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Early life on land and the first terrestrial
ecosystems
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Abstract

Terrestrial ecosystems have been largely regarded as plant-dominated land surfaces, with the earliest records

appearing in the early Phanerozoic (<550 Ma). Yet the presence of biological components in pre-Phanerozoic rocks,

in habitats as different as soils, peats, ponds, lakes, streams, and dune fields, implies a much earlier type of terrestrial

ecosystems. Microbes were abundant by ~3,500 Ma ago and surely adapted to live in subaerial conditions in

coastal and inland environments, as they do today. This implies enormous capacities for rapid adaptations to

changing conditions, which is supported by a suggestive fossil record. Yet, evidence of “terrestrial” microbes is rare

and indirect in comparison with fossils from shallow or deeper marine environments, and its record has been

largely overlooked. Consequently, the notion that microbial communities may have formed the earliest land

ecosystems has not been widely accepted nor integrated into our general knowledge. Currently, an ample record

of shallow marine and lacustrine biota in ~3,500 Ma-old deposits, together with evidence of microbial colonization

of coastal environments ~3,450 Ma ago and indirect geochemical evidence that suggests biological activity in

>3,400 Ma-old paleosols endorses the idea that life on land perhaps occurred in parallel with aquatic life back in

the Paleoarchean. The rapid adaptations seen in modern terrestrial microbes, their outstanding tolerance to

extreme and fluctuating conditions, their early and rapid diversification, and their old fossil record collectively

suggest that they constituted the earliest terrestrial ecosystems, at least since the Neoarchean, further succeeding

on land and forming a biomass-rich cover with mature soils where plant-dominated ecosystems later evolved.

Understanding how life diversified and adapted to non-aquatic conditions from the actualistic and paleontological

perspective is critical to understanding the impact of life on the Earth’s systems over thousands of millions of years.

Introduction

Definition of “terrestrial”

Habitable, non-aquatic environments must have existed

all throughout the geologic history of Earth unless its

surface was entirely under water, which seems unlikely.

The definition of a terrestrial environment may not be

as trivial as it sounds. “Terrestrial” is defined here as

non-aquatic environments. However, even fully aquatic

ecosystems, such as lakes and coastal environments, cover

a wide spectrum of mixed environments where aquatic

and non-aquatic landscapes develop and overlap over

time. Habitats above sea level include aquatic (ice-covered

and ice-free lakes, ponds and wetlands, peats, rivers and

streams, geothermal fields) and non-aquatic environments

(especially areas with low rain regimes) that experience

drastic changes governed by tectonic activity and climatic

conditions, including the rise and fall of sea level,

glaciations, and rain regimes (e.g., Romans and Graham

2013). Microbes can be expected in all these environments

and, in the long term, they may have strongly influenced

the regional topography, sedimentation rates, sediment-

ary dynamics, and the reworking of previously emplaced

materials. This might be difficult to interpret sometimes

from the sedimentary record, especially in environments

whose configuration and sedimentary dynamics can

change in a relatively short time (days to decades), such

as coastal areas (deltas, estuaries, lagoons, evaporitic

flats, dunes, etc.; e.g., Hamblin and Christiansen 2007),

going from aquatic to non-aquatic environments in a

few centimeters or meters of rock strata.

Sedimentary deposits originating in fully aquatic environ-

ments (fluvial, lacustrine, shallow marine) can be further

exposed to the atmosphere for long periods of time

and undergo pedogenetic processes, which transform

some of the original features of the deposit into a soil
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(e.g. Paul et al. 2001 and references therein). The

rocks thus keep gross characteristics of the primary

deposit but are overprinted with the in situ, secondary

features derived from completely different environ-

mental conditions. Besides, elucidating timescales at

the outcrop scale is not always feasible and is fre-

quently overlooked in less resolved regional studies.

Ultimately, this has surely contributed to biases in the

interpretation of the evolution of the biosphere. In this

regard, the study of pedogenetic (e.g., development of

horizons, hardpans or duricrusts, peds, and clay com-

positional and mechanical—e.g., slickensides—features,

etc.) and microbial processes in spring and stream

microbialites (e.g., travertines, tufas, sinters) and exposed

sedimentary and rock surface habitats (endolithic habitats

and cryptogamic covers), is of particular importance

for the more comprehensive understanding of past life

because these represent terrestrial habitats expected

on ancient continental surfaces.

Caution and re-interpretation of the rock record

Through the integrative study of rocks and the under-

standing of the processes that formed them, including

the fossil record and our ability to date materials isotop-

ically, we have built a concept of the evolution of the

geosphere and the biosphere (see compendiums by

Schopf 1983; Canup and Righter 2000; Eriksson et al.

2004; Schieber et al. 2007; Van Kranendonk et al. 2007a;

Kasting 2009; Taylor et al. 2009; Knoll et al. 2012), des-

pite important and ongoing debate on the details. One

key element in this picture is the inception of life, which

has been interacting with and changing, maintaining,

and recirculating most of the materials existing in the

atmosphere and the supracrustal section of the Earth

for over ~80% of Earth’s history. This scenario has

been studied and interpreted over the years, aided by

the technology available at the moment, not always

correctly and also biased sometimes by the general

consensus (e.g., Hallbauer 1975; Gray and Boucot 1994;

Windley 2007). Also, our appreciation of the timing of

geological phenomena (soil formation, seafloor spreading,

mountain building, rock erosion, lake succession, etc.)

may be difficult to relate to other global changes (e.g. rapid

and profuse volcanism and rapid climatic oscillations

coexisting with slow seafloor spreading and continental

drift) when interpreting the rock record.

Besides the record being incomplete, the speed at

which biology operates compared to geology implies

that hiatuses of tens of millions of years (negligible in

Pracambrian timescales), represented by only a few

centimeters or meters of rock strata, bear enormous

opportunities for biological developments and adaptations

that may have not been preserved. This conceptualization

of the speed at which biotic and geological events occur

simultaneously requires a careful examination and re-

evaluation of Precambrian geological materials (aided by

the advancement of scientific knowledge and technology

around it) with a readiness to consider challenging

ideas (e.g., Retallack 2013), especially when recogniz-

ing fossils or when trying to reconcile them with their

paleoenvironments (Xiao and Knauth 2013).

The fossil record of microbes is largely related to

aquatic environments, and while abundant morpho-

logical, chemical, and geochemical evidence of diverse,

aquatic Archean life has reached wide acceptance and

consensus, the existence of life on Precambrian lands is

not always taken for granted. The historical perception

of plants as the dominant group on the land, together

with the first discoveries of macroscopic fossils only in

Phanerozoic rocks and the inability to correctly interpret

microbial and algal biosignatures, has perhaps infused

the generalized understanding of “colonized” terrestrial

ecosystems exclusively for plants (e.g., Bambach 1999).

In some instances, even when the existence of Precam-

brian terrestrial ecosystems may be recognized, they

are still treated doubtfully or not given adequate atten-

tion (Shear 1991; Behrensmeyer et al. 1992; DiMichele

and Hook 1992; Gray and Shear 1992; Gray and Boucot

1994) even after previous and important discussions

on the topic (e.g., Wright 1985; but see also Labandeira

2005).

The possible misinterpretation of terrestrial paleo-

environments and their relatively poor preservation in

the sedimentary record does not necessarily mean that

terrestrial life did not exist on the early continents.

Today there is growing evidence indicative of non-

aquatic environments colonized by microbes early in

Earth’s history, which is consistent with the extent of

modern microbial life on analog “barren” lands (deserts,

polar plains, alpine rocks, etc.) their outstanding diver-

sity and metabolic capabilities, and by the great diversity

and distribution of Precambrian microfossils, which is a

reflection of the microbial ubiquity at that time.

The setting for early life

The oldest materials yet found in the Solar System occur

in meteorites and are ~4,570 Ma (Mega annum, million

years) of age (Bouvier and Wadhwa 2010), which may

serve as a starting point for the condensation of the first

solids in our Solar System. By contrast, the oldest

materials on Earth (zircon crystals) go back ~4,400 Ma

(Wilde et al. 2001), leaving a hiatus of ~170 Ma in

Earth’s geological history. Regardless, it is assumed that

the Moon was already formed before 4,400 Ma (Canup

and Righter 2000; Yu and Jacobsen 2011) and that the

Earth’s nucleus, mantle, and lithosphere were already

differentiated (Nelson 2004; Boyet and Carlson 2005). At

least by ~4,200 Ma, but perhaps 200 Ma earlier, large

Beraldi-Campesi Ecological Processes 2013, 2:1 Page 2 of 17

http://www.ecologicalprocesses.com/content/2/1/1



water bodies were in place (Mojzsis et al. 2001; Nutman

2006; Cavosie et al. 2007, but see alternative views by

Deming 2002), while granitic (continental) and basaltic

(oceanic) crusts were constantly growing, resurfacing,

and remelting, interacting with water in non-uniform

regimes that evolved drastically from the Hadean to the

Neoarchean (Komiya et al. 1999; Nutman et al. 2002;

Myers 2004; Rino et al. 2004; Van Kranendonk 2004

and references therein; Furnes et al. 2007a; Adam

et al. 2012), changing from plume-dominated to plate-

dominated tectonics toward the late Paleoarchean

(Van Kranendonk et al. 2007b). It is plausible then,

that by the end of the heavy bombardment (Gomes

et al. 2005; Hartmann et al. 2000) some ~3,800 Ma

ago, the primitive lands and oceans were open niches

ready for the pioneering and rapidly evolving micro-

scopic life forms, for which occasional “sterilizing”

perturbations may be irrelevant given the resilience

and time scales at which biology operates compared to

geology.

Although life may have appeared only a few hundred

million years after Earth’s accretion (e.g., Lopez-Garcia

et al. 2006), sedimentary rocks older than ~3,850 Ma

(Nutman et al. 1996; Ishizuka 2008; Nutman et al. 2010;

O’Neil et al. 2011; Mloszewska et al. 2012), where biotic

events are most likely to be imprinted, are uncommon

on Earth. Yet, potential traces of life (e.g. biogenically

precipitated carbonates) may even be present in this an-

cient record (Nutman et al. 2010), suggesting that life it-

self can be several million years older than the oldest

known stromatolites and microfossils. Other putative

biosignatures older than 3,500 Ma (carbonaceous spherules

associated with apatite globules; see McKeegan et al. 2007;

Papineau et al. 2010a, 2010b) are also controversial (see

Myers 2001; van Zuilen et al. 2002; Fedo and Whitehouse

2002; Papineau et al. 2011) and may not imply a syngenetic

timing of formation with the host rock. Biosignatures of

particular interest would be those associated with biogenic

banded iron formations (e.g., Dauphas et al. 2004; Trendall

and Blockley 2004; Kappler et al. 2005; Konhauser et al.

2005; Koehler et al. 2010; Mloszewska et al. 2012) given

their potential antiquity of ~4,300 Ma (O’Neil et al. 2009).

Microfossils, microbialites, and isotopic and molecular

biomarkers indicate that prokaryotic life was abundant

by 3,500–3,400 Ma ago in shallow and deep marine

environments (Lowe 1980; Walter et al. 1980; Awramik

et al. 1983; Schopf 1983; Walter 1983; Walsh, 1992;

Walsh and Lowe 1985, 1999; Rasmussen 2000; Westall

et al. 2001; Furnes et al. 2004; Shen and Buick 2004; Tice

and Lowe 2004; Allwood et al. 2006; Banerjee et al.

2006; Westall et al. 2006a, 2006b; Ueno et al. 2006;

Schopf et al. 2007 and references therein; Shen et al.

2009; Westall 2010; Wacey et al. 2011), which supports

the notion that coastal and estuarine areas could have

been very productive by that time and that photosyn-

thesis was already operating (Awramik 1992; Rosing and

Frei 2004; Tice and Lowe 2004; Buick 2008; Hoashi et al.

2009; Kato et al. 2009; Kendall et al. 2010), though per-

haps not necessarily oxygenic (Kirschvink and Kopp

2008; Westall et al. 2011; Li et al. 2012).

Many different settings have been proposed as likely

or “optimum” for the emergence and prosperity of life,

ranging from deep-sea hydrothermal vents and geother-

mal springs, to land surfaces and mineral-water-air

interphases (Baross and Hoffman 1985; Retallack 1986a;

Holm 1992; Battistuzzi and Hedges 2009; Aller et al.

2010; Hazen and Sverjensky 2010; Mulkidjanian et al.

2012). However, one preferred environment where many

of the oldest signs of life are found is shallow marine

continental margins (see references in Schopf and Klein

1992). Whether this is a true fact or a consequence of

the incompleteness/selectivity of the record is still to

be resolved. However, in these coastal environments

microbes were likely to have been periodically exposed

and desiccated, as happens in most such environments

today, and likely developed adaptations for long-term

desiccation regimes (e.g., thick hygroscopic sheaths)

and high UV radiation (e.g., living interstitially).

Some of the oldest examples of life activity, which

come precisely from aquatic, shallow marine (Klein et al.

1987; Schopf and Klein 1992; Van Kranendonk et al.

2008; Westall 2010; Van Kranendonk 2011; Hickman

and Van Kranendonk 2012), shallow lacustrine (Awramik

and Buchheim 2009; Hickman and Van Kranendonk 2012),

and intertidal environments (e.g., Noffke et al. 2006; Noffke

2010; Noffke et al. 2011; Westall et al. 2011), show signs

of evaporation (e.g., Noffke et al. 2008; Westall et al.

2011; Hickman and Van Kranendonk 2012), which

suggests that early microbial communities in shallow

waters had to deal with periodic desiccation and UV ra-

diation >3,400 Ma ago. This further implies adaptations

to resist desiccation, salinity fluctuations, and UV ra-

diation that could be successfully used even after

prolonged desiccation. Dry conditions can be expected

also for lacustrine and fluviatile environments. Desiccation

allows dispersion by wind, which seems like a reasonable

means for land colonization. Through this mode of disper-

sion, communities would tend to be at or near the surface

instead of underground, even when migration to aquifers

can occur. Perhaps environments with periodic subaerial

exposure (especially estuarine and intertidal) were crucial

scenarios for a biological transition from water to land.

Apparently not only prokaryotes were abundant in shal-

low Precambrian environments; the oldest eukaryotic-like

fossils (acritarchs; Buick 2010) found so far (that perhaps

needed oxygen for advantageous energetic and metabolic

capabilities) are ~3,200 Ma old and were also present in

estuarine environments (Javaux et al. 2010). This indicates

Beraldi-Campesi Ecological Processes 2013, 2:1 Page 3 of 17

http://www.ecologicalprocesses.com/content/2/1/1



that life achieved a relatively rapid global presence and

had diversified enough (Kandler 1994; Altermann and

Schopf 1995; Ueno et al. 2006; Blank 2009; David and Alm

2011) to occupy a wide variety of ecological niches by the

Paleoarchean, even in places that may have been severely

disturbed by asteroid impacts (see Walsh 1992 and

references therein). Even greater biological diversity, ubi-

quity, abundance, and habitats are seen in the younger

Proterozoic record (e.g., Schopf 1992a; Schopf and Klein

1992), for which rocks are better preserved and more

abundant than Archean ones.

The fossil record of terrestrial life

The earliest remnants of continental crust may derive

from ≥3,500 Ma-old submillimeter zircons (Nutman

2006) and regional rock outcrops (Buick et al. 1995;

Iizuka et al. 2006; Stern and Scholl 2010; Adam et al.

2012). Supplementary evidence for exposed lands may

consist of thick soils developed on these ancient surfaces

(Buick et al. 1995; Hoffman 1995; Ohmoto et al. 2007;

Johnson et al. 2009, 2010). The further growth of

continents and their sedimentary cover, implying exten-

sive intracratonic terrestrial settings that remained rela-

tively stable (although still affected by erosion, sea level

changes, tectonics, and volcanism), is reflected in the

ample record of paleosols onward (see study approaches

and examples by Jackson 1967; Gay and Grandstaff

1980; Holland 1984; Aspler and Donaldson 1986;

Grandstaff et al. 1986; Kimberley and Grandstaff 1986;

Reimer 1986; Retallack 1986b; Farrow and Mossman

1988; Zbinden et al. 1988; Palmer et al. 1989; Holland

1992; Gall 1994; Macfarlane et al. 1994; Martini 1994;

Retallack and Mindszenty 1994; Driese et al. 1995;

Banerjee 1996; Ohmoto 1996; Prasad and Roscoe 1996;

Gutzmer and Beukes 1998; Thiry and Simon-Coincon

1999; Rye and Holland 2000; Watanabe et al. 2000;

Retallack 2001 and references therein; Yang and Holland

2003; Driese and Gordon-Medaris 2008; Pandit et al.

2008; Bandopadhyay et al. 2010). This record of old

paleosols holds indirect proof of the early environmental

conditions on Earth and early life on land.

Currently, the oldest and direct evidence of terrestrial

life comes from ~2,900–2,700 Ma-old (see age determin-

ation of Witwatersrand deposits in Kositcin and Krapez

2004; Zhao et al. 2006), organic matter–rich paleosols

(Watanabe et al. 2000), ephemeral ponds (Rye and Holland

2000) and alluvial sequences, some of them bearing

microfossils (Hallbauer and van Warmelo 1974; Mossman

et al. 2008). Interestingly, their occurrence in such settings

coincides with drastic changes in Earth’s crustal configur-

ation and the —perhaps abrupt—emplacement of large

continental masses in the late Archean (Condie 2004;

Eriksson and Martins-Neto 2004; Van Kranendonk 2004

and references therein; Hazen et al. 2012), a marked step in

the oxygenation of the atmosphere (Kendall et al. 2010),

and also with estimations of land colonization by microbes

based on phylogenetic relationships (Battistuzzi et al. 2004).

Although microbes could have colonized the land before

this time, the Meso- to Neoarchean appears to be an

important evolutionary time period for terrestrial mi-

crobial communities, perhaps linked to supercontinent

growth (Santosh 2010) and the emergence of potential

new habitats.

Later in time, the amount of organic matter–rich and

possibly “biologically weathered” paleosols (Ohmoto 1996;

Beukes et al. 2002; Driese and Gordon-Medaris 2008), ter-

restrial sedimentary structures of presumed biotic origin

(Hupe 1952; Lannerbro 1954; Voigt 1972; Eriksson et al.

2000; Prave 2002), and microfossils themselves (Cloud and

Germs 1971; McConnell 1974; Horodyski and Knauth

1994: Strother et al. 2011) drastically increased throughout

the Proterozoic. Likewise, marine microfossils display in-

creasing biological developments and adaptations (Knoll

et al. 2006). Biotic diversity and abundance become even

greater from the Neoproterozoic-Phanerozoic transition

to the recent (see Zhuravlev and Riding 2001; Xiao and

Kaufman 2006; Gaucher et al. 2010). This timeline

suggests a rapid and global development of life on Earth,

with life forms adapted to live on the land more than

2,000 Ma before the earliest fossil record of land plants

(Heckman et al. 2001; Gensel 2008). Important events in

this chronology are depicted in Figure 1.

Functioning of primitive terrestrial ecosystems and

cyanobacteria

A conceptualization of the functioning of the ancient

terrestrial biosphere necessarily requires a general

understanding of modern, analog microbial communi-

ties to evaluate their living requirements, diversity,

physiology, and environmental impact, and to characterize

any potential biosignature that could be used to recognize

them in the rocks. Modern terrestrial microbial communi-

ties are found worldwide and in a great variety of local

conditions, in surface (solid rock, regolith) and subsur-

face (caves, groundwater, deep ground) environments

(although the latter could be considered aquatic by

some). However, it is unclear which one is more product-

ive in terms of biomass (Pace 1997) and what metabolisms

have dominated those systems—and to what extent—over

geologic time scales (Sleep and Bird 2007).

An understanding of the biology and distribution of

modern microbes, which are ubiquitous in today’s Earth’s

biosphere (Figure 2), seems essential for an understanding

of their ancient counterparts and their impact on early ter-

restrial ecosystems. Estimates of the genetic diversity and

biomass distribution in drastically different environments

(e.g., Garcia-Pichel et al. 2003; Lozupone and Knight 2007;

Nemergut et al. 2011) depict the ample range of strategies

Beraldi-Campesi Ecological Processes 2013, 2:1 Page 4 of 17

http://www.ecologicalprocesses.com/content/2/1/1



that terrestrial organisms, particularly primary producers,

have developed for living on the land. Oxygenic

photoautotrophy seems to be a particularly important

capability of terrestrial organisms, simply because their

energy source (light), reductant power (water), and car-

bon source (CO2) are readily available in these

environments. In comparison, other primary producers

(e.g., chemolithotrophs) are restricted to aqueous

environments because they require soluble sources of

reductants (e.g., H2, Fe2+, H2S, HS−) and exergonic

reactions to maintain their metabolism (White 2000).

Besides being restricted to aquatic environments,

chemolithotrophs are also less energy-efficient than

oxygenic photoautotrophs (DesMarais 2000; Madigan

et al. 2003; Konhauser 2007), and less likely dominant in

subaerial environments.

Cyanobacteria have been the only organisms that

developed special pigments and enzymatic capabilities

for using water as a source of electrons. This process

has allowed them to live outside the water in any suit-

able environment, even where water might be a limiting

factor, such as deserts (e.g., Potts and Friedmann 1981).

Oxygenic photosynthesis also contributed to the oxida-

tion of the atmosphere (both by sequestering CO2 and

by producing O2), a global and ongoing process with

profound geochemical, atmospheric, hydrological, and

biological implications (e.g., Rosing et al. 2006; Och and

Shields-Zhou 2012; Pufahl and Hiatt 2012). Cyanobac-

teria and other prokaryotes, can also fix gaseous nitro-

gen, which seems of great advantage for an independence

from dissolved N species, such as NH4 and NO3 (Glass

et al. 2009). The appearance of cyanobacterial akinetes

(for N2 fixation) in the Paleoproterozoic (Tomitani et al.

2006) attests to this early adaptation. For organisms on

the land, a limiting nutrient, such as P, can be supplied by

dust deposition (Kennedy et al. 1998; Reynolds et al. 2001;

McTainsh and Strong 2007), which may be an alternative

process for replenishment of nutrient loss by runoff and

Figure 1 Suggested chronology of geological, atmospheric, and biological events during the Hadean, Archean, and Paleoproterozoic

eons. Geological events were compiled from references within Canup and Righter (2000), Eriksson et al. (2004), and Van Kranendonk et al. (2007a,

2007b). Asteroidal impact history is by Glikson (2007). Emplacement of the oceans is by Nutman (2006). The dashed line at 2,500 Ma marks an

abrupt change into an oxygenated atmosphere (see Kendall et al. 2010), although oxygen may have started accumulating beforehand (Ohmoto

2004). Oxygenation events are considered to have occurred in pulses of unknown magnitude and duration and are correlated with a putative

origin of oxygenic photosynthesis by cyanobacteria, based on a theoretical timing estimated by Lazcano and Miller (1994) and considering the

emergence of life at 3,800 Ma. On the line of cyanobacteria, alternative origins are indicated with a black (Schirrmeister et al. 2013) or a white

mark (Kirschvink and Kopp 2008). The MISS (Microbially Induced Sedimentary Structures; see Noffke et al. 2001), cyanobacteria, and the unicellular

eukaryotic-like acritarchs are represented within both aquatic and terrestrial realms. Glaciations are from Hoffman and Schrag (2002), shown in

combined colors to represent atmospheric (climatic) and hydrological (ice formation) processes. Other biological evolutionary steps and paleosol-

related data are from Hallbauer and van Warmelo (1974), Holland (1984), Schopf (1983), Schopf and Klein (1992), Han and Runnegar (1992),

Golubic and Seong-Joo (1999), Rye and Holland (2000), Retallack (2001), Westall et al. (2006a, 2006b), Johnson et al. (2009, 2010), El Albani et al.

(2010), Javaux et al. (2010), and Noffke (2010).
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leaching in such environments (e.g. Beraldi-Campesi et al.

2009); S can also be acquired from minerals, aerosols, and

as gaseous sources, likely present in the early atmosphere

(Holland 1984). Thus, the nutritional requirements for

oxygenic, photoautotrophic, primary producers seem not

to have been a limiting factor for the colonization of the

land. This idea has also been discussed in light of physio-

logical and genetic characteristics of terrestrial microbes

(Battistuzzi et al. 2004; Battistuzzi and Hedges 2009). Yet,

an earlier chemotrophic way of life also needs to be

considered (Shen and Buick 2004; Sleep and Bird 2007).

Particularly for the early terrestrial biota, a minimum

set of adaptations to live subaerially must have included

protection against radiation and desiccation effects.

Adaptations such as thick polymeric sheaths with

hygroscopic capacity against desiccation, efficient DNA

repair mechanisms to restore metabolic activities as

soon as water is available, and the production of UV-

shielding pigments are certainly successful strategies

displayed by terrestrial cyanobacteria (Shephard 1987;

Garcia-Pichel 1998; Yasui and McCready 1998; Potts

1999; Sinha and Hader 2002; Singh et al. 2010). Refined

degrees of adaptation of terrestrial organisms include

sunscreens that once placed within the extracellular

sheaths, passively protect against UV radiation, even

when the cell is dormant or dehydrated (Garcia-Pichel

and Castenholz 1991; Gao and Garcia-Pichel 2011).

Some of these strategies for living on the land likely

evolved early and are partially displayed by microfossils

(e.g., thick sheaths), which are sometimes associated

Figure 2 Variety of environments known to be inhabited by microbes. Ranges of environmental fluctuations (latitude, pH, salinity, and

temperature) where microbes can be found are also shown (see Madigan and Marrs 1997; Madigan et al. 2003; Konhauser 2007). Direct and

indirect interactions between different microbial communities, as well as symbiotic associations, coevolution, and horizontal genetic exchange

(e.g., Davison 1999; Gogarten et al. 2007) are assumed to drive and have driven ecological processes and adaptations to habitat variability.
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with evaporitic sediments, in keeping with subaerial

exposure (Schopf 1968; Hofmann 1976; Golubic and

Campbell 1979; Awramik et al. 1983).

Modern cyanobacteria-driven communities can be found

in any terrestrial environment (~30% of modern Earth’s

surface area). They include endolithic communities

(Friedmann 1980; Sun and Friedmann 1999; Büdel et al.

2004) and cryptogamic covers (CGC) on rocks and soils

(Belnap and Lange 2001; Elbert et al. 2012). The latter

have been shown to be very complex and dynamic and

contain many distinct functional groups of prokaryotes

and eukaryotes, ranging from primary producers to

decomposers of specific materials, and grazers (Fritsch

1922; Fletcher and Martin 1948; Campbell 1979;

Bamforth 1984, 2004; Garcia-Pichel et al. 2001; Nagy

et al. 2005; Tirkey and Adhikary 2005; Chanal et al.

2006; Reddy and Garcia-Pichel 2006; Bates and Garcia-

Pichel 2009; Neher et al. 2009; Meadow and Zabinski

2012 Bates et al. 2013). This diversity is variable based

on local environmental conditions, but all CGC—albeit

with few exceptions (e.g., Hoppert et al. 2004)—have in

common the presence of cyanobacteria. This speaks for

the evolutionary success that cyanobacteria have had

over other microbes throughout time.

Although fossil analogs of CGC have been discovered

in ancient sediments (Simpson et al. 2010; Beraldi-

Campesi et al. 2011; Retallack 2009, 2011; Sheldon

2012), it is unknown what their microbial composition

might have been. However, morphological similarities

between modern and fossil counterparts are remarkable

(Schieber et al. 2007; Noffke 2010). Morphological re-

semblance between fossils and recent analogs suggests

that cyanobacteria are indeed a very old group of bacteria

(see Golubic and Seong-Joo 1999) and that at least some

morphological traits have been maintained over time

(Golubic and Hofmann 1976; Golubic and Campbell 1979;

Schopf 1992b). Moreover, as cyanobacteria are such an

old group and are so well adapted to colonizing unstable

sediments (Booth 1941; Campbell et al. 1989; Mazor et al.

1996; Belnap and Gillette 1998; Malam Issa et al. 2001; Hu

et al. 2002; Garcia-Pichel and Wojciechowski 2009), even

where available water is scarce and there is considerable

UV radiation (Fleming and Castenholz 2007; Giordanino

et al. 2011), it is likely that they were also primordial

components on land surfaces (Campbell 1979) and

influenced the formation of sedimentary biostructures and

textures represented in fossil examples (e.g., Prave 2002;

Schieber et al. 2007; Noffke, 2011). The antiquity of cyano-

bacteria has been also estimated by molecular clock ana-

lyses of genomic distances to be ~3,000 Ma (Battistuzzi

and Hedges 2009; Schirrmeister et al. 2013), which more-

or-less coincides with the age of the oldest terrestrial

microfossils (Mossman et al. 2008). This timing, however,

may vary depending on the calibration points used for

constructing phylogenies and the extent of horizontal

gene transfer. Lastly, the capacity of chlorophyll a to ab-

sorb higher photonic energies to split water in compari-

son to other photosynthetic bacteriochlorophylls (Xiong

et al. 2000) may be the result of selective pressures to

use the shorter wavelengths that reached the Precam-

brian surface where cyanobacteria had to dwell, a cap-

acity not seen in purple or green phototrophic bacteria

that use less energetic wavelengths in submerged/

shielded habitats. Thus, from a multi-angular perspec-

tive cyanobacteria seem the perfect candidates for the

colonization of the earliest lands.

As mentioned above, most CGC have in common

the presence of filamentous cyanobacteria. One prop-

erty of these morphotypes is that they can glide through

interstitial spaces using hollow hygroscopic sheaths of

mucilage as trails, to shield themselves against radiation,

to find their optimum light regime, or to track water

(Garcia-Pichel and Pringault 2001). The nature of the fila-

mentous members of these communities also provides

more surface area and tension for fastening and binding

disaggregated particles (Garcia-Pichel and Wojciechowski

2009). Polysaccharides secreted extracellularly provide

additional cementing force to the entire organo-mineral

framework, resulting in the formation of a (crust/mat)

stable microenvironment. The intrinsic characteristic of

filamentous microbes to form cohesive layers at sediment-

ary surfaces is also known to substantially decrease wind

and water erosion in modern arid and semiarid areas of

the world (Belnap and Gillette 1998; Belnap and Lange

2001). Although some erosive forces may surpass the tear

resistance of CGC in high-energy systems (e.g., Corcoran

and Mueller 2004), this property of microbes has been

invoked to explain the stability of thick, Precambrian si-

liciclastic sedimentary sequences (Dott 2003) and the soft

deformation properties of microbial mat-like structures

(see references in Schieber et al. 2007). This is an import-

ant property of microbes for the functioning of siliciclastic

ecosystems, and together with the presence of mature and

organic-rich soils and microfossils in old Proterozoic strata

(see references above), suggests that abundant “crypto-

gamic” covers were present on Precambrian lands, similar

to those covering polar and arid areas of the world today.

The addition of new members to these communities over

time (most importantly algae and fungi, but also grazers)

is expected and may be used to explain increasing

weathering rates of the continents (Kennedy et al. 2006)

and abrupt changes in the global balance of the C cycle in

the Neoproterozoic (Knauth and Kennedy 2009).

Other microbial components

Judging from the rapid achievement of diversity and dis-

tribution of early microbial biota and from microbial

successions seen in modern “barren” lands (e.g., Sigler
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et al. 2002; Schmidt et al. 2008; Fierer et al. 2010), it

is expected that heterotrophic organisms were also

part of land communities, as they seem to be an inev-

itable component in this type of consortia. Under this

perspective, primitive microbial ecosystems cannot be

understood as composed only of autotrophic primary

producers, but also a myriad of other microbes finding

their niche within such pre-existent microenvironments.

For example, actinobacteria in modern CGC not only

degrade large quantities of organic exudates from

cyanobacteria, a process which influences the C cycle,

but they also seem to be structural components of these

sedimentary biostructures (e.g., Reddy and Garcia-

Pichel 2006). The same applies to other bacteria (e.g.,

Bacteroidetes and Proteobacteria) that secrete large

quantities of mucopolysaccharides, which aid in gluing

soil particles together and may also have a critical role

in the hydraulic conductivity of the surface substrate

(Rossi et al. 2012). One of the most important eukaryotic

component of of modern CGC are fungi, which must have

played a key role in the colonization and weathering of

bare rocks in the past (with symbiont cyanobacteria or

algae), as well as in the successive development of vascular

plants on the land (Smith and Read 2008) and in a radical

change toward more “modern” terrestrial ecosystems

(Blackwell 2000; Heckman et al. 2001; Taylor et al. 2009.

See also Gadd 2006).

Although the timing of the origin of these organisms

is unknown, terrestrial microbes can certainly drive im-

portant chemical transformations in soils (Keller and

Wood 1993; Schwartzman and Volk 1989; Chenu and

Stotzky 2002; Ehrlich 2002; Chorover et al. 2007) and

endolithic habitats (Konhauser et al. 1994; Sun and

Friedmann 1999; Büdel et al. 2004; Omelon et al. 2006)

that may have operated in the past. These include

affecting the reactivity of mineral surfaces with secreted

metabolites (Geesey and Jang 1990; Welch et al. 1999),

changing the pH and redox potential of the microenvir-

onment (Bennett et al. 2001), or secreting metal ligands

and other organic complexes that react with solutes and

minerals (Keller and Wood 1993; Schwartzman and

Volk 1989; Barker et al. 1998; Welch et al. 1999; Bennett

et al. 2001). These mechanisms seem to play a funda-

mental role in biogeochemistry (weathering, clay forma-

tion, nutrient bioavailability, metal concentration and

bioavailability, mineral formation or transformation,

etc.), and their effects may also be used to trace microbial

geochemical biosignatures in the rock record (Beraldi-

Campesi et al. 2009). Additionally, the process of soil for-

mation and maturation is usually understood as aided by

biology (Keller and Wood 1993; Schwartzman and Volk

1989; Brady and Weil 2008) and differentiated from abi-

otic regolith development, and involves a critical step prior

to plant and animal colonization of the land. All these

characteristics displayed by modern CGC could be

expected from ancient analog communities, although

with variations in the occurrence and magnitude

dictated by their limiting factors.

Dust

The mechanism of dust formation, transport, and depos-

ition reflects one important aspect of the functioning

of terrestrial ecosystems because dust can only be

formed on the land and because microbes (along with

water adhesion and neo-cementation of particles with

salts and clays) can stabilize fine dust particles through

trapping and binding (e.g., Dong et al. 1987; Liu et al.

1994; Williams et al. 1995; Belnap and Gillette 1998;

Hu et al. 2002). Thus, dust production can potentially

be regulated by microbes (and other encrusting processes)

depending on their degree of development. The more

developed, the less dust production.

Dust is an important carrier of nutrients, and its

retention on the ground might influence the budget

and delivery of those nutrients locally or to other

distant ecosystems, such as happens in modern marine

environments via deposition of huge loads of dust (Jickells

et al. 2005). The capacity of microbes to trap and bind

particles has been demonstrated for numerous underwater

and subaerial environments (Gunatilaka 1975; Zhang

1992; Takeuchi et al. 2001; Altermann 2008; Gradzinski

et al. 2010; Williams et al. 2012). If microbes were respon-

sible for much of the global dust capture, retention, and

lixiviation on the early continents, recycling effects may

have had profound implications for the evolution of global

ecosystems through geologic time, as well as for important

climatic processes, such as those rooted in atmospheric

albedo variations (Harrison et al. 2001; Jickells et al. 2005;

Lau et al. 2006).

Finally, dust is also a carrier of microbes and viruses

(Abed et al. 2011; Al-Bader et al. 2012), which implies a

means for biological dispersion that must have been

operating continuously and over long distances in the

past, amplifying the potential biogeography of bio-

logical entities over vast areas of the oceans and

continents. Although the rate of survival and the suc-

cess of foreign airborne mixed communities on aquatic

environments, barren or already colonized surfaces is

not known, it is plausible that such a mechanism was

vital for the colonization of the early continents and

the increase in ecological complexity and genetic ex-

change (e.g., Gogarten et al. 2007).

Underground realm

The underground realm (geothermal veins, aquifers, soil

subsurface, all types of caves) should also be considered

potential continental habitats for early terrestrial life, as

life is abundant there today (e.g., Ghiorse and Wilson
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1988; Barton and Northup 2007; Engel 2010). The Pre-

cambrian record of caves (e.g., karstic environments) or

underground aquifers (detected through nodules and

concretions in the rocks) is far less known than the typ-

ical shallow marine or lacustrine environments (see

examples of karstic and underground environments in

Nicholas and Bildgen 1979; Schau and Henderson 1983;

Glover and Kah 2006; Skotnicki and Knauth 2007;

Rasmussen et al. 2009). Nevertheless, these environments

must have existed throughout Earth’s history, and thus, ter-

restrial biotas could have adapted to live in those conditions

back in the Precambrian (Rasmussen et al. 2009).

In contrast to the most typical subaerial, light-driven

primary producer communities, underground microbes

require a chemosynthetic metabolism for primary prod-

uctivity, perhaps relying on the oxidation of sulfur and

iron compounds to support growth and continuity, as

these are the main energy sources in such environments

(Sarbu et al. 1996; Chen et al. 2009; Porter et al. 2009).

Because these metabolic pathways are less energetic than

photosynthesis, life underground is expected to have

been slow-growing, less dynamic in terms of diversity

and interactions, and more geographically contained

than, for example, subaerial phototrophs. Nevertheless,

early underground dwellers may have impacted the sub-

surface realm (cave formation, buried oil and dissolved

organic matter consumption, methane production, etc.)

and contributed to the neoformation and dissolution of

minerals over the long term, as well as to the generation

of gaseous byproducts (e.g., H2S, CH4, CO2) that could

be important for geochemical processes on the surface

and ultimately for distant communities and global biogeo-

chemical recycling. Moreover, this type of environments

could have been better protected from drastic and global

crisis than subaerial ones, and thus have functioned

as living reservoirs that could later exploit surface

environments.

A note on biosignatures

Imprints of life in rocks can be formed in various ways

and can be recognized as long as the rocks are preserved

and accessible. Although this “fossil” record decreases in

outcrop abundance the older the rocks are (basically due

to burial, erosion, subduction, and metamorphism),

biosignatures can be found in sedimentary rocks (Schopf

1983; Schopf and Klein 1992; Schieber et al. 2007;

Noffke 2010), but also in igneous (Banerjee et al. 2006;

Furnes et al. 2004, 2007b; Fliegel et al. 2010) and meta-

morphic (Franz et al. 1991; Hanel et al. 1999: Squire

et al. 2006; Bernard et al. 2007; Schiffbauer et al. 2007,

2012; Schiffbauer and Xiao 2009; Zang 2007) rocks of

all ages.

Preservation will always be favored in underwater

settings, especially if biological materials are buried quickly,

the sediment is fine grained, and the conditions are overall

reducing (anoxic). All of these factors promote rapid

mineralization and replacement of biological materials

(Farmer 1999; Zonneveld et al. 2010; Allison and Bottjer

2011; Lalonde et al. 2012) which can preserve the morph-

ology and organic remains, although this does not mean

that preservation always happens (Zonneveld et al. 2010

and references therein). Unless protected, organic matter

tends to degrade basically by photo-chemical degradation

(if exposed to light), chemical bond breaking, biological

recycling, mechanical maceration and dissolution. If

body fossils are preserved, the lack of diagnostic morph-

ologies for most bacteria and the possible existence of

abiotic, microbe-like morphologies (e.g., García-Ruiz

et al. 2002, Garcia-Ruiz et al. 2003) make their deter-

mination a challenge. Yet, their presence in a suitable

geological context and association with sedimentary

biostructures may be used as criteria for biogenicity.

Molecular biomarkers in hydrocarbons that can be

correlated with extant organisms (e.g., Summons et al.

1999) also require careful confirmation of syngenicity

for a correct interpretation (Rasmussen et al. 2008;

Brocks 2011).

If limiting factors are at play, microbial communities

may not develop sufficient biomass to leave behind a

biosignature (either chemical, geochemical, mineralogical,

or morphological). Water, for example, which is the most

basic requirement for survival and reproduction, tends to

be a limiting factor on the land compared to a permanent

water body. If microbial growth is thus limited, the

amount of cells and biomass that can be preserved

decreases. Thus, organisms with access to unlimited water

resources would be able to grow larger communities and

have more possibilities for fossilization, in contrast to ter-

restrial microbes that depend on dew or rain for their sur-

vival and maintenance. For example, the thickness and

cohesiveness of a marine-intertidal microbial mat (see

Bauld 1981; Bauld et al. 1992) are greater than in a mature

biological soil crust (Belnap and Lange 2001), thus the lat-

ter will be less prone to fossilization than the marine one.

Nevertheless, under favorable climates and landscapes,

these too could be preserved (e.g., Prave 2002). Studies

on biosignatures left behind by terrestrial microbial

communities are needed for comparison against the yet-

to-explore rock record.

Conclusions

As the Earth was evolving, gradual degassing and accu-

mulation of liquid water at its surface differentiated

aquatic and non-aquatic environments. Because terres-

trial environments have always existed, it is possible that

life evolved on the land (including in lakes, rivers,

streams, and flooding areas) as early as aquatic life itself

(see Retallack 1986a and references therein). In any case,
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living on the land must have required particular

adaptations, such as the capability to acquire nutrients

and energy sources outside the aquatic realm, the de-

velopment of molecular repairing mechanisms, and

protection against radiation and desiccation. These

adaptations were certainly developed by cyanobacteria,

a group with a very old biologic lineage and one of

the most conspicuous and successful primary producers

on Earth (e.g., Whitton and Potts 2000; Herrero and

Flores 2008).

Direct and indirect evidence pointing to inhabited

terrestrial environments by the Paleoarchean (Johnson

et al. 2009, 2010) and the following eras (Stüeken et al.

2012), along with substantive evidence of terrestrialization

from the Neoarchean onward (Hallbauer and van

Warmelo 1974; McConnell 1974; Horodyski and Knauth

1994; Gutzmer and Beukes 1998; Rye and Holland 2000;

Watanabe et al. 2000; Prave 2002; Rasmussen et al. 2009),

strongly implies that functional terrestrial ecosystems

originated well back in the Precambrian. The implications

for such colonization have not been completely under-

stood, but the effects of microbial life on land processes

that affect the atmosphere, the lithosphere, and the hydro-

sphere, are widely diverse and act at all scales. Two main

consequences derived from the activities of land biota are

the continuous oxygenation of the atmosphere (with

consequences for the stratification of the oceans, the

formation and maintenance of the ozone layer, and

the precipitation of oxides, among others) and the

weathering of the continents (Holland 1984; Catling

et al. 2001; Stüeken et al. 2012), which indirectly and

directly affect marine ecosystems. In contrast to mar-

ine biota, which indirectly affect terrestrial ecosystems

through atmospheric processes (including gas compos-

ition and climate), the establishment of life on the

land has an enormous significance for the evolution

of the planet through time because gaseous byproducts,

such as oxygen produced on the land would be released

directly into the atmosphere and not dissolved in the

oceans first. Once in the atmosphere oxygen would react

with reduced species before starting to accumulate and

produce a geochemical signature in marine sediments.

Thus, land-based life could have been pivotal for the early

oxygenation of the atmosphere, which later affected the

oceans as well. A more direct influence of land-based

communities over aquatic ones would be the production

of dust, clays and leachates on the continents (Kennedy

and Wagner 2011 and references therein), which would

then be carried by rivers and wind into the oceans, and

thus increasing the heterogeneity of materials and solutes

delivered into oceanic ecosystems and having either bene-

ficial or detrimental consequences for marine life. Yet, an

overall retention of sediments on the land via microbial

stabilization would be expected for detritic sediments in

places with well-developed cryptogamic covers. Finally, it

is expected that the time span from the inception of mi-

crobial land-based life to the evolution of the first plant

ecosystems took long enough (2,000–2,500 Ma) for coastal

and inland settings to be transformed into organic- and

nutrient-rich substrates that could later be exploited by

more evolved communities and organisms toward the

Neoproterozoic-Phanerozoic transition.

In general, the logical transition from cyanobacteria

(and other bacteria and archea), to algae (and protists

and fungi), to non-vascular plants, to vascular plants,

may still be valid, but the timing of those evolutionary

steps needs to be updated with the latest pertinent infor-

mation available. The notion that the land was virtually

sterile in the Precambrian (e.g., Bambach 1999; Blackwell

2000; Corcoran and Mueller 2004; Nesbitt and Young

2004; Gensel 2008) underestimates the impact that

microbes could have had on the biosphere. More im-

portantly, the idea the land was first colonized by plants

and that they formed the earliest terrestrial ecosystems

should be abandoned completely. That is not to say that

the advent of plants in the Phanerozoic did not have

strikingly enhanced effects on continental weathering,

soil formation, and oxygenation of the atmosphere

(Labandeira 2005; Taylor et al. 2009), but neglecting the

existence of microbial, Paleoarchean-to-recent terrestrial

ecosystems would impede a realistic understanding of

the evolution of the biosphere and its influence on the

geo-atmo-hydrosphere over time.
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