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There is increasing epidemiological evidence in humans which

associates low birthweight with later metabolic disorders, in-

cluding insulin resistance and glucose intolerance. There is

evidence that nutritional and hormonal factors (e.g. maternal

protein restriction, exposure to excess maternal glucocorticoids)

markedly influence intra-uterine growth and development. A

picture is also emerging of the biochemical and physiological

mechanisms that may underlie these effects. This review focuses

on recent research directed towards understanding the molecular

basis of the relationship between indices of poor early growth

and the subsequent development of glucose intolerance and Type

2 diabetes mellitus using animal models that attempt to recreate

INTRODUCTION

The biochemical origins of major non-communicable metabolic

diseases in the adult, including Type 2 diabetes mellitus and

cardiovascular disease, are becoming increasingly understood. It

is well established that key determinants of the onset of these

metabolic diseases include genetic predisposition, together with

adult lifestyle risk factors. Genetic predisposition has been

assumed to play the major role in determining susceptibility to

these diseases ; nevertheless, genetically susceptible individuals

may not develop these diseases if adult lifestyle risk factors are

avoided [1,2]. The ability to cope with the demands placed on

metabolic systems by environmental factors varies between

individuals, although how this is determined remains unclear.

Epidemiological studies have raised the possibility that ‘early

lifestyle ’ factors, which are not determined by the individual but

by the intra-uterine or neonatal environment, are critically

important.

This review will focus on the modulation of the prenatal (intra-

uterine) and neonatal environment that occurs in response to

particular features of the maternal diet and hormonal status that

appear to programme an increased risk of subsequent deve-

lopment of certain non-communicable metabolic diseases, in

particular dysregulation of glucose metabolism and diabetes

mellitus. We emphasize studies using animal models that have

proved useful to explore the molecular mechanisms that underlie

both the programming events themselves and the metabolic

consequences of such programming events (see Table 1).

Abbreviations used: GLUT4, insulin-regulatable glucose transporter ; GK, glucokinase; HPA, hypothalamic–pituitary–adrenal ; 11β-HSD,
11β-hydroxysteroid dehydrogenase; IGF, insulin-like growth factor ; IRS, insulin resistance syndrome; PDE, phosphodiesterase ; PEPCK,
phosphoenolpyruvate carboxykinase ; PI 3-kinase, phosphatidylinositol 3-kinase.
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the process of programming via an adverse intra-uterine or

neonatal environment. Emphasis is on the chain of events and

potential mechanisms by which adverse adaptations affect pan-

creatic-β-cell insulin secretion and the sensitivity to insulin of key

metabolic processes, including hepatic glucose production,

skeletal-muscle glucose disposal and adipose-tissue lipolysis.

Unravelling the molecular details involved in metabolic pro-

gramming may provide new insights into the pathogenesis of

impaired glucoregulation and Type 2 diabetes.

Key words: fetal development, insulin resistance, obesity, pan-

creatic β-cell.

METABOLIC PROGRAMMING

Epidemiological evidence for programming of metabolic disorders

A geographical correlation has been identified between preva-

lence of, and mortality from, adult cardiovascular disease and

early growth (as reflected by birthweight and early postnatal

growth) [3–5]. A graded, inverse relationship was observed

between birthweight (and weight at 1 year) and death rates from

ischaemic heart disease in adult men [3]. Thus, at 1 year of age

a weight of 8.2 kg compared with 12.3 kg corresponded to a 3-

fold greater death rate from ischaemic heart disease [3]. Similarly,

men and women who were smallest at birth had the highest

blood pressure in adulthood [6]. The associations between

hypertension and Type 2 diabetes, linked possibly by insulin

resistance [7,8], led to a subsequent examination of the possible

connection between fetal growth and glucose tolerance. It was

found that the risk of developing glucose intolerance and the

insulin resistance syndrome (IRS) in later life was 2-fold greater

among men who weighed less than 8.2 kg at 1 year of age than

those who weighed 12.3 kg or more [9]. This study also showed

a link between reduced early growth and 32,33-split proinsulin

concentrations, indicating that pancreatic β-cell function might

be impaired. The term ‘programming’ was employed to define

collectively the molecular mechanisms underlying the impact of

early interventions on an individual’s susceptibility to later

metabolic diseases.
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Table 1 Summary of the effects of maternal protein restriction or exposure to excess maternal glucocorticoids on glucose and lipid metabolism in the adult
offspring

Effect Reference(s)

Decreased whole-body glucose disposal in the post-absorptive state in 3-month-old female offspring [38]

Enhanced whole-body glucose disposal during euglycaemic-hyperinsulinaemia in 3-month-old female offspring [38]

Enhanced glucose clearance after intraperitoneal glucose administration in 6-week-old male offspring [126]

Enhanced rates of glucose disappearance after intravenous glucose challenge in 3-month-old female offspring [38]

Glucose intolerance after oral glucose challenge [117]

Fasting hyperglycaemia, reactive hyperglycaemia and hyperinsulinaemia in adulthood [116,117]

Stimulation of hepatic glucose production by insulin in perfused livers [122]

Decreased hepatic glucokinase activity [122]

Increased hepatic PEPCK activity [117,122]

Altered hepatic zonation with loss of perivenous cells [45]

Altered ketone-body production and/or utilization [124]

Decreased skeletal-muscle glucose utilization in the post-absorptive state, but not during hyperinsulinaemia [38]

Increased insulin receptor number and GLUT4 glucose transporters in skeletal-muscle plasma membranes [127]

Impaired suppression of isoprenaline-stimulated rates of lipolysis by insulin in isolated adipocytes [128]

Increased insulin receptors in isolated adipocytes [97,126]

Increased basal and insulin-stimulated insulin-receptor-substrate-1-associated PI 3-kinase activity and Akt/protein kinase B activity

in adipocytes

[97,128]

Programming of metabolic disorders : the ‘ thrifty phenotype ’
hypothesis

On the basis of epidemiological studies, the concept was de-

veloped that the early life environment influences both growth of

the fetus and the subsequent development of adult disease. The

‘ thrifty phenotype’ hypothesis [10] specifically proposed that

those of low birthweight are characterized by early adaptations

to a potentially adverse intra-uterine environment that optimize

the use of a restricted nutrient supply to ensure survival but, by

favouring the development of certain organs over that of others,

lead to persistent alterations in the physiology and metabolism of

developing tissues. There are critical specific and restricted

periods during development, often coincident with periods of

rapid cell division, during which individual tissues and organs

differentiate and mature in preparation for survival after birth.

Either a stimulus or insult during such critical periods may have

long-lasting consequences on tissue or organ function post-

natally. In particular, impaired growth during these periods

caused by maternal malnutrition is thought to result in an

irrecoverable deficit in cell number, the tissue affected being

dependent on the timing of the insult [11,12].

Programming of Type 2 diabetes mellitus

In the case of Type 2 diabetes, the less favourable early-life

adaptations to adverse environmental influences may include

altered structure and function of the endocrine pancreas and}or

insulin-sensitive target tissues that persist into adult life and

predispose to the development of the disease (Figure 1). Insulin-

sensitivity (the ability of insulin to evoke responses in its target

tissues, including liver, muscle and adipose tissue) varies between

individuals. In some individuals, an impaired ability of insulin to

maintain glucose homoeostasis can be compensated for by

enhanced insulin secretion by pancreatic β-cells. Thus about one

quarter of individuals with normal glucose tolerance are insulin-

resistant to the same extent as those with Type 2 diabetes, but

can compensate for this with enhanced insulin secretion [7,8]. In

others, insulin secretion is inadequate to compensate for insulin

resistance, and glucose intolerance develops. Several studies have

suggested that the connection between poor early growth and

Type 2 diabetes may take the form of impaired pancreatic β-cell

function [9,13], while others support the concept that the link

exists due to impaired insulin action [14]. Abnormal early growth,

as indicated by thinness at birth, has been shown to predict

impaired insulin action in adult men and women [14–16], the

greatest insulin resistance being observed in the individuals who

were thin at birth but obese as adults [14]. There is thus increasing

evidence for a link between poor fetal and infant growth and

development and glucose intolerance and features of the IRS in

adulthood. Since the original ‘ thrifty phenotype’ postulate, links

have been demonstrated to exist between low birthweight and

deficient insulin release and}or the IRS in several populations,

including men and women from the U.K. [17–19], the U.S.A.

[20–22] and Sweden [23,24], and other epigenetic influences have

been identified, including maternal diabetes during pregnancy

and neonatal hyperinsulinization [25,26].

FACTORS INFLUENCING FETAL GROWTH AND DEVELOPMENT

Impact of protein restriction on intra-uterine growth and
development

Although many factors may influence fetal growth [27], maternal

hormonal and nutritional status may be particularly important

[28,29]. A high carbohydrate intake in early pregnancy and low

protein intake later in pregnancy are both associated with small

placentae [30], low birthweight [30] and thinness at birth [31] in

human infants. In humans, undernutrition early in pregnancy

has been suggested to produce small, but normally proportioned,

babies, while undernutrition later in pregnancy may have lesser

effects on weight, but profound effects on the proportions of the

baby [32]. Birthweight in humans is positively related to plasma

glucose levels in normal [33] as well as in diabetic [34] pregnancies.

Amino acids are also major determinants of fetal growth [34,35],

indicated by the observation that the concentrations of certain

fetal plasma amino acids are reduced in small-for-gestational-age
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Figure 1 Schematic representation of the influence of early-life events on
the progression to adult-onset metabolic disease

infants [36]. In particular, the essential amino acids are pre-

requisite for normal fetal growth.

In the rat, relatively modest maternal dietary protein restriction

throughout pregnancy, in the absence of a decline in energy

intake, has been reported to cause both altered fuel homoeostasis

and hypertension in the adult offspring [37–46]. Offspring from

rats malnourished during pregnancy and lactation (either by

reducing the intake of normal diet, or by feeding a diet low in

protein) remain smaller than normal, even after a period of

recuperation [38,39,44]. In offspring from protein-malnourished

rats, this reduction in body size is not associated with a linear

reduction in the weight of internal organs – the relative weights

of the pancreas, muscle and liver at weaning are reduced, whereas

the brain and lungs are relatively protected [47]. This pattern is

consistent with channelling of nutrients to the essential organs,

although the mechanisms behind this remain unclear.

Impact of excessive exposure to glucocorticoids on intra-uterine
growth and development

A current theory is that metabolic programming may arise from

defects in the materno-placental support of the fetus. A key

factor may be the control exerted by the placenta on the influence

of the maternal glucocorticoid environment on the fetus [48].

Indeed, some nutritional influences – including maternal protein

restriction – may operate through this mechanism [46]. The fetal

adrenal gland becomes active in late gestation [49], but the

developing fetus is normally protected from excess exposure to

glucocorticoids of maternal origin by the presence in the placenta

of the type 2 isoform of 11β-hydroxysteroid dehydrogenase (11β-

HSD2) [50]. 11β-HSD2 converts the active, receptor-binding

physiological glucocorticoids (cortisol in humans, corticosterone

in rodents) to inert 11-oxo derivatives (cortisone or 11-dehydro-

corticosterone respectively). In situ hybridization has shown that

this enzyme is highly expressed in the syncytiotrophoblast of the

rat [51], and it is believed to maintain a gradient of cortisol from

the maternal to the fetal circulation. The very high affinity of the

enzyme for its substrate is believed to ensure that fetal tissues are

fully protected from fluctuations in maternal glucocorticoid

status through inactivating maternal cortisol or corticosterone.

In late gestation, when the fetal adrenal gland itself becomes

active, separation from maternal adrenal influences is particularly

important to enable independent function of the fetal hypo-

thalamic–pituitary–adrenal (HPA) axis [52]. The immediately

pre-partum glucocorticoid surge is a signal for maturation of

organ systems crucial for the transition from intra- to extra-

uterine life. The glucocorticoids promote the differentiation and

maturation of key tissues (including lung, gut, liver and brain)

(see, e.g., [53,54] ; reviewed in [55]). Intracellular glucocorticoid

receptors are expressed in most fetal tissues from mid-gestation

onwards [56–58], including the major systems and tissues –

including liver and adipose tissue – whose structure and function

in adult life is affected by early-life programming events [59].

Raising glucocorticoid levels in experimental animals earlier in

gestation has been shown to accelerate the maturation of those

tissues essential for survival immediately at birth, and also

organs that are involved in the more long-term adaptation to

extra-uterine life [60]. This effect has been exploited thera-

peutically in that synthetic glucocorticoids are administered to

women in threatened premature labour to improve neonatal

viability. Although the immediate outcome is beneficial – there is

an improvement in neonatal mortality and morbidity – birth-

weight is reduced by maternal glucocorticoid treatment in

humans and in animal models [61–64]. Levels of corticotrophin-

releasing factor and cortisol levels are increased in growth-

retarded human fetuses [65]. Growth retardation due to increased

exposure to glucocorticoids during early development in part

reflects a stimulation of tissue differentiation at the expense of

proliferation. The resultant permanent alteration in cell number

and function has potentially adverse consequences in later life.

The activity of 11β-HSD in human and rat placentae is found

to be inversely proportional to placental size and proportional to

fetal weight [48,66]. Furthermore, patients bearing mutations of

the gene encoding 11β-HSD2 have low birthweights [67]. These

observations have led to the suggestion that impaired protection

by the placenta may result in overexposure of the fetus to

maternal glucocorticoids, which is manifested as growth re-

tardation and later disease. In support of this, inhibition of

placental 11β-HSD2 in rat dams by the specific inhibitor

carbenoxolone reduces birthweight and leads to impaired glucose

tolerance in maturity [68]. These effects are dependent on the

resence of maternal adrenals, suggesting that they result directly
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from increased exposure to maternal glucocorticoids as a conse-

quence of inhibition of placental 11β-HSD2. Furthermore, the

ratio of radiolabelled corticosterone to 11-dehydrocorticosterone

in fetuses of carbenoxolone-treated mothers infused with radio-

labelled corticosterone is increased [68], indicative of a reduction

in the placental glucocorticoid barrier. Maternal protein de-

ficiency in the rat also reduces the activity of 11β-HSD2 [46].

Thus increased prenatal exposure to excessive amounts of

glucocorticoids may provide one link between fetal nutrient

environment and adult metabolism. It may be relevant that

dexamethasone (a synthetic glucocorticoid) inhibits glucose-

stimulated insulin secretion by pancreatic islets [69], confirming

the endocrine pancreas as a target for glucocorticoid action.

The studies reported above clearly demonstrate that perturb-

ations in the nutritional and}or hormonal status of the mother

can have a serious impact on the growth and development of the

fetus. There is evidence that available nutrients are directed to

essential organs at the expense of others to ensure survival, and

the severity of the impact of an adverse environment may be

critically dependent on its timing during fetal and neonatal

development.

PROGRAMMING OF PANCREATIC β-CELL STRUCTURE AND
FUNCTION

Pancreatic β-cell structure and function

As maturation of pancreatic β-cell function takes place during

early development, the pancreatic β cells may be particularly

susceptible to the effects of poor maternal nutrition. In humans,

glucose-responsiveness appears in the first to second trimester,

but the typical adult biphasic secretory response does not appear

until after birth [70,71]. In rats, the insulin secretory response to

glucose appears in the last 4–5 days of gestation (term¯ 22–23

days) [72,73]. Glucose promotes maturation of glucose-stimu-

lated insulin secretion in rat islets in culture [74], raising the

possibility that malnutrition may retard islet functional matu-

ration. Most islet growth (in both humans and rats) also takes

place during the fetal-neonatal period. The cell cycle of pro-

liferative pancreatic β-cells is believed to be regulated through

the recruitment of cells into a proliferative compartment [75,76].

The proliferation of islet cells is most rapid between 20 and

22 days of gestation in the rat (term is 22–23 days) [77] and

pancreatic β-cell mass increases by 100% in the 48 h before birth

[78]. Pancreatic β-cell replication is also higher during late

gestation and the neonatal period than after weaning [79]. Thus

the regulation of pancreatic β-cell replication is such that some

10% of β-cells may enter the proliferative compartment in fetal

rats, compared with less than 3% in young adult rats [80].

Recruitment for proliferation is controlled by nutrient supply,

and is therefore likely to be sensitive to maternal malnutrition.

In humans, growth in utero correlates with fetal insulin levels

[81]. Small-for-gestational-age infants have reduced plasma in-

sulin concentrations [82] and pancreatic β-cell numbers [81]. In

humans, a high carbohydrate intake early in pregnancy and a

low-protein intake late in pregnancy (associated with reduced

birthweight) is associated with reduced concentrations of insulin,

split proinsulin and C-peptide in umbilical-cord plasma [83],

indicating reduced fetal β-cell function. Insulin has an important

growth-supporting activity on fetal rat tissue (skeletal and

connective tissues) in a transplant system (paws from 15-day-old

fetal rats transplanted under the kidney capsule of 1-month-

old syngeneic hosts) [84], and the injection of streptozotocin to

specifically destroy pancreatic β-cells in lamb fetuses causes fetal

hypoinsulinaemia and a 20% reduction in body weight [85]. In

culture, the differentiation and multiplication of the pancreatic
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Figure 2 The influence of low-protein feeding during gestation on the
structural and functional development of the fetal endocrine pancreas

β-cells is increased to a greater extent by an increase in an

essential amino acid than by an increase in glucose concentration

[72]. Furthermore, amino acid stimulation of replication of rat

islet cells [72,86] is effective in fetal pancreatic β-cells before

glucose-responsiveness develops in late gestation [87]. Thus the

phenotype of reduced birthweight (or otherwise impaired in utero

growth) secondary to maternal protein restriction may reflect

reduced stimulation of pancreatic β-cell replication and}or

maturation.

Programming of pancreatic β-cell structure and function by
protein malnutrition

A specific limitation of protein in a well-tolerated isocaloric diet

(which prevents any constraint on total energy intake) has been

widely studied within the context of the functional development

of the endocrine pancreas in rats (Figure 2). Studies of fetuses of

rat dams fed a diet containing E 40% of the normal amount

of protein throughout gestation demonstrate that fetal pancreatic

β-cell function is affected, with a 50% suppression of insulin

secretion [88]. The functional changes are associated with ab-

normal islet-cell proliferation, islet-cell size, pancreatic insulin

content and islet vascularization, all of which are reduced at

birth [44,89]. The postnatal development of the pancreas is also

modified if the dam continues to be maintained on a low-protein

diet during lactation. Morphometric analyses demonstrate a

reduction in β-cell proliferation and islet size in the head of the

pancreas (and to a lesser extent in the pancreatic tail, a glucagon-

rich and pancreatic-polypeptide-poor region) in neonatal rats

whose mothers have been subjected to protein restriction [89].

Islet vascularization in the neonatal animal is also dramatically

reduced [89].

In rats, protein malnutrition affects maternal plasma amino

acid concentrations [90] and, in pregnancy, this impairs placental

transfer of amino acids to the fetus [91]. The plasma amino acid

profile of not only the mother, but also the fetus, is modified by

the provision of an isocaloric 8% protein diet during gestation

[88]. Although the total essential and non-essential amino acid

concentration is unchanged, there are specific reductions in the

plasma concentrations of α-aminobutyric acid, phosphoserine,

valine and taurine. Taurine is an indispensable amino acid

during fetal development in rats, cats and baboons [92]. Taurine

functions as an insulin secretory stimulus for fetal islets and also
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enhances insulin secretion in response to other insulin secreta-

gogues [93]. Islets of fetuses from rat dams maintained on a low-

protein diet do not secrete insulin in response to taurine, nor does

taurine restore a normal insulin secretory response to other

secretagogues. However, insulin secretion can be rescued by the

inclusion of supplementary taurine in the drinking water [93].

Thus current observations identify taurine as a necessary amino

acid for the normal functional development of the fetal pancreatic

β-cells.

Role for apoptosis in islet remodelling during early postnatal
development

Decreased replication and an increased incidence of apoptosis in

pancreatic β cells is observed between 1 and 2 weeks of postnatal

life in normal rats, and it has been suggested that apoptosis may

be an important mechanism in remodelling of the β-cell mass

during early postnatal development [94]. Circumstantial evidence

links the insulin-like-growth-factor (IGF) axis to the regulation

of apoptosis in �i�o in pancreatic islets during this period. The

timing of the transient wave of apoptosis observed after

1–2 weeks of postnatal life in the rat is associated with a loss of

expression of IGF-II in the pancreatic islets [95] (at this time, the

pancreatic expression of IGF-I has not yet reached adult values

[96]). Furthermore, overexpression of IGF-II in transgenic mice

is associated with pancreatic-islet-cell hyperplasia and reduced

attrition of islet cells by apoptosis in late gestation [97]. The

number of apoptotic cells in islets from protein-restricted animals

is increased at each fetal and postnatal day analysed, while the

number of cells positive for IGF-II is decreased [67]. Thus it is

possible that poor nutrition in early life may programme the

insulin-secretory capacity of the pancreas by influencing islet

remodelling at the level of apoptosis through a mechanism linked

to modulation of the IGF axis.

Impact of protein restriction on insulin secretion in adulthood

While channelling of nutrients may represent a survival ad-

vantage during malnutrition, impaired pancreatic β-cell devel-

opment may cause a lasting reduction in the insulin-secretory

response. In turn, this could lead to an impaired insulin-

secretory response to glucose in adulthood [98], a risk factor

for the development of diabetes [99], particularly if the ability

of the pancreatic β-cells to undergo compensatory replication

during a nutritional challenge is reduced. The limited capacity

of pancreatic β-cells to regenerate after the first few years

of life means that such an affected individual is left with a

suboptimal complement of pancreatic β-cells. Provided this

individual remains thin and relatively insulin-sensitive, normal

glucose homoeostasis can be maintained; however, insulin

resistance consequent on advancing age, obesity or pregnancy

may render this pancreatic β-cell insufficiency manifest as glucose

intolerance and, in the worst instance, Type 2 diabetes.

Maternal malnutrition during pregnancy and lactation in

the rat has lasting effects on glucose homoeostatic systems. Adult

rats previously exposed to protein restriction are characterized

by decreased insulin content of isolated pancreatic islets [100,101],

an impaired secretory response of isolated pancreatic islets to

glucose and arginine [100,101] and moderately impaired glucose-

stimulated insulin secretion in �i�o [38]. A multifactorial per-

turbation of nutrient metabolism in the pancreatic islets of

protein-restricted rats may account for the decreased insulin

content and secretory response to glucose and amino acids [100].

One metabolic anomaly suggested to account, at least in part, for

the impairment of insulin release elicited by protein restriction is

an imbalance between oxidative and anaerobic glycolysis in the

islets of protein-restricted rats. This coincides with a decreased

circulation in the glycerol phosphate shuttle, and is probably

attributable to the deficiency of mitochondrial FAD-linked

glycerophosphate dehydrogenase previously documented in islet

homogenates of the protein-restricted rats [102]. Islet blood-

vessel density [88], as well as pancreatic and islet blood flow [103],

are diminished as a consequence of early protein restriction. A

more severe maternal protein restriction (5%) during both

pregnancy and lactation causes demonstrable impairments in

glucose-stimulated insulin secretion (in �itro) in adult offspring

fed a normal diet from weaning, and this is worsened when the

diet is changed to one designed to cause insulin resistance [104].

PROGRAMMING OF GLUCOSE METABOLISM AND INSULIN
ACTION IN ADULTHOOD

Mechanisms underlying the programming of liver development
and function in response to excessive exposure to glucocorticoids

In the fetal liver, cortisol increases the synthesis of a range of

proteins, including all of the key gluconeogenic enzymes

[105,106]. At the same time, the expression of other proteins –

including angiotensinogen, IGF-II and certain of the IGF-

binding proteins – is suppressed [107–109]. In addition, cortisol

increases the deposition of glycogen in the fetal liver and other

tissues, including heart and skeletal muscle [105,106,110,111].

These adaptations are predicted to facilitate the maintenance of

blood glucose levels immediately after delivery. Enzymes induced

in the final stages of liver development [112] have been grouped

into three clusters : the late-fetal cluster, the neonatal cluster and

the late-suckling cluster. The glucocorticoids are particularly

important for the induction of the late-fetal and -suckling clusters

[113,114], although studies of transgenic mice with a gluco-

corticoid-responsive unit fused to a member of the neonatal

cluster demonstrate that glucocorticoids alone are unable to

induce neonatal gene expression [115]. It therefore appears that

the prenatal glucocorticoid surge ‘primes’ the liver for the

induction of the neonatal cluster in response to a further stimulus.

The synthetic glucocorticoid dexamethasone is a poor substrate

for placental 11β-HSD2. The administration of dexamethasone

during the last third of pregnancy in the rat impairs fetal growth,

while the offspring exhibit fasting hyperglycaemia, reactive

hyperglycaemia and hyperinsulinaemia in adulthood [116,117].

The gluconeogenic enzyme phosphoenolpyruvate carboxykinase

(PEPCK) is an important target gene under potent glucocorticoid

regulation [118]. Over-expression of PEPCK in a rat hepatoma

cell line impairs suppression of gluconeogenesis by insulin [119]

and transgenic mice with over-expression of hepatic PEPCK

have impaired glucose tolerance [120]. Changes in glucose

homoeostasis seen in adult offspring of dexamethasone-treated

dams are associated with increased hepatic PEPCK expression

[117], raising the possibility that increases in PEPCK activity

elicited by early glucocorticoid exposure contribute to the

programmed changes in the ability of insulin to regulate hepatic

glucose production.

Effect of maternal protein malnutrition on hepatic metabolism in
adulthood

Liver perfusion studies in adult rats exposed to protein restric-

tion in early life indicated that hepatic glucose production

is favoured [43]. This response is observed concomitantly

with decreased hepatic glucagon receptor number, together with

decreased hepatic glucokinase (GK) and increased hepatic

PEPCK activity [122]. On the basis of studies of marker enzymes
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it has been suggested that these effects may be a consequence of

altered zonation of the liver favouring expansion of periportal

and contraction of perivenous liver cell populations [45,123].

Adult rats exposed to protein restriction in early life also

exhibit significantly lower plasma β-hydroxybutyrate concen-

trations both in the fed state and after 24 and 48 h starvation

[124]. Although this latter study did not determine whether low

plasma β-hydroxybutyrate concentrations were the consequence

of decreased ketone-body production or increased ketone-

body utilization, it was suggested that glucagon resistance in

the liver of early-protein-restricted rats may be a contributing

factor [124]. If this is the case, it can be concluded that the up-

regulation of PEPCK activity is unlikely to be a consequence of

hypersensitivity to glucagon.

Effects of early protein restriction on peripheral glucose
metabolism and insulin action in adulthood

The skeletal-muscle mass is a major site at which insulin action

is impaired in insulin-resistant individuals [125]. Offspring of rats

subjected to moderate protein restriction during gestation and

lactation exhibit decreased glucose turnover and glucose utili-

zation by oxidative skeletal muscles in �i�o in the post-absorptive

state [38]. These observations probably reflect an increased

reliance on lipid rather than glucose as an energy fuel. The

observations of lower plasma β-hydroxybutyrate concentrations

in early-protein-restricted rats [124] would be consistent with

increased lipid fuel utilization. The finding of suppressed glucose

turnover at the low insulin concentrations that pertain in the

post-absorptive state also suggests that an inability to respond to

modest (submaximal) increases in insulin might trigger a tran-

sition to overt diabetes. However, offspring exposed to protein

restriction in early life exhibit enhanced rates of glucose dis-

appearance after intravenous [38] or intraperitoneal [126] glucose

challenge in early adulthood. Furthermore, there is a greater

increment in the stimulation of whole-body glucose clearance in

response to euglycaemic hyperinsulinaemia in protein-restricted

offspring at this time point [38]. The enhanced sensitivity of

whole-body glucose disposal to euglycaemic hyperinsulinemia in

protein-restricted rats is associated with increased in �i�o glucose

utilization by insulin-sensitive peripheral tissues (muscle and

adipose tissue) [38]. Early-protein-restricted offspring have also

been demonstrated to exhibit an increased insulin receptor

number and an increased number of glucose transporters

(GLUT4) in the plasma membrane [127], both of which would be

consistent with increased insulin-stimulated glucose uptake.

Adipocytes isolated from early-protein-restricted rats have

increased insulin-receptor levels, increased basal and insulin-

stimulated levels of insulin-receptor-substrate-1-associated phos-

phatidylinositol 3-kinase (PI 3-kinase) activities and increased

Akt}protein kinase B activities [97,126,128]. These alterations in

insulin signalling are associated with increased basal and insulin-

stimulated glucose uptake by adipocytes in �itro [97] and in �i�o

during euglycaemic hyperinsulinaemia [38]. Adipocytes isolated

from early-protein-restricted rats also exhibit an impaired ability

of insulin to suppress isoprenaline-stimulated rates of lipolysis

[128], an effect most likely due to insensitivity to insulin in the

low physiological range [41]. Adipocytes from early-protein-

restricted rats have relatively low levels of the p110β catalytic

subunit of PI 3-kinase, whereas levels of p110α are unaffected

[128]. It has therefore been suggested [128] that the molecular

mechanism underlying the disparate acute effects of insulin on

glucose uptake and lipolysis may reflect selective activation of

the isoforms of the catalytic subunit of PI 3-kinase. Insulin and

noradrenaline have a common target, namely a specific phos-

phodiesterase (PDE), PDE3B. PDE3B is phosphorylated in

response to both insulin and isoprenaline (which, like nor-

adrenaline, stimulates lipolysis through activation of cAMP-

dependent protein kinase) [129,130]. The effect of adrenaline is

perceived to represent a feedback mechanism to prevent excessive

lipolysis. Activation of PDE by insulin has recently been

demonstrated to occur through Akt [129,131,132]. Thus evidence

to date suggests that Akt may occupy a pivotal role co-ordinating

the effects of insulin on lipolysis. Since Akt activity is increased

in early-protein-restricted rats, enhanced noradrenaline-stimu-

lated lipolysis implies that a component downstream from Akt

– possibly PDE3B – is negatively affected.

In summary, early protein restriction elicits a number of

disparate effects on glucose metabolism and insulin action,

including altered regulation of hepatic glucose production and

impaired suppression of adipose-tissue lipolysis, that are con-

sistent with a state of insulin resistance. However, it would

appear that insulin-stimulation of whole-body glucose disposal is

unaffected or enhanced in early-protein-restricted offspring in

early adulthood, probably as a consequence of enhanced insulin

action in skeletal muscles.

Influence of lifestyle factors on glucose homoeostasis in
programmed animals

Although glucose tolerance in early adulthood appears to be

unimpaired by exposure to protein restriction during fetal and

early postnatal development, the possibility nevertheless exists

that long-term perturbations introduced by early protein re-

striction may impair the ability to respond to pathophysiological

challenges associated with the development of insulin resistance.

Aging in early-protein-restricted rats is associated with worsening

of glucose tolerance [133]. Interestingly, this response appears to

be sex-dependent.Glucose intolerance is associatedwith impaired

insulin secretion in female offspring, but is associated with

greater insulin resistance in male offspring [134]. Antecedent

protein restriction also accelerates and augments the development

of impaired glucoregulation and insulin resistance after the

provision of a diet high in saturated fat [40]. This latter effect is

observed in conjunction with a specific impairment of insulin’s

anti-lipolytic response in isolated adipocytes [40]. A further

persistent effect of early protein restriction is suppression of

whole-body glucose turnover in the post-absorptive state during

late pregnancy, a state associated with insulin resistance [37].

This effect is a consequence of reduced glucose utilization

(transport}phosphorylation) both by maternal tissues (including

fast-twitch skeletal muscle and adipose tissue) and by the fetus

itself. However, there is no overall impairment in insulin’s ability

to stimulate maternal glucose disposal as a consequence of early

protein restriction [37]. This finding may indicate that the

hormones of pregnancy offer protection against pancreatic β-cell

malfunction and}or promote recuperative growth of the endo-

crine pancreas, and highlight the capacity of the endocrine

pancreas for recuperative growth.

CONCLUSIONS

In the present review we have highlighted a number of inter-

ventions during fetal and neonatal life that elicit persistent effects

on both insulin secretion and action and that may, under certain

circumstances, lead to the development of glucose intolerance

and Type 2 diabetes. It is clear from studies to date that the

nature and timing of insults to the fetus and neonate may be

critical factors determining the long-term changes in the structure

and function of various tissues and organs. In addition, it is
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becoming apparent that, although early-life interventions may

programme deleterious changes in the individual, it is likely that

these changes do not manifest themselves in the form of adult-

onset diseases unless subsequent events in adulthood exacerbate

the defect. However, possible biochemical and molecular mech-

anisms of prenatal programming are of considerable interest,

both for scientific understanding and to help develop strategies

to minimize the occurrence of metabolic diseases (such as diabetes

mellitus) in adulthood, and this area is clearly one that will elicit

a great deal of future interest. Specific areas for future research

include the influence of glucocorticoids on tissue development,

the potential role for apoptosis in islet remodelling during early

postnatal development which could impair the insulin secretory

capacity of the pancreas, and the influence of early-life inter-

ventions of the intracellular signalling in the adipocytes (e.g. the

control of PDE3B) which could alter control of adipocyte

lipolysis and favour lipid utilization in programmed offspring,

leading to impaired peripheral glucose metabolism and Type 2

diabetes.
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