

Open access • Posted Content • DOI:10.1101/2020.04.27.062729

Early-life stress facilitates the development of Alzheimer's disease pathology via angiopathy — Source link

Tomoko Tanaka, Shinobu Hirai, Masato Hosokawa, Takashi Saito ...+4 more authors Institutions: Institute of Medical Science, Nagoya City University Published on: 01 Jul 2020 - bioRxiv (Cold Spring Harbor Laboratory) Topics: Angiopathy and Microglia

Related papers:

- · Early-life stress induces the development of Alzheimer's disease pathology via angiopathy
- · Induction of Alzheimer's disease pathology by early-life stress
- Amyloid-β plaque formation and reactive gliosis are required for induction of cognitive deficits in App knock-in mouse models of Alzheimer's disease
- Tooth Loss Induces Memory Impairment and Gliosis in App Knock-In Mouse Models of Alzheimer's Disease.
- Deficiency in EP4 Receptor–Associated Protein Ameliorates Abnormal Anxiety-Like Behavior and Brain Inflammation in a Mouse Model of Alzheimer Disease

-	Т		
	I		
	I		
-		-	

1	Early-life stress	facilitates the	development	of Alzheimer'	s disease	pathology	via angiop	oathy
---	-------------------	-----------------	-------------	---------------	-----------	-----------	------------	-------

- 2 Running title: Early-life stress-associated Alzheimer's disease
- 3
- 4 Tomoko Tanaka¹, Shinobu Hirai¹, Masato Hosokawa², Takashi Saito^{3,4}, Hiroshi Sakuma⁵,
- 5 Takaomi Saido³, Masato Hasegawa², Haruo Okado^{1, *}
- 6 ¹ Laboratory of Neural Development, Department of Psychiatry & Behavioral Science, Tokyo
- 7 Metropolitan Institute of Medical Science, Tokyo, Japan.
- 8 ² Dementia Research Project, Department of Brain & Neuroscience, Tokyo Metropolitan
- 9 Institute of Medical Science, Tokyo, Japan.
- ³Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan.
- ⁴Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University
- 12 Graduate School of Medical Science, Aichi, Japan.
- 13 ⁵ Child brain Project, Department of Brain & Neuroscience, Tokyo Metropolitan Institute of
- 14 Medical Science, Tokyo, Japan.
- 15

- $\mathbf{2}$
- 1 * Correspondence should be addressed to Haruo Okado, Neural Development Project,
- 2 Department of Brain Development and Neural Regeneration, Tokyo Metropolitan Institute of
- 3 Medical Science, Tokyo 156-8506, Japan. E-mail: okado-hr@igakuken.or.jp (H.O.)
- 4
- 5 Keyword: Alzheimer's disease, angiopathy, immune system, early life stress, amyloid-beta,

6 cognitive function

 $\mathbf{7}$

3

1 Abstract

2	Background: Alzheimer's disease (AD), a progressive neurodegenerative disorder, is a serious
3	social problem. Recently, several early-life factors have been associated with an increased risk
4	of a clinical diagnosis of AD.
5	Methods: We investigated the involvement of early-life stress in AD pathogenesis using
6	heterozygous the amyloid precursor protein (APP) mutant mice (App ^{NL-G-F/wt}) and wild-type
7	(App ^{wt/wt}) mice. Maternal separation was used as an animal paradigm for early-life stress. Object
8	location and fear conditioning tests were performed to measure cognitive functions, in addition
9	to biochemical tests. Immunohistochemical analyses were performed after the behavioral tests.
10	Results: We found that maternal-separated App ^{wt/wt} mice showed narrowing of vessels and
11	decreased pericyte coverage of capillaries in prefrontal cortex, while maternal-separated App^{NL-}
12	$^{G-F/wt}$ mice additionally showed impairment of cognitive function, and earlier formation of A β
13	plaques and disruption of the blood-brain barrier. Severe activation of microglia was detected in
14	the maternal-separated App ^{NL-G-F/wt} mice and maternal-separated App ^{wt/wt} mice. At the early stage,
15	morphological changes and inflammatory responses were observed in the microglia of the

- 4
- 1 maternal-separated $App^{NL-G-F/wt}$ mice and maternal-separated $App^{wt/wt}$ mice, as well as
- 2 morphological changes in the microglia of the non-maternal-separated *App^{NL-G-F/wt}* mice.
- 3 Conclusions: Microglia activation induced by maternal separation in combination with the APP
- 4 mutation may impairs the vascular system, leading to AD progression. These findings therefore
- 5 suggest that maternal separation causes early induction of AD pathology via angiopathy.

 $\mathbf{5}$

1 Introduction

2	The development of abnormal physiology in association with increased age is observed in the
3	progression of many disorders. Because daily habits and environmental stresses such as alcohol
4	intake and diet have the major influence on life-span, rather than genetic factors (Christensen et
5	al., 2006), acceleration of the aging process by such environmental factors is thought to increase
6	both the risk of developing a disease and mortality from a disease. Alzheimer's disease (AD) is
7	one such disease that is thought to be influenced by environmental factors; it is characterized by
8	progressive impairment of cognitive functions such as memory. It is considered that the
9	acquired predisposition to AD increases with age, and that trauma during adulthood increases
10	the likelihood of developing AD. Moreover, recent epidemiological research has suggested that
11	stressful environmental factors during the developmental period, including mistreatment,
12	neglect, and the loss of a parent, can also increase the likelihood of developing AD (Norton et
13	al., 2011; Radford et al., 2017; Seifan et al., 2015). However, as the research behind these
14	findings is generally the result of retrospective cohort studies, it is unclear whether early-life
15	stress affects the onset and progression of AD.

16 Recently, vascular impairment, a postmortem pathological finding in the brain, was reported

 $\mathbf{5}$

1	to occur before the onset of AD. Therefore, vascular impairment is considered as an initial
2	symptom of AD (Iadecola, 2017; Montagne et al., 2016; Wen et al., 2004). The neurovascular
3	unit (NVU) consists of neurons, endothelial cells, pericytes, microglia, and astrocytes. As the
4	NVU is important for the extrusion of amyloid beta, an impairment in extraction can cause
5	sporadic AD and cerebral amyloid angiopathy (Mawuenyega et al., 2010). In particular, the
6	capillary vessels in the brain play an important role in the extrusion of amyloid beta.
7	Dysfunction of the blood-brain barrier (BBB) and a decrease in amyloid beta clearance through
8	the cerebral vascular system is observed in AD (Zlokovic, 2011). Degeneration of cells making
9	up the BBB, such as pericytes, causes dysfunction of the BBB (Sweeney et al., 2016). However,
10	it remains unclear whether early-life stress results in dysfunction of the vascular system.
11	In this study, we investigated whether maternal separation, which can be used as an early-life
12	stress in rodents, facilitates the development of AD, with the purpose of understanding the
13	causal association between the development of AD and early-life stress. After finding
14	indications that maternal separation affects the development of AD, we next investigated the
15	changes induced by maternal separation, paying particular attention to capillary vessel
16	morphology in heterozygous the amyloid precursor protein (APP) mutant mice (App ^{NL-G-F/wt}) and

 $\mathbf{7}$

- 1 wild-type (*App^{wt/wt}*) mice. As a result, we established that maternal separation facilitates the
- 2 development of AD. Furthermore, we found that impairment of capillaries, probably caused by
- 3 abnormalities in microglia, leads to dysfunction of the BBB, thereby facilitating the
- 4 development of clinical AD.

 $\mathbf{5}$

8

1 Materials and methods

2 All experimental procedures were approved by the Animal Experimentation Ethics Committee

- 3 of the Tokyo Metropolitan Institute of Medical Science (49040).
- 4
- 5 Animals

6	The original lines o	of App mutant mice	$(App^{NL-G-F/NL-G-F})$) were established	as a C57BL/6J
---	----------------------	--------------------	-------------------------	--------------------	---------------

7 congenic line (a genetic background strain) by repeated back-crosses, as described previously,

- 8 and were obtained from RIKEN Center for Brain Science (Wako, Japan)(Saito et al., 2014). All
- 9 experiments were performed with $App^{NL-G-F/wt}$ and $App^{wt/wt}$ that were born from $App^{NL-G-F/wt}$ mice
- 10 x $App^{NL-G-F/wt}$ mice or $App^{NL-G-F/wt}$ mice x $App^{wt/wt}$ mice. $App^{NL-G-F/wt}$ mice with slow onset of

11 pathology were used because it was important to investigate the process of decline in function.

- 12 All mice were maintained under a 12:12 h light/dark cycle (lights on at 8:00 AM). All efforts
- 13 were made to minimize the number of animals used and their suffering. All experiments, except
- 14 for maternal separation, were performed in adolescence (postnatal day 45 (P 45)) or adulthood

15 (P90–P120).

9

1 Maternal separation

2	Maternal separation is usually used as a form of early-life stress in mice. Pups were separated
3	from their mother for 3 hours (AM 9:00-12:00) daily from P2 to P15. The separated pups were
4	taken to a different room and placed on a heat pat to maintain their body temperature. The
5	control mice had no experience of maternal separation. The body weights were not significantly
6	different between the non-maternal-separated and maternal-separated mice at several stages of
7	development.
8	
9	Behavioral assessment
10	Male mice were allowed to habituate in the behavioral room for at least 1 hour before
11	commencement of the behavioral test. Mice showing outlier behavior > 2 standard deviations
12	from the mean or < 2 standard deviations from the mean were not analyzed by the behavioral
13	test.
14	The object location test consisted of three phases. All phases were performed under a light
15	intensity of 10 lux. On day 1, the animals were placed in an empty square box (50 cm x 50 cm)
16	for 10 minutes. On day 2, the animals were placed in the same box for 10 minutes with two

1	same identical unfamiliar objects. On day 3, the animals were placed in the same box, with one
2	of the two items being displaced to a novel location in the area. The discrimination index was
3	calculated as the ratio of the time spent exploring the novel place to that spent exploring the
4	familiar place: discrimination index = (novel place exploration time – familiar place exploration
5	time)/(novel place exploration time + familiar place exploration time). On each day, the
6	exploration time in each place was calculated automatically using a DVTrack video tracking
7	system (Muromachi, Tokyo, Japan).
8	The fear conditioning test consisted of three phases. On day 1, the animals were placed in a
9	triangular box for 5 minutes under a light intensity of 30 lux. On day 2, the animals were placed
10	into a square box with a stainless-steel grid floor and were allowed to explore the box freely for
11	2 minutes. Subsequently, a tone, which served as the conditioned stimulus (CS), was presented
12	for 30 sec. During the last 1 sec of CS presentation, a 0.75 mA electric shock was applied,
13	which served as the un-conditioning stimulus (US). Two more CS-US parings were presented
14	with a 1 minutes inter-stimulus interval under a light intensity of 100 lux. On day 3, the animals
15	were placed into the same square box as used on day2 for 5 minutes under a light intensity of
16	100 lux. On day 4, the animals were placed in the same triangular box as used on day 1 for 10

1	1
Т	. т.

1	minutes and were allowed to explore the box freely for 2 minutes. Subsequently, CS was
2	presented for 30 sec. Seven more CS were presented with a 1 minutes inter-stimulus interval
3	under a light intensity of 100 lux. In each test, the percentage of freezing time and distance
4	travelled (cm) were calculated automatically using ImageFZ software (O'Hara & Co., Tokyo,
5	Japan). Freezing was taken to indicate that the mice remembered the box (context) or tone (cue)
6	in which they were exposed to the electrical shock.
7	
8	Immunohistochemistry
9	At P45 or P120, male and female mice were anaesthetized with isoflurane and then
10	sequentially perfused through the heart with PBS followed by 4% paraformaldehyde (PFA) in
11	PBS. Their brains were post-fixed, cryoprotected in 20% sucrose at 4°C, and embedded in OCT
12	compound and frozen. Coronal sections of mouse brain were then cut using a cryostat (20 μ m).
13	Free-floating sections containing PFC were activated by HistVT one (Nakalai., Kyoto, Japan) at
14	70°C for 20 minutes, incubated in 0.4% Block-ase (DS Pharma Biomedical., Osaka, Japan) in
15	PBS at room temperature for 20 minutes, and then incubated with primary antibody
16	(Supplemental figure 1). All primary antibodies were diluted 1:500 in PBS containing 0.3%

1	Triton X-100. The sections were then incubated with secondary antibody (Jackson., Maine,
2	United State) (diluted 1:500 in PBS containing 0.3% Triton X-100) for 2 hours at room
3	temperature. All sections types were incubated with DAPI (Nacalai Tesque., Kyoto, Japan) for
4	nuclear staining. Fluorescence micrographs of the sections subjected to immunostaining
5	procedures were captured and digitized with a FluoView® FV3000 confocal laser scanning
6	microscope (Olympus., Tokyo, Japan). With the aim of quantifying the morphological change of
7	microglia, skeleton analysis and particle analysis were performed by ImageJ(Fernández-Arjona
8	et al., 2017; Xu et al., 2018).
9	
10	Luminex analysis assay
11	Following the sacrifice of male and female mice, mouse PFC fractions were dissociated with
12	a tissue homogenizer in 100 μl of 0.5 \times cell lysis buffer 2 diluted in PBS (R&D Systems.,
13	Minnesota, United State). Tissues were lysed at room temperature for 30 minutes, and debris
14	was then removed by centrifugation. Magnetic luminex assays were performed using a Mouse
15	Premixed Multi-Analysis Kit (R&D Systems., Minnesota, United State). Assay procedures were

1	system (Bio-Rad., California, United State).
2	
3	Corticosterone assay
4	Male and female mice were subjected to a novel cage stress (Rattray et al., 2009), in which
5	each mouse was placed in isolation in a new cage with a smooth floor for 30 minutes at P45.
6	Blood samples were taken before stress and immediately after stress, and centrifuged at 3,300
7	rpm to separate serum. Corticosterone concentrations were measured using an enzyme-linked
8	immunosorbent assay (ELISA) (AssayPro., Missouri, United State).
9	
10	Statistical data analysis
11	Group data are presented as the mean \pm SEM. The statistical significance of between-group
12	differences was assessed by the Tukey-Kramer test, Dunnett's test, or the paired t-test, using
13	JMP software (SUS Institute., North Carolina, United State). The interaction between area and
14	distance was assessed using the polynomial regression model. The statistical significance of
15	differences between groups and over time was assessed by two-way repeated ANOVA followed
16	by a post-hoc Holm's test, using R software.

2	Experimental	design
_	Елрентении	uesign

- 3 Figure 1A shows the experimental schedule. To investigate whether stress in the early
- 4 developmental stage is involved in the onset and/or progression of AD, we performed maternal
- 5 separation for 3 hours daily during the period from P2 to P15 in *App^{wt/wt}* and *App^{NL-G-F/wt}* mice.
- 6 The *App^{NL-G-F/wt}* mice show an AD-like phenotype in the late-aged stage (Saito et al., 2014). We
- 7 then performed behavioral tests and tissue sampling around P45 (adolescence) and P120 (adult).
- 8
- 9 Maternal separation induced impairment of cognitive function and facilitated formation of
- 10 *amyloid beta plaque in the adult App*^{*NL-G-F/wt} <i>mice*</sup>

11	Figure 1B illustrates the effect of maternal separation on object location test which evaluate
12	spatial memory (Denninger et al., 2018). Object location memory in the App ^{wt/wt} mice was not
13	altered by maternal separation, as indicated by the fact that the discrimination index was not
14	changed by maternal separation. By contrast, object location memory in the App ^{NL-G-F/wt} mice
15	was impaired by maternal separation, as indicated by a discrimination index close to zero. The
16	non-maternal-separated App ^{NL-G-F/wt} mice showed intact object location memory. These results

1	indicate that the combination of APP mutation and maternal separation influence object location
2	memory. Figure 1C indicates the effect of maternal separation on contextual and cued fear
3	memory. Contextual fear memory in the App ^{wt/wt} mice was not altered by maternal separation,
4	while that in the App ^{NL-G-F/wt} mice was impaired by maternal separation, as indicated by the
5	lower freezing time in the maternal-separated App ^{NL-G-F/wt} mice in comparison with the non-
6	maternal-separated App ^{NL-G-F/wt} and non-maternal separated App ^{wt/wt} mice. By contrast, tone-cued
7	fear memory was not impaired in any of the four groups, indicating that contextual memory,
8	which is related to prefrontal cortex-hippocampus signaling and is known to be necessary for
9	the encoding of spatial cues, was impaired (Kitamura et al., 2017). Figure 1D indicates the
10	effect of maternal separation on the formation of amyloid beta plaque. The formation of
11	amyloid beta plaque in the App ^{NL-G-F/wt} mice was facilitated in mice that underwent maternal
12	separation than in non-maternal-separated App ^{NL-G-F/wt} mice.
13	
14	Maternal separation induces vascular system impairment in adult mice
15	Phenotypes showing decreased pericyte coverage, a narrowing of capillary diameter, and
16	impairment of the BBB are frequently observed in the postmortem brain of AD patients

1	(Halliday et al., 2016). Figure 2 illustrates the effect of maternal separation on the vascular
2	system. The maternal-separated App ^{wt/wt} and maternal-separated App ^{NL-G-F/wt} mice showed lower
3	pericyte coverage of capillaries in the prefrontal cortex (PFC) than the non-maternal-separated
4	controls in adult. Furthermore, maternal separation induced a narrowing of capillary diameter in
5	both the <i>App^{wt/wt}</i> mice and <i>App^{NL-G-F/wt}</i> mice (Figure 2A). The more vessel-associated microglia
6	were detected in the maternal-separated App ^{NL-G-F/wt} mice (Figure 2B). The result suggests
7	strengthening of the interaction between microglia and vessels in the maternal-separated App^{NL-}
8	<i>G-F/wt</i> mice. The vessel-associated microglia migrate towards cerebral vessel and cause increased
9	BBB permeability; Microglia, which can acquire a reactive phenotype that phagocytoses BBB
10	components, initiate leakage of systemic substances into the parenchyma (Haruwaka et al.,
11	2019). In our study, extra-vascular accumulation of fibrinogen deposits in the PFC was detected
12	only in the maternal-separated App ^{NL-G-F/wt} mice (Figure 2C). We speculate that this
13	accumulation was caused by leakage of fibrinogen due to impairment of the vascular system by
14	more cessel-associated phagocytotic microglia only in the maternal-separated App ^{NL-G-F/wt} mice.
15	Figure 2D shows the relationship between the sizes of the amyloid beta plaques and the
16	distances from the amyloid beta plaques to vessels in the maternal-separated and non-maternal-

1	separated App ^{NL-G-F/wt} mice that had mild amyloid beta plaque symptoms. The correlations
2	between the sizes of amyloid beta plaques and the distances from the amyloid beta plaques to
3	vessels were significant, which suggests the possibility that amyloid beta plaques were
4	generated around the vessels and caused disappearance of the vessels after disruption. We also
5	detected ameboid microglia surrounding amyloid beta plaques stained with tomato-lectin
6	(Acarin et al., 1994).
7	
8	Either maternal separation or APP mutation caused activation of and morphological change in
9	microglia in adult mice
10	As the vascular system is affected by microglia, we examined the activity and morphology of
11	microglia. Figure 3 shows the effects of maternal separation on microglia. Maternal separation
12	caused activation of the microglia in the PFC of both App ^{wt/wt} mice and App ^{NL-G-F/wt} mice (Figure
13	3A). Although the numbers of microglia were not significantly different between any of the
14	groups, except for the microglia surrounded by amyloid beta plaque, the proportions of soma
15	and dendrites stained by Iba1 were lower in both App ^{wt/wt} mice and App ^{NL-G-F/wt} mice subjected to
16	maternal separation (Figure 3A) than in the corresponding controls. Maternal separation may

1	have induced morphological changes in both genotypes. More detailed analysis of the
2	morphological changes revealed differences between non-maternal-separated App ^{wt/wt} mice and
3	other groups (Figure 3B). Lower numbers of dendrite terminals and a shortening of the total
4	branch length were detected in the maternal-separated App ^{NL-G-F/wt} mice than in the non-
5	maternal-separated App ^{wt/wt} mice. On the other hand, the number of dendrite terminals was
6	lower in the non-maternal-separated App ^{NL-G-F/wt} mice than in the non-maternal-separated
7	App ^{wt/wt} mice (Figure 3B). The non-maternal-separated App ^{NL-G-F/wt} mice may have milder
8	microglial symptoms than the maternal-separated animals. Furthermore, the circularity and
9	solidity of microglia increased in only the maternal-separated App ^{NL-G-F/wt} mice. We speculated
10	that maternal separation in combination with the APP mutation induced ameboid-like severe
11	morphological change.
12	
13	The maternal-separated $App^{wt/wt}$ and $App^{NL-G-F/wt}$ mice showed intact object location memory,
14	absence of amyloid beta plaque, and normal vascular morphology and pericyte in adolescence
15	To detect initial changes in the maternal-separated and/or mutated mice, we examined the
16	phenotypes at an earlier stage (P90), that is, in adolescence. Figure 4A shows the effect of

1	maternal separation on object location memory in adolescence. In all groups, the discrimination
2	index for object location memory indicated object location memory to be intact. Figure 4B
3	shows that amyloid beta plaque was absent in all groups. Figure 4C shows no impairment of
4	vascular morphology or pericytes in any of the groups. We detect no changes in cognitive
5	function, plaque formation and vascular system in the maternal-separated and/or mutated mice
6	at adolescence, which allow us to rule out that the maternal-separated and/or mutated mice are
7	model mice for developmental disorders.
8	
9	Maternal separation and APP mutation cause functional and morphological change to
10	microglia in adolescence
11	Figure 5 indicates the effect of maternal separation on microglia in adolescence. The numbers
12	of activated microglia were not significantly different between each group (Figure 5A). A more
13	detailed analysis of morphological differences revealed lower numbers of dendrite terminals in
14	the maternal-separated $App^{NL-G-F/wt}$ mice than in the non-maternal-separated $App^{wt/wt}$ mice. In the
15	App ^{wt/wt} mice, the maternally separated mice also showed lower numbers of dendrite terminals.
16	Furthermore, lower numbers of dendrite terminals were detected in the non-maternal-separated

1	App ^{NL-G-F/wt} mice than in the non-maternal-separated App ^{wt/wt} mice (Figure 5B). On the other
2	hand, the numbers of vessel-associated microglia did not differ between the groups (Figure 5C).
3	To evaluate the pro-inflammatory properties of microglia, we measured the level of TNF-R1
4	protein in the PFC. Maternal-separated App ^{wt/wt} and App ^{NL-G-F/wt} mice showed higher levels of
5	TNF-R1 protein than the non-maternal-separated mice (Figure 5D). We detected changes
6	associated with both maternal separation and heterozygotic mutation in adolescence, indicating
7	the possibility that a change in microglia caused by both maternal separation and APP mutation
8	induces an AD-like phenotype. To assess the effect of maternal separation on the hypothalamus-
9	pituitary-adrenal axis in adolescence, we measured serum corticosterone levels induced by a
10	novel cage stress in maternal-separated and non-separated mice. Maternal-separated App ^{NL-G-F/wt}
11	and App ^{wt/wt} mice subjected to a novel cage stress in adolescence mice showed more
12	corticosterone release than non-maternal-separated $App^{NL-G-F/wt}$ and $App^{wt/wt}$ mice (Figure 5E).

21

1 Discussion

2	In this study, we investigated whether maternal separation facilitates the development of AD,
3	with the aim of understanding the causal association between early-life stress and the
4	development and progression of AD. We also investigated for changes induced by maternal
5	separation, particularly in capillary vessels. We established that maternal separation facilitates
6	the impairment of spatial cognitive function and the formation of amyloid beta plaque in App^{NL}
7	<i>G-F/wt</i> mice, with disruption of micro-capillaries, and we verified that early-life stress constitutes
8	a risk factor for AD. Furthermore, we found that morphological and functional changes to
9	microglia are early symptoms in our experimental model, and suggest the possibility that
10	impairment of the cerebral vascular system through microglia caused by combination of
11	maternal separation and APP mutation induces dysfunction in the BBB, thereby facilitating the
12	clinical condition of AD.
13	Research using the Childhood Trauma Questionnaire to assess childhood stress has suggested
14	that early-life stress may be associated with increased risk of AD and dementia (Radford et al.,
15	2017). However, because most previous reports, including the above research, were based on
16	retrospective cohort studies, it remains unclear whether early-life stress affects the onset and

1	progression of AD. Although it has been reported that maternal separation facilitates the
2	formation of amyloid beta plaque using an AD mouse model different from the one we used
3	(Hui et al., 2017), the pathway by which maternal separation induces increased amyloid beta
4	plaque remains unclear. We found that maternal separation facilitates the impairment of spatial
5	cognitive function and the formation of amyloid beta plaque through impairment of the cerebral
6	vascular system in App ^{NL-G-F/wt} mice. We propose that these maternally separated App ^{NL-G-F/wt}
7	mice can be used as a stress-induced AD mouse model. As it is known that progression of AD in
8	humans is exacerbated by stress, such as a change in abode and hospital admission in old age,
9	our AD mouse model may contribute to understanding the mechanism of stress-induced AD and
10	how it can be prevented.
11	We found that maternal separation mildly impaired the cerebral capillary vascular system.
12	However, dysfunction of the BBB, which is a more serious symptom, was detected in the
13	maternal-separated App ^{NL-G-F/wt} mice and was related to both maternal separation and genetic
14	factors. Several mechanisms are involved in clear amyloid beta clearance (Chen et al., 2017).
15	One mechanism involves transcytosis through cells of the BBB. Another mechanism involves
16	phagocytosis by microglia. The reduction in amyloid beta clearance due to impairment of the

1	vascular system and impaired microglial phagocytoses of amyloid beta may induce
2	inflammation and increase fibrin generation due to coagulation factor XII (FXII) activation by
3	amyloid beta. The interaction of amyloid beta with fibrin (or fibrinogen) can lead to increased
4	fibrin deposition in cerebral blood vessels, and these accumulated fibrin deposits may induce
5	microinfarcts, which result in hemorrhage, inflammation, and BBB disruption, all of which are
6	commonly observed in AD (Ahn et al., 2017). Our result that disappearance of vessel around
7	larger amyloid plaque (Fig. 2D) may be caused by the interaction of amyloid beta with fibrin.
8	We report that maternal separation induces impairments to the cerebral vascular system, with
9	impairments to pericytes and narrowing of vessels in adulthood. Both of these phenotypes are
10	detected in the postmortem brains of human patients with AD (Halliday et al., 2016). Therefore,
11	these findings indicate a relationship between early-life stress and AD pathology. It has been
12	demonstrated that both antenatal and postnatal stress delay the development of the BBB during
13	weaning (Gomez-Gonzalez and Escobar, 2009). We detected no impairment in vascular
14	morphology or in pericytes in adolescence. Our findings that early-life stress induces
15	impairments in adult mice is in accord with the Development Origins of Health and Disease
16	(DOHaD) hypothesis, which purports that exposure to certain environmental conditions during

1	critical periods of development and growth may have significant adverse effects on short- and
2	long-term health. As the ultrastructural breakdown of capillaries and a decrease in blood flow
3	are detected in AD patients and AD mouse models (de la Torre, 2004), it is likely that
4	impairment of the cerebral vascular system develops before the onset of AD pathogeny in
5	App ^{NL-G-F/wt} mice.
6	We detected morphological changes in microglia and changes in their pro-inflammatory
7	properties (which are mediated by the activation of TNF-R1) at an early stage, while we did not
8	detect amyloid plaque formation, changes to the vascular system, or changes in behavior.
9	Microglia have been reported to show morphological changes in response to the clinical
10	condition of AD (Yamada and Jinno, 2013). An increase in corticosterone in response to stress
11	has been reported to be related to a change in microglia (Rincon-Cortes and Sullivan, 2014). In
12	our study, maternal-separated App ^{NL-G-F/wt} and maternal-separated App ^{wt/wt} mice showed
13	increased corticosterone release in response to a novel cage stress at adolescence, which
14	suggests that maternal separation affects the stress response. In fact, the production of
15	corticosterone in response to stress facilitates the release of monocytes into the circulation from
16	bone marrow, which in turn facilitates monocyte adherence to vessels (Niraula et al., 2018). The

1	release of monocytes upregulates IL-1 β and stimulates endothelial cells (McKim et al., 2018).
2	Haruwaka et al. hypothesized that endothelial cells may respond to systemic inflammation and
3	release molecules to trigger microglia migration and phenotype changes. They also reported that
4	chemokine (C-C motif) ligand 5 (CCL5), which is secreted by endothelial cells, attracts
5	microglia to vessels. Recently, plasma from aged mice was shown to affect the activity of
6	microglia, referred to as neuroinflammation, and increase VCAM1 expression on endothelial
7	cell, a major cell type of the BBB, in young mice (Yousef et al., 2019). The authors suggested
8	that circulating cytokines and chemokines with detrimental effects on the brain give rise to these
9	changes in microglia and endothelial cells. Considering that increased age is crucial for the
10	development of AD, increases in inflammatory signals in the plasma may induce AD. On the
11	other hand, the non-maternal-separated App ^{NL-G-F/wt} mice also showed morphological changes in
12	adolescence. Our data support the hypothesis that impairment of the vascular system by amyloid
13	beta oligomers induces activation of microglia (Nortley et al., 2019). As microglia and the
14	vascular system are deeply linked, the possibility that an undetectable alteration of the vascular
15	system led to a change in the microglia, which then led to the development of AD via an
16	interaction between microglia and the vascular system, cannot be ruled out. The changes in

1	microglia induced by maternal separation and those induced by APP mutation may occur via
2	different mechanisms. Microglia activation induced by maternal separation in combination with
3	App ^{NL-G-F/wt} mice may impairs the vascular system, leading to AD progression.
4	In the present study, we established that maternal separation facilitates the development of
5	AD. Furthermore, we identified changes in microglia induced by maternal separation and/or
6	genetic factors as an early phenotype, which probably preceded the impairment of the vascular
7	system in the stress-induced AD mouse model. These results indicate that microglia could have
8	potential use as biomarkers and as targets for new therapies against AD.
9	
10	

1 Author contributions

2	T.T. and H.O. designed the research. T.T. performed and analyzed all experiments. T.S. and T.S.
3	generated and provided App mutant mice (App ^{NL-G-F/NL-G-F}). S.H., M.H., H.S., and M.H. helped
4	with this study and made important suggestions. T.T. generated all the figures and tables and
5	wrote the manuscript. H.O. edited the manuscript and supervised the study.
6	
7	Acknowledgments
8	The authors thank Dr. Makoto Hashimoto for advice. We would like to thank Bioedit Ltd
9	(https://www.bioedit.com) for English language editing. This work was partially supported by
10	JSPS KAKENHI Grant Number 18H02537 for Haruo Okado, and by JSPS KAKENHI Grant
11	Number 17K16408 and Research Grant for Public Health Science for Tomoko Tanaka.
12	
13	Competing interests
14	The authors declare that the research was conducted in the absence of any commercial or
15	financial relationships that could be construed as a potential conflict of interest.

1 References

- 2 Acarin, L., Vela, J.M., González, B., Castellano, B., 1994. Demonstration of
- 3 poly-N-acetyl lactosamine residues in ameboid and ramified microglial cells
- 4 in rat brain by tomato lectin binding. J. Histochem. Cytochem. 42, 1033-
- 5 1041.
- 6 Ahn, H.J., Chen, Z.L., Zamolodchikov, D., Norris, E.H., Strickland, S., 2017.
- 7 Interactions of β-amyloid peptide with fibrinogen and coagulation factor XII
- 8 may contribute to Alzheimer's disease. Curr. Opin. Hematol. 24, 427-431.
- 9 Chen, G.F., Xu, T.H., Yan, Y., Zhou, Y.R., Jiang, Y., Melcher, K., Xu, H.E.,
- 10 2017. Amyloid beta: structure, biology and structure-based therapeutic
- 11 development. Acta Pharmacol. Sin. 38, 1205-1235.
- 12 Christensen, K., Johnson, T.E., Vaupel, J.W., 2006. The quest for genetic
- 13 determinants of human longevity: challenges and insights. Nature reviews.
- 14 Genetics 7, 436-448.
- 15 de la Torre, J.C., 2004. Is Alzheimer's disease a neurodegenerative or a
- 16 vascular disorder? Data, dogma, and dialectics. Lancet Neurol. 3, 184-190.
- 17 Denninger, J.K., Smith, B.M., Kirby, E.D., 2018. Novel Object Recognition
- 18 and Object Location Behavioral Testing in Mice on a Budget. J Vis Exp.
- 19 Fernández-Arjona, M.D.M., Grondona, J.M., Granados-Durán, P.,
- 20 Fernández-Llebrez, P., López-Ávalos, M.D., 2017. Microglia Morphological
- 21 Categorization in a Rat Model of Neuroinflammation by Hierarchical
- 22 Cluster and Principal Components Analysis. Front. Cell. Neurosci. 11, 235.
- 23 Gomez-Gonzalez, B., Escobar, A., 2009. Altered functional development of
- the blood-brain barrier after early life stress in the rat. Brain Res. Bull. 79,
- 25 376-387.
- 26 Halliday, M.R., Rege, S.V., Ma, Q., Zhao, Z., Miller, C.A., Winkler, E.A.,
- 27 Zlokovic, B.V., 2016. Accelerated pericyte degeneration and blood-brain
- 28 barrier breakdown in apolipoprotein E4 carriers with Alzheimer's disease. J.
- 29 Cereb. Blood Flow Metab. 36, 216-227.
- 30 Haruwaka, K., Ikegami, A., Tachibana, Y., Ohno, N., Konishi, H., Hashimoto,
- 31 A., Matsumoto, M., Kato, D., Ono, R., Kiyama, H., Moorhouse, A.J.,
- 32 Nabekura, J., Wake, H., 2019. Dual microglia effects on blood brain barrier

- 1 permeability induced by systemic inflammation. Nat Commun 10, 5816.
- 2 Hui, J., Feng, G., Zheng, C., Jin, H., Jia, N., 2017. Maternal separation
- 3 exacerbates Alzheimer's disease-like behavioral and pathological changes in
- 4 adult APPswe/PS1dE9 mice. Behav. Brain Res. 318, 18-23.
- 5 Iadecola, C., 2017. The Neurovascular Unit Coming of Age: A Journey
- 6 through Neurovascular Coupling in Health and Disease. Neuron 96, 17-42.
- 7 Kitamura, T., Ogawa, S.K., Roy, D.S., Okuyama, T., Morrissey, M.D., Smith,
- 8 L.M., Redondo, R.L., Tonegawa, S., 2017. Engrams and circuits crucial for
- 9 systems consolidation of a memory. Science 356, 73-78.
- 10 Mawuenyega, K.G., Sigurdson, W., Ovod, V., Munsell, L., Kasten, T., Morris,
- 11 J.C., Yarasheski, K.E., Bateman, R.J., 2010. Decreased clearance of CNS
- 12 beta-amyloid in Alzheimer's disease. Science 330, 1774.
- 13 McKim, D.B., Weber, M.D., Niraula, A., Sawicki, C.M., Liu, X., Jarrett, B.L.,
- 14 Ramirez-Chan, K., Wang, Y., Roeth, R.M., Sucaldito, A.D., Sobol, C.G., Quan,
- 15 N., Sheridan, J.F., Godbout, J.P., 2018. Microglial recruitment of IL-1beta-
- 16 producing monocytes to brain endothelium causes stress-induced anxiety.
- 17 Mol. Psychiatry 23, 1421-1431.
- 18 Montagne, A., Nation, D.A., Pa, J., Sweeney, M.D., Toga, A.W., Zlokovic, B.V.,
- 19 2016. Brain imaging of neurovascular dysfunction in Alzheimer's disease.
- 20 Acta Neuropathol. 131, 687-707.
- 21 Niraula, A., Wang, Y., Godbout, J.P., Sheridan, J.F., 2018. Corticosterone
- 22 Production during Repeated Social Defeat Causes Monocyte Mobilization
- 23 from the Bone Marrow, Glucocorticoid Resistance, and Neurovascular
- 24 Adhesion Molecule Expression. J. Neurosci. 38, 2328-2340.
- 25 Nortley, R., Korte, N., Izquierdo, P., Hirunpattarasilp, C., Mishra, A.,
- 26 Jaunmuktane, Z., Kyrargyri, V., Pfeiffer, T., Khennouf, L., Madry, C., Gong,
- 27 H., Richard-Loendt, A., Huang, W., Saito, T., Saido, T.C., Brandner, S., Sethi,
- 28 H., Attwell, D., 2019. Amyloid beta oligomers constrict human capillaries in
- 29 Alzheimer's disease via signaling to pericytes. Science 365.
- 30 Norton, M.C., Smith, K.R., Ostbye, T., Tschanz, J.T., Schwartz, S., Corcoran,
- 31 C., Breitner, J.C., Steffens, D.C., Skoog, I., Rabins, P.V., Welsh-Bohmer, K.A.,
- 32 2011. Early parental death and remarriage of widowed parents as risk
- 33 factors for Alzheimer disease: the Cache County study. Am. J. Geriatr.

- 1 Psychiatry 19, 814-824.
- 2 Radford, K., Delbaere, K., Draper, B., Mack, H.A., Daylight, G., Cumming,
- 3 R., Chalkley, S., Minogue, C., Broe, G.A., 2017. Childhood Stress and
- 4 Adversity is Associated with Late-Life Dementia in Aboriginal Australians.
- 5 Am. J. Geriatr. Psychiatry 25, 1097-1106.
- 6 Rattray, I., Scullion, G.A., Soulby, A., Kendall, D.A., Pardon, M.C., 2009. The
- 7 occurrence of a deficit in contextual fear extinction in adult amyloid-over-
- 8 expressing TASTPM mice is independent of the strength of conditioning but
- 9 can be prevented by mild novel cage stress. Behav. Brain Res. 200, 83-90.
- 10 Rincon-Cortes, M., Sullivan, R.M., 2014. Early life trauma and attachment:

11 immediate and enduring effects on neurobehavioral and stress axis

- 12 development. Front. Endocrinol. (Lausanne) 5, 33.
- 13 Saito, T., Matsuba, Y., Mihira, N., Takano, J., Nilsson, P., Itohara, S., Iwata,
- 14 N., Saido, T.C., 2014. Single App knock-in mouse models of Alzheimer's
- 15 disease. Nat. Neurosci. 17, 661-663.
- 16 Seifan, A., Schelke, M., Obeng-Aduasare, Y., Isaacson, R., 2015. Early Life
- 17 Epidemiology of Alzheimer's Disease A Critical Review. Neuroepidemiology
- 18 45, 237-254.
- 19 Sweeney, M.D., Ayyadurai, S., Zlokovic, B.V., 2016. Pericytes of the
- 20 neurovascular unit: key functions and signaling pathways. Nat. Neurosci.
- 21 19, 771-783.
- 22 Wen, Y., Yang, S., Liu, R., Simpkins, J.W., 2004. Transient cerebral ischemia
- induces site-specific hyperphosphorylation of tau protein. Brain Res. 1022,30-38.
- 25 Xu, H., Rajsombath, M.M., Weikop, P., Selkoe, D.J., 2018. Enriched
- 26 environment enhances β -adrenergic signaling to prevent microglia
- 27 inflammation by amyloid-8. EMBO Mol. Med. 10.
- 28 Yamada, J., Jinno, S., 2013. Novel objective classification of reactive
- 29 microglia following hypoglossal axotomy using hierarchical cluster analysis.
- 30 J. Comp. Neurol. 521, 1184-1201.
- 31 Yousef, H., Czupalla, C.J., Lee, D., Chen, M.B., Burke, A.N., Zera, K.A.,
- 32 Zandstra, J., Berber, E., Lehallier, B., Mathur, V., Nair, R.V., Bonanno, L.N.,
- 33 Yang, A.C., Peterson, T., Hadeiba, H., Merkel, T., Korbelin, J., Schwaninger,

31

- 1 M., Buckwalter, M.S., Quake, S.R., Butcher, E.C., Wyss-Coray, T., 2019.
- 2 Aged blood impairs hippocampal neural precursor activity and activates
- 3 microglia via brain endothelial cell VCAM1. Nat. Med. 25, 988-1000.
- 4 Zlokovic, B.V., 2011. Neurovascular pathways to neurodegeneration in
- 5 Alzheimer's disease and other disorders. Nat. Rev. Neurosci. 12, 723-738.

6

32

1 Figure Legends

 $\mathbf{2}$

- 3 Figure. 1 Maternal separation induces Alzheimer's disease-like behavior and amyloid beta
- 4 plaque formation.
- 5 (A) Time schedule for maternal separation and other investigations. (B) Spatial memory was
- 6 measured using an object location test. Behavioral layout of the object recognition test for the
- 7 four experimental groups. Maternal-separated *App*^{*NL-G-F/wt*} mice showed impairment of spatial
- 8 memory. *p < 0.05 Maternal-separated $App^{NL-G-F/wt}$ mice vs non-maternal-separated $App^{wt/wt}$
- 9 mice; n = 10/ Non- maternal-separated App^{wt/wt} mice, n = 13/ Non-maternal-separated App^{NL-G-}
- 10 F'_{wt} mice, n = 8/ Maternal-separated App^{wt/wt} mice, n = 11/ Maternal-separated App^{NL-G-F/wt} mice
- 11 (Dunnett's test). (C) Contextual memory and cued memory were measured using a fear-
- 12 conditioning test. Behavioral layout of the fear conditioning test for the four experimental
- 13 groups. Maternal-separated *App^{NL-G-F/wt}* mice showed impairment of contextual memory.
- 14 Contextual test: Main effect of group, $F_{(3,68)} = 8.4507$, p = 0.0001; main effect of time, $F_{(4,272)} =$
- 15 5.3835, p = 0.0003; interaction of group × time, $F_{(12,272)} = 1.0939$, p = 0.3651; ** p < 0.01
- 16 Maternal-separated $App^{NL-G-F/wt}$ mice vs non-maternal-separated $App^{wt/wt}$ mice, *** p < 0.001

1	Maternal-separated $App^{NL-G-F/wt}$ mice vs non-maternal-separated $App^{NL-G-F/wt}$ mice; n = 19/ Non-
2	maternal-separated App ^{wt/wt} mice , $n = 24$ / Non-maternal-separated App ^{NL-G-F/wt} mice , $n = 10$ /
3	Maternal-separated $App^{wt/wt}$ mice, n = 22/ Maternal-separated $App^{NL-G-F/wt}$ mice (two-way
4	repeated ANOVA followed by Holm's test). (D) The formation of amyloid beta plaque detected
5	by 82E1-biotin (cyan). The formation of amyloid beta plaque was facilitated by maternal
6	separation in maternal-separated $App^{NL-G-F/wt}$ mice. *** p < 0.001 Maternal-separated $App^{NL-G-F/wt}$
7	mice vs other groups n = 4/each group (Tukey-Kramer test). Scale bar = 100 μ m.
8	
9	

34

1 Figure. 2 Maternal separation induced impairment to the vascular system.

2	(A) The health of the vascular system was evaluated by tomato-lectin labelling of endothelial
3	cells (green) and CD13 labelling of pericytes (magenta). Maternal separation induced lower
4	pericyte coverage in $App^{wt/wt}$ mice and $App^{NL-G-F/wt}$ mice. * p < 0.05, Maternal-separated $App^{wt/wt}$
5	vs non-maternal-separated $App^{wt/wt}$ mice, ** p < 0.01 Maternal-separated $App^{NL-G-F/wt}$ vs non-
6	maternal-separated $App^{wt/wt}$ mice, ** p < 0.01, Maternal-separated $App^{wt/wt}$ vs non-maternal-
7	separated $App^{NL-G-F/wt}$ mice, *** p < 0.001 Maternal-separated $App^{NL-G-F/wt}$ vs non-maternal-
8	separated App ^{NL-G-F/wt} mice. Furthermore, maternal separation also induced a narrowing of
9	vascular diameter in both phenotypes. * p < 0.05 Maternal-separated $App^{wt/wt}$ mice vs non-
10	maternal-separated $App^{wt/wt}$ mice, *** p < 0.001 Maternal-separated $App^{NL-G-F/wt}$ mice vs non-
11	maternal-separated $App^{wt/wt}$ mice, ** p < 0.01 Maternal-separated $App^{NL-G-F/wt}$ mice vs non-
12	maternal-separated $App^{NL-G-F/wt}$ mice; n = 3/each group (Tukey-Kramer test). Scale bar = 20 μ
13	m. (B) Microglia (White arrow in Left image) were detected by microglial labelling with Iba1
14	(magenta) and DAPI (cyan). Vessel-associated microglia (Grey square in Right image) were
15	detected by microglial labelling with Iba1 (magenta) and endothelial cell labelling with tomato-
16	lectin (green). In maternal-separated App ^{NL-G-F/wt} mice, vessel associated microglia were

1	increased. * p < 0.05 Maternal-separated $App^{NL-G-F/wt}$ mice vs non- maternal-separated $App^{wt/wt}$
2	mice; n = 3/ Non-maternal-separated $App^{wt/wt}$ mice, n = 3/ Non-maternal-separated $App^{NL-G-F/wt}$
3	mice, n =3/ Maternal-separated $App^{wt/wt}$ mice, n =4/ Maternal-separated $App^{NL-G-F/wt}$ mice
4	(Dunnett's test). (C) The integrity of the BBB was evaluated by tomato-lectin labelling of
5	endothelial cells (green) and fibrinogen (magenta). Maternal separation caused accumulation of
6	fibrinogen outside of vessels in maternal-separated $App^{NL-G-F/wt}$ mice. * p < 0.05 Maternal-
7	separated $App^{NL-G-F/wt}$ mice vs non-maternal-separated $App^{wt/wt}$ mice; n = 3/each group (Dunnett
8	test). Scale bar = 20 μ m. (D) The distance from the amyloid beta plaques to vessels and the
9	area of amyloid beta plaque were determined using 82E1-biotin labelling of amyloid beta
10	(magenta) and tomato-lectin labelling of endothelial cells (green). The area of amyloid beta
11	plaque showed a significant association with the distance from the amyloid beta plaque to
12	vessels in non-maternal-separated and maternal-separated App ^{NL-G-F/wt} mice. Small amyloid beta
13	plaques are indicated with cyan squares, and amyloid beta plaques with a size midway between
14	small and big amyloid beta plaques are indicated by grey squares. $r^{2} = 0.987186 \text{ p} < 0.001; \text{ n} =$
15	12 (polynomial regression). Scale bar = 20 μ m.
16	

1	Figure. 3 Maternal separation and genetic factors activated and changed the morphology of
2	microglia.
3	(A) Microglial morphology and activation were detected by labelling microglia with Iba1
4	(magenta) and labelling activation with CD68 (cyan). Maternal separation increased in activated
5	microglia in $App^{wt/wt}$ and $App^{NL-G-F/wt}$ mice. * p < 0.05 Maternal-separated $App^{wt/wt}$ mice vs non-
6	maternal-separated $App^{wt/wt}$ mice, * p < 0.05 Maternal-separated $App^{NL-G-F/wt}$ mice or non-
7	maternal-separated $App^{wt/wt}$ mice. * p < 0.05 Maternal-separated $App^{NL-G-F/wt}$ mice or non-
8	maternal-separated App ^{NL-G-F/wt} mice (Tukey-Kramer test). Furthermore, occupancy of soma and
9	dendrites in maternal-separated $App^{wt/wt}$ and maternal-separated $App^{NL-G-F/wt}$ mice was lower. n =
10	3/ Non-maternal-separated $App^{wt/wt}$ mice, n = 3/ Non-maternal-separated $App^{NL-G-F/wt}$ mice, n
11	=3/ Maternal-separated App ^{wt/wt} mice, n =4/ Maternal-separated App ^{NL-G-F/wt} mice (Tukey-
12	Kramer test). Scale bar = 10 μ m. (B) Detailed morphological analysis was performed using
13	the ImageJ plugin AnalyzeSkeleton. Images show examples of the outlines of microglia.
14	Maternal separation and APP mutation decreased dendritic terminals in App ^{wt/wt} and App ^{NL-G-F/wt}
15	mice. * p < 0.05 Non-maternal-separated $App^{NL-G-F/wt}$ mice vs non-maternal-separated $App^{wt/wt}$
16	mice, ** p < 0.01 Maternal-separated $App^{wt/wt}$ mice vs non-maternal-separated $App^{wt/wt}$ mice,

1	*** $p < 0.001$ Maternal-separated $App^{NL-G-F/wt}$ mice vs non-maternal-separated $App^{wt/wt}$ mice
2	(Dunnett test). Furthermore, the total branch length in maternal-separated App ^{NL-G-F/wt} mice and
3	maternal-separated $App^{wt/wt}$ mice were shorter. * p < 0.05 Maternal-separated $App^{wt/wt}$ mice vs
4	non-maternal-separated $App^{wt/wt}$ mice, ** p < 0.01 Maternal-separated $App^{NL-G-F/wt}$ mice vs non-
5	maternal-separated App ^{wt/wt} mice. The circularity of microglia increased in only the maternal-
6	separated $App^{NL-G-F/wt}$ mice. ** p < 0.01 Maternal-separated $App^{NL-G-F/wt}$ mice vs non-maternal-
7	separated App ^{wt/wt} mice. The solidity of microglia increased in only the maternal-separated
8	$App^{NL-G-F/wt}$ mice. ** p < 0.01 Maternal-separated $App^{NL-G-F/wt}$ mice vs non-maternal-separated
9	$App^{wt/wt}$ mice; n =4/each group (Dunnett test).
10	
11	

1	Figure. 4. Alzheimer's disease-like phenotypes did not begin during adolescence in maternal-
2	separated App ^{NL-G-F/wt} mice, and impairment of the vascular system did not begin during
3	adolescence in all groups.
4	(A) Spatial memory was measured using an object location test. Maternal-separated App ^{NL-G-F/wt}
5	mice showed normal cognitive function. $n = 9/$ Non-maternal-separated <i>App</i> ^{<i>wt/wt</i>} mice, $n = 11/$
6	Non-maternal-separated $App^{NL-G-F/wt}$ mice, n = 12/ Maternal-separated $App^{wt/wt}$ mice, n = 11/
7	Maternal-separated App ^{NL-G-F/wt} mice (B) The formation of amyloid beta plaque detected by
8	82E1-biotin labelling of amyloid beta. No amyloid beta plaque was detected in maternal-
9	separated $App^{NL-G-F/wt}$ mice. n = 3/each group (C) The health of the vascular system was
10	evaluated by tomato-lectin labelling of endothelial cells (green) and CD13 labelling of pericytes
11	(magenta). All groups showed normal pericyte coverage and a healthy vascular diameter. n =
12	3/each group. Scale bar = 20 μ m.
13	
14	

1	Figure 5. Maternal separation and genetic factors induced morphological changes in microglia
2	and maternal separation in combination with genetic factors led to abnormality in the stress
3	response during adolescence.
4	(A) Microglial morphology and activation were detected by labelling with Iba1 (magenta) and
5	CD68 (cyan), respectively. Increased activation of microglia was not observed in maternal-
6	separated $App^{wt/wt}$ and maternal-separated $App^{NL-G-F/wt}$ mice. n = 3/each group. Scale bar = 10 μ
7	m. (B) Detailed morphological analysis was performed using the ImageJ. Maternal separation
8	and APP mutation decreased dendritic terminals in $App^{wt/wt}$ and $App^{NL-G-F/wt}$ mice. *** p < 0.001
9	Non-maternal-separated $App^{NL-G-F/wt}$ mice vs non-maternal-separated $App^{wt/wt}$ mice, ** p < 0.01
10	Maternal-separated $App^{wt/wt}$ mice vs non-maternal-separated $App^{wt/wt}$ mice, ** p < 0.01
11	Maternal-separated App ^{NL-G-F/wt} mice vs non-maternal-separated App ^{wt/wt} mice (Dunnett test). (C)
12	Microglia (white arrow in left image) were detected by microglial labelling with Iba1 (magenta)
13	and DAPI (cyan). Vessel-associated microglia (Grey square in right image) were detected by
14	microglial labelling with Iba1 (magenta) and endothelial cell labelling with tomato-lectin
15	(green). The numbers of vessel-associated microglia were similar across the four experimental
16	groups. n = 3/each group. Scale bar = 20 μ m. (D) The protein level of TNF-R1 was higher in

1	maternal-separated $App^{wt/wt}$ and maternal-separated $App^{NL-G-F/wt}$ mice. p = 0.058 Maternal-
2	separated $App^{wt/wt}$ mice vs non-maternal-separated $App^{wt/wt}$ mice, p = 0.054 Maternal-separated
3	$App^{NL-G-F/wt}$ mice vs non-maternal-separated $App^{wt/wt}$ mice n = 3/each group (Dunnett test). (E)
4	The response to novel cage stress was measured to assess an effect of maternal separation on the
5	HPA axis. Not only <i>App^{NL-G-F/wt}</i> mice but also <i>App^{wt/wt}</i> mice showed that increased stress caused
6	by maternal separation induced corticosterone release. Maternal-separated App ^{NL-G-F/wt} mice: F
7	$_{(1,2)}$ = 75.414, p = 0.0130; Maternal-separated <i>App^{wt/wt}</i> mice: F $_{(1,2)}$ = 22.035, p = 0.0425. * p <
8	0.05 vs corticosterone before novel cage stress; $n = 3/each$ group (Paired t-test).

82E-1 (A β)

Control

Maternal separation

tomato-lection (Vessel) /CD13 (Pericyte)

DAPI/Iba1 (microglia) tomato-lection (Vessel)/Iba1 (microglia)

App NL-G-F/wt

- Maternal separation

- Maternal separation

(C)

tomato-lection (Vessel)/Flbrinogen

(D)

tomato-lection (Vessel)/82E-1 (A β)

Small amyloid beta

A size midway between small and big amyloid beta

0 0 10 20 30 40 Area of amyloid beta plaque (μ m)

tomato-lection (Vessel)/CD13 (Pericyte)

