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ABSTRACT Variational mode decomposition (VMD) is widely used in the condition monitoring and fault

diagnosis of rotarymachinery for its unique advantages. An adaptive parameter optimizedVMD (APOVMD)

is proposed in order to adaptively determine the suitable decomposed parameters and further enhance its

performance. The traditional singular value decomposition (SVD) method cannot effectively select the

reconstructed order, which often leads to unsatisfactory results for signal reconstruction. Thus, a singular

kurtosis difference spectrum method is proposed to accurately determine the effective reconstructed order

for signal noise reduction. In addition, because the fault signal of the planetary gearbox at the early fault

stage is weak and susceptible to ambient noise and other signal interference, the fault feature information is

difficult to extract. To address this issue, a novel method for early fault feature extraction of planetary gearbox

based on APOVMD and singular kurtosis difference spectrum is proposed in this paper. First, the APOVMD

is applied to decompose the planetary gearbox vibration signal into a series of band-limited intrinsic

mode functions adaptively and non-recursively. Second, the sensitive component is selected from the IMFS

according to the cosine similarity index. Third, the Hankel matrix is constructed for the sensitive component

in the phase space and decomposed by SVD. Here, the effective reconstructed order is automatically selected

by the singular kurtosis difference spectrum method for noise reduction. Finally, the Hilbert envelope

spectrum analysis is carried out on the reconstructed signal, and the fault characteristic frequency information

of planetary gearbox can be accurately extracted from the envelope spectrum to realize the fault identification

and location. The results of simulation studies and actual experimental data analysis demonstrate that the

proposed method has superior ability to extract the early weak fault characteristics of the planetary gearbox

compared with the VMD-SVD and EEMD-SVD methods, and the validity and feasibility of the presented

method are proved.

INDEX TERMS Planetary gearbox, adaptive parameter optimized VMD, singular kurtosis difference

spectrum, cosine similarity, early fault diagnosis.

I. INTRODUCTION

Planetary gearboxes have the advantages of small size, large

transmission ratio, strong bearing capacity, and high effi-

ciency. Therefore, planetary gearboxes are widely used in

helicopters, wind turbines, ships, heavy trucks, mining exca-

vators and other large mechanical equipment [1]. The work-

ing environment of planetary gearboxes is commonly harsh.

They operate under heavy load, fatigue and strong impact

for a long time, which can easily lead to local faults such
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as pitting, cracking and broken teeth of the gear. Once a

fault occurs to the planetary gearbox, it may lead to destroy

the equipment and the whole power transmission system.

Therefore, the research on incipient fault diagnosis of plan-

etary gearbox can realize the early warning of equipment,

and then formulate scientific maintenance methods to avoid

catastrophic accidents [2], [3].

When a local fault occurs on the gear, the defect location

will induce periodic and non-stationary impact vibration

during the gear pair meshing [4]. Due to the influence of

complex transmission path, fault vibration will be grad-

ually weakened in the process of outward transmission.
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Moreover, the meshing vibrations of multiple pairs of

gear in planetary gearbox are coupled with each other,

which makes the vibration response signal obtained

from the gearbox housing non-stationary and non-

linear [5], [6]. Time-frequency analysis methods such

as Wigner-Ville distribution (WVD) [7], short time

Fourier transform (STFT) [8], and discrete wavelet trans-

form (DWT) [9] are powerful tools for analyzing non-

stationary and non-linear signals. However, these methods

have their own limitations. The WVD has serious cross inter-

ference when it is used to analyze multi-component signals.

The STFT has the disadvantage of fixed time-frequency

resolution. The DWT needs to predetermine the wavelet basis

function and the number of decomposition layers, which

makes it lack of adaptability. Therefore, the non-adaptive

signal processing method is difficult to achieve satisfactory

results for the analysis of actual signals. Empirical mode

decomposition (EMD) can adaptively decomposes the signal

into a series of intrinsic mode functions according to the

local scale features of the signal itself, thus revealing the

internal nature of the signal [10]–[12]. However, EMD has

the problems of over-envelope, under-envelope, endpoint

effect and modal mixing. In order to explore a more suitable

time-frequency analysis method, Simith [13] proposed the

local mean decomposition (LMD) method, which overcomes

the problems of over-envelope and under-envelope in EMD,

and has the advantages of less endpoint effect and less

iterations. However, LMD also has the problem of modal

mixing. In order to suppress modal mixing, Huang and

Wu [14] proposed the ensemble empirical mode decom-

position (EEMD) method. Subsequently, Yang et al. [15]

proposed the ensemble local mean decomposition (ELMD)

method based on LMD and EEMD. However, as noise-aided

algorithms, EEMD and ELMD will inevitably leave residual

white noise in the decomposed signal. In addition, when the

amount of white noise added is large, the average number of

integration also needs to be increased, which results in taking

more time to decompose the signal [16].

In order to overcome the shortcomings of the analysis

method mentioned above, a new adaptive signal decompo-

sition method, which is called Variational Mode Decompo-

sition (VMD), is recently proposed by Dragomiretskiy and

Zosso [17]. VMD is an entirely non-recursive signal decom-

position algorithm, which transfers the signal decomposi-

tion process into the variational framework, and determines

the frequency center and bandwidth of each component

by searching for the optimal solution of the variational

model [18], [19]. Due to the fact that VMD abandons the con-

straint of recursive decomposition, it can effectively avoid the

mode mixing problem in EMD and LMD. Meanwhile, VMD

can also effectively alleviate the shortcomings of EEMD

and ELMD, and has high computational efficiency and good

noise robustness [20]. Therefore, since VMD method was

proposed, it has been widely used in the fields of fault diag-

nosis [21], signal processing [22], and image processing [23].

However, the superiority of VMD depends on the accuracy

settings of decomposed mode number and penalty factor,

whichwill lead to information loss or over decomposition and

affect the result of feature extraction. In order to overcome

the limitations of the VMD, an adaptive parameter optimiza-

tion VMD (APOVMD) method is proposed in this paper,

which can adaptively determine the most suitable decom-

posed parameters and improve the performance of VMD.

Because the early fault feature information of planetary

gearbox is weak and seriously disturbed by background noise,

therefore, only using a single VMD method is often not

ideal. We try to combine it with other methods to achieve

the purpose of feature extraction. Singular value decomposi-

tion (SVD), as a non-linear filtering method, can effectively

eliminate the random noise components in the signal and

obtain relatively pure fault signal [24]–[26]. However, the

selection of reconstructed order will directly affect the quality

of the noise reduction signal [27]. Previously, the recon-

structed order was usually determined by the user’s experi-

ence, which could not be automatically selected [28]. Then,

some scholars put forward the method of singular value dif-

ference spectrum to determine the effective reconstruction

order [29]. However, this method will miss some important

information related to the fault when the fault signal is weak,

and it is also difficult to achieve satisfactory results. There-

fore, on the basis of traditional singular value decomposition,

a singular value kurtosis difference spectrum method is pro-

posed to accurately determine effective reconstructed order

for signal noise reduction.

Based on the above analysis, a novel early fault feature

extraction method based on APOVMD and singular value

kurtosis difference spectrum is proposed in this paper. The

simulation analysis and experimental verification of plane-

tary gearbox will also be conducted to verify the effectiveness

and superiority of the proposed method and compare with

VMD-SVDmethod [30] and EEMD-SVDmethod [31], [32].

Hereafter, the remainder of this paper is organized as follows:

Sections 2 introduce the theory of VMD and singular value

difference, as well as the cosine similarity. In Section 3,

the novel method adaptive parameter optimized VMD is pre-

sented in Section 3.1, the selection method singular kurtosis

difference spectrum is given in Section 3.2, and the detailed

implementation steps of the proposed method are introduced

in Section 3.3. In Section 4, the simulation date is used to

validate the proposed method, and the proposed method is

compared with other methods. The experimental platform is

described and the actual date of planetary gearbox is applied

to validate the proposed method in Section 5. Finally, conclu-

sions are summarized in Section 6.

II. A DESCRIPTION OF THEORETICAL BACKGROUND

A. VARIATIONAL MODE DECOMPOSITION THEORY

The VMD method can self-adaptively divide the signal fre-

quency domain and effectively separate each component to

obtain a series of modal components with sparse characteris-

tics [17]–[19]. Therefore, the essence of VMD is to construct
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and solve variational problems. Assuming that a signal is

decomposed into K intrinsic mode functions by VMD algo-

rithm, the construction process of the corresponding varia-

tional problem can be summarized as follows [20]:

Step 1:Hilbert transform is applied to each modal function

uk (t) to obtain the signal-side spectrum of its analytic signal,

as shown in Eq. (1):
(

δ(t)+
j

π t

)

∗ uk (t) (1)

where δ(t) denotes the impulse function, j is the imaginary

unit, {uk (t)} = {u1(t), u2(t), . . . , uk (t)} is the K decomposed

modal functions, and ∗ represents convolution operation.

Step 2: The analytical signal of each modal function is

mixed with the predicted estimated central frequency ωk , and

the spectrum of each modal function is modulated to the

corresponding fundamental frequency band. The analytical

signal of modal function is as follows:
[(

δ(t)+
j

π t

)

∗ uk (t)

]

e−jωk t (2)

Step 3: The bandwidth of each modal function is estimated

by calculating the squared L2 -norm of the gradient of the

analytic signal. The final constrained variational problem can

be described by the following equation:











min
{uk },{ωk }

{
K∑

k=1

∥
∥
∥∂t

[

(δ(t)+
j
π
) ∗ uk (t)

]

e−jωk t
∥
∥
∥

2

2

}

s.t
K∑

k=1

uk = f

(3)

where f is the original input signal, ∂t denotes the partial

derivative of a function, {ωk} = {ω1, ω2, ω3, . . . , ωk} is the

central frequency of each modal function, and
∑

k

:=
K∑

k=1

is

the sum of all IMF components.

In order to solve the optimal solution of the constrained

variational problem, the Lagrangian multiplier operator λ(t)

and penalty factor α are introduced. The extended Lagrange

expression is presented as follows:

L ({uk} , {ωk} , λ)

= α
∑

k

∥
∥
∥
∥
∂t

[

(δ(t)+
j

π t
)uk (t)

]

e−jωk t
∥
∥
∥
∥

2

2

+

∥
∥
∥
∥
∥
f (t)−

∑

k

uk (t)

∥
∥
∥
∥
∥

2

+

〈

λ(t), f (t)−
∑

k

uk (t)

〉

(4)

The VMD algorithm uses the alternate direction method

of multipliers (ADMM) to obtain the optimal solution of the

extended Lagrange expression [21]–[23].

First, the number of modes K needs to be set artificially

in advance. Meanwhile, the frequency domain expression of

the modal function û1k , the central frequency of each modal

functionω1
k and the Lagrangian multiplier operator λ̂1 are ini-

tialized. Then, modal function uk and their central frequency

ωk are updated respectively according to Eq.(5) and Eq.(6),

respectively:

ûn+1k ←
f̂ −

∑

i<k û
n+1
i −

∑

i>k û
n
i +

λ̂n

2

1+ 2α(ω − ωk
n)

2
(5)

and

ωn+1
k ←

∫∞
0 ω

∣
∣ûk (ω)

∣
∣
2
dω

∫∞
0

∣
∣ûk (ω)

∣
∣
2
dω

(6)

After each updating of the modal functions and the cen-

tral frequencies, the Lagrangian multiplier operator is also

updated by Eq.(7):

λ̂n+1← λ̂n + τ

(

f̂ −
∑

k

ûn+1

)

(7)

The above update iteration continues until the convergence

condition Eq.(8) is satisfied.

∑

k

∥
∥
∥û

n+1
k − ûnk

∥
∥
∥

2

2
/
∥
∥ûnk

∥
∥
2

2
< ε (8)

where ε is the tolerance of the convergence criterion, and uses

the default value of standard VMD.

B. SINGULAR VALUE DECOMPOSITION METHOD

Let X = (x(1), x(2), . . . , x(N )) be a discrete signal with

noise. Based on the theory of phase space reconstruction,

the signal X can be constructed into Hankel matrix of order

m× n [24]–[26]:

A =








x(1) x(2) · · · x(n)

x(2) x(3) · · · x(n+ 1)
...

...
...

...

x(N − n+ 1) x(N − n+ 2) · · · x(N )








(9)

where N is the length of the signal, 1 < n < N , let m =

N − n + 1, then A ∈ Rm×n. The above real matrix A is also

called the reconstruction of attractor orbit matrix [27].

The matrix A reflects the dynamic properties of the attrac-

tor in the reconstructed space by reconstructing the character-

istics of the attractor. The SVD is performed on the above real

matrix A, the following relational equation can be obtained:

A = USV T (10)

where U = [u1, u2, . . . , um] ∈ Rm×n and V =

[v1, v2, . . . , vn] ∈ Rm×n are orthogonal matrices, S =

[diag(δ1, δ2, . . . , δq), 0] ∈ R
m×n or its transposition depends

on m ≤ n or m > n, 0 represents a zero matrix, where

q = min(m, n), and δ1 ≥ δ2 ≥ ... ≥ δq ≥ 0 are the singular

values of matrix A.

According to Eq. (10), the Hankel matrix A can be repre-

sented by column vectors ui and vi, i.e.:

A = δ1u1v
τ
1 + δ2u2v

τ
2 + ...+ δquqv

τ
q (11)

where ui ∈ R
m×1, vi ∈ R

n×1, i = 1, 2 . . . , q, q = min(m, n),

let Ai = δiuiv
τ
i , then Ai ∈ R

m×n. Let Ai denote the first row
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vector of Pi,1, and Hi,n denotes the sub-column vector of Ai
after removing the first element from the last column vector.

According to the construction process of Hankelmatrix, it can

be seen that a component signal Pi can be formed by connect-

ing the beginning and end of the transposition of Pi,1 and Ai.

Pi can be represented in the form of a vector as follows:

Pi =
(

Pi,1,H
T
j,n

)

;Hi,1 ∈ R
(m−1)×1,Pi,1 ∈ R

1×n. (12)

The linear superposition of all component signals Pi forms

a decomposition of the original signal X , i.e.:

X = P1 + P2 + P3 + ...+ Pn (13)

The order of component signals is arranged from high to

low according to the corresponding size of singular values

δi [28], [29].

C. COSINE SIMILARITY INDEX

Cosine similarity is a method to measure the similarity

between two objects [33]. First, the two signals are mapped

to the vector space, and then the cosine value of the angle

between two vectors is measured in the inner product space to

measure the similarity between them [34]. Themore common

components between the two signals, the closer their cosine

similarity value is to 1. On the contrary, the closer the cosine

similarity is to 0. The two vibration signals are defined as

X1(n) and X2(n) , and the calculation formula of the cosine

similarity of the two signals is as shown in Eq. (14):

CS (X1,X2) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

N∑

n=1

X1(n)X2(n)

√

N∑

n=1

X2
1 (n)

√

N∑

n=1

X2
2 (n)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

(14)

In the actual operation of planetary gearbox, the vibration

signal contains not only weak fault impulse components, but

also heavy background noise and other interference com-

ponents. Therefore, the cosine similarity index can be used

to select useful component signals. The component signal

that the largest cosine similarity with the original signal is

considered to be the real fault signal, and is selected as the

sensitive component. The remainder components are consid-

ered as noise or interference component will be eliminated,

thereby improving the signal-to-noise ratio of the signal.

III. THE PROPOSED METHODS

A. ADAPTIVE PARAMETER OPTIMIZED VMD

According to the description in section 2.1, the decomposed

mode number K and penalty factors α need to be preset

by users in the VMD algorithm, which will significantly

influence the adaptability of the VMD. The original signal

is decomposed by VMD to obtain K modal components,

and each modal component uk (t) corresponds to a central

frequency ωk (t) . The parameters K and α have a close rela-

tionship with ωk (t) , and will directly determine the decom-

position performance of the VMD algorithm. At present, the

number of modal K is determined by the observation center

frequency method in most cases, and the value of penalty fac-

tor α is the default value in the VMD algorithm. However, this

method requires users to continuously modify the parameters

K and α in order to avoid the central frequencies of two adja-

cent modes overlapping, which also lacks self-adaptability.

In order to adaptively determine the optimal parameters,

an adaptive parameter optimized VMD (APOVMD) method

is proposed. The principle of this new method is to determine

the optimal parameter combination according to compare the

ratio of the central frequency of two adjacent modes with

the threshold value under the same K and α. In this paper,

according to the frequency band characteristics of the early

fault signal of the planetary gearbox, and through multiple

experiments, the threshold value θ is set to 1.2. The flow chart

of APOVMD algorithm is shown in Fig. 1, and the specific

implementation steps are as follows:

Step 1: Input the original signal x(t).

Step 2: Initialize modal umber K = 2 and penalty factor

α = 100. (In this paper, the maximum number of iterations

α = 3000 and the size of search step is 100.)

Step 3:Decompose the signal by using the VMD algorithm

to obtain K modal components and their corresponding cen-

tral frequencies ωk (t).

Step 4: Divide the center frequency of the latter model

component uk by the center frequency of the former

component uk−1 to obtain a set of frequency ratios

λ1, λ2, · · · , λK−1(λk = ωK−1/ωK , k = 1, 2...K − 1).

Step 5: Set the threshold θ = 1.2. When λk > θ ,

it is considered that the VMD decomposition is not enough.

Therefore, letK = k+1, α = α+100, and return step 3 to 4.

Step 6: When λk ≤ θ , it is considered that the center

frequencies of uk and uk−1 are similar, and the VMD has

been over decomposed. Therefore, the optimal parameters

K = K − 1, α = α − 100 are obtained, and the best

decomposition result is output.

B. CONCEPT OF SINGULAR KURTOSIS

DIFFERENCE SPECTRUM

Reference [29] proposed the method of singular value dif-

ference spectrum for selecting the effective reconstruction

order of SVD. This method is now usually used to select

the order of reconstructed signal in the field of mechanical

fault diagnosis. However, when the fault information is weak,

if only the order corresponding to the maximum peak point in

the singular value difference spectrum is selected for signal

reconstruction, some weak impact signal characteristics will

be lost, and the true fault signal cannot be restored.

Kurtosis is very sensitive to the impact characteristics of

the signal [35], [36]. When the gear occur a local fault,

the impact characteristic will appear in the vibration signal.

Therefore, kurtosis can be used as a basis for selecting effec-

tive singular values. It can be expressed as:

k =
E(x(t)− µ)4

σ 4
(15)
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FIGURE 1. The flow chart of APOVMD algorithm.

where k denotes kurtosis, x(t) is the fault vibration signal,µ is

the mean of x(t), σ is the standard deviation of x(t).

In order to accurately retain useful fault characteristics and

minimize the effects of noise, the method of singular kurtosis

difference spectrum is introduced in this paper based on the

traditional singular value decomposition. It can be calculated

as follows:

SKDi = dk(i+ 1)− dk(i)(i = 1, 2, . . . , q− 1) (16)

In the Eq.(16), SKDi is the kurtosis value of the first

i-order reconstructed signal, i is the number of singular values

defined in Section 2.2. When the kurtosis values of two

adjacent reconstructed signals differ greatly, a significant

peak will be generated in the differential spectrum, and there

will inevitably be a maximum peak in the entire differential

spectrum, which is the maximum mutation position l of the

kurtosis value. Themaximummutation point not only reflects

that the reconstructed signal contains abundant fault impact

characteristics, but also shows that the nature of signal has

changed fundamentally, which is also a natural reflection of

the transformation between useful signal and noise signal.

Therefore, the optimal separation of useful signals from noise

can be achieved by selecting the singular values of the first

l-order for signal reconstruction.

C. THE IMPLEMENTATION PROCESS OF

THE PROPOSED METHOD

The early fault signal of planetary gearbox has the charac-

teristics of weak feature information, easy to be submerged

by noise and low signal-to-noise ratio. The weak periodic

impact characteristics caused by the fault are often submerged

by strong background noise, which can not be effectively

extracted. Therefore, the key to early fault diagnosis of plan-

etary gearbox is to effectively extract the weak fault features

implied in the vibration signals. In this paper, the APOVMD

algorithm is used to decompose the early fault signal of plan-

etary gearbox, which can avoid the disadvantage of relying

on human experience to select decomposed parameters in

VMD. The signal-to-noise ratio of planetary gearbox fault

signal can be significantly improved by using APOVMD

algorithm. The fault characteristics of the original vibration

signal submerged by noise can be effectively highlighted, but

there will still be more noise interference. Although the SVD

can effectively eliminate the noise interference in the signal,

the reconstructed order can not be accurately determined.

Therefore, a singular kurtosis difference spectrum method

is proposed, which can adaptively select the effective recon-

structed order, and finally eliminate the influence of residual

noise. Based on the above analysis, a weak fault feature

extraction method of planetary gearbox based on APOVMD

and singular kurtosis difference spectrum is proposed in this

paper, which is expected to achieve accurate identification of

early fault of planetary gearbox.

The diagnostic process is shown in Fig. 2. The specific

implementation process is as follows:

Step 1:Collect the planetary gearbox fault vibration signal.

Step 2: The original vibration signal of planetary gearbox

is decomposed by APOVMD method, and a series of modal

components are obtained.

Step 3: The cosine similarity index is used to select the

model component that contains the most abundant fault fea-

ture information as the sensitive component.

Step 4: The SVD is performed on the sensitive component,

and the reconstructed order is adaptively determined by sin-

gular kurtosis difference spectrum method for signal noise

reduction.

Step 5: Hilbert envelope demodulation analysis is applied

to reconstructed signal to extract fault characteristic fre-

quency information of planetary gearbox, and compare it with
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FIGURE 2. The flowchart of the proposed method.

the theoretical value to determine the fault location of the

gear.

IV. STUDY ON SIMULATED SIGNAL

When a local fault occurs in the gear of the planetary gearbox,

the fault vibration signal collected by the acceleration sensor

can be represented by an AM-FM signal model. The carrier

frequency is the gear meshing frequency or its frequency

multiplication, and the modulation frequency is the fault gear

characteristic frequency or its

frequency multiplication. In order to facilitate the analysis,

only the fundamental frequency of the modulation frequency

and the carrier frequency are considered when establishing

the planetary gearbox AM-FM vibration signal model, that is,

the frequency component only includes the gear meshing fre-

quency and the fault gear characteristic frequency. Therefore,

the simplified model of the sun gear fault vibration signal is

constructed as follows [37], [38]:

x(t) = [1− cos(2π fsr t)][1+ cosA(2π fst)]
︸ ︷︷ ︸

AM by gear fault

× cos[2π fmt + B sin(2π fst)
︸ ︷︷ ︸

FM by gear fault

+φ]+ n(t)
︸︷︷︸

Noise

(17)

where the sun gear absolute rotation frequency fsr = 25

Hz, the sun gear fault characteristic frequency fs = 70 Hz,

the gear meshing frequency fm = 1000 Hz, A = B = 1 is the

modulation coefficient of AM and FM respectively, and φ is

the initial phase. In order to verify the ability of the proposed

method to extract the early weak features of the sun gear

under heavy background noise, the white Gaussian noise n(t)

with SNR of −18dB is added to the simulated shock signal

shown in Eq. (17) by using the MATLAB function AWGN(x,

SNR). Meanwhile, the sampling frequency of the simulation

signal is set to 10240Hz and the sampling time length is 1s.

The time domain waveform and its frequency spectrum

of the simulated signal under heavy background noise are

FIGURE 3. The time domain and frequency domain analysis of simulated
signal: (a) the time domain waveform of simulated fault signal,
(b) the time domain waveform of noise-added mixture signal,
(c) the frequency spectrum of simulated signal.

shown in Fig. 3. It can be seen from Fig. 3(b) and(c) that

the heavy background noise has completely submerged the

original periodic impact features of the time domain signal,

and there is no sign of the sun gear fault characteristics in the

simulated signal.

First, the signal in Fig. 3(b) is decomposed by the

APOVMD method. In order to illustrate the influence of
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FIGURE 4. The ratio of center frequencies of adjacent modes.

FIGURE 5. Modal components and their spectrum of simulated signal
decomposed by APOVMD.

mode number K and penalty factor α on modal center

frequency and the universality of the proposed method,

the experiment in Fig. 4 is repeated 50 times, and the average

statistical results is reported. After summing and averaging,

the ratio of center frequencies of adjacent modes under dif-

ferent decomposed mode number K sand penalty factors α

are shown in Fig. 4. It can be found from Fig. 4 that when

K ≥ 7, the ratio of center frequency begins to be less than

the threshold value θ = 1.2, and VMD is considered to be

over decomposed. Meanwhile, when α is between 1000 and

3000, the ratio of center frequency changes slightly and tends

to be flat. Therefore, the signal in Fig. 3 (b) is decomposed

by APOVMD, which the mode number and penalty factor

are set to K = 6 and α = 1500, respectively. Fig. 5 shows

the decomposedmodal components and their frequency spec-

trum. The cosine similarity index is used to determine the sen-

sitive component from the decomposed modal components.

FIGURE 6. The cosine similarity between the decomposed modal signals
and the original signal.

FIGURE 7. The number of iterations of modal center frequencies.

The cosine similarity between modal components and the

original signal is shown in Fig. 6. As can be seen from Fig. 6,

the cosine similarity of U2 is the largest, so U2 is selected as

the sensitive component for the next analysis. Fig. 7 shows

the number of the central frequencies iterations of the modal

components obtained by the APOVMD method. It can be

found that the central frequency of U2 component is 1073Hz,

which is very close to the gear meshing frequency 1000Hz.

Gear fault information is mainly carried by the gear meshing

frequency or its frequency multiplication component. There-

fore, the U2 sensitive component selected by cosine similarity

index contains abundant gear fault information.

Then, the Hankel matrix with 500 rows is constructed for

the U2 component and decomposed by SVD. The singular

kurtosis difference spectrum method is employed to deter-

mine the effective reconstructed order for noise reduction.

In order to clearly observe the variation of singular kurtosis

difference spectrum, only the first 50 data points are plotted in

the same coordinate system, as shown in Fig. 8. As provided

in Fig. 8, the position of the maximum mutation point occurs

at the order of singular value is 14, thus the first fourteen

singular values are selected for signal reconstruction, and the

reconstructed result is shown in Fig. 9(a). It is found that the

reconstructed signal actually restores the original sun gear

fault simulation signal.
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FIGURE 8. Singular kurtosis difference spectrum of the U2 sensitive
component.

FIGURE 9. The result of simulated signal by the proposed method: (a) the
reconstructed signal obtained by the proposed method, (b) the envelope
spectrum of the reconstructed signal.

Fig. 9(b) shows the envelope spectrum of the reconstructed

signal, it can be clearly seen that the sun gear fault charac-

teristic frequency 70Hz and its twice 140Hz, the sun gear

absolute rotation frequency 25Hz, and the sun gear fault

characteristic frequency plus or minus the sun gear absolute

rotation frequency 70Hz ± 25Hz are prominent. The above

analysis results accord with the sun gear fault characteristics

in envelope spectrum.

For comparison, the direct envelope demodulation analysis

of the U2 component obtained by the APOVMD method is

performed, and the result is provided in Fig. 10. In the enve-

lope spectrum of U2 component, we can note that although

there are peaks at the sun gear fault characteristic frequency,

the peaks at other interference frequencies are also plentiful,

FIGURE 10. Direct envelope analysis of U2 modal component.

which cause serious interference to the identification of the

sun gear fault characteristic information.

FIGURE 11. Comparative analysis of simulated signal processed by
VMD-SVD method: (a) the reconstructed signal obtained by VMD-SVD
method, (b) the envelope spectrum of the reconstructed signal.

Fig. 11 presents the processing result of the original fault

simulation signal by the VMD-SVD method. In the recon-

structed signal shown in Fig. 11(a), the original fault signal

can not be accurately restored. In the envelope spectrum

shown in Fig. 11(b), although the sun gear fault characteristic

frequency information can be found, the extracted result is not

as ideal as in the Fig. 9(b).

Fig. 12 shows the processing result of the original fault

simulation signal by the EEMD-SVD method. From the

reconstructed signal of Fig. 12(a), it can be seen that the

reconstructed signal is distorted and the original fault signal

can not be restored. From the envelope spectrum of Fig. 12(b),

it can be observed that there is a peak at the sun gear fault
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FIGURE 12. Comparative analysis of simulated signal processed by
EEMD-SVD method: (a) the reconstructed signal obtained by EEMD-SVD
method, (b) the envelope spectrum of the reconstructed signal.

characteristic frequency of 70Hz, but other fault frequency

information is not obvious. The result indicates that the

EEMD-SVD method can not effectively extract fault feature

information.

Through the above comparison and analysis, we can con-

clude that under the strong background noise interference,

the VMD-SVDmethod and EEMD-SVDmethod are difficult

to extract the fault feature information of the sun gear. Only

themethod proposed in this paper can accurately and compre-

hensively extract the weak sun gear fault feature hidden in the

dynamic signal. Therefore, the effectiveness and superiority

of the proposed method in extracting the early weak fault

feature of planetary gearbox are also verified.

V. EXPERIMENTAL VERIFICATION

A. EXPERIMENTAL EQUIPMENT

In order to verify the effectiveness of the proposed method

in the actual planetary gearbox fault diagnosis, the Spectra

Quest synthetic experimental platform for the planetary gear-

box fault is used in this study. The experimental system and its

three-dimensional model are shown in Fig. 13. The test bench

is mainly composed of a variable speed drive motor, a torsion

sensor and encoder, a two-stage planetary gearbox, a parallel

shaft gearbox and a programmable magnetic brake. There are

three planetary gears in the first stage planetary gearbox and

four planetary gears in the second stage planetary gearbox.

The first stage sun gear is connected with the drive shaft of

the motor, and the second stage planetary carrier is connected

with the input shaft of the parallel axis gearbox. During the

FIGURE 13. The test bench of planetary gearbox fault diagnosis and its
three-dimensional: (a) experimental platform for the planetary gearbox
faults, (b) three-dimensional model of experimental platform.

TABLE 1. Basic parameters of two-stage planetary gearbox.

experiment, the faulty gears are installed in the first planetary

gearbox for testing. The parameters of planetary gearbox are

shown in Table 1. In order to simulate a local fault of the gear,

the micro-crack with a width of 0.15mm and a depth of 1mm

is machined along the root direction on the gear teeth of the

sun gear and the planetary gear by wire cutting technology.

The faulty gears are shown in Fig. 14. The fault vibration sig-

nal is collected by using PCB 352C33 accelerometer (accel-

eration range of ± 50g, frequency range of 0.5–10kHz, and

sensitivity is 100 mV/g). The accelerometers are mounted on

the vertical, horizontal and axial test points of the planetary

gearbox housing to measure vibration signals. DT9837 data

conversion instrument and a computer with DAQ software

are selected as the data acquisition system in this experiment.

The speed of the sun gear connected with the driving motor

is 1380r/min during the experiment. The sampling frequency

is 5120Hz, and the sampling time length is 5s. According

to the structure parameters of planetary gearbox and the
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FIGURE 14. Gear fault states: (a)sun gear, (b) planetary gear.

speed of input shaft of sun gear, the local fault characteristic

frequencies of each gear are calculated as shown in Table 2.

TABLE 2. Fault feature frequencies of the first stage planetary gear.

B. CASE I: FAULT DETECTION OF SUN GEAR

Fig. 15 shows the time domain waveform and its frequency

spectrum of the sun gear fault vibration signal measured

by the acceleration sensor in the vertical direction. From

the time domain waveform of Fig. 15(a), it is difficult to

observe the regular impulse signal caused by the fault due

to the noise interference. From the frequency spectrum of

Fig.15 (b), the frequency component is very complex and no

obvious characteristic frequency components can be found.

FIGURE 15. The time domain and frequency domain analysis of sun gear
fault signal: (a) the time domain waveform of sun gear fault signal,
(b) the frequency spectrum of sun gear fault signal.

FIGURE 16. The ratio of center frequencies of adjacent modes.

FIGURE 17. Modal components and their spectrum of sun gear fault
signal decomposed by APOVMD.

In order to effectively extract the sun gear early fault

characteristics, the proposed method is applied to process

the sun gear fault vibration signal. First, the sun gear fault

vibration signal is decomposed by the APOVMD method.

Fig. 16 presents the radio of center frequencies of adjacent

modes under different mode numbers K and penalty factor α.

As displayed in Fig. 16, when the value of K is more than 6,

the ratio of center frequencies begin to be less than the

threshold value θ = 1.2, and VMD is considered to be over

decomposed. Meanwhile, when α is between 1000 and 3000,

the ratio of the entire center frequency changes slightly and

tends to be stable. Therefore, the sun gear fault vibration

signal is decomposed by APOVMD under the mode number

K = 6 and the penalty factor α = 2000. Fig. 17 illus-

trates the decomposedmodal components and their frequency

spectrum. The cosine similarity index is used to select sen-

sitive component from the decomposed modal components.
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FIGURE 18. The cosine similarity between the decomposed modal signals
and the original signal.

FIGURE 19. The number of iterations of modal center frequencies.

The cosine similarity between modal components and the

original signal is given in Fig. 18, one can also find that

the cosine similarity value of U6 is the largest. Therefore,

the U6 is selected as the sensitive component for the next

analysis. Fig. 19 shows the number of the central frequen-

cies iterations of the modal components obtained by the

APOVMD method. It can be seen that the central frequency

of U6 component is 2324Hz, which is very close to the six

times gear meshing frequency 2299.8Hz. Gear fault infor-

mation is mainly carried by the gear meshing frequency

or its frequency multiplication. Therefore, the U6 sensitive

component selected by cosine similarity index contains the

abundant gear fault information.

Then, the Hankel matrix with 500 rows is constructed for

the U6 sensitive component and decomposed by SVD. The

singular kurtosis difference spectrum method is employed to

determine the effective reconstructed order for signal noise

reduction. In order to clearly observe the variation of singular

kurtosis difference spectrum, only the first 50 points are

plotted here, as shown in Fig. 20. As can be seen from Fig. 20,

the maximummutation point occurs at the location where the

order of singular value is 11. Therefore, the first eleven sin-

gular values are reconstructed to obtained de-noised signal.

FIGURE 20. Singular kurtosis difference spectrum of the U6 sensitive
component.

FIGURE 21. The processing result of sun gear fault signal by the proposed
method: (a) The reconstructed signal obtained by the proposed method,
(b) The envelope spectrum of the reconstructed signal.

Fig. 21(a) illustrates the reconstructed signal, from which

regular impulse components caused by faults can be clearly

observed.

Fig. 21(b) shows the envelope spectrum of the recon-

structed signal, it can be seen that one third of the sun gear

fault characteristic frequencies 1/3fs and its harmonics n/3fs
are dominant. (For the actual planetary gearbox, the plan-

etary gears may not be identical because of processing or

manufacturing errors. The fault impact generated when the

three planetary gears mesh with the sun gear fault teeth is

considered as three different impact sequences. As a result,

one third of the sun gear fault characteristic frequencies and

its harmonics appear in the envelope spectrum.) Moreover,

other peaks in the envelope spectrum exist at the sun gear

absolute rotation frequency fsr , the planet carrier rotating
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frequency fc and its harmonics mfc, and the combination

frequency n/3fs ± mfc(m, n = 1, 2, · · · ). These features

indicate that a local fault has occurred in the sun gear, which

is consistent with the actual experimental setting.

FIGURE 22. Direct envelope analysis of U6 modal component.

For comparison, the direct envelope demodulation anal-

ysis of the U6 sensitive component obtained by APOVMD

decomposition is performed, and the envelope spectrum is

given in Fig. 22. It can be found that although some peaks

appear at the sun gear fault characteristic frequency, the peaks

at other interference frequencies are also abundant, which

cause serious interference to the identification of the fault

characteristic information in the envelope spectrum. There-

fore, it is difficult to provide strong evidence for the reason-

able fault diagnosis of sun gear.

FIGURE 23. Comparative analysis of sun gear fault signal processed by
VMD-SVD method: (a) The reconstructed signal obtained by VMD-SVD
method, (b) The envelope spectrum of the reconstructed signal.

The VMD-SVD method is applied to analyze the same

sun gear fault signal shown in Fig. 23. The reconstructed

signal is displayed in Fig. 23(a), it can be seen that although

some impact components appear in the reconstructed signal,

the regularity and characteristics of these impacts are not

obvious. The envelope spectrum of the reconstructed signal

is shown in Fig. 23(b), from which we can only observed one

third of the sun gear fault characteristic frequency 1/3fs and

its second harmonic 2/3fs, while other interference frequen-

cies unrelated to the fault are also very rich, and the analysis

results is not good as shown in Fig. 21(b).

FIGURE 24. Comparative analysis of sun gear fault signal processed by
EEMD-SVD method: (a) The reconstructed signal obtained by EEMD-SVD
method, (b) The envelope spectrum of the reconstructed signal.

The EEMD-SVD method is used to analyze the same sun

gear fault signal shown in Fig. 24. The reconstructed signal

is provided in Fig. 24(a), it can be observed that there is

no obvious periodic fault impact feature in the reconstructed

signal. Fig. 24(b) presents the envelope spectrum of the

reconstructed signal, it can be seen that only the sun gear

absolute rotation frequency is prominent, and the sun gear

fault frequency characteristic and its harmonic are not obvi-

ous, which makes the analysis result unsatisfactory.

C. CASE II: FAULT DETECTION OF PLANETARY GEAR

The time domain waveform and its spectrum of the planetary

gear fault vibration signal measured by the acceleration sen-

sor in the vertical direction are as shown in Fig. 25. It can be

found that the time domain signal has no obvious periodic

impact characteristics caused by the planetary gear fault.

Moreover, it is difficult to identify the planetary gear crack

fault symptoms in its frequency spectrum.

In order to extract the planetary gear fault symptoms,

the proposed method is applied to process the planetary gear

fault vibration signal. First, the planetary gear fault vibration

signal is decomposed by the APOVMDmethod, in which the
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FIGURE 25. The time domain and frequency domain analysis of planetary
gear fault signal: (a) The time domain waveform of planetary gear fault
signal; (b) The frequency spectrum of planetary gear fault signal.

FIGURE 26. The cosine similarity between the decomposed modal signals
and the original signal.

decomposed mode number and the penalty parameter are set

to K = 6 and α = 2300, respectively. Fig. 26 presents the

cosine similarity between decomposed modal components

and original signal, from which the cosine similarity value

of U5 is the largest. Therefore, the U5 is selected as the

sensitive component. Fig. 27 shows the number of the cen-

tral frequencies iterations of the modal components obtained

by the APOVMD method. It can be noted that the cen-

tral frequency of U5 sensitive component is 1534Hz, which

approximates the four times of the gear meshing frequency

1533.2Hz. Therefore, it also indicates that the U5 sensitive

component contains a wealth of the gear fault information,

which is suitable for the further research object. Then, the

Hankel matrix with 500 rows is constructed for U5 compo-

nent and decomposed by SVD. There constructed signal order

is determined according to the singular kurtosis difference

spectrum method. Only the first 50 points of the singular

FIGURE 27. The number of iterations of modal center frequencies.

FIGURE 28. Singular kurtosis difference spectrum of the U5 sensitive
component.

kurtosis difference spectrum are given in Fig. 28. It can be

seen from Fig. 28 that the reconstructed order is chosen to

be 14. Thus, the first fourteen singular values are selected for

signal reconstruction, and the reconstructed signal is shown

in Fig. 29(a). It can be observed that a regular impact compo-

nent clearly appears in the reconstructed signal.

Fig. 29(b) shows the envelope spectrum of the recon-

structed signal. It can be seen from Fig. 29(b) that the three

times of the planetary gear fault characteristic frequency 3fp
and its sixth harmonic 6fp are dominant, and the remainder

peaks mainly appear in the planetary gear fault characteristic

frequency fp and its harmonics nfp, the planet carrier rotat-

ing frequency fc and its harmonics mfc, and their sum and

difference combination with the planetary gear characteristic

frequency and its harmonics nfp±mfc(m, n = 1, 2...). (These

phenomena indicate that the planetary gear fault causes the

load distribution between the planetary gears to be uneven,

which enlarges the amplitude modulation effect of the planet

carrier on the meshing vibration. In addition, the transmission

path of the fault vibration changes with the rotation of the

planetary carrier, and it also has an amplitude modulation

effect on the planetary gear fault vibration. These factors lead

to the planetary gear fault characteristic frequency and its

harmonics, the planet carrier rotating frequency and its har-

monics, as well as their sum and difference combination with

the planetary gear characteristic frequency and its harmonics

VOLUME 7, 2019 31513



C. Wang et al.: Early Fault Diagnosis for Planetary Gearbox Based on APOVMD and Singular Kurtosis Difference Spectrum

FIGURE 29. The processing result of sun gear fault signal by the proposed
method: (a) The reconstructed signal obtained by the proposed method,
(b) The envelope spectrum of the reconstructed signal.

in the envelope spectrum.) These features imply that a local

fault has occurred in the planetary gear, which is consistent

with the actual experimental setting.

FIGURE 30. Direct envelope analysis of U5 modal component.

For comparison, the direct envelope demodulation analysis

is performed on theU5 component obtained by theAPOVMD

method, as shown in Fig. 30. It can be seen that there are peaks

at the three times of the planetary gear fault characteristic fre-

quency and harmonics, but other unrelated frequency peaks

is also abundant, which causes serious interference to extract

the fault feature information.

The VMD-SVD method is applied to analyze the same

planetary gear fault signal shown in Fig. 31. From the recon-

structed signal of Fig. 31(a), the impact features cannot

be extracted visibly, while from the envelope spectrum of

Fig. 31(b), although there are peaks at the three times of

the planetary fault characteristic frequency 3fp and its sec-

ond harmonic 6fp, other irrelevant frequencies also have

FIGURE 31. Comparative analysis of planetary gear fault signal processed
by VMD-SVD method: (a) The reconstructed signal obtained by VMD-SVD
method, (b) The envelope spectrum of the reconstructed signal.

stronger energy, and the analysis result is not good as shown

in Fig. 29(b).

FIGURE 32. Comparative analysis of planetary gear fault signal processed
by EEMD-SVD method: (a) The reconstructed signal obtained by
EEMD-SVD method, (b) The envelope spectrum of the reconstructed
signal.

The EEMD-SVD method is used to process the same

planetary gear fault signal shown in Fig. 32. From the
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reconstructed signal of Fig. 32(a), no obvious periodic fault

impact feature can be observed. Moreover, in the envelope

spectrum of Fig. 32(b), the envelope spectrum characteristics

are similar to those in Fig. 31(b), and the interference of the

noise frequency is still serious. Compared with Fig. 29(b),

this method can not clearly extract the fault characteristics.

VI. CONCLUSION

In this study, an early weak fault feature extraction method

based on APOVMD and singular kurtosis difference spec-

trum is proposed, and successfully applied to planetary gear-

box fault diagnosis. APOVMD adaptively chooses the modal

number and penalty factor by the ratio of central frequency

of modal component, which not only solves the problem that

the decomposition parameters in the original VMD cannot

be effectively determined, but also overcomes the possible

information loss problem or over-decomposition problem of

VMD. The cosine similarity index is used to select the modal

that contains abundant fault feature information from the

decomposed modal component of APOVMD as the sensitive

component, which is a effective fault information selection

criteria and reduces the blindness of component selection.

However, because the early fault signal of planetary gearbox

is weak and easily submerged by strong noise, the single

APOVMD method is not ideal. So it is combined with the

singular kurtosis differential spectrum to achieve early fault

diagnosis of planetary gearbox. The singular kurtosis differ-

ential spectrum method effectively solves the problem that

the reconstruction order cannot be accurately determined in

SVD. This methodmakes full use of the sensitivity of kurtosis

to impact signals, which has a solid theoretical foundation,

and it is easy to understand by users. To demonstrate the

feasibility and superiority of the proposed method, compare

with the VMD-SVD and EEMD-SVD methods. As a result,

the proposed method can more clearly and effectively extract

the planetary gearbox fault characteristic frequency and its

harmonic characteristics. In future research, the performance

of the proposed method will be investigated under variable

speed operating conditions.
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