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Abstract

electrophoresis.

prefrontal cortex, but not in the hippocampus.

Background: Changes in glucocorticoid receptors (GRs) have been implicated in the pathogenesis of stress related
psychiatric disorders such as depression and post-traumatic stress disorder (PTSD). Abnormal adaptation of the
stress-response system following traumatic stress can lead to an altered hypothalamic-pituitary-adrenal axis that
may contribute to PTSD development. Indeed, elevated GR expression in the hippocampus and prefrontal cortex
linked to PTSD-like characteristics have been reported in the validated animal model of PTSD, single-prolonged
stress. These findings implicate increased levels of GRs in the development of post-traumatic psychopathology and
suggest that exploration of GR-targeted interventions may have potential for PTSD prevention. Early handling
during the neonatal phase alters GR expression and is proposed to confer resilience to stress. We therefore
examined the effects of combined early handling and single prolonged stress treatments on GR expression.

Methods: Timed pregnant dams gave birth to pups that were subjected to early handling (n=11) or control
(n=13) procedures during the neonatal phase. At postnatal day 45 animals underwent single prolonged stress or a
control procedure. Rats were euthanized one day later and GR levels were assayed using western blot

Results: Single prolonged stress exposure enhanced GR expression in the hippocampus and prefrontal cortex. Early
handling treatment protected against single prolonged stress-induced enhancement of GR expression in the

Conclusions: These data are a first step in highlighting the importance of targeting GR systems in prevention/
resilience and may suggest that preventive strategies targeting GR upregulation might be particularly effective
when prefrontal rather than hippocampal GRs are the target.
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Background

Stress initiates a cascade of neuroendocrine events in
the hypothalamic-pituitary-adrenal (HPA) axis, which
ultimately leads to increased secretion of the gluco-
corticoid hormone cortisol from the adrenal glands.
Activity of the HPA axis is tightly controlled through com-
plex regulatory mechanisms of glucocorticoid negative
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feedback. Glucocorticoids regulate the secretion of cor-
ticotropin-releasing factor and adrenocorticotropic hor-
mone, from the hypothalamus and pituitary, respectively
[1-4]. In addition, receptor sites within the hippocampus
and prefrontal cortex play an important role in the regula-
tion of HPA axis activity [2,5]. Following chronic or trau-
matic stress, inappropriate adaptation of the HPA axis can
lead to pathological states; specifically, changes in glu-
cocorticoid receptors (GRs) have been implicated in the
pathogenesis of stress related psychiatric disorders such as
post-traumatic stress disorder (PTSD) [6] and symptoms
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of PTSD are believed to reflect trauma-induced changes
that lead to long-term dysfunctional stress regulation [7-9].

PTSD is characterized by increased cortisol suppression
to dexamethasone, believed to result from an increased
number or sensitivity of GRs [10]. Recently, in a prospec-
tive study, van Zuiden et al. reported higher levels of GR
as a risk factor for subsequent development of PTSD in a
sample of soldiers [11,12]. Findings from animal models
further support changes in GR as the potential mechanism
for the development of PTSD symptoms. In addition to
reproducing cardinal symptoms of PTSD, such as hy-
perarousal and elevated fast feedback of the HPA axis
[13-16], increased GR levels have been found in the single
prolonged stress (SPS) [16-18] and predator exposure
models in the hippocampus and prefrontal cortex [19]. In
concert, pretreatment with GR antagonists prevents
PTSD-like phenotypes in both SPS and predator exposure
models [14,20]. Furthermore, in a recent “dismantling”
study in which full SPS (involving restraint, forced swim,
and ether exposure) was compared to the effect of dif-
ferent components of SPS (ie., two of three stressors),
only those animals that were exposed to the full SPS pro-
cedure and demonstrated the greatest degree of upregula-
tion of GR in the hippocampus and prefrontal cortex,
exhibited deficits in retention of extinction memories — a
mechanism that is proposed to contribute to an inability
to retain new safe memories and prevent recovery from
trauma [19,21,22]. Together, these findings implicate
altered GRs in the development of some aspects of post-
traumatic psychopathology, and suggest that exploration
of GR-targeted interventions may have potential for PTSD
resilience/prevention.

Levine [23-25], and subsequently others (e.g., [26]),
demonstrated that glucocorticoid responses to stress were
modulated by early life environmental events and could
result in stable changes to HPA axis reactivity, most not-
ably via alterations in GR gene expression in the hip-
pocampus and frontal cortex [27]. Early handling (EH),
which involves brief daily separation from the mother dur-
ing the neonatal phase is one such manipulation that has
a documented effect on GR expression. EH increases the
frequency of maternal behaviors [28,29] and thus in-
creases GR expression and confers resilience to later stress
[30,31]. Meany et al. demonstrated that EH enhances the
availability of GRs [32], which in turn attenuates stress-
induced HPA axis responsivity, as evidenced by attenuated
glucocorticoid release in response to stress and reduced
anxiety-like behaviors in adulthood [23,27,30,32].

While a number of previous studies have demonstrated
that EH can attenuate the effects of chronic stress on in-
ducing HPA axis reactivity [33-35], the effects of EH in
animal models of PTSD have not been examined. Given
the documented role of GR upregulation in the etiology of
PTSD and the demonstration that “traumatic” stress as
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described in the SPS model increases GR expression, we
hypothesized that EH would protect against the GR en-
hancement that develops following SPS. The goal of this
study was to examine the combined effects of EH and
single prolonged stress on GR expression. We chose to
examine GR changes in the hippocampus and prefrontal
cortex because of their documented role in the protective
effect of EH [27], as well in the development of SPS-
induced changes following traumatic stress [16,19].

Methods

Animals

Timed-pregnant dams (Charles River, Portage, MI, USA)
were delivered to the Veterans Affairs Veterinary Medical
Unit at approximately gestation day 16. Dams were singly
housed in a temperature and humidity controlled environ-
ment, on a 12 hour light—dark cycle, and had ad lib access
to standard laboratory chow and water. All experimental
procedures were approved by the Veteran Affairs Institu-
tional Animal Care Usage Committee and were in accor-
dance with the National Institute of Health Guide for the
Care and Use of Laboratory Animals. The day of birth of
the litter was marked as postnatal day (PND) 0. Litter sizes
varied naturally between 6 and 12, and on PND 2, animals
were culled to ensure that equivalent numbers of males
and females were present in each litter. The animals in
this experiment were drawn from eight litters, and the
number of animals in each litter from which data was
sampled ranged from 4—12. Pups were subjected to EH or
animal facility reared (AFR) treatments [36]. Briefly, EH
litters received 15 minutes of daily maternal separation for
21 days. AFR rats were left undisturbed, except for bi-
weekly cage maintenance. On PND 23, pups were weaned
and housed in same sex sibling pairs.

SPS and brain homogenate preparation
On PND 45, 24 male Sprague—Dawley rats were assigned
to the SPS (AFR =7, EH = 5) or control (AFR =6, EH = 6)
groups. SPS rats were exposed to two hours of restraint,
followed by 20 minutes of forced swimming in a 55 L con-
tainer. After 15 minutes recuperation rats were exposed to
70 mL of ether in a desiccator until general anesthesia was
induced (typically less than five minutes). Rats were then
returned to their home cages for a seven day quiescent
period. The SPS procedure refers to the application of the
three stressors plus the seven day quiescent period. The
quiescent period has been demonstrated to be critical for
the development of PTSD-like physiological and be-
havioral abnormalities following SPS [15,37]. Animals
assigned to the control group were left undisturbed in
their home cages for the duration of SPS.

Following SPS (i.e, 8 days after the application of
acute stressors), rats were euthanized by rapid decapita-
tion, their brains were removed, flash frozen in chilled
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isopentane and stored in a —80°C freezer for later pro-
cessing. Brains were then thawed to -20°C in a cryostat
and the prefrontal cortex was dissected, approximately
1.00 mm anterior to Bregma [38]. The cerebrum was
separated from the brain stem, thawed on ice, and the
hippocampus was removed. The prefrontal cortex and
hippocampus were sonicated separately in homogenization
buffer (50 mM Trizma base, 1 mM ethylenediaminetetra-
acetic acid, 10% sucrose, 4% sodium dodecyl sulfate, 2X
protease inhibitor cocktail (Roche USA), pH 7.0 to 7.4),
centrifuged at 105,000 xg for 45 minutes, homogenates
decanted, and protein content determined using a Pierce
BCA kit (Sigma-Aldrich, St. Louis, MO, USA). Appro-
ximately 40 pg of protein was diluted into a 1X Lamelli
sample buffer and stored in a -80°C freezer until the
western blot assay was performed.

Western blot electrophoresis
Western blot for total GR (cytoplasm and nucleus) was
adapted from Spencer et al. [39] and conducted as pre-
viously described [19]. Briefly, samples heated at 70°C
for 7 minutes were electrophoresed on 7.5% Tris HCI
gels (Bio-Rad Laboratories, Inc., Hercules, CA, USA)
along with a molecular weight ladder (Li-COR, Lincoln,
NE, USA). Proteins in gels were transferred onto nitro-
cellulose membranes and blocked in blocking buffer
(BB) (5% non-fat milk and 0.05% Tween-20 in tris-
buffered saline (TBS)). Nitrocellulose membranes were
then probed for GR by incubating membranes with a
rabbit polyclonal GR antibody (Santa Cruz Biotech-
nology Inc., Santa Cruz, CA, USA; M-20, diluted 1:500
in BB) for 2 hours. After several washes in 0.05%
Tween-20 in TBS, nitrocellulose membranes were incu-
bated with an IRDye 800 conjugated anti-rabbit IgG
secondary antibody (Li-COR, diluted 1:2,000 in BB) for
1 hour. Nitrocellulose membranes were then rinsed with
TBS and scanned using a Li-COR Odyssey Scanner for
visualization of GR bands.

After probing nitrocellulose membranes for GR, the
same membranes were probed for actin related protein
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(Arp) which was used as the reference protein as pre-
viously described [40]. Nitrocellulose membranes were in-
cubated with a rabbit polyclonal Arp antibody (Santa Cruz
Antibodies, Arp-2, diluted 1:2,000 in BB), washed in 0.05%
Tween-20 in TBS, and then incubated with the secondary
antibody (Li-COR, 1:8,000 in BB). Nitrocellulose mem-
branes were rinsed with TBS and scanned in a Li-COR
Odyssey scanner in order to visualize Arp bands.

Images of scanned nitrocellulose membranes were ana-
lyzed using Odyssey software (Li-COR). The integrated in-
tensity of the GR and Arp bands were expressed as a ratio
(GR/Arp) and used as a relative measure of GR levels.
Each gel contained representative samples from each of
the treatment groups (Additional file 1). Samples were
initially run in duplicate, but after a small coefficient of
variance was established, single samples were run subse-
quently. GR levels were subjected to two factor analysis
with the factors neonatal treatment (EH vs. AFR) and
stress treatment (SPS vs. control). GR in the hippocampus
and prefrontal cortex were analyzed separately. Main and
simple effects were analyzed using analysis of variance
(ANOVA), while main and simple comparisons were ana-
lyzed using t-test with a Bonferroni correction where
necessary. Criterion of significance for all tests was set at
P <0.05.

Results

Prominent bands were observed between the 100 kDa and
75 kDa molecular weight markers for GR, and 50 kDa and
37 kDa for Arp in both hippocampus and prefrontal cor-
tex (Figure 1). These bands correspond closely to previ-
ously determined locations for GR and Arp using the
primary antibodies described in the Methods section.

An ANOVA of GR expression in the prefrontal cortex
revealed a significant SPS x EH interaction (F 20) = 7.077,
P =0.015). Post hoc comparisons revealed higher GR sig-
nal in SPS animals in comparison to controls in AFR
treated groups (t(;1)=2.856, P=0.016), but this effect
was not present in the EH exposed groups (t(9) = 0.626,
P =0.547), suggesting that SPS-induced enhancement of
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Figure 1 Representative protein bands from all treatment groups in this study. MW: Molecular weight markers; AFR: Animal facility reared;
EH: Early handling; SPS: Single prolonged stress; Con: Control; GR: Glucocorticoid receptor; Arp: Actin related protein.
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GR expression in prefrontal cortex was effectively pre-
vented by EH. An ANOVA of hippocampal GR revealed
a significant main effect of SPS (F(;,17) = 4.929, P = 0.04)
with higher GR signal in SPS-exposed animals; how-
ever, there was no SPS x EH interaction (F(y 7 =1.487,
P =0.239) or main effect of EH (F(;,17) = 0.851, P =0.369),
suggesting that EH did not attenuate SPS-induced in-
creases in GR expression in the hippocampus. These data
are illustrated in Figure 2.

Discussion

In the present experiments SPS enhanced GR expression
in the hippocampus and prefrontal cortex, replicating
findings previously reported by ourselves and others
[16,18,19]. EH, on the other hand, attenuated SPS-induced
enhancement of GR in the prefrontal cortex, suggesting
that EH may be protective against some of the SPS-
induced changes implicated in PTSD pathophysiology.
Interestingly, while affecting GR in prefrontal cortex, EH

Page 4 of 7

did not attenuate SPS-induced enhancement of GR in
the hippocampus suggesting that there are regional dif-
ferences in GR expression following combined effects of
early life environment and stressors experienced in adult-
hood. It has long been suggested that early life experiences
may lead to developmental changes that result in stable
alterations to HPA axis and potentially confer resilience to
later stress. To our knowledge, this is the first report of
the combined effects of early life experiences and later
“traumatic” stress on GR expression. Given the established
role of GR in HPA axis regulation and stress reactivity
[30,31] as well as in the pathophysiology of the SPS model
of PTSD [16], these findings may have some implications
for understanding mechanisms of resilience to traumatic
stress, and of the regional differences that may be critical
in moderating the protective effect of early life experiences
to later life stressors. While intriguing, the functional im-
plications of these GR expression changes will need to be
examined in order to further establish the significance of
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Figure 2 The effects of early handling (EH) and single prolonged stress on mean relative glucocorticoid levels in the (A) hippocampus
and (B) prefrontal cortex. (C,D) Scatter plots showing individual data points from animals included in this experiment. *P <0.05. AFR: Animal
facility reared; EH: Early handling; SPS: Single prolonged stress; Con: Control; GR: Glucocorticoid receptor; Arp: Actin related protein;
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this finding. In addition, given the heterogeneity of the
prefrontal cortex, in particular with respect to regulation
of stress reactivity conferred by environmental influences
[41], it would be interesting to further examine whether
different subregions of the prefrontal cortex contribute
differentially to the effect reported herein.

Differential changes in GR expression between frontal
cortex and hippocampus following stress manipulations
have been previously reported by our laboratory [19] as
well as by others. Indeed, in Meaney’s seminal paper in
which the effect of EH on GR in the frontal cortex and
hippocampus is first described, GR in the hippocampus
was increased in EH animals compared to non-handled
controls irrespective of post-weaning housing conditions
[32]. However, this was not the case in the frontal cortex
in which post-weaning housing condition moderated GR
expression. These data suggest that hippocampal changes
in GR may be more stable and enduring than those in the
frontal cortex, resonating with our own finding, in which
hippocampal GRs were found to be less sensitive to envi-
ronmental effects than GRs in the prefrontal cortex.

The precise functional role of hippocampal and pre-
frontal cortex GRs are not known, although a wealth of
data suggests that receptor sites within the hippocampus
and prefrontal cortex play an important role in the regu-
lation of HPA axis activity [2,5]. Recent data from our
own laboratory, in which full SPS (comprised of all three
stressors) was compared to partial SPS procedures (e.g.,
restraint + ether or forced swim + restraint), demon-
strated that exposure to ether alone was sufficient to
alter prefrontal GR levels, while multiple combined
stressors were required to alter GR levels in the hippo-
campus. Moreover, the behavioral data from this study
indicated that the combined effect of serial exposure to
all three stressors (restraint, forced swim and ether) was
required in order to observe extinction retention deficits.
These results suggest that the mere enhancements in
GR expression in the hippocampus and prefrontal cortex
might be insufficient to lead to PTSD-relevant behav-
joral deficits, but “threshold” change in these regions is
required for SPS-induced extinction retention deficits to
manifest. Together with the present data, these findings
suggest that the ability of EH to attenuate SPS-induced
enhancement in prefrontal GR levels should be inter-
preted with caution as they may not necessarily translate
to resilience in PTSD-relevant behavioral outcomes. Ad-
dressing this question directly, for instance by examining
the effect of EH on extinction retention deficits in SPS
animals, will be an important goal of future studies.

Interestingly, in these experiments we did not detect
effects of EH alone on total GR expression. This is in
contrast to the findings reported by Meaney et al, in
which EH was found to increase baseline levels of un-
bound cytoplasmic GR. There are several possibilities
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that may explain this apparent discrepancy; EH effects
are known to be mediated by FKBP5 protein modulating
GR sensitivity to ligands [42]. Thus, when FKBP5 is
bound to GR, binding of glucocorticoids to GRs is re-
duced. It is therefore possible that EH could increase GR
sensitivity by attenuating FKBP5-GR binding. Because
radioimmunoassays are typically used to assay unbound
cytoplasmic GR, these assays rely on protein-ligand
binding and therefore a treatment that increases GR sen-
sitivity could be interpreted as an increase in unbound
cytoplasmic GR. Thus, the differing approaches to mea-
suring GR levels may explain these apparently contra-
dictory findings. Alternatively, there were a number of
other methodological differences that may underlie the
difference in baseline EH findings between the two stud-
ies. For example, different strains of rat were used and
the age at which GR was measured was different, as
were post-weaning housing conditions, all of which have
been suggested to impact GR expression [32].

Interestingly, in Meaney’s model [32], increases in GR
expression are interpreted as functionally beneficial, with
EH increasing GR expression and conferring later resi-
lience to stress. Accordingly, prolonged maternal sepa-
ration, which reduces GR expression, is proposed to have
adverse consequences, resulting in vulnerability to later
stress. Conversely, our data suggest that GR increases fol-
lowing SPS relate to greater functional impairment [19].
The differences in the developmental stages at which GR
changes are initiated may be critical to the behavioral im-
pact of GR changes, explaining the seemingly conflicting
results. The present data shows that EH prevents trauma-
induced increases in GR in adult fully-grown animals, thus
suggesting that early life EH protects against later in-
creases in GR, possibly because of a more efficient nega-
tive feedback system which clamps down the HPA axis
response following traumatic stress. Critically, both stud-
ies confirm EH results in changes in GR expression that
likely result in resilience but further research is clearly
needed to examine the precise mechanisms by which EH
modulates GR expression following different stressors and
in different brain regions.

Conclusions

While a number of previous studies have demonstrated
that EH can attenuate the effects of chronic stress on in-
ducing HPA axis reactivity, to our knowledge, this is the
first study to examine the effects of EH in an animal
model of PTSD. The data reported here suggest that the
early life environment may have an important role in later
responses to traumatic stress, and suggest that regional
differentiation in GR expression may be important charac-
teristic of the effects. These data, while limited to a mea-
sure of protein expression, underscore the importance of
targeting GR systems in prevention/resilience and suggest
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that preventive strategies targeting GR upregulation may
be more effective when prefrontal rather than hippocam-
pal GRs are the target.

Additional file

Additional file 1: Representative example of a western blot assay.
The data presented in this manuscript were obtained from a larger
research project that examined the effects of a number of neonatal
treatments and single prolonged stress on GR expression in the
hippocampus and prefrontal cortex. This additional data file shows a
representative example of a western blot assay.
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