs to the outer
ring and the rolling bearing is running, the weak defects in
the outer ring will be smoothed by the continuous moving of
the rolling elements. )is abnormality will gradually di-
minish, so there will be short-term data similar to normal
conditions. )e rolling bearing with early fault will continue
to run, and these two states will alternate. But the duration of
the two states is getting shorter, and the amplitude of each
abnormal signal will gradually increase.

To verify the stability and advancement of the MCNN-
AGRU method proposed in this paper, this method is
compared with several other fault detection methods.

As shown in Figures 14 and 15, it is clear that MCNN-
AGRU can describe the development of the rolling bearing’s
damage. It is very sensitive to initial anomalies than other
methods through Figures 14 and 15. For Kurtosis, it is not
sensitive enough to abnormal changes in the signal and
about 6650 revolutions slower than the method proposed in
this paper. When Kurtosis adds the MCNN, its detection
ability is enhanced, but its ability to predict the next running
state of the bearing is reduced. For the RMS, it has a certain
response to the early fault, but it is not obvious, and it cannot
accurately predict the next running state of the bearing.
When the RMS adds the MCNN, both detection ability and
the ability which predicts the next running state are reduced.
Compared with RMS, the MCNN-AGRU proposed in this
paper is obviously larger than that in amplitude. It means
that when both methods detect early faults, the MCNN-
AGRU’s response to early faults is more sensitive and ob-
vious, while RMS is easily masked by noise. In conclusion,
the MCNN-AGRU extracted data features are more stable
and more sensitive to early faults.

A

A motor

B rotor

C principle axis

D rolling bearing

E vibration sensor

B C D

E

Figure 9: Comprehensive mechanical failure test bench.

Table 1: Rolling bearing failure test data.

Fault Location Fault diameter (mm) Number of points

Normal 0 120000
Outer ring failure (ORF) 0.2 120000
Rolling element failure (REF) 0.2 120000
Inner ring failure (IRF) 0.2 120000
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Figure 10: Diagram of model diagnosis results in four states.

Table 2: Model hyperparameters.

Hyperparameters Value

Kernel number 8
Multiscale number 4
CNN layers 2
CNN optimizer Adam
CNN activation function ReLU
AGRU hidden layer 1
AGRU optimizer Adam
AGRU activation function Sigmoid
Gaussian kernel parameter σ 25

Induction
motor 

�ermocouples Radial load

Accelerometers

Bearing 1
Bearing 2 Bearing 3

Bearing 4

Figure 11: IMS full life cycle test bench.
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Figure 14: Comparison of MCNN-AGRU and Kurtosis.
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Figure 12: IMS full life cycle curve.
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5. Conclusions

)e early fault diagnosis method of MCNN-AGRU rolling
bearing proposed in this paper integrates the multiscale
feature extraction of the signal and the GRU network
considering the timing characteristics of the data to achieve
end-to-end bearing fault diagnosis.

(1) Compared with the traditional diagnosis method, the
MCNN-AGRU method reduces the dependence on
prior knowledge and experience, making the bearing
fault diagnosis more intelligent.

(2) Extracting features of fault signals through MCNN
can well extract the comprehensive features of the
data, highlighting fault feature information, and then
the GRU network with attention mechanism will
process the sequence characteristics of the book
sequence, which is similar to traditional shallow
neural networks that can retain the timing correla-
tion of the input features so that the diagnosis results
are more accurate.

(3) Under different failure levels, through comparative
analysis with Kurtosis, RMS, MCNN+Kurtosis, and
MCNN+RMS methods, the MCNN-AGRUmethod
is superior to other methods in the ability of early
fault detection and the ability to predict the next
running state running of the rolling bearing. It is
proved that the method in this paper has high ac-
curacy and good robustness.

(4) Since the experimental data in this article is collected
in a laboratory environment, there is a certain dif-
ference between it and the actual production envi-
ronment. At the same time, the determination of the
current network model structure largely depends on
experience, and different parameters have a greater
impact on the recognition effect of the network. In

future work, we will continue to study the model
structure setting strategy for rolling bearing fault
diagnosis.

Data Availability

)is paper verifies the accuracy and feasibility of the pro-
posed MCNN-AGRU method through two sets of experi-
ments on the self-built mechanical failure comprehensive
simulation experiment platform and a full life cycle data set
from the intelligent maintenance system (IMS) of the
University of Cincinnati [1-2]: [1] W. Gousseau, J. Antoni,
F. Girardin, “Analysis of the Rolling Element Bearing data
set of the Center for Intelligent Maintenance Systems of the
University of Cincinnati.” CM2016 2016 and [2] H. Qiu,
J. Lee, J. Lin, “Wavelet filter-based weak signature detection
method and its application on rolling element bearing
prognostics,” Journal of Sound and Vibration, vol. 289(4),
pp. 1066-1090, 2006.
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