
The 15th Scandinavian International Conference on Fluid Power, SICFP’17, June 7-9, 2017, Linköping, Sweden

Early Insights on FMI-based Co-Simulation of Aircraft Vehicle Systems

Robert Hallqvist*, Robert Braun**, and Petter Krus**

E-mail: Robert.Hallqvist@saabgroup.com, Robert.Braun@liu.se, Petter.Krus@liu.se
*Systems Simulation and Concept Design, Saab Aeronautics, Linköping, Sweden

**Department of Fluid and Mechatronic Systems, Linköping University, Linköping, Sweden

Abstract

Modelling and Simulation is extensively used for aircraft vehicle system development at Saab Aeronautics
in Linköping, Sweden. There is an increased desire to simulate interacting sub-systems together in order to
reveal, and get an understanding of, the present cross-coupling effects early on in the development cycle of
aircraft vehicle systems. The co-simulation methods implemented at Saab require a significant amount of
manual effort, resulting in scarcely updated simulation models, and challenges associated with simulation
model scalability, etc. The Functional Mock-up Interface (FMI) standard is identified as a possible enabler
for efficient and standardized export and co-simulation of simulation models developed in a wide variety
of tools. However, the ability to export industrially relevant models in a standardized way is merely the
first step in simulating the targeted coupled sub-systems. Selecting a platform for efficient simulation of
the system under investigation is the next step. Here, a strategy for adapting coupled Modelica models
of aircraft vehicle systems to TLM-based simulation is presented. An industry-grade application example
is developed, implementing this strategy, to be used for preliminary investigation and evaluation of a co-
simulation framework supporting the Transmission Line element Method (TLM). This application example
comprises a prototype of a small-scale aircraft vehicle systems simulator. Examples of aircraft vehicle sys-
tems are environmental control systems, fuel systems, and hydraulic systems. The tightly coupled models
included in the application example are developed in Dymola, OpenModelica, and Matlab/Simulink. The
application example is implemented in the commercial modelling tool Dymola to provide a reference for
a TLM-based master simulation tool, supporting both FMI and TLM. The TLM-based master simulation
tool TLMSimulator is investigated in terms of model import according to the FMI standard with respect to
a specified set of industrial needs and requirements.

Keywords: FMI, TLM, Modelica, Aircraft Vehicle Systems

1 Introduction

Model Based Systems Engineering (MBSE) [1] is an out-
spoken strategy for aircraft vehicle systems development at
Saab Aeronautics. Methods for efficient model simulator in-
tegration, as well as robust and fast simulation, are necessary
if the benefits of MBSE are to be fully exploited. The Func-
tional Mock-up Interface (FMI) standard is a first step towards
reducing the overhead associated with connecting models of
interacting sub-systems. At the time of writing, approximatly
50 commercial and open source tools support the latest ver-
sion of the standard, FMI 2.0 [2]. Furthermore, as far as the
authors know, none of these tools support asyncronous sim-
ulation implementing the Transmission Line element Method
(TLM) for numerically stable partitioning of simulation mod-
els. An open source master tool, here refered to as the TLM-
Simulator, supporting both of these key technologies is under
development within the frame of the OpenCPS project [3].
Such a tool is predicted to be of great benefit to MBSE in
aircraft vehicle systems development. Efficient model sim-
ulator integration will allow model developers, software de-

velopers, systems engineers, and flight test engineers to set
up large multi-purpose simulation environments as well as
small-scale simulators tailored for specific studies. An ex-
ample of such a study is the investigation of how an aircraft’s
Environmental Control System’s (ECS) performance affects
the pilot’s thermal comfort, both physically and psycholo-
gically. Both types of simulation environments are currently
being used for aircraft vehicle systems development at Saab
Aeronautics. However, the authors foresee that their use could
be further increased as a result of incorporating efficient and
standardized methods for model simulator integration.

Here, a strategy for adapting coupled Modelica models of air-
craft vehicle systems for simulation in an FMI-based simu-
lation environment supporting TLM is described. The paper
also describes the implementation of this strategy on an air-
craft vehicle systems simulator. Reference simulations of this
simulator are conducted for evaluation and development of
the TLMSimulator.

This paper is structured as follows. First, a brief introduc-
tion to the concepts of FMI and TLM are given in section 1.1

Non-reviewed paper. 262 SICFP2017 7-9 June 2017Linköping, Sweden

http://www.ep.liu.se/ecp/contents.asp?issue=144

and section 1.2 respectively. A subset of the needs and
requirements, identified by the OpenCPS project partners,
concerning an industrially applicable tool for simulation of
tightly coupled aircraft vehicle system models is presented in
section 2. The developed application example is described
in section 3, starting with the simulator architecture and con-
tinuing with descriptions of the modelled sub-systems. The
state-of-the-art open source co-simulation framework for co-
simulation using both FMI and TLM is briefly described in
section 4. The application example is implemented in both
the commercially available Modelica tool Dymola and the
TLMSimulator. The results obtained from application ex-
ample Dymola simulations are presented in section 5.1. Fi-
nally, the concluding remarks are stated in section 6

1.1 Functional Mock-up Interface standard

The FMI standard is a standardization effort commenced in
the MODELISAR project [4]. The standard specifies a gen-
eric format for export of model executables, referred to as
Functional Mock-up Units (FMUs). It also includes a set
of C functions for calling an FMU along with a standard-
ized interface description xml schema. FMI is a standard
for export of FMUs for both co-simulation (a suitable numer-
ical solver is included in the exported model) and model ex-
change (the central solver is implemented in the integrating
tool) [2]. The standard is maintained by the Modelica as-
sociation [5] also responsible for maintaining the Modelica
modelling language. The Modelica language is an object-
oriented and equation-based modelling language especially
suited for multi-domain modelling of physical systems. FMI
is here seen as an enabler for reducing overhead costs asso-
ciated with the exchange of models between tools, not only
within the confines of a specific company but also with its
subcontractors and suppliers.

1.2 Transmission Line element Method

The Transmission Line element Method (TLM) is a mature
and well documented technique for numerically stable parti-
tioning of simulation models. Here, a brief introduction to
the most relevant aspects of TLM is given. Krus et al. [6] and
Braun et al. [7] provide detailed descriptions of the presen-
ted method. Two FMUs connected to each other (FMU1 and
FMU2) in the TLMSimulator, see section 4, communicate
via TLM connections. A thermodynamic TLM connection is
more or less a volume which receives information on volume
flow from each interfacing FMU. The net volume flow is in-
tegrated in the TLM connection rendering a pressure which
is passed back to each of the connected FMUs. The relation-
ship between pressures and volume flows at the interface of
the two FMUs is described by

p1(t) = Zc[q1(t)+q2(t −∆tT LM)]+ p2(t −∆tT LM) (1)

p2(t) = Zc[q2(t)+q1(t −∆tT LM)]+ p1(t −∆tT LM) (2)

if friction in the transmission line is disregarded. Interfacing
variables of FMU1 are p1 and q1 and of FMU2 p2 and q2.
In Equations (1) and (2), neither the pressure nor the volume
flow depends on current information provided by the other
FMU. Instead, the information necessary is delayed ∆tT LM
seconds. This time delay corresponds to the time it takes for a
wave to propagate through the connection. The characteristic
impedance Zc of Equations (1) and (2) can be expressed as

Zc = ∆tT LM/C (3)

where

C =V/β (4)

for incompressible flow fluid connections. In Equation (4), V
is the volume of the TLM connection and β the bulk modulus
of the fluid passing through the connection. If C and ∆tT LM
are physically accurate, then no numerical error will be intro-
duced when connecting FMU1 with FMU2 via a TLM con-
nection. Also, the delay ∆tT LM provides a clearly defined time
window enabling numerically stable distributed simulation.

2 Requirments
A set of high-level functional and non-functional industrial
requirements on a master simulation tool have been formu-
lated by the OpenCPS project partners [3]. Saab’s contribu-
tion to these requirements are derived from the currently im-
plemented processes and methods applied for aircraft vehicle
system modeling and simulation activities at Saab Aeronaut-
ics [8]. A subset of these requirements, which are relevant
for this study, has been extracted and is shown in Table 1.
These high-level requirements are used to guide the applica-
tion example and TLMSimulator development as well as the
preliminary evaluation of the TLMSimulator.

3 Application example
A combined set of interconnected aircraft vehicle systems of a
generic fighter aircraft together comprise the application ex-
ample. This application example is referred to as a small-
scale systems simulator. Such a simulator is typically used
for system development, training, software verification, fault
simulation, performance prediction and evaluation, etc. The
application example is specifically developed to facilitate an
industry-grade platform for development and evaluation of
master simulator algorithms such as the TLMSimulator, see
section 4. The simulator architecture is schematically visu-
alized in Figure 1. This prototype version includes models
of the Environmental Control System (ECS) hardware as well
as its controlling software, ECS Control Software in Figure
1. A model importing the relevant Boundary Conditions is
also included. This model incorporates all flight mission data
necessary for conducting simulations by reading a <Bound-
aryConditions>.mat file specified by the user. Two differ-
ent subscribers of coolant air are modelled (Consumer A and
Consumer B) and included along with simple Cockpit and En-
gine models.

Non-reviewed paper. 263 SICFP2017 7-9 June 2017Linköping, Sweden

http://www.ep.liu.se/ecp/contents.asp?issue=144

Figure 1: Schematic description of application example architecture

Table 1: Subset of requirements on an FMI compliant master
simulation tool. The requirements are derived by industrial
and academic partners of the OpenCPS project [3]

Number Name Description

1 FMU Import of FMUs from tools such
Import as Matlab/Simulink,

OpenModelica, and Dymola
shall be supported

2 Robustness Given that all individual FMUs
of a simulator configuration
are numerically stable,
numerical robustness for the
simulator configuration as a
whole shall be guaranteed

3 Solver Manual selection of the central
configuration solver used for FMUs for Model

Exchange shall be available

4 FMU Support for setting FMU
configuration parameters. It must be possible

to control start and stop times,
solver step size, tolerance, etc.

5 Load The end user shall be able to
simulator load a stored composition of
configuration FMUs

The dashed arrows in Figure 1 represent signal connections.
The solid lines are physical connections, i.e. information
about physical quantities such as volume flow and pressure
is passed in its physical form. The latter type of connection
is most suited to the TLM technique as it naturally contains a
non-negligible time delay, see section 1.2.

3.1 Aircraft Environmental Control System

Aircraft environmental control systems are designed to
provide their consumers with pressurized air at the correct
mass flow and temperature. An industry-grade ECS model
is included in the application example. This particular Mod-
elica model is developed in Dymola using the Saab-developed
library Modelica Fluid Lite (MFL) [9].

MFL is a stand-alone Modelica library with its own media
functions. MFL is not a conventional Modelica library in the
sense that components are connected causally strictly via two
different types of power port connectors, one volume element
connector and one flow element connector. Air with water
content in both liquid and gaseous states is selected to be used
in the application example as the presence of water greatly
affects the ECS’ performance limits. In MFL, pressure, mass
flow, specific enthalpy and water content are passed between
components for such a medium. All MFL components are
classified as either volume or flow elements. As an example,
one of the most fundamental flow elements in the MFL lib-
rary is a frictionless pipe. The mass flow through such a pipe
is computed via the pressure drop ∆P, provided by the inter-
facing volume elements, according to

ṁ = A
√

2ρ∆P/Z (5)

where Z is the pressure drop coefficient. The pressure drop
coefficient is specified as a component design parameter. The
density, ρ , is computed using the pipe mean pressure along
with the specific enthalpy and water content also provided by

Non-reviewed paper. 264 SICFP2017 7-9 June 2017Linköping, Sweden

http://www.ep.liu.se/ecp/contents.asp?issue=144

the interfacing volume elements. The most fundamental MFL
flow element is the node. The node pressure is calculated
using

p = ρRspeci f icT (6)

assuming that the present medium is an ideal gas. In contrast
to the volume element, the temperature, T , is computed us-
ing the specific enthalpy and water content in the node. The
density in Equation (3) is computed as

ρ =

∫ t
t0 ṁnetdt

V
(7)

where V is the node volume specified as an input parameter.

The top level of the application example ECS model is shown
in Figure 3. This specific model is not calibrated to repres-
ent any particular aircraft; it is a model of a generic Envir-
onmental Control System intended to be of industrially relev-
ant complexity in terms of non-linearities and size. The heart
of this system is a bootstrap configuration air-cycle machine
which is supplied with conditioned air bled from the aircraft
engine. The high bleed air temperature is decreased through
the primary heat exchanger via a ram air intake.

Figure 2: Example of model specifying the causality of mod-
els developed in Modelica.Fluid

This air is fed to the air-cycle machine, also referred to as a
cooling pack, via a motorized control valve that regulates the
pack outlet pressure. The cooling pack consists of a com-
pressor, a turbine, multiple heat exchangers, and a water sep-
arator. The temperature of the conditioned air exiting the air-
cycle machine is controlled to the set points specified by the
consumers via two different by-pass branches. Examples of
possible consumers of coolant air are the on-board avionics
as well as the aircraft’s fuel and hydraulic systems. The de-
scribed ECS configuration is for the most part found in the
majority of military fighter aircraft [10].

The ECS inputs/outputs are labelled as either signal connec-
tions or physical connections in Figure 3 just as in Figure 1.
The physical connections are where applicable grouped in
causal Modelica power port connectors [11] that pass inform-
ation on volume flow, specific enthalpy, water content, and
pressure in a predefined direction. Such connectors are bene-
ficial when connecting FMUs of MFL models with one an-
other as the causal connectors are automatically de-grouped

Figure 3: Modelica model of the Environmental Control Sys-
tem hardware

during FMU export from both Dymola and OpenModelica.
Casual connectors, however, are not compatible with the
acausal stream connectors generally used in Modelica librar-
ies designed for bi-directional flow [12]. Modelica.Fluid is an
example of such a library. The causality needs to be specified
on any acausal interface if a model containing such connect-
ors is to be connected to an MFL model or any FMU. Hirano
et al. presents adaptors specifying the causality for signals in
the electric and mechanics domains [13]. In Figure 2, a one
dimensional thermodynamics domain adaptor for connections
between Modelica.Fluid models and MFL volume type com-
ponents is presented. This particular example is only suited
to dry air as only information about volume flow, pressure,
and specific enthalpy is passed with fixed causality. However,
the adaptor can easily be modified to pass information about
present water content as well.

A conventional acausal port from the Modelica.Fluid library
is positioned on the right hand side of the adaptor. This port
connects directly to any compatible Modelica.Fluid model
such as a modelled consumer of ECS-conditioned air. The
mass flow passing through the adaptor is a result of the dif-
ference in pressure between the pressure source and the con-
nected Modelica.Fluid model. The pressure and specific en-
thalpy in the pressure source are specified via the two causal
connectors on the left hand side of the figure.

A corresponding causal node component is shown in
Figure 4. The node component utilizes input information on
net volume flow to compute and return the resulting node
pressure, see Equation (7). Connecting MFL flow element
components with Modelica.Fluid models is easily done if the
two adaptors presented in Figure 4 and Figure 2 are combined.
The causal node component corresponds to the TLM connec-

Non-reviewed paper. 265 SICFP2017 7-9 June 2017Linköping, Sweden

http://www.ep.liu.se/ecp/contents.asp?issue=144

tion of physical signals in the TLMSimulator. This adaptor is
incorporated in the application example to simplify reference
simulations in Dymola, see section 5.

Figure 4: Example of node type model connecting Modelica
models with causal interfaces. This adaptor is constructed
using components from the Modelica.Fluid library

3.2 ECS Control Software

Here, the ECS Control Software refers to the Environmental
Control System controlling software. Two different ECS soft-
ware models of different level of detail are used in this study.
A simple test-stub model is used to verify the interfaces and
a slightly more detailed model used for rudimentary control.
The latter model is meant to control the ECS’ outputs to feas-
ible nominal values during normal operation. Two versions
of this more detailed model are developed in parallel, one in
Simulink and one in OpenModelica [14]. The OpenModelica
model is developed for reference simulations in any Modelica
tool and the Simulink model is developed to provide the coup-
ling between Simulink-generated FMUs and the selected in-
tegrating tool. The detailed ECS control software model con-
sists of four proportional controllers. These controllers are
empirically tuned to control four of the six motorized ECS
valves. They are individually calibrated not considering the
present cross-couplings. The ECS valves controlled via the
proportional controllers are the valves designed for cooling
pack outlet pressure control, cooling pack outlet temperature
control, cockpit inlet air temperature control, and avionics
cooling power control. The ejector and cockpit comfort air
valves are not included. These valves are locked in nominal
positions in this early prototype phase. The nominal positions
are selected such that reasonable nominal flow, corresponding
to normal operating conditions within the ejector flight envel-
ope, are passed through the valves.

3.3 Consumers

Three different consumers are modelled separately and in-
cluded in the application example: the Cockpit, Consumer
A, and Consumer B. Models of the on-board avionics and
cockpit avionics are included in the ECS hardware model.
Consumers A and B are modelled as generic subscribers of

coolant air. Both models consist of a series of pipes, along
with a pneumatic self-regulating valve connected to a pres-
sure sink. Such models can be seen as simple representations
of an aircraft fuel or hydraulic system providing static and
dynamic loads in terms of pressure and mass flow sufficient
when the ECS is the system under investigation, during for
example performance and fault simulations. In the applic-
ation example, Consumer A is modelled using components
from the Modelica.Fluid library and Consumer B is mod-
elled using components from the MFL library. The cockpit
model consists of a volume of representative size. This model
provides a feasible inertia to the ECS model. It is separated
from the ECS model as a first step towards including a more
detailed cockpit model fulfilling the requirements associated
with studies of pilot thermal comfort etc. Models of cock-
pit avionics, the pressure control system, and pilot Air Ventil-
ated Garments (AVG) are positioned inside the ECS hardware
model. The pressure control system consists of two valves
controlling the cockpit pressure to a set point value depend-
ing on the aircraft’s altitude. The modelled AVGs and cabin
avionics are only representative in terms of pressure drop.
Such a level of detail is sufficient for most studies where the
ECS system is the unit under investigation. However, for in-
depth studies of thermal comfort, the heat and moisture ex-
change between the ambient conditions, the cockpit, and the
pilot also need to be considered.

4 TLMSimulator
The TLMSimulator is an open source master simulation tool
originally developed by SKF, in collaboration with Linköping
University, for coupling models of bearings with models from
external tools [15]. The TLMSimulator is a framework for
asynchronous TLM-based co-simulation. The tool’s source
code has been donated to the Open Source Modelica Con-
sortium and a graphical user interface has been developed as
part of the OpenModelica Connection Editor [16]. The mas-
ter simulator is thus available both as a stand-alone tool and
as a plugin to the OpenModelica environment. The Open-
Modelica plugin is used in this study. Models integrated
in the TLM-based framework are interconnected using TLM
elements, where each element has its own independent time
delay ∆tT LM , see Equation (1) and Equation (2). Models are
therefore numerically isolated from each other, which elim-
inates the need for complex algorithms to decipher the ne-
cessary order of model execution. Cyclic dependencies are
identified by both Cremona et al. [17] and Galtier et al. [18]
as a potential problem for the non-TLM-based simulation and
development environments FIDE and DACCOSIM. A cyclic
dependency is the occurrence of a direct dependency between
an FMU input to one or more of its outputs. The TLM method
avoids this issue by design as a result of the previously men-
tioned inherent time independence. This time independence
enables each model to have its own independent step size and
solver algorithm. The framework supports the FMI stand-
ard and FMUs can be imported using a wrapper executable.
The framework does, however, not fully exploit the benefits
of TLM in conjunction with FMI for co-simulation. As is, a
brute force method of applying a number of FMU execution

Non-reviewed paper. 266 SICFP2017 7-9 June 2017Linköping, Sweden

http://www.ep.liu.se/ecp/contents.asp?issue=144

Table 2: Application example sub-models exported as FMUs.
FMUs for co-simulation are denoted CS and FMUs for model
exchange are denoted ME

.

Dymola Simulink OpenModelica
ECS H/W ME/CS - ME
ECS S/W - ME/CS -
Cockpit ME/CS - -
Consumer A ME/CS - -
Consumer B ME/CS - ME
BC - - ME/CS
Engine ME/CS - ME

sub-steps to cope with interpolation of input variables is im-
plemented in the framework. FMU inputs supplied at time t1
are valid at t2 = t1+∆tT LM seconds. This means that the FMU
needs to determine all data necessary between t1 < t < t2
by interpolation unless an explicit fixed step solver with step
length close or equal to the global time step is implemented.
In the current version of the tool, the FMI function fmiDoStep
is called a, by the user, specified number of additional times
during one global time step. The FMU can then access an
interpolation table located in the master to receive linearly in-
terpolated data. This method cannot guarantee numerical sta-
bility and it results in a limited exploitation of the advantages
in computational performance associated with TLM. Even so,
support is provided for both FMI for co-simulation and FMI
for model exchange. For the latter, the CVODE and IDA solv-
ers from the SUNDIALS suite are provided. A constructed
simulator configuration, referred to as a composite model in
the TLMSimulator, is stored in an xml file format. The xml
file contains information on what FMUs are included in a par-
ticular simulator configuration, I/O connections, parameter
settings, and simulation settings such as simulation start and
stop times.

5 Implementation
Dymola is used as reference in terms of numerical and func-
tional verification of the application example. The refer-
ence implementation does not include any FMUs, only Mod-
elica models developed in Dymola and OpenModelica, see
Figure 5. All of the included models comply with the cur-
rent version of the Modelica standard. The models included
in this reference are connected via causal connections such
that each individual model can be directly exported as an
FMU. The TLM connections of the TLMSimulator are rep-
resented by node components, see Figure 4, placed between
each sub-system Modelica model in the reference implement-
ation. These node components are illustrated as blue and
green circles in Figure 5.

The TLMSimulator currently supports FMI 2.0 for both co-
simulation and model exchange. The variable step solver
CVODE is used when applicable (FMUs for model exchange)
in the application example. The architecture of the applica-
tion example TLMSimulator implementation is described in
the xml format supported by the tool. The OpenModelica
graphical editor was used for manipulation of the simulator

architecture. The different FMUs exported for TLMSimu-
lator integration are listed in Table 2. FMUs for both model
exchange and co-simulation are exported when possible. Ex-
port of FMUs for co-simulation is only possible implement-
ing the fixed step explicit Euler solver in the used version
of OpenModelica. The robustness and simulation efficiency
are increased for all sub-models listed in Table 2 if a vari-
able step solver is implemented. Only one single sub-model
is therefore exported as co-simulation from OpenModelica as
a proof of concept. The tool from where each FMU is ex-
ported is stated in the top row of the table. The export from
Simulink is done using the Simulink toolbox FMI Kit for Sim-
ulink [19] provided by Dassault Systemes. The FMU Compli-
ance Checker [4], a verification tool provided by the Modelica
Association, is used to ensure FMU compliance with the FMI
standard.

5.1 Results

This section covers simulation results from simulations of the
application example Dymola implementation. A simple mis-
sion is simulated where the altitude is linearly increased from
0m to 800m in 80s. The Mach number is increased from 0.4 to
0.9 during the same time span. The engine bleed pressure and
temperature are held constant at 1MPa and 177◦C, respect-
ively. Results at the interface of each included sub-system are
provided. These results will serve as reference for implement-
ing the application example in any other FMI supporting tool.
The position of the six motorized ECS valves are shown in
Figure 6 for an executed reference simulation of the applica-
tion example in Dymola. This implementation is done using
only Modelica models. The ECS Control model is specified
to start controlling the ECS after 3 seconds. The four valves
controlled by the software are the valves regulating the cock-
pit comfort air temperature, pack outlet pressure, avionics in-
put flow of coolant air, and pack outlet temperature. As visu-
alized in the figure, the position of the valves controlling the
cockpit input mass flow and the ejector flow is kept constant
throughout the simulation. The results indicate that the de-
veloped software model prototype operates as intended. The
input mass flow to the two subscribers of ECS conditioned air,
Consumer A and Consumer B in Figure 1, is shown in Figure
8. Consumer A receives the desired mass flow of 30g/s after
approximately 30 seconds of simulation time. This simple
consumer model mimics the simplified behaviour of for ex-
ample an aircraft’s fuel system. Consumer B extracts a peri-
odically varying mass flow from the ECS. Such a consumer
behaviour is representative of an On-Board Oxygen Genera-
tion System (OBOGS) which periodically switches between
different beds of porous molecular sieve type material. Fig-
ure 7 shows values of simulated cockpit pressure as well as
its targeted set point. The initial value of cockpit pressure
deviates significantly from the set point as a result of a high
pressure initial value currently necessary during application
example initialization. The pressure settling time is shown as
approximately 15 seconds in the figure.

Non-reviewed paper. 267 SICFP2017 7-9 June 2017Linköping, Sweden

http://www.ep.liu.se/ecp/contents.asp?issue=144

Figure 5: Graphical view of application example implementation in the commercially available modelling and simulation envir-
onment Dymola. All top level connections are causal; however, the majority of them are expressed solely in the code layer. The
simulator layout is equivalent to that presented in Figure 1

Figure 6: Position of ECS control valves during reference
simulation

6 Conclusions
An aircraft vehicle systems small-scale simulator is de-
veloped and implemented in Dymola. Reference simula-
tions of this simulator are successfully conducted. The simu-
lator can be used for evaluation, within the frame of aircraft
vehicle systems simulation, of any FMI supporting master
simulating tool, or any Modelica-based simulation environ-
ment. A simple and comprehensive method for separating
aircraft vehicle system models, for applicability with TLM
without significant additional introduced overhead, is presen-
ted along with examples from two different Modelica librar-
ies. All separated sub-models of the application example have

Figure 7: Simulated values of cockpit pressure along with the
cockpit pressure set-point

been exported as Functional Mock-up Units from the tool in
which the sub-model was developed (Dymola, OpenModel-
ica, and Simulink) and each individual FMU is determined
as compliant with the FMI standard according to an official
verification tool (the FMU Compliance Checker). The ap-
plication example is implemented in the open source simu-
lation framework supporting both FMI 2.0 and TLM; all of
the application example FMUs are imported and the simu-
lator architecture is specified using the tool’s xml schema.
However, no simulation results of the complete application
example TLMSimulator implementation are available at the
time of writing. The simulator configuration is a prototype

Non-reviewed paper. 268 SICFP2017 7-9 June 2017Linköping, Sweden

http://www.ep.liu.se/ecp/contents.asp?issue=144

Figure 8: Simulated values of mass flow consumed by Con-
sumer A and Consumer B

intended to be an industry-grade test case during TLMSimu-
lator development. The application example has proven to be
of great use during this development in spite of merely being
a prototype and it is expected to increase in importance as it
evolves.

6.1 Future work

Firstly, application example simulations in the TLMSimulator
are to be conducted for verification of the application example
as well as the TLMSimulator approach to simulating coupled
aircraft vehicle systems. Furthermore, the developed applica-
tion example is to be considered as industry-grade; however,
several of the included models are severely simplified in com-
parison to what is being used for development etc. in the aero-
nautical industry. The presented small-scale simulator is an
early prototype and further development is needed specific-
ally in terms of increased detail of the sub-systems interfa-
cing the ECS hardware. Also, industrial desktop simulators
can include anything from a single sub-system to hundreds.
Further inclusion of interfacing sub-systems is therefore es-
sential. The development of the TLMSimulator is continuing
within the frame of the OpenCPS project. Methods to fully
exploit TLM in conjunction with FMI are currently under in-
vestigation. One approach is to utilize information on input
derivatives to estimate FMU inputs in-between each global
step. This development will run in parallel with the fine-
tuning, and final implementation of the aircraft vehicle sys-
tems simulator application example.

7 Acknowledgements

This research has been funded via Saab Aeronautics and the
ITEA 3 project Open Cyber-Physical System Model-Driven
Certified Development (OpenCPS).

References
[1] International Council of Systems Engineering (IN-

COSE). Systems engineering vision 2020. Technical
report, INCOSE, 2007.

[2] FMI development group. Functional mock-up interface
for model exchange and co-simulation. Technical re-
port, Modelica Association, 2014.

[3] Open cyber-physical system model-driven certified de-
velopment. https://www.opencps.eu/. Accessed:
2017-03-14.

[4] Funtional mock-up interface. http://https://www.

fmi-standard.org. Accessed: 2017-02-21.

[5] Modelica and the modelica association. https://www.
modelica.org/. Accessed: 2017-02-21.

[6] Petter Krus. An introduction to modelling of transmis-
sion lines. Technical report, Linköping University, The
Institute of Technology, 2006.

[7] Robert Braun and Petter Krus. An explicit method for
decoupled distributed solvers in an equation-based mod-
elling language. In Proceedings of the 6th International
Workshop on Equation-Based Object-Oriented Model-
ing Languages and Tools, Berlin, Germany, 2014.

[8] Henric Andersson and Magnus Carlsson. Saab aero-
nautics handbook for development of simulation models
: Public variant. Technical Report 12/00159, Linköping
University, Machine Design, 2012.

[9] Magnus Eek, Hampus Gavel, and Johan Ölvander.
Definition and implementation of a method for uncer-
tainty aggregation in component-based system simula-
tion models. Journal of Verification, Validation, and
Uncertainty Quantification, 2, 2017.

[10] J. Shetty, C.P. Lawson, and A.Z. Shahneh. Simulation
for temperature control of a military aircraft cockpit to
avoid pilot’s thermal stress. CEAS Aeronautical Journal,
6(2):319–333, 2015.

[11] Dassault Systemes AB. Dymola User Manual, 1 edition,
September 2016.

[12] Peter Fritzson. Principles of Object-Oriented Modeling
and Simulation with Modelica 3.3. IEEE Press, 2nd edi-
tion edition, 2015.

[13] Yutaka Hirano, Satoshi Shimada, Yoichi Teraoka,
Osamu Seya, Yuji Ohsumi, Shintaroh Murakami, To-
mohide Hirono, and Takayuki Sekisue. Initiatives for
acausal model connection using fmi in jsae. In Pro-
ceedings of the 11th International Modelica Conference,
2015.

[14] Peter Fritzson and Peter Aronsson. The openmodelica
modeling, simulation, and software development envir-
onment. Simulation News Europe, 44(45), dec 2005.

Non-reviewed paper. 269 SICFP2017 7-9 June 2017Linköping, Sweden

http://www.ep.liu.se/ecp/contents.asp?issue=144

[15] Alexander Siemers, Dag Fritzson, and Iakov Na-
khimovski. General meta-model based co-simulations
applied to mechanical systems. Simulation Modelling
Practice and Theory, 2009.

[16] A. Mengist, A. Asghar, A. Pop, P. Fritzon, W. Braun,
A. Siemers, and D. Fritzon. An open-source composite
modeling editor and simulation tool based on fmi and
tlm co-simulation. In Proceedings of the 11th Interna-
tional Modelica Conference, 2015.

[17] Fabio Cremona, Marten Lohstroh, Stavros Tripakis,
Christopher Brooks, and Edward A. Lee. Fide - an fmi
integrated development environment. In Symposium on
Applied Computing, April 2016.

[18] Virginie Galtier, Stephane Vialle, Cherifa Dad, Jean-
Philippe Tavella, Jean-Philippe Lam-Yee-Mui, and
Gilles Plessis. Fmi-based distributed multi-simulation
with daccosim. In Proceedings of the Symposium on
Theory of Modeling & Simulation: DEVS Integrative
M&S Symposium, DEVS ’15, San Diego, CA, USA,
2015. Society for Computer Simulation International.

[19] Dassault Systemes AB. FMI Kit for Simulink, October
2016.

Non-reviewed paper. 270 SICFP2017 7-9 June 2017Linköping, Sweden

http://www.ep.liu.se/ecp/contents.asp?issue=144

