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Abstract

Background The cancer risk from low-dose medical imaging is debated.

Objective To review the literature on cancer risks associated with prenatal and postnatal medical 

diagnostic ionizing radiation exposure among children and to assess this risk through a meta- 

analysis.

Materials and methods A literature search of five electronic databases supplemented by a hand 

search was performed to retrieve relevant epidemiological studies published from 2000 to 2019, 

including patients younger than 22 years of age exposed to medical imaging ionizing radiation. 

Pooled Odds Ratio (ORpooled) and pooled Excess Relative Risk (ERRpooled) representing the 

excess of risk per unit of organ dose were estimated with a random effect model.

Results Twenty-four studies were included. For prenatal exposure (radiographs or computed 

tomography [CT]), no significant increased risk was reported for all cancers, leukemia and brain 

tumors. For postnatal exposure, increased risks were observed only for CTs, mostly for leukemia: 

ERRpooled=26.9 Gy-1 (95% confidence interval [CI]: 2.7, 57.1) and brain tumors: ERRpooled=9.1 

Gy-1 (95% CI: 5.2, 13.1).

Conclusion CT exposure in childhood appears to be associated with increased risks of cancer 

while no significant association was observed with diagnostic radiographs.

Keywords Cancer, Children, Computed tomography, Ionizing radiation, Postnatal, Prenatal, 

Radiography, Risk
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Introduction

Medical diagnostic imaging using ionizing radiation is a very important tool in patients’ care and 

substantial benefits arise from its use. Recent decades have been marked by an increased use of 

medical radiation imaging [1] representing an annual growth of about 5% to 8% per capita [2], 

mostly in developed countries.

Although single doses delivered per examination have decreased over the years, thanks to 

advances in technologies, protocols improvements, awareness and the reactivity of radiologists to 

improve their daily practice in accordance with scientific and medical recommendations, overall 

collective doses continue to increase [3-5], resulting from the growing number of tests performed 

and the use of procedures, such as computed tomography (CT), that are known to deliver much 

higher doses than conventional radiology procedures.

Several epidemiological studies of populations exposed to high to moderate doses of 

ionizing radiation have shown an increased risk of cancer [6-9]. Increased risk of cancer with 

decreasing age at exposure has been described [2, 10], hence foetuses and children are more 

radiosensitive [2].

Studies in the 1950s and 1960s linked prenatal and postnatal diagnostic X-ray exposure to 

an increased risk of childhood cancer [11-15]. However, with the decrease of doses observed 

over the years, the association became weak, especially for postnatal exposure [16].

Since former reviews of literature on children exposed to medical diagnostic radiation [9, 

16-19] did not include recent cohorts on CT and interventional procedures, or quantitative
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summaries, we aimed to assess cancer risk subséquent to prénatal and postnatal medical 

diagnostic radiation exposure through a systematic review, and to provide a quantitative 

summary on the overall risk estimate.

Materials and methods

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyze guidelines 

(PRISMA) [20] adapted to observational studies.

Online searches

An online-based literature search was conducted in July 2019 in PubMed, Scopus, Web of 

Science, Global Health and EMBASE. Specific keywords: ((neoplasms OR cancer) AND risk 

AND medical AND (diagnosis OR diagnostic) AND ("radiation exposure" OR (radiation AND 

exposure)) AND (child OR children)) were used. An additional search was carried out by hand 

through references from relevant publications and international reports such as BEIR VII [21] 

and UNSCEAR 2006 & 2013 [2, 22].

All relevant articles fulfilling the selection criteria based (see below) on their title and 

abstract were selected and reviewed by two different authors (E.R. and K.D.A.), with a review by 

a third author (M.-O.B.) in case of discrepancy. Duplicate studies from the different databases
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were removed and studies providing completed quantitative information and risk estimate were 

then included in the meta-analysis.

Sélection criteria

Eligible studies were cohort and case-control studies, published in English from Jan. 1, 2000, to 

July 31, 2019, involving children younger than 22 years at exposure. The exposure period was 

restricted to 1970 onward to ensure comparability with more recent practices since doses tend to 

decrease over time. Abstracts of congresses, meta-analyses, letters and authors’ comments were 

ineligible but were checked to find any relevant reference. In case of publications on overlapping 

populations or updated publications [23-30], only data from the most complete study were 

considered [25, 27, 28, 30].

Methodological quality assessment of individual studies

To assess the risk of bias for individual studies, the Newcastle-Ottawa Scale (NOS) for quality 

assessment of non-randomized studies [31] and Agency for Healthcare Research and Quality 

(AHRQ) standards [32] for observational study were applied by two investigators (E.R. and 

K.D.A.). NOS quality tools uses eight items, grouped into three domains of potential bias such as 

selection (representation of the sample, sample size, non-respondents, ascertainment of the 

exposure), comparability (the subjects in different outcome groups are comparable, based on the
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study design or analysis, and confounding factors are controlled) and outcome/exposure 

(assessment of outcome or exposure and statistical test). A maximum of one star can be given for 

each item within the selection and outcome categories and a maximum of two stars can be given 

for comparability. To convert the NOS into AHRQ standards (good, fair and poor quality) 

thresholds are as follows:

• Good quality: 3 or 4 stars in selection domain AND 1 or 2 stars in comparability domain 

AND 2 or 3 stars in outcome/exposure domain.

• Fair quality: 2 stars in selection domain AND 1 or 2 stars in comparability domain AND 2 

or 3 stars in outcome/exposure domain.

• Poor quality: 0 or 1 star in selection domain OR 0 star in comparability domain OR 0 or 1 

star in outcome/exposure domain.

Statistical analysis

Studies providing a comprehensive risk estimate were set together to generate a summarized risk 

of cancer following medical diagnostic radiation exposure. In radiation epidemiology, however, 

the association between cancer risk and exposure is most often described by a risk difference or 

excess risk rather than a risk ratio or relative risk. In the case of an Excess Relative Risk (ERR) 

model, a linear multiplicative relationship between risk and exposure is assumed rather than an 

exponential relationship [21]. The ERR is the proportional increase in risk over the background 

rate of cancer (in the absence of exposure) per unit of dose, as follows: RR = 1 + PD, where
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RR is the relative risk, P is the ERR and D is the dose received. For example, a RR of 1.2 equals 

to an ERR of 0.2, per unit of dose which corresponds to an increase in risk of 20% per unit of 

dose.

We estimated a pooled ERR to assess the strength of the association when provided from 

the individual studies otherwise a pooled relative risk (RR) or odds ratio (OR) is computed.

Analysis has been performed by period of exposure (pre- or postnatal) and type of cancer. 

The DerSimonian and Laird random-effect model was used to estimate the overall effect size [33] 

to account for within and between study heterogeneities. Confidence Intervals (CIs) bounds of 

ERRs commonly reported from epidemiological studies may be non-symmetric when estimated 

under different hypothesis with different methods (Wald test, maximum likelihood, profile 

likelihood). Inference of standard deviation from the ERR’s CIs in such circumstance could lead 

to biased results. An alternative DerSimonian and Laird-based model proposed by Richardson et 

al. [34] was used to estimate the pooled effect of ERRs.

We assessed a study’s small size effect and quantified the contribution of heterogeneity to 

the summarized estimate with the I2 statistic, calculated as follows:

12 = 1-  ̂

Q

where Q is the Cochran’s statistic of heterogeneity, which follows a standard /2 distribution with 

df = k — 1 degree of freedom (k is the number of individual studies).

I2 is interpreted as the proportion of the total variation of the estimated effect due to 

heterogeneity between studies [33]. Publication and selection bias were assessed and tested using 

the Egger test [35, 36]. Statistical significance was defined by P<0.05.
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All statistical analyses were conducted using Stata statistical software, STATA/MP 15.1

(Stata Corp, College Station, Texas, USA) and R 3.5.1 software.

Results

The systematic search yielded 1,674 articles. Figure 1 displays the flow diagram of selection of 

the relevant studies. After excluding duplicated studies («=181), 1,493 articles have been 

screened and 254 eligible articles have been reviewed, with 24 included in the review according 

to prenatal (Table 1) [37-44] and postnatal radiation exposure (Tables 2 and 3) [25, 26, 29, 30, 

37, 38, 41, 43-55]. There were 13 case-control studies [26, 37-41, 43, 44, 52-56] and 11 cohort 

studies [25, 29, 30, 42, 45-51] (Fig. 1).

Prénatal diagnostic radiation exposure

Cancer risks related to prenatal radiation exposure have been investigated in seven case-control 

studies [37-41, 43, 44] and in one cohort study [42] (Table 1). Medical examinations investigated 

were X-ray in five out of eight studies [37-40, 43], and X-ray coupled with CT in two studies 

[41, 44]. Intravenous pyelograms and radionuclide tests were evaluated in one study [41].

In the case-control studies, cancer cases were identified from cancer registries while 

controls were randomly selected from population registries and matched to cases on gender and
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age at cancer diagnosis. Additional matching criteria such as géographie région and residence 

were applied in several studies [37, 39-41,44]. Age at cancer diagnosis ranged from 0 to 16 

years except in one study in which the diagnosis age ranged from 7 to 19 years [44]. Maternal 

exposure to radiation was ascertained by questionnaires or interviews reporting the type of 

examination, the trimester of pregnancy at the time of the examination and the body part 

examined. In three out of seven studies, questionnaires were completed by obstetrical records 

[39, 42, 43].

No statistically significant increased risk of all cancer, leukemia or brain tumors, neither 

for X-ray nor CT exposure were reported in the eight studies considered. Since doses to the fetus 

were not estimated, no study was able to derive dose-response analyses.

Risk summaries were estimated for leukemia and brain tumors based on four [38, 39, 41, 

43] and three studies [37, 43, 44], respectively. The pooled analyses included, respectively, 6,274 

cases and 12,426 controls for the leukemia subgroup and 3,461 cases and 7,924 controls for the 

brain tumors subgroup. Methodological quality scores of included studies were all satisfied, with 

NOS scores ranging from 6 to 9 (good quality according to AHRQ scores).

No increased risk for leukemia following prenatal exposure (any exposure versus no 

exposure) could be observed ORpooled=1.08; 95% confidence interval (CI): 0.90, 1.28 (Fig. 2), 

with no reported heterogeneity between studies 72=23.2%, P=0.27.

No increased risk of brain tumors was reported ORpooled=0.93; 95% CI: 0.68, 1.28 (Fig. 3) 

and no heterogeneity between studies was observed 72=0.0, P=0.72.

No publication bias was idenitified by the Egger tests for leukemia (P=0.52) and brain 

tumors (P=0.49).
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Postnatal diagnostic radiation exposures

There were 21 studies [25, 26, 29, 30, 37, 38, 41, 43-56] on childhood radiation medical 

exposure (Tables 2 and 3). Beside X-ray and CT, which were the most frequently studied types of 

procedures, some specific examinations such as cardiac catheterization or cystography were also 

considered. CT exposure was mainly investigated in cohort studies whereas case-control studies 

predominantly explored X-ray exposure.

Subjects’ exposures were identified from hospital records or from health insurance 

databases while cancer cases were retrieved from cancer registries [25, 27, 30, 41, 44-47, 49, 56]. 

In some CT studies with medical information available, children with cancer-predisposing factors 

[25, 28, 46] and children subjected to CT because of suspected cancer [30, 56] were excluded 

from the analyses. To deal with reverse causality (cancers that were caused by the underlying 

medical conditions prompting the CT rather than by the dose delivered during the examination), 

various latency periods were applied, ranging from 3 to 24 months for lymphohematopoietic 

malignancies, and from 12 to 60 months for solid cancers. Age at inclusion, i.e. at first exposure, 

varied from 0 to 22 years, with some studies focusing only on children first exposed before the 

age of 10 years [28] or 15 years [25, 49]. Mean follow-up extended from 4 years [49] to 8.5 years 

[50].

Organ doses were estimated only for CT studies, based on patient characteristics (age, 

gender), type of examination and machine-specific settings retrieved from radiology protocols 

[28], published radiologic survey data [30, 45, 49], or from the Picture Archiving and
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Communication System (PACS) [57]. The cumulative estimated doses ranged from 5.9 mGy to 

10.1 mGy to the red bone marrow and from 18.3 mGy to 49 mGy to the brain (Table 2).

X-ray exposure was not associated with increased risks of all cancers [45, 49, 50], 

lymphohematopoietic malignancies or brain tumors [37, 43, 44, 52, 54].

Exposure to cystourethrography procedures was statistically associated with increased 

risks of genital and urinary system cancers as well as hematological system malignancies [47]. 

Standardized incidence ratio (SIR) of all cancers (SIR 3.01, 95% CI 2.09-4.19) and lymphoma 

(SIR 9.15, 95% CI 5.66-13.97) were increased and significantly associated with childhood 

cardiac catheterization procedures [51] but were no more increased after censoring transplant 

recipients (SIR 0.90, 95% CI 0.49, 1.49 for all cancers with 0 case for lymphoma).

CT studies reported significant increased risks for lymphohematopoeitic malignancies 

[30, 45, 50] and for leukemia [56] when others found nonsignificant increased risks for leukemia 

[41, 49] by comparing children undergoing one or more CTs versus none. An almost twofold 

increase of risks of brain tumor have been reported [45, 46, 50] (one or more CT versus none) 

while some studies have not shown any increased risk [44, 54] regardless of the region exposed.

Among the six CT studies providing organ doses [28, 30, 45, 49, 50, 56], pooled ERRs 

per Gy were calculated for leukemia and brain tumors. Overall, the pooled analysis included 

11,398,728 and 11,393,070 subjects for leukemia and brain tumor risks analyses, respectively. 

Among them, 437 leukemias and 478 brain tumor cases were observed. The studies were 

comparable, and the methodological quality of the included studies wasgood, according to 

AHRQ, with NOS scores ranging from 7 to 9. We observed a significant increased risk for 

leukemia ERRpooled=26.9 Gy-1 95% CI: 2.7, 57.1 based on 6 studies [28, 30, 45, 49, 50, 56] (Fig. 

4), which represents an increase of 2.69% per mGy of dose over the background risk of leukemia.
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There was moderate heterogeneity between studies I2=60.3% (P=0.03). Sensitivity analyses in 

which the pooled ERR was calculated excluding each study one at a time revealed no substantial 

alteration of the aggregate ERR except when excluding the Dutch study [50], which accounted 

for a large weight of the pooled analysis, leading to a higher pooled ERR after the exclusion of 

this study. Publication bias was suspected (P=0.03) suggesting that small studies with negative 

results were less often published.

The pooled ERR for brain tumors was significantly increased ERRpooled=9.1 Gy-1 95% CI: 

5.2, 13.1 based on 5 studies [28, 30, 45, 49, 50] (Fig. 5), which represents an increase of 0.91% 

per mGy of dose over the background risk of brain tumors. Small heterogeneity between study 

was found I2=32%a and no publication or selection bias was suspected (P=0.16).

Discussion

Cancer risks after prenatal or postnatal medical diagnostic radiation exposure were analyzed 

based on 24 studies. Our review did not find any statistically increased risks of all cancers, 

leukemia and brain tumors after prenatal X-ray or CT exposures. For postnatal exposure, 

increased risks were observed for leukemia as well as brain tumors after CT exposure while no 

evidence of an increased risk of all cancers was observed after X-ray exposure.

Early published data in the 1950s, mainly the Oxford Survey of Childhood Cancers 

studies [11, 13, 58] and other epidemiological studies [59, 60], reported an increased cancer risk 

related to prenatal X-ray exposure [11, 13]. However, the following studies carried out a few
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years later did not show such a statistically significant association [16, 61, 62]. Nevertheless, the 

positive association, albeit non-statistically significant, between prenatal X-ray and leukemia 

(ORpooled 1.08; 95% CI: 0.90, 1.28) is consistent with earlier much more statistically informative 

analyses that found results rejecting the null [13, 60].

A possible explanation for the difference between the cancer risk associated with prenatal 

irradiation estimated in this meta-analysis and estimated from previous studies may be linked to 

the decline in X-ray frequency during pregnancy by shifting to nonionizing procedures such as 

sonography or magnetic resonance imaging [15, 63] and the decrease in X-ray doses due to the 

setting and improvement of radiation protection rules for patients. Current x-ray systems delivere 

fetal radiation doses of about 1.7 pGy for spine measurement and 2.7 pGy for femur 

measurement during the first trimester [65].

Little is known about the potential harm of CT exposure to the fetus. Because of higher 

doses delivered by CT compared to conventional radiology [63, 64], the increased use of CT 

during pregnancy [65, 66] for non-obstetrical conditions might be an issue. Only one study [42] 

focused specifically on the link between maternal CTs and a subsequent malignancy in the child 

and didn’t observed any cancer risk in children (hazard ratio [HR] 0.68; 95% CI: 0.25, 1.80) [42]. 

But a limit of this study is the lack of dosimetry assessment of the fetus exposure [42].

Postnatal diagnostic X-ray exposure has been the focus of numerous studies in the last 

half century. Early studies [11, 67, 68] reported increased risks of leukemia in patients exposed to 

diagnostic X-ray compared to controls while more recent studies [69-71] did not report increased 

risks.

Because of the large increase in CT use over the years, several recent epidemiological 

studies have assessed the risk of cancer following CT exposure in childhood [28, 30, 45]. Among
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these studies, most reported increased risks of leukemia [28, 30, 45] and brain tumors [30, 45, 

46], some of them without reaching significance [48]. In the present analysis, we reported a 

summarized excess relative risk of ERRpooled=26.9 Gy-1 (95% CI: 2.7- 57.1) for leukemia and 

ERRpooled=9.1 Gy-1 (95% CI: 5.2- 13.1) for brain tumors, indicating an increase in the risks of 

leukemia and brain tumors over the background risks of 2.69% and 0.91%, respectively, per unit 

of mGy due to postnatal CT exposure based on linear dose-response models. That means, for a 

given CT delivering 10 mGy to the red bone marrow (or to the brain), the leukemia (or brain 

tumor) risk increases by about 27% (or 9% for brain tumor risk) over the respective background 

risks, holding all other factors constant. The major limits encountered in the CT studies are 

indication and reverse causation bias, uncertainties in dose reconstruction and insufficient 

statistical power. Indication and reverse causation bias can be suspected respectively when 

cancer-predisposing factors or early symptoms of undetected cancer are the indication of the CT 

[72]. Thus, the apparent excess incidence of cancer is not linked to the CTs performed but to the 

underlying conditions or undetected cancer that motivate the indication of the CT. In most of 

studies on CT [30, 45, 46], no information on the indication of the CT examination was available. 

Then, the association between CT and cancer risk might likely be overestimated in case of bias. 

Authors challenged reverse causation bias by applying several increasing lag periods (minimal 

latent time between the exposure and the cancer diagnosis) to exclude as much as possible CTs 

that could be performed after the cancer initiation but before the diagnosis of cancer. Because 

leukemia genesis is rather short and diagnosis is not assessed by CT examination, reverse 

causation bias is unlikely to obscure the leukemia dose response analysis. The similar values of 

ERR for leukemia (ERR=0.045 per mGy, 95% CI 0.016, 0.188) reported in the Life Span Study 

supports this hypothesis [6, 30, 45]. It is much more difficult to exclude such a bias for brain
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tumors as their development might take years, when several exams, especially CTs, could be 

performed to investigate the undetected condition.

Confounding bias linked to underlying conditions predisposing to cancer has been 

scarcely investigated [23, 28]. Reanalysis of the previous published data [30] according to 

medical information available for 40% of the UK CT cohort showed a decrease of previously 

estimated ERRs of 15% for leukemia and 30% for brain tumors, albeit still significantly 

increased. In the French cohort [28], analysis restricted to the patients without predisposing 

factors to cancer (97% of the studied population) reported risk estimates in the same range as 

those obtained in the whole cohort, ruling out a potential bias linked to predisposing conditions to 

cancer. However, the rather small number of cases and the short duration of follow-up prevent 

from definitive conclusions.

Aside from CT, studies of other procedures such as fluoroscopy and cardiac 

catheterization were scarce. A study of adults with congenital heart defects reported significantly 

higher cancer risks associated with increasing numbers of diagnostic and treatment cardiac 

procedures [73]. Cancer risk associated with cardiac catheterization during childhood has been 

analyzed in three studies with divergent results [51, 74, 75]. The most recent study from the UK 

with individual dose reconstruction [51] reported no increase in all cancers after disregarding 

transplant patiens, whose condition might predispose to cancer. The study had relatively low 

statistical power to detect an association as only 11,270 children were included.

One of the major limits in the reviewed studies is the lack of precise dose assessment, 

especially in earlier studies. Although the doses might be quite easily estimated based on 

machine-specific parameters, this information was scarcely documented until recently. The
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assessment of X-ray exposure based on interviews or questionnaires in case-control studies may 

lead to a recall bias, unless confirmed by a review of medical records [39, 42, 43].

One strength of our study is the ability to estimate pooled ERR thanks to the alternative 

random-effect method of Richardson et al. [34], which allows the derivation of estimates of 

variance of published ERRs in case of nonsymmetrical confidence intervals.

Assessing the quality of individual studies included in a systematic review is fundamental 

to interpreting the review. Quality assessment is challenging due to the methodological 

intricacies and its subjective nature. We used two recognized tools, NOS for quality assessment 

of non-randomized studies [31] and AHRQ standards [32] ) to assess quality and methodological 

limits of included studies in a standardized manner, and we applied the Preferred Reporting Items 

for Systematic review and Meta-Analysis (PRISMA) recommendations [20] for the reporting of 

the study’s results. However, we did not weigh the pooled estimates on quality criteria, as quality 

scores were in the same range of values (NOS scores 6 to 9, and good quality for AHRQ scores) 

for the studies considered in each analysis. We used a random effect model to calculate the 

pooled estimates, which allows for potential between- and within-study heterogeneities, even if 

the hypothesis of heterogeneity was rejected in most of our analyses. Publication bias linked to 

the absence of studies of small size with negative results seems not to be a major limitation of our 

analysis as demonstrated by statistical tests. Restricting the study period to published articles 

from 2000 to 2019 ruled out studies with exposure before the 1970s, for the purpose of insuring a 

certain homogeneity in the exposure scenario since a downturn in doses per X-ray exam have 

been reported and CT machines had been introduced after that period [15]. This prevented the 

inclusion of old studies with outdated exposure conditions and medical practices.
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An important common limitation is the lack of statistical power linked to the small 

expected risk, the rather low frequency of these procedures during pregnancy and childhood, and 

the short follow-up of recent studies. Hopefully, ongoing international studies will be able to 

assess, with greater statistical power, the risks associated with radiation-induced malignancies in 

medical exposures and to address some limits of previous published data.

In that way, the ongoing European collaborative project EPI-CT (Epidemiological study to 

quantify risks for pediatric computerized tomography and to optimize doses) pools nine national 

cohorts of children exposed to CT and provides individual organ doses taking into account 

uncertainties in dose assessment. With the inclusion of about 1 million patients, EPI-CT will 

provide statistically powerful estimates of cancer risk associated with CT exposure [76]. An 

extension of the follow-up of the main cohorts of EPI-CT is also planned in the international 

MEDIRAD project (Implications of Medical Low Dose Radiation Exposure) [77], which aims to 

enhance the scientific bases and clinical practice of radiation protection in the medical field. 

Another ongoing study, HARMONIC (Health effects of cardiac fluoroscopy and modern 

radiotherapy in paediatrics) [78] is partly devoted to assess the risk of radiation-related 

malignancies in children undergoing cardiac catheterizations.

Conclusion

Although prenatal medical radiation during the last 50 years appeared unlikely related to a 

subsequent later life risk of cancer, pooled results from studies on CT exposure during childhood 

showed greater risks for leukemia and brain tumors. Published studies present some
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methodological limitations. Although the benefits of prénatal and postnatal diagnostic radiation 

examinations outweigh the risks associated with the doses delivered by these procedures, the 

results of this analysis justify continued efforts to optimize doses to patients.
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Fig. 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram of 

search, selection and inclusion of relevant studies

Fig. 2 Odds ratio (OR) of leukemia risk following prenatal medical diagnostic X-ray exposure Commented [4]:
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Fig. 3 Odds ratio (OR) of brain tumors risk following prenatal medical diagnostic X-ray exposure Commented [5]:
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Fig. 4 Excess relative risk (ERR) of leukemia following postnatal medical diagnostic exposure to

computed tomography scan Commented [6]:
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Fig. 5:Excess relative risk (ERR) of brain tumors following postnatal medical diagnostic
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Table

Table 1 Studies on prénatal medical ionizing radiation exposure and cancer risk

Study Country Type Enrolled subject/Exposed* Procedures Outcom

Schuz J et al, 2001

[37]

Germany Case-control Cases: 453/16

Controls: 2,424/105

X-ray - Brain tum

Shu XO et al, 2002

[38]

USA Case-control Cases: 1,809/112

Controls: 1,950/127

X-ray - Acute

lymphobk

leukemi

Roman E et al, 2005

[39]

UK Case-control Cases: 1,421/62

Controls: 4,753/182

X-ray - Leuken

- Lympho

Goel R et al, 2009

[40]

USA & Canada Case-control Cases: 512/13

Controls: 509/18

X-ray - Wilms tu

Bailey HD et al,

2010 [41]

Australia Case-control Cases: 388/4

Controls: 869/16

X-ray, CT, intravenous

pyelograms and barium

study

- Acute

lymphobla

leukemi

Ray JG et al, 2010

[42]

Canada Retrospective

Cohort

Exposed: 5,590/4 cases

Unexposed: 1,829,927 /

2,539 cases

CT and

radionuclide tests

- All canc

Rajaraman P et al,

2011 [43]

England, Scotland

and Wales

Case-control Cases: 2,656/120

Controls: 4,854/185

X-ray - All canc

- Leukem

- Lympho

- Brain tum

Tettamanti G et al,

2017 [44]

Denmark, Norway,

Sweden and

Switzerland

Case-control

(Multicenter)

Cases: 352/31

Controls: 646/57

X-ray and CT - Brain tum

1



$ Value reported in the “Enrolled subject/Exposed” column is that for all cancer combined or that for the given cancer reported; § adjus 
adjusted on at least age, gender and geographic area); * first trimester of pregnancy, ** second trimester of pregnancy, ***: third trimes 
tomography, HR hazard ratio, OR odds ratio. Ray JG et al. 2010 [42]: 4 cases among 5.590 exposed subjects and 2.539 cases among 1.8

2



Table 2 Cohort studies on postnatal medical ionizing radiation exposure and cancer risk

Study Enrolled subject/cases Period of 
inclusion

Age at 
inclusion 
(years)

Procedures Outcomes D
(m

Hammer GP et al, 
2011 [25],
Germany

78,527/68 1976-2003 <14.5 X-ray - All cancer
- Leukemia and lymphoma —

Pearce MS et al, 
2012 [30], UK

178,604/74
176,587/135

1985- 2002
1986- 2002

0-22

0-22

CT - Leukemia
- Brain tumors

RBM: 2.32 
Brain: 0.25

Mathews JD et al, 
2013 [45],
Australia

Exposed: 680,211/3,150 
Unexposed: 

10,261,420/57,524

1985-2005 0-19 CT - All cancer*
- Lymphoma and 
hematopoietic
- Brain tumors

RBM: 5.9” 
Brain: 49”

Huang WY et al, 
2014 [46], Taiwan

Exposed: 24,418/39 
Unexposed: 97,668/122

1998-2006 <18 CT - All-cancer
- Leukemia
- Brain tumors

—

Liao YH et al,
2014 [47], Taiwan

Exposed: 31,908/52 
Unexposed: 127,632/99

1997-2008 1-18 Cystourethro
graphy

- Genital cancer
- Urinary system cancer
- Hematologic system

—

White IK et al,
2014 [48], USA

104/0 1991-2001 0-6 years CT - All cancer
- Leukemia
- Brain tumors

—

Krille L et al, 2015 
[49]
Germany

39,184/38 1980-2010 <15 CT - All-cancer
- Leukemia
- Brain tumors

RBM: 11.7 
Brain: 34.4

Journy N et al,
2016 [28], France

67,274/106 2000-2010 <10 CT - Leukemia
- Lymphoma
- Brain tumors

RBM: 8.9 (

Brain: 23.1

Meulepas JM et al, 
2018 [50]
The Netherlands

168,394/454 1979-2012 <18 CT - Leukemia
- Brain tumors

RBM: 9.5 ( 
Brain: 38.5
49 \yn(iQR)

Harbron RW,
2018 [51]
UK

11,270/41
—

<22 Cardiac 
catheterizatio 
n and CT

- Lymphohaematopoietic 
neoplasia

RBM: 8.8 (

3



Exclusion period: * 1 year, ** 2 years,*** 5 years. f per 100mSv, § ERR for the whole population, $ ERR after exclusion of 
patients with transplant, 95% CI 95% confidence interval, CT computed tomography, h hazard ratio, IQR interquartile range, m 
mean, RBM red bone marrow; 5 standardized incidence ratio,

4



sd standard déviation Table 3 Case control studies on postnatal medical ionizing radiation exposure and cancer risk

Study Enrolled Period of Age at Procedur Outcomes Risk estimate
subject/exposed diagnosis diagnosi es (adjusted)

s (years) (95% CI)

Schuz J et al, Cases: 458/142 1988-1993 <15 X-ray - Brain tumors OR
0.73 (0.57­
0.94)

2001 [37], Controls:
Germany 2,425/818

Shu XO et al, Cases: 1,842/939 1989-1993 <15 X-ray - Acute OR 1.1 (0.9-1.2)
2002 [38], USA Controls: lymphoblastic

1,986/775 leukemia

Infante-Rivard Cases: 682/301 1980-1993 <14 X-ray$ - Acute
C, 2003 [26], Controls: 1 lymphoblastic OR 1.16 (0.87-
Canada 690/262 >= 2 leukemia 1.55)

1.48 (1.11­
1.97)

Mellemkjaer L et Cases: 25/11 1977-1989 Newbor X-ray - Brain tumors OR 2.2 (0.6-8.8)
al, 2006 [52], 
Denmark

Controls: 50/15 ns

Bailey HD et al, Cases: 360/156 2003-2006 <14 - X-ray - Acute OR 1.15
2010 [41], Controls: - CT lymphoblastic (0.881.52)
Australia 834/326 leukemia 0.87 (0.32­

2.34)

Khan S et al, Cases: 299/15 1991-1997 <6 Head X- Medulloblastoma and OR 1.3 (0.49-3.7)
2010 [53], USA Controls: 299/12 ray§ primitive

neuroectodermal
tumor (PNET)

Rajaraman P et Cases: 2,656/50 1992-1996 1-5 X-ray - All cancers OR 1.19 (0.82-
al, 2011 [43], Controls: 4,854 - Leukemia 1.74)
England, /75 - Lymphoma 1.35 (0.81-
Scotland and - Brain tumors 2.27)
Wales 5.14 (1.27­

20.8)
0.94 (0.31­
2.92)

Milne E et al, Cases: 306/102 2005-2010 <14 - All - Brain tumors OR 0.66 (0.48-
2014 [54], Controls: procedure 0.90)
Australia 950/375 s£ 0.68 (0.49-

- X-ray 0.93)
- CT 0.78 (0.38­

1.59)

Shih T-Y et al, Cases: 58/34 1998-2010 6-18 X-ray - Leukemia OR 2.14 (1.18-
2014 [55],
Taiwan

Controls: 232/95 3.87)

Tettamanti G et Cases: 352/159 2004-2008 7-9 X-ray and - Brain tumors OR 0.76 (0.58-
al, 2017 [44], Controls: CT * 1.01)
Denmark,
Norway, Sweden 
and Switzerland

646/333

Nikkila A et al, Cases: 911/8 1990-2011 <15 CT Leukemia OR 2.82 (1.05-
2018 [56], Controls: 2,730/9 EO 7.56)
Finland R 13 (2-26)“

5



All estimated risks taking into account the latency periodpresented in the table.

95% CI 95% confidence interval, * non-adjusted OR, § only head X-ray not due to head injury, $ X-ray excluding dental 
procedures, £ all procedures, including dental procedures

CTcomputed tomography, EOR excess odds ratio per 100mGy, IQR interquartile range, OR odds Rratio; RBMred 
bone marrowa : Nikkila A et al, 2018 [56] : leukemia excess odds ratio (EOR) 13 (95% CI 2-26) per 100mGy, RBM 

(median+IQR): 10.1 (4.79-13.6) in the exposed group and RBM (median+IQR): 6.29 (5.69-7.14) in controls.
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Figure 1: Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses flow diagram of search, selection and inclusion of
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Figure 2: Odds ratio (OR) of leukemia risk following prénatal
medical diagnostic X-ray exposure
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Figure 3: Odds ratio (OR) of brain tumors risk following prénatal
medical diagnostic X-ray exposure

Click here to access/download;Figure;Fig 3.pdf ±

https://www.editorialmanager.com/prad/download.aspx?id=624008&guid=0a403640-d52d-4a00-ad95-b942dfcdd034&scheme=1


Figure 4: Excess relative risk (ERR) of leukemia risk following
postnatal medical diagnostic exposure to computed tomography
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Figure 5: Excess relative risk (ERR) of brain tumors risk following
postnatal medical diagnostic exposure to computed tomography
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Answers to the comments of the Editor:

Thanks to the editor for the interest on our paper and for the comments. Below is a point-by-point response to the 

comments provided

1. I thank you for a very well executed revision. I think the article now is excellently readable and 

interesting. Only some minor comments as follows.

2. The figure are pixelated. They should be re-exported from source, either as loss-less vector graphics 

(e.g. pdf) or else as tiff with at least 8,000 pixels' width.

Figures have been formatted accordingly

3. The lines remain too thin and fonts too small. Before submitting, please check how the figures would 

look at final size. Keep in mind they will appear smaller in the article.

Figures' lines have been modified

4. Fig 1: 'Exclusion criterion' should be 'Exclusion criteria'

Figure 1 has been modified

5. Figs 2, 3: Decimal point should be '.' not ','

Figures 2 and 3 have been modified

6. It may be helpful to the reader if you expand the figure legends slightly to explain what the figures 

demonstrate?

Figures' legends have been changed:

Figure 1: Preferred Reporting Items for Systematic Reviews and Meta-Analyses flow diagram of search, 

selection and inclusion of relevant studies

Figure 2: Odds ratio (OR) of leukemia risk following prenatal medical diagnostic X-ray exposure

Figure 3: Odds ratio (OR) of brain tumors risk following prenatal medical diagnostic X-ray exposure

Figure 4: Excess relative risk (ERR) of leukemia risk following postnatal medical diagnostic exposure to 

computed tomography scan

Figure 5: Excess relative risk (ERR) of brain tumors risk following postnatal medical diagnostic exposure 

to computed tomography scan

7. The enrolled/exposed columns do not seem to lead to the number in the OR columns of the tables. I

https://www.editorialmanager.com/prad/download.aspx?id=622803&guid=c9f2c0c2-0ca0-46dc-8a53-a99b057a0bcb&scheme=1


suppose because some studies looked at several different outcomes? Please can you add an explanation? 

Thank

As noted by the editor, the "Enrolled subject/Exposed" column in table 1 did not seem to lead readily to 

the OR reported because some studies considered various outcomes e.g. All cancer, leukemia, 

lymphoma, brain tumors etc., in that case the size reported in the "enrolled subject/Exposed" column is 

that for all cancer combined. In addition, since these studies are case controls, they accounted for major 

confounding factors and matched at least on factors such as age, sex, and geographic area. And the OR 

presented are yet the adjusted values on these variables, which are slightly different from the crude 

value. We modified the legend of the table accordingly.

"$ Value reported in the "Enrolled subject/Exposed" column is that for all cancer combined or that for the 

given cancer reported"

"§ Adjusted Odds Ratio or Hazard Ratio (value adjusted on at least age, sex and geographic area)"


