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Abstract Metabolic syndrome (MetS) affects more than 47
million people in the U.S. Even more alarming, MetS, once
regarded as an “adult problem”, has become increasingly
common in children. To date, most related research and inter-
vention efforts have occurred in the adult medicine arena, with
limited understanding of the root causes and lengthy latency
of MetS. This review highlights new science on the early life
origins of MetS, with a particular focus on exposure to two
groups of environmental toxicants: endocrine disrupting
chemicals (EDCs) and metals during the prenatal and early
postnatal periods, and their specific effects and important
differences in the development of MetS. It also summarizes
available data on epigenetic effects, including the role of
EDCs in the androgen/estrogen pathways. Emerging evidence
supports the link between exposures to environmental toxi-
cants during early life and the development of MetS later in
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life. Additional research is needed to address important re-
search gaps in this area, including prospective birth cohort
studies to delineate temporal and dose—response relationships,
important differences in the effects of various environmental
toxicants and their joint effects on MetS, as well as epigenetic
mechanisms underlying the effects of specific toxicants such
as EDCs and metals.

Keywords Diabetes - Environmental toxicants - Metabolic
syndrome - Obesity - Prenatal exposure

Introduction

Metabolic syndrome (MetS) consists of a cluster of clinical
conditions, including elevations in blood glucose levels and/or
insulin resistance, lower levels of high density lipoprotein
cholesterol (HDL-C), hypertriglyceridemia and hypertension,
and abdominal obesity [1]. MetS affects more than 47 million
people in the U.S [2]. Adults with MetS have a threefold higher
risk of coronary heart disease and stroke and a five to six times
higher risk of mortality [3]. People with MetS are also at high-
risk of type 2 diabetes [4]. Even more alarming, MetS and its
components, including obesity, diabetes, dyslipidemia and hy-
pertension, once regarded as “adult problems”, have become
increasingly common in children at younger and younger ages.

Additional research and public health efforts are needed to
improve prevention of MetS. Most related research and inter-
vention efforts have primarily occurred in the adult medicine
arena, where there is a limited understanding of the root causes
and lengthy latency of MetS. Emerging evidence supports the
‘fetal programming’ hypothesis, which highlights the impor-
tance of exposures that occur during the prenatal period in the
development of metabolic disorders later in life (Fig. 1) [5, 6¢].
Observations that maternal malnutrition during pregnancy is
associated with type 2 diabetes, cardiovascular disease and
MetS in later life [7, 8] have led to the hypothesis that in utero
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Fig. 1 The potential mechanisms
underlying the development of
metabolic syndrome (MetS)
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determinants of birth weight may program the fetus for elevat-
ed risk of chronic disease in adulthood. Given the widespread
production and use of synthetic chemicals and metals, in
parallel with growing epidemics of obesity and type 2 diabetes,
recent studies have also examined the potentially detrimental
effects of these chemicals on fetal development and health
outcomes later in life. For instance, epidemiological studies
found that offspring of mothers exposed to endocrine-
disrupting chemicals (EDCs) had a higher body mass index
(BMI) in adulthood compared with offspring whose mothers
had no exposure at all [9]. These findings clearly suggest that,
in addition to any genetic transmission, exposure to environ-
mental toxicants in utero and early life may lead to obese or
diabetic offspring and contribute to the development of MetS.
The purpose of this review is to discuss the early life origins of
MetS, and in particular the role of maternal exposure to envi-
ronmental toxicants including EDCs and metals during preg-
nancy and early childhood. Furthermore, this review also
summarizes available data on the epigenetic effects of expo-
sure to EDCs and metals, and the possible role of epigenetic
mechanisms in offspring metabolic risk.

Exposure to Endocrine-Disrupting Chemicals

Endocrine-disrupting chemicals (EDCs) are defined as
chemicals that act on the body’s hormonal systems, such as
dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyl
dichloroethylene (DDE), polychlorinated biphenyls (PCBs),
hexachlorobenzene (HCB), and bisphenol-A (BPA).
Emerging evidence suggests that EDCs can affect human fetal
development [10, 11]. A common characteristic of DDT,
DDE, PCBs and HCB is their persistence in the environment
longer than that required for their intended use. For this reason
they have been grouped into the category of persistent organic
pollutants [11]. In contrast, BPA is categorized as a non-
persistent compound [11]. Humans may respond differently

to exposure to EDCs, particularly depending on exposure
time, dose and sex. For example, high-dose exposure to
EDCs can result in weight loss or growth restriction, whereas
normal human environmental exposures at low-moderate
levels can result in weight gain [12].

Persistent Organic Pollutants

DDT was widely used throughout the U.S. and Europe from
the 1940s to the 1970s to control insects on agricultural crops
and those that carry diseases like malaria and typhus [13].
Although DDT was banned in the U.S. in 1972, it is still used
in some areas of the world, primarily in malaria control pro-
grams. Animal studies have shown that a low dose of DDT
readily passes through the placental barrier to the developing
fetus, where it induces embryotoxicity and fetotoxicity, but no
teratogenicity [14]. In humans, DDT and its metabolites (DDE)
have been found in placental tissue and umbilical cord blood.
Furthermore, maternal and newborn blood levels are generally
similar [15], suggesting that DDT and DDE may also be able to
cross the human blood-placenta barrier. PCBs have been used
as lubricants and coolants in electrical appliances [16]. HCB is
a synthesized chlorinated monocyclic aromatic compound.
HCB was widely used as a pesticide until 1965, but its use is
no longer allowed in the U.S. [17]. PCBs and HCB have also
been detected in cord blood, again suggesting their ability to
transfer across the placenta to the fetus [18, 19].

Results of the impact of prenatal exposure to DDE/DDT,
PCBs and HCB on offspring MetS have been inconsistent
(Table 1). In the INMA-Sabadell study, a birth cohort recruited
in 2004-2005 from Sabadell (Catalonia, Spain), prenatal DDE
exposure was associated with an increased risk of rapid
growth in the first 6 months of life in 518 infants born to
normal weight mothers, as well as with elevated BMI at 14
months [20]. The INMA-Menorca study, with a birth cohort of
344 children recruited in 1997-1998 from the island of
Menorca (Spain), evaluated the association between prenatal
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exposure to DDT, DDE and PCBs measured in cord blood
with weight during childhood. Compared with the first tertile,
the third tertile of PCB exposure increased the risk of over-
weight in childhood by 1.7-fold, and the second tertile of DDE
by 1.67-fold, but DDT was associated with overweight only in
boys [21]. However, in a study of male children from Chiapas,
Mexico, there was no apparent association between high
prenatal exposure to DDE and height or BMI in the first years
of life [22]. In a North Carolina cohort study, 594 children
with prenatal and lactational exposures to PCBs or DDE,
prenatal and early life PCBs exposures were associated with
increased weight in girls at puberty [23]. In terms of the
relationship between early life exposures and obesity in adult-
hood, a study of DDE and PCBs levels in maternal blood
during pregnancy in a U.S. cohort from Michigan found that
offspring who were exposed to higher prenatal levels of DDE
had higher BMI at age 2050 years, but found no association
between prenatal exposure to PCBs and BMI in adulthood
(Table 1) [9]. In terms of exposures to HCB, analysis of cord
blood from 482 children from the INMA-Menorca (Spain)
study showed that those in the higher HCB exposure group
had a 2.5- and 3.0-fold increased risk of being overweight and
obese, respectively [24].

Some, although limited, studies have evaluated the role of
factors such as gender, maternal obesity and maternal smoking
in modifying the association between EDCs and later obesity.
To evaluate the modification effects of sex and maternal obe-
sity on the association between prenatal exposure to EDCs and
later obesity, Tang-Peronard et al. [25] recruited 656 pregnant
women from Denmark and measured PCBs and DDE levels in
maternal serum and breast milk. Researchers found a signifi-
cant gender difference between exposure to DDE and PCBs
and BMI at age 5 and 7 years. In girls with overweight
mothers, PCBs levels were associated with an increased BMI
at age 7 years, and PCBs and DDE levels were associated with
an increased change in BMI from 5 to 7 years of age and waist
circumference at age 7. No association was found for girls with
normal-weight mothers or in boys, suggesting that maternal
obesity and sex are important mediators. In addition, substan-
tial epidemiologic and toxicologic evidence, and more than 80
studies in human populations and almost 20 animal studies
also support a positive association between maternal smoking
and increased risk of obesity or overweight later in life [26]. In
a birth cohort from Belgium, maternal smoking enhanced the
relationship between prenatal exposure to DDE and BMI at
age 3 years, while prenatal exposure to PCBs was associated
with an increase in BMI in early childhood between 1 and 3
years of age independent of maternal smoking [27]. To date,
most such studies have been conducted outside of the U.S. It
will be important to confirm if the associations found in other
populations are relevant to a U.S. population, which is typical-
ly exposed to lower levels of EDCs, and to what degree infant
gender and maternal characteristics (such as BMI and

@ Springer

smoking) modify the association between EDCs and offspring
obesity, diabetes and MetS.

Bisphenol-A

BPA is an endocrine-disrupting chemical used in the produc-
tion of plastic food and beverage containers, leading to ubiqg-
uitous low-dose human exposure. Available data suggest
widespread human exposure to BPA [28-33]. Both U.S. chil-
dren and pregnant women have shown nearly universal expo-
sure to BPA [32, 33]. The 2005-2006 National Health and
Nutrition Examination Survey (NHANES) urinary BPA data
showed that median daily intake for the overall population is
approximately 34 ng/kg-day [34]. Importantly, BPA is rapidly
absorbed and can easily cross the placental barrier to the fetus
[35-38]. BPA may also accumulate in the fetus [37] and is
measurable in cord blood [36, 37, 39, 40], amniotic fluid [35,
41], meconium and placental tissues [37].

BPA is usually metabolized via the uridine 5-diphospho-
glucuronosyltransferase (UGT) system to BPA glucuronide,
which does not bind to the estrogen receptor [42]. However,
the role of BPA glucuronidation in protecting the fetus and
infant from BPA toxicity during early life is unclear [43].
Relatively few epidemiological studies have examined the
relationship between prenatal exposure to BPA and MetS in
later life. However, animal studies provide important evidence.
In a mouse model, pregnant animals were treated with either
vehicle or BPA during days 9—16 of gestation. At 6 months of
age, male offspring exposed to BPA in utero had reduced
glucose tolerance and increased insulin resistance [44]. In
another animal study, pregnant Wistar rats were exposed to
different levels of BPA, and offspring were fed a normal diet or
a high-fat diet after weaning. On a normal diet, perinatal
exposure to a modest dose of BPA resulted in increased body
weight, elevated serum insulin, and impaired glucose tolerance
in adult offspring. Meanwhile, on a high-fat diet, such detri-
mental effects were accelerated and exacerbated. Furthermore,
severe MetS, including obesity, dyslipidemia, hyperleptinemia,
hyperglycemia, hyperinsulinemia, and glucose intolerance,
was observed in high-fat-fed offspring perinatally exposed to
BPA [45]. Taken together, these results support the hypothesis
that the fetus is highly vulnerable to exposure to environmental
chemicals, resulting in a metabolic profile that shows increased
risk for and susceptibility to type 2 diabetes and MetS later in
life. Most studies to date were conducted in animals. Human
research is needed to evaluate the role of prenatal BPA expo-
sure and MetS in offspring.

Exposure to Metals

Metals have drawn great attention because of their widespread
exposure worldwide, trans-placental and trans-breast milk
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passage, evidence of fetotoxicity, multi-organ adverse effects,
and ability to interact with the genome and the epigenome [46,
47]. Our results in the Boston Birth Cohort showed a high
degree of maternal to fetal transfer for mercury, lead and seleni-
um, and that their transfer was a major source of early life
exposure to these metals [48]. To date, most human studies on
the association of metals with obesity, diabetes and MetS have
been conducted in adults. A recent systematic review of the
epidemiologic evidence concluded that the available evidence
is suggestive of but not sufficient for a relationship between
arsenic and diabetes, and is insufficient for mercury [49].
The primary source of exposure to inorganic arsenic is
through drinking water contaminated by natural mineral de-
posits or improperly disposed chemicals. In addition, rice
represents a major dietary source of inorganic arsenic both
for adults and children [50]. In a cross-sectional study of 788
adults aged 20 years or older who participated in the 2003—
2004 National Health and Nutrition Examination Survey
(NHANES) and had urine arsenic determinations, the odds
ratios for type 2 diabetes was 3.58-fold (95 % CI, 1.18-
10.83) higher in participants within the 80th percentile of total
arsenic than subjects within the 20th percentile [51]. In a cross-
sectional study from Wisconsin, subjects who drank water with
high levels of arsenic had higher risk of hypertension than
those with low levels [52]. In NHANES 2003-2008, however,
total arsenic and dimethylarsinate (DMA) were not associated
with hypertension or blood pressure levels, although a weak
association between DMA and hypertension could not be ruled
out [53]. In a study of 660 Taiwan residents, hair arsenic levels
were associated with the risk of MetS, and with increased
levels of plasma glucose, lipids, and blood pressure [54].
Exposure to arsenic in utero has been related to an increased
risk of cancer and cardiovascular disease both experimentally
[55] and in human populations [56] Arsenic also has been
associated with epigenetic effects [57]. Thus, it is important
to evaluate the effect of early life arsenic exposures in the
development of MetS including its individual components.
Regarding mercury, recently conducted research is evalu-
ating its relationship with diabetes in adult populations. A
large prospective study in young-middle aged men and wom-
en from different communities in the U.S. found that toenail
mercury levels were associated with increased diabetes risk
[58]. In a large cross-sectional study including 6,213 adults in
Korea, results showed a significant correlation between serum
mercury concentrations and hypertension in both men (r=
0.193, P<0.001) and women (»=0.145, P<0.001) [59]. In
two recent prospective cohort studies of health professionals
in the U.S., however, toenail mercury level was not associated
with diabetes risk in either men or women [60]. While seleni-
um has been used as an antioxidant supplement, large cross-
sectional studies and interventional trials revealed that high
selenium status was associated with an increased risk of
diabetes [61, 62]. In a large prospective study in Italy, where

the women were followed up a median of 16 years, dietary
selenium intake was measured using a semi-quantitative food-
frequency questionnaire at the baseline examination (1987—
1992) and categorized into quintiles [63]. The risk of type 2
diabetes in the highest quintile of selenium intake increased
2.39-fold (95 % CI, 1.32-4.32) (Table 2). Lead levels are an
established risk factor of hypertension and may be related to
additional metabolic abnormalities [64]. A large study in
Korea evaluated the joint effect of exposure to lead, mercury
and cadmium as measured in blood. Serum lead levels, but not
mercury and cadmium, were associated with a higher preva-
lence of MetS. Moreover, the sum of heavy metals exposures
was associated with hypertension and elevated triglycerides
[65]. For cadmium, the epidemiologic evidence does not seem
to support an association with diabetes [49].

There is a particular lack of prospective birth cohort studies
on the metabolic consequences of exposure to metals, includ-
ing arsenic, mercury, selenium and lead in utero and in early
childhood. Given the available evidence on the role of some
metals in diabetes and MetS in adults, the recognition of early
life as a vulnerable period for environmental exposures and
epigenetic alterations and for adipose tissue development and
metabolic programming, it is important to evaluate the role of
early metal exposure and subsequent risk of MetS.

Epigenetic Mechanisms

Epigenetic mechanisms may be the critical biological links
between genetic vulnerability, in utero exposures and the
development of MetS via the regulation of gene expression
through DNA methylation, histone modifications, chromatin
remodeling, and/or regulatory feedback by way of
microRNAs. Epigenetic alterations are heritable and revers-
ible changes in gene expression with no change in the under-
lying DNA code, and are believed to regulate cell differenti-
ation and organogenesis, and be a key molecular process
underlying human responses to environment and gene-
environment interactions [66]. Some studies have shown that
prenatal conditions, such as fetal growth restriction as well as
nutrient restriction, can epigenetically modify gene expression
by altering the DNA methylation level in promoter regions
[67, 68]. Our work in the Boston Birth Cohort demonstrated
considerable individual variation in DNA methylation, which
is detectable at birth and dynamic in the first 2 years, and
offered an epigenetic insight into this trans-generational effect
[69+¢]. We also found that maternal obesity can alter offspring
DNA methylation in multiple genes that may have important
implications for future chronic diseases [70]. These findings
highlight the presence of in utero mechanisms that are avail-
able to respond to nutritional, hormonal, or other metabolic
cues by possibly altering the timing and direction of methyl-
ation events during fetal development.
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Epigenetic changes provide a ‘memory’ of developmental
plastic responses to the early environment and are central to
the development of phenotypes and their stability throughout
the life course. There is a growing recognition that epigenetic
mechanisms may contribute to MetS [71-73]. Some studies
have tested epigenetic changes as a result of exposure to
unfavorable in utero environments. For example, Ruchat
et al. measured DNA methylation at >485,000 CpG sites in
placental tissue and cord blood and found that 3,271 and 3,758
genes in the placenta and cord blood, respectively, were
differentially methylated between samples exposed or not to
gestational diabetes. Among the differentially methylated
genes, 326 in placental tissue and 117 in cord blood were also
associated with newborn weight [74]. Another similar study
showed that increased methylation of the pygopus homolog 1
(PYGOI) and ceroid-lipofuscinosis, neuronal 8 (epilepsy, pro-
gressive with mental retardation) (CLNS) genes had a relative
mediation effect on the impact of exposure to maternal diabe-
tes in utero on vascular adhesion molecule-1 (VCAM-I1)
levels in the offspring [75].

Increasing evidence provides support for the epigenetic
effects of environmental chemicals in the development of
MetS. For instance, a recent study found that PCBs activate
androgen receptor transcriptional activity by inducing Jarid1b,
a histone demethylase that catalyzes the removal of
trimethylation of lysine 4 on histone H3 [76]. A similar
in vitro experiment showed that BPA, HCB and PCBs induce
a modest decrease in global DNA methylation [77]. Animal
study has also provided evidence that early-life exposure to
PCBs modifies the epigenome in the offspring liver, via
inducing androgen receptor transcriptional activity [78].
Animal studies also have supported that exposure to EDCs
induces epigenetic alteration. For example, in utero exposure
to BPA is associated with decreased methylation in the pro-
moter and intron of HoxalO in CD-1 mice, which has been
shown to persist after birth. BPA may exert its function partly
through epigenetic alteration of estrogen response element
(ERE) sensitivity to estrogen [79]. In addition, plasma DDT
and DDE were found to be inversely associated with global
methylation levels [80, 81].

One in vitro study showed gene-specific hypermethylation
in a mouse cell culture with mercury levels equal to human
maternal and cord blood samples [82]. A study in women
undergoing oocyte retrieval showed a relationship between
blood mercury concentration and gene-specific hypermethy-
lation [83]. Specifically, methylation of the glutathione S-
transferase mu 1 (GSTM) 1/5 promoter was increased among
women with higher mercury exposure. In a cohort of
Bangladesh residents, serum selenium levels were inversely
related to methylation of leukocyte DNA [84]. In another
study, maternal lead exposure was found to correlate with
diminished A/u and long interspersed nuclear element-1
(LINE-1) methylation in umbilical cord blood [85].

References

Covariates

1.24 (0.94-1.64)
1.08 (0.82-1.42)
1.13 (0.86-1.49)
0.71 (0.52-0.97)
0.82 (0.64-1.05)
0.92 (0.73-1.14)

Estimation of
associations

Exposure
categories
Quartile

2nd vs Ist
3rd vs 1st
4th vs 1st
Quartile

2nd vs Ist
3rd vs Ist
4th vs 1st

Serum mercury

(ng/l)
Serum cadmium

Exposure
assessment
(ng/D)

(5) WC >90 cm (men) and

pressure medication; (2)
>85 cm (women)

HDL<40 mg/dl (men)
use of antidyslipidemia

and 50 mg/dl (women);
(3) TG >150 mmHg or
medication; (4) FPG
>100 mg/dl or use of
antidiabetic medication;

Age range Outcome definition
(vears)

Sample
size

population

Study design  Study

OR odds ratio, HR hazard ratio, CI confidence interval, FPG fasting plasma glucose, TG triglycerides, HDL high density lipoprotein, SBP systolic blood pressure, DBP diastolic blood pressure,

BMIbody mass index, LCn3PUFAs long-chain n-3 polyunsaturated fatty acids, WC waist circumference, OGTT oral glucose tolerance test, MetS metabolic syndrome

Table 2 (continued)

Exposure
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Furthermore, the Hanna et al. study also showed a relationship
between blood lead and gene-specific hypomethylation [83].
They detected reduced methylation in the collagen, type I,
alpha 2 (COL1A42) promoter in women with higher exposure
to lead. Interestingly, a mouse study found that pre- and post-
natal lead exposure resulted in a shift in the expression of
hundreds of genes [86]. Based on this expanding list of
studies, there is growing critical recognition that epigenetic
mechanisms may contribute to complex human diseases [87]
including MetS [88]. Taken together, these findings suggest
that specific epigenetic modifications during key developmen-
tal periods may influence metabolic phenotypes in later life.

The Need for Future Research

Though we have learned to treat MetS using increasingly
sophisticated technologies and agents, we have not been able
to cure or prevent MetS. Previous research has been confined
by disciplinary boundaries and specific age groups. Often,
there is a disjoint that exists between our understanding of
what comprises women’s health, child health and adult health.
To date, while most related research and intervention efforts
continue to primarily occur within the adult medicine arena,
there is still a limited understanding of the root causes and
lengthy latency of MetS. The future direction for medicine
and public health is to use precise molecular knowledge to
detect disease at the preclinical stage, and intervene before
clinical disease occurs. By doing so, we will not only achieve
preemptive prevention, but we will also reduce disease bur-
den, improve population health and quality of life, and mini-
mize health care costs by an order of magnitude [89]. In order
to realize this new paradigm, there is a critical need to deepen
our understanding of the early life origins and natural history
of disease, explore new paradigms using a life course perspec-
tive, and put humankind on a long-range strategic and eco-
nomically sustainable path to better health.

The prenatal period is particularly vulnerable to environ-
mental exposures because of rapid cellular differentiation and
development. Developmental programming and the establish-
ment of the epigenome (regulation of gene expression) is most
sensitive during the prenatal period [69+¢] Advances in a wide
range of biological, behavioral, and social sciences are
expanding our understanding of how early environmental in-
fluences and genetic predispositions affect adult diseases. The
new science suggests that epigenetic mechanisms could be an
important interface that links genetic factors, environmental
factors, and phenotypic expression [90, 91]. Yet, further studies
are needed to determine whether the measurements of epige-
netic marks in early life can be used as biomarkers to identify
individuals who have experienced environmental perturbations
during development, and thus who are more likely to develop
obesity and metabolic disease in later life.

@ Springer

Longitudinal studies, in particular birth cohort studies, are
lacking, yet critically needed to identify the links among early
life factors, genetics, and the development of metabolic disor-
ders in children, adolescents, and adults. The value of birth
cohorts has received great attention from the scientific com-
munity [92]. Compared with cross-sectional or case—control
studies, birth cohorts can be used for testing a wide range of
hypotheses on risk factors and outcomes, and exploring tem-
poral, dose—response and causal relationships to gain impor-
tant insights into the epigenetic mechanisms by which envi-
ronmental exposures and genetic predisposition interact to
affect growth, development and disease over the life course
and across generations.

Conclusion

There is limited and inconsistent evidence regarding the rela-
tionship between early life exposure to specific environmental
toxicants and MetS in later life. Available studies on prenatal
exposure to EDCs and their association with later obesity and
MetS had small sample sizes and were performed mostly in
non-U.S. populations. The study findings were often incon-
sistent, which may be due to variations in length of exposure,
dose, sex and other confounders (e.g., exposure to other un-
measured toxicants). The data are particularly lacking on
prenatal exposure to metals and the development of MetS
later in life. Even less data are available on early life exposure
to toxicants and epigenetic alterations in the offspring that
may regulate gene expression throughout the life course.
Given that an individual is often exposed to a mixture of
environmental toxicants, there is a particular need for prospec-
tive birth cohort studies on the metabolic consequences of
multiple exposures, including EDCs and metals (e.g., arsenic,
mercury, selenium and lead), in utero and in early childhood.
Prospective birth cohort studies could help to delineate tem-
poral and dose—response relationships, evaluate differences in
the effects of various environmental toxicants and their joint
effect on MetS, and identify epigenetic mechanisms underly-
ing the trans-generational effects of specific toxicants such as
EDCs and metals.
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