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Early Jump-Out Corner Detectors 

James Cooper, Svetha Venkatesh, and Leslie Kitchen 

Abstract-We present two new corner detectors; one works by using 
dissimilarity along the contour direction to detect curves in the image 
contour and the other estimates image curvature along the contour 
direction. These operators are fast, robust to noise, and require no 
subjective thresholding. 

Index Terms-Corner detection, image noise modeling, sequential anal- 
ysis, similarity measures, thresholding. 

I. INTRODUCTION 
Although primitive features such as edges and lines are vital visual 

clues, intersection of edges such as corners and junctions, which 
are commonly referred to as 2-D features, provide rich information 
for examining frame-to-frame displacement characteristics of images. 
Thus, in applications involving disparity analysis such as motion 
detection and depth from stereo, we need to identify these 2-D 
features. In general, edge detectors do not make good corner detectors 
because they give reduced output at corners, and because of this, 
considerable research has been specifically directed towards isolating 
corners and junction points. 

Kitchen and Rosenfeld [ 11 measure cornerity a5 the rate of change 
of gradient direction along an edge multiplied by the gradient 
magnitude. Nagel [2] used a method based on minimizing the squared 
differences between a second-order Taylor series expansion of grey- 
level values from one frame to another. Noble [3] has shown how the 
Plessey corner detector estimates image curvature and has proposed 
an image representation that is based on the differential geometrical 
“topography” of the intensity surface. Spacek [4] relates cornerness 
to the difference in response between a directionally selective edge 
detector and a rotationally symmetric one. 

In this correspondence, we propose a two-stage approach to corner 
detection in which first, the contour direction is measured, and 
then, image differences along the contour direction are computed. A 
knowledge of the noise characteristics is used to determine whether 
the image differences along the contour direction are sufficient to 
indicate a corner. The technique is less computationally expensive 
than existing corner detection techniques and is robust to noise. 

The corner detection algorithms are described in Section 11. A com- 
parative study of the results obtained with our corner detectors and 
other corner detectors, specifically the Plessey, Kitchen-Rosenfeld, 
and Beaudet detectors, are carried out in Section 111. The discussion 
follows in Section IV, and we draw conclusions in Section V. 
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Fig. I .  (a) If we take an image patch belonging to a straight edge and 
compare it with others along the edge direction, we find that it is similar to 
them; (b) If we do a similar comparison along the local edge direction at a 
corner, we find that it is not similar to its neighbors. 

11. EARLY JUMP-OUT CORNER DETECTORS 

If two image patches along a straight edge segment are com- 
pared with each other, they will be very similar (Fig. l(a)). If the 
edge segment is curved, as at a corner, the two image patches 
will be dissimilar (Fig. l(b)). Thus, corners where the similarity 
between image patches along the edge direction is low can be 
detected. 

for each pixel ( . r . y )  in the image 
This suggests a corner detection algorithm like the following: 

Obtain the components of the image gradient. 
If the gradient magnitude is low then 

The point ( X .  y )  is not a corner. 
else 

Calculate positions ( x / .  .yo and (.r,.. y r )  to left and right 
along the local contour direction. Use a similarity 
test to decide whether the image patches centered at 
( . r I .  .yr) or at ( .rt .  y7 ) differ from that at (s. y ) .  
if they differ then 
(J. y )  is a corner 

( .r .  y ) is not a corner. 
else 

endif 
endif 

end 

A. Image Self-similarity and Early-Jump-out 

The method makes extensive use of a similarity test that therefore 
must be fast. In this section, we outline a fast method using sequential 
analysis techniques [5] for determining similarity between pairs of 
subwindows. Barnea and Silverman [6] propose that a threshold 
sequence can be defined such that if at any stage in the computation of 
the difference value the partial result is greater than the corresponding 
value in the sequence, we can jump out of the similarity test. We term 
this the Early Jump-out technique. We have extended the Early Jump- 
out technique to use multiple threshold sequences, and the derivation 
of the sequences used for the dissimilarity corner detector is given 
below. 

I )  Early Jump-out High (EJH): At a strategically chosen se- 
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quence of locations, the absolute value of the difference in the grey 
levels of the corresponding pixels in the two windows is added to an 
accumulating sum. At each step of the Early Jump-out similarity test, 
we compare the accumulating value with the appropriate member of 
a threshold sequence to test the null hypothesis H o :  

“The two windows are similar so that the differences in pixel 
values can be attributed entirely to noise.’’ 
At any step, if the accumulating value is larger than the threshold, 

the process is terminated, and H o  is rejected. We will call the 
threshold sequence the Early Jump-out High (EJH) sequence. 

a)  Computing the threshold sequence: Barnea and Silverman 
use “a computer solution of an analytic system of recursive equations” 
to generate the threshold sequence so that if H o  was true, then at each 
step, the probability that the accumulated value will be greater than 
the current threshold is some small value (1. In this section, we show 
a simple way in which the threshold sequence can be derived. We 
first describe the method to derive the first member of the threshold 
sequence and then show how subsequent members can be derived. 

We model the image data at each pixel as an image signal 
with added Gaussian noise distributed as .Y( 0.0 j .  If the difference 
between the value of two pixels is due entirely to noise, then the 
difference is a random variable S distributed a s  .Y(O. 0 f i 1  and 
whose probability distribution function (pdf) is given by 

The absolute value of -X is a random variable D1 with pdf given by 

else. 
We numerically integrate (2) to find the first member TI  of the 
threshold sequence such that the probability that the first difference 
will be greater than this threshold is q .  That is 

i; f”, ( , r )d . r  = (I. ( 3 )  

Let RY be the value of the accumulating result after -1- operations. 
At step A\7, only if RY < T\- is the absolute value of the difference 
between a new pair of pixels added to the accumulating result. The 
pdf of the survivors of each thresholding operation is therefore of 
interest. The value of R\ subject to R\ < T\- is a random variable 
S.Y whose pdf is given by 

f.,v ( s )  = { & f n . v ( . y )  i f  .\ < T\ (4) 

Since R\-+1 is obtained by adding R,\- to the absolute value of the 
difference between a new pair of pixels, we have D Y + ~  = S\- + D 1  . 
Therefore, the pdf of D\-+1 can be computed using 

else. 

where * is the convolution operator. For each S, we can generate 
f ~ ,  and then use numerical integration to find a threshold T\ such 
that l; fn, (.I‘)d.r = (I. (6) 

In the preceding discussion, we have assumed that each pixel differ- 
ence has the same pdf as the first. If this assumption was not valid, we 
could have obtained the pdf of each difference independently and used 
the new pdf in the convolution step. Alternatively, the EJH sequence 
could have been computed from distributions obtained directly from 
image data. The resulting comparison is Fhown in Section 111. 

Fig. 2. If we take a cross section along the line -4.4‘ through the small 
image region whose contour map is shown in (a), we obtain a parabola 
f ( . r )  as in (b). We can displace this parabola a distance U’ and calculate 
D (  . r .  w )  = f( . r )  - f( .r - w), which is a function of the second derivative k .  

2) Early Jump-out Low (EJL): The dissimilarity corner detector 
compares image patches along an edge. If the edge is straight, a 
high degree of similarity can be expected, the accumulating value will 
never exceed the EJH sequence, and the cost of the EJH similarity test 
is then O(  -If2). We use another sequence--the Early Jump-out Low 
(EJL) sequence [7]-to allow the process of accumulating differences 
to be terminated early if the image patches are similar. 

At each step of the Early Jump-out technique, the accumulated 
value is compared with the appropriate member of a threshold 
sequence in order to test a new null hypothesis H o :  

“The two windows are dissimilar to each other.” 
This time, the sequence is precomputed so that if H o  is true, then 

at each step, the probability that the accumulating difference will be 
less than the current threshold is some small value p .  

a)  Computing the EJL threshold sequence: As before, we first de- 
rive the first member of the EJL sequence and then show how 
subsequent members of the sequence can be derived. 

Consider contours of equal grey level at a noise-free corner as 
shown in Fig. 2(a). If line segment -4.4‘ is parallel to the edge 
direction, then a profile taken along -4-4‘ can be approximated by 
a second-order Taylor series expansion as a parabola 

(7) 

where f” is the second directional derivative in the direction orthog- 
onal to the gradient, f’ is the first derivative, and f(0) is the image 
intensity. As -4-4’ is parallel to the edge direction, f’ is zero. If noise 
is taken into account 

where (’(.I‘) is the error due to image noise (with standard deviation 
0) at .I’. 

If the parabola is displaced by a small distance U’ as shown in Fig. 
2, then we can compute the difference function D as 

D(.r. w )  = If(.I‘) - f ( . r  - ((,)I 

where A. = f ” ( 0 j .  
If k is large and .I‘ # w/2, then D has a normal distribution with 

mean / k . r ( i .  - and standard deviation equal to IT&. Further, 
the threshold TI is the first value of the EJL sequence, and if the 
first difference D1 is less than TI, we jump out of the similarity 
test with the conclusion that k is small and the pixel is not a corner 
pixel. For particular values of ,I‘ and w, we can choose values k,,,,, 
and TI such that the probability of D 1  being less than TI is some 
small value 1’. Then, A,,,,,,, becomes the smallest curvature that can 
be reliably detected for the particular values of .r. tr ,  and T I .  

2 /  
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I - -  
1 - 1  

For .r = 0 and U = 2. D1 distributed as . \(.?I..afi). The pdf 
of D1 is given by 30 

We numerically integrate (10) to find the first member T I  of the 
threshold sequence such that 

s:' fn, (.r)d.r = p .  (1 1) 

As with the EJH threshold sequence, let R\ be the value of 
the accumulating result after S operations. At step .I-, only if 
R,Y > TY is the absolute value of the difference between a new pair 
of pixels added to the accumulating result. The value of R 1- subject 
to R\- > T.Y is a random variable S.V, whose pdf is given by 

As before, for .I- > 1, the pdf of D \-+ 1 can be computed recursively 
from the pdf of S.Y and D1 using 

r - 1  
I - J  &* 

I - - @ :....:--' Not Similar (kS) 
...... - -  

I ...... 
_ _ I  ...... - !....:""' 

I.. . . .: 

Fig. 3 .  Division of Early Jump-out space by EJH (dots) and EJL (dashes) 
threshold sequences calculated with U = 1.15 and TI = 0. An accumulating 
difference sum starts in the undecided region between the two threshold 
sequences. If it crosses the EIH threshold sequence, we can conclude that 
the two image patches are dissimilar, and if it is crosses the FJL threshold 
sequence we can conclude that either the patches are similar or IC is small (see 
text). The difference sum can get into the fish-tail region, in which case, we 
could conclude that the two image patches are not similar, but k is smaller 
to that of the minimal confidently detectable corner. 

( , 3 )  B. Compensution for Errors f n , + , ( d )  = f / l , ( d )  * f \ , - ( S , .  

In our implementation, the dissimilarity corner detector uses the 
output of the Sobel operator to calculate the positions to the right 
and left along the contour of the current pixel. However, even on 

For each -y, we can generate f n . ~ + ~  ( c l )  using the above distribution 
and then use numerical integration to find TI-  such that 

By specifying .r. w, and k,,,,,,, we thus determine the entire EJL 
threshold sequence T Y .  

If we let 9 be a second-order approximation of the local image 
function with .(I' = ( g ,  . gu)T (the image surface gradient) and 

g" = ( ssrg'y ) be the second derivative at ( 0 . 0  )T, then the value 

of k is given by Torre and Poggio [8] as 
Q,!G !iYY 

This is the quantity measured by the Kitchen-Rosenfeld corner 
operator [ l]  that Kitchen and Rosenfeld interpert as the curvature 
of the contour multiplied by the edge magnitude. Our interpretation 
allows a simple error analysis and renders the operator amenable to 
sequential analysis. 

3) The Meaning of the Early Jump-out Sequences Fig. 3 shows 
typical EJH and EJL threshold sequences, which divide "Early Jump- 
out space." A difference sum starts in the undecided region. If the 
difference sum outgrows the EJH sequence, we conclude that the 
two samples are not similar ( k  > 0 ) .  If the difference sum gets 
below the EJL sequence, we conclude that either the samples are 
similar or the value of k for thc pixel in question is too low for a 
corner to be detected ( k  < A,,,,,,,). If the difference sequence gets 
into the fish tail region shown in Fig. 3, i t  indicates that both of the 
above conclusions could be accepted, which means that the image 
surfaces are not similar, but the strength of the feature is not sufficient 
( 0  < k < k,,,,,,)-there is a corner there, but the value of k is so low 
that EJL would reject i t  as a corner. 

If we let TI = 0, then we can detect the reliably detectable corner 
with the smallest value of k .  In practice, we use a higher value for 71 
than zero. This raises both the starting point and the slope of the EJL 
threshold sequence curve and reduces the time spent in the undecided 
region of Early Jump-out space by difference sums associated with 
weak corners. The fish-tail region in Fig. 3 then becomes important 
as difference sums can now get into this region when there is a 
detectable corner. 

a straight edge, spatial digitization leads to errors in the computed 
contour direction, and the predicted position of a contour is in general 
displaced by a subpixel distance from the center of the nearest pixel. 
The apparent image grey-level difference caused by the resulting 
displacement error in the predicted position is proportional to the 
product of the displacement error and the image gradient magnitude, 
and we use this to modify the threshold sequences to take the 
digitization noise into account. 

C. Direct Estimation of I .  (DEK) 

This discussion in Section 11-A-2 suggests another algorithm. When 
the dissimilarity corner detector is used with Early Jump-out, a first 
difference in grey level is estimated to the left and the right along 
the contour direction, and if this value if large in both directions, 
a corner is detected. From (9) though, we see that this is actually 
an estimation of k since by using (9). we could calculate k from 
the difference values that we obtain. These one-sided estimates of 
the image curvature involve compensating for the contour position 
error. We could estimate the value of k at the test pixel directly by 
adding together the estimates on either side. If we do this, the errors 
for which we compensated in Section 11-B cancel out. This should 
make the corner detector more robust to noise. The algorithm this 
discussion motivates is shown below: 
for each pixel ( .r . .y) in the image 

Obtain the components of the image gradient. 
if the gradient magnitude is low then 

The point (.r.,y) is not a corner. 
else 

Calculate the contour direction and use an Early Jump- 
Out test to determine whether the absolute value of 
the second derivative ( k )  along the contour direction 
is greater than zero. 
If X.  is greater than zero then 

(a.. v i  is a corner 
else 

( .r .  .y) is not a corner. 
endif 

endif 
end 
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(4 (b) ( c )  (dl (e) 

Fig. 4. Comparison of outputs of the operators when applied to the synthetic image with added Gaussian noise (o = 1.5): (a) DEK; (b) dissimilarity 
operator; (c) Plessey operator: (d) Kitchen-Rosenfeld operator; (e) Beaudet operator. 

The value of k is now estimated via a calculation of the form 
k = 2a - b - c, where a .  h,  and e are the values of three different 
pixels. If the standard deviation of the value of each pixel is a, 
then the standard deviation of k is a&. The same procedures for 
generating the Early Jump-out threshold sequences can be used here, image DEK Sim. Plessey K-R Beaudet 

except for the different value of the standard deviation. noise FN FP FN FP FN FP FNFP FN FP 

r=G 1 8 6  17 18 18 44 17 33 18 140 

TABLE I 
ERROR PERFORMANCE OF O P E R A r o R s .  (The performance of 

the five operators is shown in terms of False Positives (FP) and 
False Negatives (FN) for medium and high noise images.) 

111. EXPERIMENTAL RESULTS 
The results obtained by our corner detectors are compared with 

other methods both in terms of the quality of output and the speed 
of performance. The values .r = 0 and U = 2 from (9) were used in 
the DEK, and if the accumulating difference sum went to more than 
five terms on any test, the test was terminated with the conclusion 
that the sum was growing too slowly. This effectively means that the 
largest region of support for any corner was 9 x 9. 

We demonstrate that the Early Jump-out corner detectors are 
computationally less expensive than the Kitchen-Rosenfeld detector 
and the Plessey corner detectors. 

A. Measurinp ImaPe Noise 
We measure the image pixel noise by repeatedly reading the value 

of a pixel and computing the standard deviation of the values. With 
this method, we estimated the pixel noise at 1.92 grey levels. The 
standard deviation of the noise levels for all the pixels in the 25Gx2.5G 
image was 0.16 grey levels. The noise level was almost invariant 
to grey level as the measured pixel noise remained constant over a 
grey-level range from 10 to 220. 

B. The Corner Detectors 

Three images are used: 

1) Synthetic image with added gaussian noise (a = G )  
2) synthetic image with gaussian noise (o = 1.5) 
3) real image. 
First, a synthetic corner image composed of L.T.1.. and + 

junctions was created. The contrast of the junctions was reduced 
progressively from top to bottom in the image, and this gave rise 
to a decreasing signal strength from top to bottom in the synthetic 
image. The image was then smoothed by convolution with a gaussian 
(U  = 0.G) to simulate the blurring introduced by the imaging system. 

o = 15 44 25 43 15 45 56 43 52 41 42 

Finally, Gaussian noise of appropriate standard deviation was added. 
The result was a synthetic image with corners of decreasing signal- 
to-noise ratio from top to bottom. 

To compare the four detectors in a nonsubjective manner, we 
identify two errors as follows: We associate a 5 x 5 detection area 
centered at a true corner. Should a corner be detected in this area by a 
corner detector, the corner is correctly detected. Any corner detected 
outside this region is termed a false posirive (FP), and failure to 
detect a corner in the detection area is termed false negative (FN). 
The corner detectors were tuned to give similar numbers of false 
negatives. Table I shows the false negatives and positives obtained 
for the synthetic images when the four different corner detectors are 
applied to the synthetic images (a = G )  and (U  = 1.5). 

Images corresponding to the performance statistics with a = 
1.5 are shown in Fig. 4. At medium noise (a = G ) ,  both the 
Kitchen-Rosenfeld and Plessey operators gave higher numbers of 
false positives than either of the Early Jump-out corner detectors. 
This is true at high noise as well (Fig. 4). The outputs of the four 
operators when applied to a real image are shown in Fig. 5,  which 
indicates the similarity of results at this level of real camera noise 
(estimated a = 0.88). 

C. Number of Operations 
One of our contributions to the technique of image patch similarity 

testing is the addition of the EJL sequence. It is the use of both 
the EJH and EJL sequences that leads to the speed of the corner 
detector. Table I1 compares the operators in terms of the number of 
operations performed. In the computation of the number of operations, 
the cost of one derivative operation is taken to be 2 n 2 ,  where n is 
the size of the neighborhood of the difference operation used. For the 
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Fig. 5 .  Comparison of outputs of the operators when applied to the 
real image: (a) DEK; (b) dissimilarity operator; (c) Plessey operator; (d) 
Kitchen-Rosenfeld operator: (e) Beaudet operator. 

TABLE I I  
NUMBER OF OPERATIONS USED BY DIFFERFNT OPFRATORS 

DEK Dissimilarity Plessey Kitchen-Rosenfeld Beaudet 

dissimilarity-based operator, ten operations are performed to compute 
the position and error and ten to perform the similarity test. For DEK, 
ten operations are performed to compute the position and error and 
five operations to perform the similarity test. The Plessey operator 
computes the 1 1  x r i  derivatives, which it smoothes with an i t )  x m 
Gaussian. Thus, the cost of this operator is G n 2  +ni’+7. The costs for 
the Beaudet and the Kitchen-Rosenfeld operators are as computed in 
[l]. It should be noted that these operation counts are implementation 
specific. For instance, the convolution we used in the Plessey operator 
is separable, and its convolution could therefore be reduced to 2 1 1 1 ~ .  

Table 111 indicates the effectiveness of the Early Jump-out oper- 
ations in reducing the amount of work for DEK. The number of 
difference operations that preceded threshold (EJH or  EJL) jump-out 
is close to the number of jump-outs of either type. This means that the 

VOL 15. NO 8, AUGUST 1993 827 

TABLE 111 

EITHER OF THE THRESHOLD SEQUENCES IN THE DEK ALGORITHM. (There where 
a total of 20159 test pixels left after thresholding on edge magnitude 

and approximately 1.12 operations were performed per test pixel.) 

THE NUMBER OF DIFFERENCE OPERATIONS THAT PRECEDED JUMP-OUT VIA 

EJH EJL NoJumpOut 
~~ 

Number of jump-outs 1050 19109 9 

Number of operations before 1358 19344 45 

Fig. 6. 7 x 7 image surface patch centered on pixel C,  which is situated 
near a straight edge. As the gradient magnitude is small at C, the influence of 
noise on the estimated gradient direction will be large (consider the effect of 
noise on arctan(y/.r) when s and y are small). This can cause L’ and R’ to 
be the predicted pixels on the same contour instead of L and R. DEK would 
then report C to be a corner as IR’ + L’ - 2CI is large, but the dissimilarity 
corner detector would not report a corner as (L’ - CI is small. 

number of difference operations performed at each potential corner 
point was just more than, one and the region of support for corners 
was usually 5 x 5, The largest possible region of support (9 x 9) 
was rarely used. 

IV. DISCUSSION 

The robustness to noise of the early jump-out methods can be 
attributed to the fact that we use an accurate image model that 
incorporates image noise. 

One would expect DEK to be more robust to noise than the 
dissimilarity detector because DEK effectively computes the two one- 
sided estimates of k (see Section 11-C), but the results in Table I 
indicate that this is not the case. The reason can be seen in Fig. 6. 
Future work will be directed towards modifying the DEK algorithm 
to incorporate a correction for this problem. One possible approach 
would be to reassess detected corner points where the edge strength 
is low by using wider edge detection masks to get more accurate 
estimates of edge direction and then retesting with the new direction 
information. 

V. CONCLUSION 
We present two new corner detectors: one works by using dissim- 

ilarity tests along the contour direction to detect curves in the image 
contour and the other estimates image curvature along the contour 
direction. These operators are fast and robust to noise. 

The speed of the operators can be mainly attributed to the fast 
Early Jump-out tests. The use of the EJL sequence allows these 
tests to be terminated early when the test pixels are destined for 
rejection as corners. Further, the members of the EJL sequence can 
be chosen so that on average, one image operation is performed per 
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test. Explicit modeling of image noise contributed to the robustness 
of these operators to noise. 

The corner detectors presented here require no subjective thresh- 
olding. The standard deviation of the image noise must be specified, 
but this value can be easily measured. 

We also present a new interpretation of the Kitchen-Rosenfeld 
corner operator in which we show that this operator can also be 
viewed as the second derivative of the image function along the edge 
direction. 
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Optimally Small Operator Supports 
for Fully Parallel Thinning Algorithms 

Richard W. Hall 

Abstract-Requirements on the support size and shape are investigated 
for the class of all adequate fully parallel thinning operators. Eleven 
pixel supports are shown to be the smallest possible supports, and the 
possible positions of the support pixels are shown to be well constrained. 
Constraints on support positions are also demonstrated for operators with 
supports that are larger than optimal, and a sufficient test for connectivity 
preservation is reviewed. These results allow algorithm designers looking 
for small support operators to focus on a relatively small set of acceptable 
supports. 

Index Terms-Connectivity preservation, image processing, optimally 
small operator supports, parallel thinning, reduction operators, support 
constraints. 

I. INTRODUCTION 
Thinning is a fundamental early processing step in image process- 

ing [17], and parallel thinning algorithms are of particular interest as 
these allow for the efficient use of parallel computers [3], [4], [13]. A 
fully parallel thinning algorithm applies the same thinning operator 
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over the entire image in each iteration of the parallel algorithm. The 
support of a given operator applied to pixel p is the set of pixels in 
the image space defined with reference to p ,  which are required to 
determine the operator’s result. Supports confined to a fixed region 
around p independent of image space size are referred to as local 
supports. Operators with small local support are highly desirable in 
parallel implementations since operators with larger supports require 
either higher time cost or higher interconnection complexity. In 
fully parallel application, operators with only 3 x 3 support have 
been recognized as unable to preserve connectivity while providing 
adequate parallel thinning [6], [ 161, [ 171. Investigators have partially 
serialized their approaches to enable use of 3 x 3 thinning supports 
[ l ] ,  [ 6 ] ,  [13], [16], [MI. Fully parallel approaches have also been 
developed around operators with larger support [2], [7], [11]. It is of 
some interest to know what the optimally small support size could 
be for a fully parallel thinning operator and to know something 
about the possible positions for these supports and constraints on 
support positions when support size is larger than optimal. With 
such knowledge, algorithm designers looking for operators with small 
support can efficiently direct their attention to appropriate forms of 
support. 

Operators with 11-pixel support are known [2], [7], illustrating 
that optimally small supports include 5 11 pixels. In this paper, 
preliminary arguments that relate thinning requirements to specific 
expectations on special images are given. These observations allow 
one to claim that 3 x 3 operator supports are inadequate and that 
all of the 3 x 3 neighborhood is required in any support. Then, 
optimally small supports are shown to require 11 pixels, and the 
possible locations for the 11 pixels are shown to be well constrained. 
Finally, support position constraints are illustrated for support sizes 
greater than 11, and a sufficient test for connectivity preservation is 
illustrated based on results in [9] and [15]. 

11. IMAGE SPACE AND PARALLEL OPERATOR NOTIONS 
A rectangularly tessellated binary image space is considered where 

pixels take values 0 or 1. In practice, image spaces are bounded, but 
it is assumed here that image space size is sufficiently large to hold 
any desired image. Test images that are imagined to be of arbitrary 
size in some arguments are used, but typical realistic image space 
sizes are sufficiently large to make the results compelling in practical 
situations. The 1-valued pixels (ones) form a set S representing 
objects (connected components) to be thinned, and 0-valued pixels 
(zeros) form a set \S representing the background of S and holes 
in objects of S. We define S and \S with 8-connectivity and 4- 
connectivity, respectively, which is denoted an 8 3  space [12]. The 
8-neighborhood -1-i ( p )  of a pixel p is defined as the set of 8-adjacent 
neighbors of p .  .\-w(p) is defined as .Y:(p) U p .  Any use of the 
term distance in the image space may be interpreted as “city block” 
distance [17]. -4(p) is defined as the number of distinct 4-connected 
components of one’s in -\-;(p), B ( p )  is defined as the number of 
one’s in .\-i(p), and C ( p )  is defined as  the number of distinct 8- 
connected components of one’s in ( p ) .  When illustrating regions 
in the image space, the notation < e > refers to the set of all 
pixels labeled e (sometimes the labeling is inferred) or e ,  for i an 
arbitrary subscript. Any other notation used is generally consistent 
with [12]. 

In a binary image space, the image is transformed by operators 
that either take a one to a zero, which is referred to as reduction 
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