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Early-life stress includes prenatal, postnatal, and adolescence stress. Early-life stress can
affect the development of the hypothalamic-pituitary-adrenal (HPA) axis, and cause cellular
and molecular changes in the developing hippocampus that can result in neurobehavioral
changes later in life. Epidemiological data implicate stress as a cause of seizures in both
children and adults. Emerging evidence indicates that both prenatal and postnatal stress
can prime the developing brain for seizures and an increase in epileptogenesis. This article
reviews the cellular and molecular changes encountered during prenatal and postnatal
stress, and assesses the possible link between these changes and increases in seizure
occurrence and epileptogenesis in the developing hippocampus. In addititon, the priming
effect of prenatal and postnatal stress for seizures and epileptogenesis is discussed.
Finally, the roles of epigenetic modifications in hippocampus and HPA axis programming,
early-life stress, and epilepsy are discussed.
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INTRODUCTION
The early-life environment is one of the most important fac-
tors affecting life-long health (Anand, 2000; van den Bergh et al.,
2005; Lupien et al., 2009; Boksa, 2010; Strüber et al., 2014). In
humans, early-life stress is associated with a preterm birth and a
low birth weight, and can prime the neonate for further compli-
cations later in life that include psychiatric disorders, aged-related
cognitive dysfunction, obesity, and hypertension (Barker et al.,
1989; Fowden et al., 2005; Lemaire et al., 2006; Lahiri et al., 2009;
Strüber et al., 2014). Animal studies also suggest that exposure to
stressors or steroids during early-life alter the programming of the
hypothalamic-pituitary-adrenal (HPA) axis, neurobehavior, and
neuroimmune systems (Matthews, 2000; Mueller and Bale, 2008;
Lupien et al., 2009; Brunton and Russell, 2010; Chen and Zhang,
2011; Lai and Huang, 2011; Strüber et al., 2014). Epigenetic mod-
ification has gained increasing attention in recent years because
of its connection with early-life adversities (Weaver et al., 2004;
Meaney et al., 2007; Mueller and Bale, 2008; Chen and Zhang,
2011; McClelland et al., 2011a,b; Murgatroyd and Spengler, 2011;
Lucassen et al., 2013; Rabbe and Spengler, 2013). On the other
hand, stress during development can have a significant epige-
netic impact on the brain, and this relationship is bidirectional
(Hunter, 2012).

Early-life stressors include prenatal, postnatal, and adoles-
cence stress (Lupien et al., 2009; Schmidt, 2010). For example,
in humans, early-life stress can include prenatal stressors such as
exposure to exogenous glucocorticoids, maternal infection (King
et al., 2005; Sørensen et al., 2009; Jenkins, 2013), and birth
complications, as well as postnatal stressors such as exposure to
exogenous glucocorticoids, maternal postpartum depression, loss

of a parent, exposure to family conflict and violence, neglect, or
physical maltreatment (De Bellis, 2002; King et al., 2005; Frodl
et al., 2010). Both prenatal and postnatal stress can increase the
likelihood of seizures in early life (Joels, 2009; Koe et al., 2009)
and epileptogenesis in later life. This article focuses only on the
influences of prenatal stress and postnatal stress.

HIPPOCAMPAL AND HPA AXIS DEVELOPMENT
The hippocampus develops primarily during the fetal period in
both rodents and primates (Seress et al., 2001; Khalaf-Nazzal
and Francis, 2013). The limbic system, which includes the hip-
pocampus, amygdala, and anterior cingulate cortex are already
formed during the third and fourth month. Dentate gyrus forms
at late stages of embryogenesis, however small numbers of dentate
gyrus cells are formed from mid-embyrogenesis making tempo-
ral matching and connectivity of cells from other hippocampal
subfields (Deguchi et al., 2011). Rodents and primates differ in
the timing at which the majority of the dentate granule cells are
produced; however, both rodents and primates produce ∼85%
postnatally (Bayer, 1980a; Rakic and Nowakowski, 1981). A simi-
lar percentage of cornus ammonis (CA) 1–3 subfield neurons are
produced during the last days of gestation in rodents, and dur-
ing the first half of pregnancy in primates (Bayer, 1980b; Rakic
and Nowakowski, 1981). The hippocampal subfields can be rec-
ognized with distinct molecular markers from embryonic stages
(Khalaf-Nazzal and Francis, 2013).

In the rodent, maturation and full differentiation of the
hippocampal formation takes place during early postnatal
periods (Avishai-Eliner et al., 2002). During the first postna-
tal weeks, neuronal birth, differentiation, and migration are
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ongoing (Altman and Bayer, 1990; Gould and Cameron, 1996).
Neurogenesis of granule cells peaks during the second week
of life in rodents (Bayer, 1980a), and during the third month
in humans (Seress et al., 2001). In addition, synaptogene-
sis and the establishment of enduring connectivity patterns
continue for weeks in the rodent, and for years in humans
(Avishai-Eliner et al., 2002).

Glucocorticoids are released from the adrenal glands in
response to stress, readily cross the blood-brain barrier, and
activate hippocampal glucocorticoids receptors (McEwen, 1998).
Glucocorticoids interact with their receptors in multiple tar-
get tissues, especially the HPA axis. Glucocorticoids act via two
intracellular receptors, the glucocorticoid receptor (GR) and the
mineralocorticoid receptor (MR) to regulate gene transcription.
In addition, glucocorticoids can change neural function via rapid
nongenomic actions. GR and MR differ in ligand affinity and dis-
tribution (de Kloet et al., 2005): GR has a lower affinity than
MR has, and therefore are more frequently occupied when cor-
ticosterone levels increase (de Kloet et al., 2005). The actions
of glucocorticoids depend on the functionality of the balance
between GR and MR in the brain (de Kloet et al., 2005).

There is a distinct ontogenic profile for GR and MR in the fetal
rat brain (Diaz et al., 1998). GR mRNA is present in the anterior
hypothalamus, hippocampus, and pituitary by gestational day 13
(Diaz et al., 1998), whereas MR mRNA is present in the hip-
pocampus by gestational day 16 and the hypothalamus by day
17 (Diaz et al., 1998). GR and MR in the rat fetal brain are low
throughout gestation, but increase rapidly after birth, consistent
with the postnatal development of the brain in the rat (Diaz et al.,
1998).

During pregnancy, the mother’s HPA axis undergoes major
changes (Lindsay and Nieman, 2005). Cortisol secretion increases
steadily through gestation (Jung et al., 2011); thus, the normal
physiological responses to stressors and the cortisol awakening
response (i.e., basal HPA activity) are attenuated (Lindsay and
Nieman, 2005). For most of the pregnancy, the baby and mother
share a common corticotrophin-releasing hormone (CRH)-
adrenocorticotropic hormone (ACTH)-cortisol axis (McLean
et al., 1995).

By the end of the first week of life (Bohn et al., 1994; Vazquez
et al., 1998), the number of MRs reaches adult levels. The number
of GRs present during the first few week of life, however, is ∼30%
of adult levels, but approach adult levels after ∼30 days of life.
Both GR and MR are highly expressed in the developing brain,
and have different and complex ontogenies that allow intricate
brain development.

Between postnatal day 4 and 14, neonatal rat pups have
low basal corticosterone levels and the corticosterone response
to stressors is blunted, which constitutes the so-called stress
hyporesponsive period (SHRP) (Levine, 2005). However, dis-
ruption of normal maternal behavior in rat during the SHRP
can influence HPA axis development. In humans, the HPA
axis is highly reactive and labile during early infancy, but
organizes between 2 and 6 months of age through interac-
tions between the infant and caregiver. The quality of care-
giving that the infant receives predicts the infant’s ability to
self-regulate later in life. Sensitive caregiving is associated with

better self-regulatory abilities and optimal functioning of the
child’s HPA system (Gunnar and Cheatham, 2002; Gunnar and
Donzella, 2002).

EFFECTS OF PRE-/POST-NATAL STRESS ON SEIZURE
SUSCEPTIBILITY AND EPILEPTOGENESIS
Epileptogenesis is a process through which the normal brain
develops epilepsy, and the hippocampus is implicated in the
pathogenesis of both the initiation and propagation phases
(Pitkänen and Lukasiuk, 2011). Mesial temporal lobe epilepsy
(MTLE), the most common focal intractable epilepsy, is thought
to be a multi-stage process of increasing epileptogenesis com-
mencing in early life. The ongoing process of epileptogenesis
and the course of epilepsy might be negatively influenced by
the stress associated with the disease itself (Joels, 2009; Sawyer
and Escayg, 2010). As a result, a negative loop might occur
in which stress promotes epileptogenesis in predisposed indi-
viduals or lowers seizure threshold in epilepsy patients, thereby
increasing the likelihood of exposure to stress, which in turn
exacerbates the disease. Epidemiological data implicate stress in
the cause of epilepsy and seizures in both children and adults
(Temkin and Davis, 1984; Swinkels et al., 1998; Bosnjak et al.,
2002).

Stress is a natural factor that may exacerbate or trigger
seizures (Novakova et al., 2013; van Campen et al., 2013). HPA-
related stress hormones, especially glucocorticoid and CRH, can
affect excitatory and inhibitory processes in brain areas that are
critically involved in seizure generation. Glucocorticoid expo-
sure can alter plasticity in the hippocampus through increas-
ing extracellular glutamate levels and calcium conductance
(either voltage- or ligand-gated), alter expression of N-methyl-
D-aspartate (NMDA) receptor subunits, and reduce glial uptake
of glutamate, and thus, facilitate epileptiform discharges and
seizures in animals. Glucocorticoids facilitate epileptiform dis-
charges and seizures in animals. CRH is expressed in interneurons
in both the developing and adult hippocampus and is released
during stress (Sakanaka et al., 1987; Chen et al., 2001). Both
glucocorticoids and CRH are important hormones that regu-
late the stress response and may contribute to seizure-induced
loss of neurons, dendritic spines, and branching if it persists
for a prolonged period (Ribak and Baram, 1996; Chen et al.,
2012).

Negative life events and stress sensitivity are linked with child-
hood epilepsy (van Campen et al., 2012, 2013). In addition, epi-
demiological data implicate stress in the causation of epilepsy and
seizures in children (Bosnjak et al., 2002). Specifically, early-life
stress might create an enduring vulnerability to limbic epilepsy
through altering glucocorticoids (Kumar et al., 2007), HPA axis
(Joels, 2009), CRH (Baram and Hatalski, 1998), inflammation
(Vezzani et al., 2013), membrane receptors such as gamma-
aminobutyric acid (GABA) (Reddy, 2013), NMDA (Olney et al.,
1991), and 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propi-
onic acid (AMPA) receptors and neurotransmission (Rogawski,
2013), cellular electrophysiology, such as long-term potentiation
(LTP) and long-term depression (Blaise et al., 2008), limbic area
structures (Wong and Guo, 2013), and neuronal cell proliferation
and neurogenesis (McCabe et al., 2001).
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PHYSIOLOGICAL MECHANISMS BY WHICH
PRE-/POST-NATAL STRESS AFFECTS THE DEVELOPING
HIPPOCAMPUS
PRENATAL STRESS
Glucocorticoid hormones
During pregnancy, women have naturally elevated levels of
cortisol. In general, normal glucocorticoid concentrations are
essential for the development of several organs, including the cen-
tral nervous system. Prenatal stress or synthetic glucocorticoid
administration exposes the fetus to high glucocorticoid levels,
which leads to downregulation of GR in the hippocampus, atten-
uation of negative feedback for the HPA axis, and enhanced
HPA axis activity (Reul and de Kloet, 1985; Harris and Seckl,
2011).

Placental CRH
In humans, placental CRH activity is modulated by the mater-
nal HPA axis (Wadhwa et al., 1998). Placental CRH concen-
tration is a significant predictor of spontaneous preterm birth
(Glynn et al., 2001; Sandman et al., 2006) and intrauter-
ine growth restriction (IUGR) (Wadhwa et al., 2004), and
can influence hippocampal development in the fetus. Prenatal
stress activates the maternal HPA axis, which increases pla-
cental CRH production and its subsequent release into the
bloodstream. A positive feed-forward loop between cortisol and
placental CRH indicates that prenatal stress leads to progres-
sively higher fetal plasma CRH levels. Placental CRH may pen-
etrate the blood-brain barrier of the fetus, and subsequently
influence both the function and the integrity of the hip-
pocampus (Kastin and Akerstrom, 2002), presumably by acti-
vating CRH receptors (Sandman et al., 1999; Wadhwa et al.,
2001).

Placental 11β-hydroxysteroid dehydrogenase type 2 (11β-HSD2)
The placenta is an effective barrier between the maternal and fetal
hormonal environments in humans, being rich in 11β-HSD2,
which converts cortisol to inactive cortisone (Benediktsson
et al., 1997). Downregulation of placental 11β-HSD 2 increases
glucocorticoid exposure for the placenta and fetus. Maternal
stress not only increases her own circulating cortisol, it also
reduces the expression and activity of 11β-HSD 2 in the pla-
centa, leaving the fetus less protected (Avishai-Eliner et al.,
2002; Mairesse et al., 2007). Moreover, inhibition of 11β-
HSD2 might contribute to low birth weight, IUGR, and
pregnancy disorders such as preterm birth and preeclampsia
(Causevic and Mohaupt, 2007; Michael and Papageorghiou,
2008).

Impaired uterine blood flow
The impact of maternal anxiety on fetal blood flow can be
determined by using ultrasound to measure the blood flow pat-
tern in the uterine arteries. Sjostrom et al. found that, at 37–40
gestational weeks, mothers with high-trait anxiety scores had
fetuses with higher indices of blood flow in the umbilical artery,
and lower values in the fetal middle cerebral artery, suggest-
ing a change in blood distribution that favored brain circulation
(Sjöström et al., 1997).

POSTNATAL STRESS
CRH
CRH is expressed in hippocampal interneurons and is released
from axon terminals during stress. CRH is produced in several
populations of cells in the developing hippocampus, such as
Cajal-Retzius cells, and is involved in the maturation of hip-
pocampal circuitry (Chen et al., 2001).

Chronic early-life stress, which was imposed by creating “sim-
ulated poverty” in the cage, resulted in cognitive problems and
dendritic atrophy with loss of dendritic spines and synapses
(Brunson et al., 2005). Many of the persistent effects of early-
life stress are reversible with subsequent treatment with a CRH
receptor 1 (CRHR1) antagonist (Fenoglio et al., 2005). Adult mice
lacking CRHR1 in the forebrain were relatively resistant to the
deleterious effects of chronic stress of social defeat (Wang et al.,
2011a). Interestingly, the local deletion of CRHR1 also protected
adult mice from the adverse effects of chronic early-life stress on
learning and memory (Wang et al., 2011b). Infusion of CRHR1

antagonists immediately following this early-life stress prevented
the learning and memory deficits, rescued LTP, and restored the
integrity of the dendritic structure (Ivy et al., 2010). These find-
ings provide direct evidence for a need for CRH-CRHR1 signaling
in the persistent effects of chronic early-life stress on hippocam-
pal synapses. In this regard, Karsten and Baram propose that
early-life experience can result in persistently altered regulation of
CRH expression, which provides the neurobiological substrate to
subsequent stress and some adult psychopathology (Karsten and
Baram, 2013). In line with the preclinical data, single-nucleotide
polymorphisms in the CRHR1gene protect against depression
in individuals exposed to childhood maltreatment (Tyrka et al.,
2009).

Glucocorticoid hormones
Glucocorticoids are released from the adrenal glands in response
to stress, readily cross the blood-brain barrier, and activate hip-
pocampal glucocorticoids receptors (McEwen, 1998). Schmidt
et al. demonstrated that glucocorticoid excess during the SHRP
has only limited consequences on the adult behavioral phenotype
(Schmidt et al., 2002). In addition, glucocorticoid administration
early in life does not reproduce the effects of stress on hippocam-
pal function and integrity when given in a non-stressful manner
(Leverenz et al., 1999). Together, glucocorticoids play a minor
role, and other factors may contribute more to the mechanisms by
which early-life stress influences hippocampal development and
function throughout life.

PRENATAL STRESS
Prenatal stress is an important programming factor in brain
development and function. A recent cross-sectional study indi-
cated that 6% of pregnant women reported high levels of psy-
chological stress during their pregnancies that resulted from
conditions including depression, panic disorder, or domes-
tic violence (Woods et al., 2009). Talge et al. reviewed sev-
eral prospective studies related to prenatal maternal stress,
and found a substantial number of emotional/behavioral prob-
lems in children, including attention deficit hyperactivity dis-
order, anxiety, and language delay, that were attributed to
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prenatal stress or anxiety in ∼15% of the subjects (Talge et al.,
2007).

CELLULAR AND MOLECULAR ALTERATIONS IN THE
DEVELOPING HIPPOCAMPUS THAT MAY LINK PRENATAL
STRESS TO SEIZURE AND EPILEPTOGENESIS
GLUCOCORTICOID AND CRH AND HPA AXIS
The density of hippocampal GRs was lower by ∼50% in prena-
tal stress female offspring; however, no difference was observed
between prenatally stressed and control males (Szuran et al.,
2000). This female-specific decrease in hippocampal GRs was also
shown by Weinstock et al. (1992).

Szuran et al. restrained pregnant rat dams for 30 min/day
during gestational days 15–19. Prenatally stressed females had
higher basal corticosterone levels (Szuran et al., 2000). Exposure
to exogenous glucocorticoids during the last week of gestation
increased basal and stress-induced plasma corticosterone levels
in adult rats (Seckl, 2004) and attenuated the HPA axis response
(Seckl, 2004; Welberg and Seckl, 2001). Endogenous glucocor-
ticoids mediated some of the changes in HPA responsiveness
in prenatally stressed offspring, both in rodents and primates
(Matthews, 2000).

INFLAMMATION
Restrained pregnant mice dam offspring showed increased
interleukin-1β and tumor necrosis factor-α level in the hip-
pocampus, increased interleukin-1β immunoreactive microglial
cells, and increased activated microglia. In addition, sys-
temic administration of lipopolysaccharide induced a signifi-
cant increase in tumor necrosis factor-α in the hippocampus
of only prenatally stressed mice but not non-stressed animals
(Diz-Chaves et al., 2012, 2013).

MEMBRANE RECEPTORS AND NEUROTRANSMITTER
Maternal immune activation caused reduced basal neurotrans-
mission of dopamine and glutamate, as well as reduced levels
of the inhibitory transmitter GABA, within the hippocampus
(Bitanihirwe et al., 2010). Prenatal stress also reduced the expres-
sion and activity of metabotropic glutamate receptor 5, which is
implicated in the regulation of synaptic plasticity and neuroge-
nesis in the hippocampus of male rats (Morley-Fletcher et al.,
2011).

CELLULAR ELECTROPHYSIOLOGY
A significant downregulation of hippocampal genes also was
reported in 23-day-old female rats whose mothers were stressed
from gestational days 17–21 (Bogoch et al., 2007). This included
presynaptic voltage-gated Ca2+ type P/Q and several K+ chan-
nels that regulate the neuron membrane potential and suggests a
potential decrease in the excitability of newly formed synapses.

SPINE AND DENDRITE AND CELL MORPHOLOGY
Hayashi and colleagues reported that rats exposed to prenatal
stress had a significant 32% reduction in synaptic density within
the hippocampal CA3 area, as measured on postnatal day 35
(Hayashi et al., 1998). Lemaire et al. (2000) reported a reduction
in the number of granule cells within the hippocampal dentate
gyrus of prenatally stressed rats measured 28 days postnatally.

NEURONAL CELL PROLIFERATION AND NEUROGENESIS
In male mice, prolonged prenatal stress decreased cell prolifera-
tion in the hippocampus by 60% on postnatal day 10 (Kawamura
et al., 2006). In another experimental paradigm, daily maternal
restraint during the last week of gestation resulted in deficits of
hippocampal neurogenesis (Lemaire et al., 2006). The relation-
ship between prenatal stress and neurogenesis is complicated and
depends on the stressor type, sex, and environment. Prenatal
stress seems to have both enhancing and suppressing effects on
the development of hippocampal neurons in a stressor intensity-
dependent manner (Fujioka et al., 2006). Fujioka et al. reported
that short-lasting (i.e., 30 min, once daily, between gestation days
15–17) and mild prenatal stress seemed to enhance neonatal neu-
rogenesis, facilitate LTP, and the differentiation of processes of
hippocampal neurons, whereas long-lasting (i.e., 240 min, once
daily, between gestation days 15–17) and severe prenatal stress
impaired their morphology.

EFFECTS OF PRENATAL STRESS ON SEIZURE
SUSCEPTIBILITY AND EPILEPTOGENESIS
Beck and Gavin treated pregnant mice with beta-2-thienylalanine
solvent or a sham injection on gestational days 10–12. Audiogenic
seizures were tested on postnatal day 23. An increase in audio-
genic seizure frequencies were observed in injected mice, irre-
spective of the nature of the injected substance. This finding
suggested that the act of manipulation, rather than the test sub-
stance, caused stress and increased seizure propensity (Beck and
Gavin, 1976). Frye and Bayon exposed rats to 20 min of restraint
stress toward the end of their pregnancy (Frye and Bayon, 1999).
They found that the prenatally stressed offspring had more par-
tial seizures and tonic-clonic seizures with long durations than
did control rats. Edwards et al. examined how stress exposure
at different times during gestation might affect later limbic sys-
tem excitability and the propensity to develop epilepsy (Edwards
et al., 2002). Pregnant dams were restrained under bright light
for 45 min, three times a day during either early gestation (gesta-
tional days 5–12) or mid-late gestation (gestational days 12–20).
Offspring of the stressed dams were then tested as an infant at
postnatal day 10 or as adults, and were compared with offspring
from non-stressed dams. Outcome measures assessed were the
stimulation-induced seizure threshold, after-discharge threshold,
and the rate of seizure development using electrical hippocam-
pal kindling. Both prenatal stressors significantly lowered after-
discharge threshold in pups, but this effect appeared to diminish
by adulthood in the early gestational stress group. In addition,
mid to late gestational stress accelerated kindling rates in all infant
offspring and in adult males, but had no effect in adult female rats.
Notably, Young et al. administered dexamethasone or betametha-
sone on gestational days 15–18, and tested the seizure threshold
and kindling parameters (Young et al., 2006). They found prena-
tal betamethasone treatment increased seizure threshold for both
models. Prenatal dexamethasone treatment increased kindling
threshold, but not seizure threshold. Kindling rate was unaffected
by either glucocorticoid treatment (Young et al., 2006). Velisek
showed prenatal exposure to betamethasone decreased postna-
tal susceptibility to flurothyl-induced clonic seizures but not to
kainic acid-induced seizures. Prenatal hydrocortisone decreased
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postnatal weight but did not affect seizure susceptibility (Velíšek,
2011). In their subsequent work, Yum et al. demonstrated that
prenatal restraint stress (2 × 45 min) in rats on gestational day 15
would increase susceptibility to spasms on postnatal day 15 (Yum
et al., 2012).

Shang et al. showed an association between the onset risk
of infantile spasms and the degree of maternal stress (Shang
et al., 2010). However, in a population-based cohort study in
Denmark, Li et al. studied children who were hospitalized because
of epilepsy and born to women who had lost a close relative dur-
ing pregnancy 1 year before pregnancy (Li et al., 2008). In this
study, no association was found between this particular form of
prenatal stress and the risk of epilepsy.

Indirect evidence links prenatal stress and an increased like-
lihood of childhood seizures in children with autistic disorder.
Minshew et al. pointed out that epilepsy is found in about one-
third of patients with autistic disorder, a disorder related to prena-
tal stress (Kinney et al., 2008), compared with a prevalence of only
2–3% in the general population (Minshew et al., 2005). Table 1
summarizes the current rodent studies regarding the impact of
prenatal stress on seizure occurrence and epileptogenesis.

POSTNATAL STRESS
Early-life adversity (childhood abuse and neglect, loss of par-
ents, or extreme poverty) occurs worldwide and are all too
common in the lives of children (Jones, 2008; Sandberg and
Rutter, 2008). In the Dunedin Study birth cohort of 1037 chil-
dren, followed prospectively for 32 years, maltreatment includes
maternal rejection, harsh discipline, sexual abuse, physical abuse,
and disruptive caregiver changes (Danese et al., 2009). For each
child, the cumulative index counts the number of maltreatment
indicators experienced during the first decade of life; 63.7% of
children experienced no maltreatment, 26.7% experienced one
form of maltreatment, and 9.6% experienced two or more forms
of maltreatment (Danese et al., 2009). Clinical evidence from life-
course epidemiology study points to the importance of early life
experiences in shaping adult disease (Poulton et al., 2010).

CELLULAR AND MOLECULAR ALTERATIONS IN THE
DEVELOPING HIPPOCAMPUS THAT MAY LINK POSTNATAL
STRESS TO SEIZURE AND EPILEPTOGENESIS
GLUCOCORTICOID AND CRH AND HPA AXIS
A 24-h maternal separation paradigm in 11-day-old rat pups can
lead to a decrease in the expression of GR and MR mRNA in the
hippocampus (van Oers et al., 1998). Likewise, expression levels
of GR and MR are down regulated in the hippocampus of mater-
nally separated mice on postnatal day 9 (Schmidt et al., 2002). In
addition, neonatal infection in mice led to altered hippocampal
GR and MR mRNA, as well as proteins, following a subsequent
adult infection (Wynne et al., 2011).

Wang et al. demonstrated that early postnatal life stress
impairs hippocampus-dependent spatial learning and memory in
adult mice, and is associated with physiological, morphological,
and molecular abnormalities in the hippocampus (Wang et al.,
2011a,b). Impairments of spatial learning and memory in early
postnatal life stress are recapitulated by forebrain CRH overex-
pression and attenuated by forebrain CRHR1 inactivation. This

suggests the forebrain CRH-CRHR1 system is crucial for mod-
ulating and programming cognitive functions by early-life stress
(Wang et al., 2011a,b).

INFLAMMATION
In rat, maternal separation on postnatal day 9 caused increased
hippocampal interleukin-1 receptor in male offspring (Viviani
et al., 2014). In the hippocampus, a decrease in BDNF mRNA and
an increase in interleukin-1β mRNA were observed in rats with
a neonatal infection and an immune challenge in adults (Bilbo
et al., 2008).

MEMBRANE RECEPTORS AND NEUROTRANSMITTER
Maternal separation on postnatal day 9 decreased the levels of the
AMPA receptor GluA1 and GluA2 subunits, altered NMDA recep-
tor subunits GluN2B to GluN2A ratio, and increased interleukin-
1 receptor interactions with GluN2B at the synapse of male
hippocampal neurons (Viviani et al., 2014). This mechanism is
part of a complex re-organization of the excitatory glutamatar-
gic synapses. Hsu et al. reported two episodes of handling with
maternal separation during early postnatal development resulted
in long-term changes in postsynaptic GABA receptor function
and subunit expression in hippocampal dentate gyrus (Hsu et al.,
2003).

CELLULAR ELECTROPHYSIOLOGY
Maternal separation prevented the stress-induced transformation
from early to late LTP in the dentate gyrus of adult male rats
(Wang et al., 2013b). However, maternal separation for 24 h on
postnatal day 3 facilitated LTP in the dentate gyrus after an acute
stress (Oomen et al., 2010).

SPINE AND DENDRITE AND CELL MORPHOLOGY
An altered granule cell dendritic morphology (Oomen et al.,
2010), a lower number of hippocampal neurons and glia
(Leventopoulos et al., 2007; Fabricius et al., 2008), and a reduced
mossy fiber density (Hout et al., 2002) have been reported follow-
ing maternal separation (Rodenas-Ruano et al., 2012). Wang et al.
demonstrated that postnatally stressed adult mice had decreased
hippocampal nectin-3 levels and dendritic spine loss via CRH
mechanism (Wang et al., 2013a).

NEURONAL CELL PROLIFERATION AND NEUROGENESIS
Maternal separation for 180 min leads to an increase in cell pro-
liferation on postnatal day 21 (Nair et al., 2007); however, in 2- to
7-month-old rats, cell proliferation was reduced (Mirescu et al.,
2004; Oomen et al., 2010; Hulshof et al., 2011).

Maternal separation for 24 h on postnatal day 3 increases
hippocampal neurogenesis (Oomen et al., 2009). Similar to cell
proliferation, early stress is associated with distinct consequences
on hippocampal neurogenesis that manifest in a temporally regu-
lated manner, i.e., enhanced in young adulthood and impaired in
middle-aged (Suri et al., 2013).

EFFECTS OF POSTNATAL STRESS ON SEIZURE
SUSCEPTIBILITY AND EPILEPTOGENESIS
Edwards et al. investigated the effects of maternal separation on
kindling epileptogenesis utilizing a relatively benign separation
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Table 1 | Summary of rodent studies investigating effects of prenatal stress in rodent models of epilepsy/epileptogenesis.

Author Manipulation in prenatal life Endpoint test of

seizure threshold or

epileptogenesis

Outcome measurements Conclusions/implications

Beck and
Gavin, 1976

Pregnant dams received
beta-2-theinylalanine or solvent on
GDs 10–12 Control: unhandled mice

Audiogenic seizures
on PND 23

Increased seizure frequencies in
injected mice, irrespective of the
nature of the injected substance

Prenatal stress increased
seizure susceptibility in
young age

Frye and
Bayon, 1999

Maternal restraint stress of mother for
20 min on GD 18 Control: no restraint
stress rats

Adult
gonadectomized
offspring were
administered 3
alpha, 5 alpha-THP
1 h prior to testing for
kainic acid-induced
seizures

Increased seizure production and
longer duration in stressed
offspring Lower dose of 3 alpha, 5
alpha-THP was effective in
reducing seizure duration in
control females Higher dose of 3
alpha, 5 alpha-THP was needed to
reduce seizure duration in
prenatally stressed females and
males

Prenatal stress decreases
neurosteroid’s anti-seizure
capability. Effects are
sex-dependent

Edwards
et al., 2002

Midde restraint stress (45 min,
3×/day, GDs 5–12) Late restraint
stress (45 min, 3×/day, GDs 12–20)

ADT and
Hippocampus
kindling on PND 14
or in adults

Lowered ADT on PND 14 infant
rat offspring in both early and late
gestation stressed rats. Increased
kindling rate in infant and adult
male offsprings of middle and late
gestation stress, but not in
females. No effect on ADT

Prenatal stress, in particular
during the latter half of
gestation, increases seizure
vulnerability in the unborn
offspring. The offspring
appear most susceptible to
seizure development during
the infantile period, but some
effects persist into adulthood,
particularly in males

Young et al.,
2006

Pregnant dams received once daily
injections with dexamethasone
(0.2 mg/kg/day) or betamethasone
(0.2 mg/kg/day) between GDs 15–18

Seizure thresholds
were determined on
PND 14 using
electroconvulsive
shock. Hippocampus
kindling on PNDs
14–15

Prenatal betamethasone
increased seizure threshold for
both models. Prenatal
dexamethasone increased
kindling threshold, but not
electroconvulsive shock
threshold. Kindling rate was
unaffected by either prenatal
glucocorticoid

Prenatal repeated
glucocorticoid treatments
raised seizure thresholds and
reduced seizure vulnerability,
seemingly “favorable”

Velíšek, 2011 Pregnant dams received
hydrocortisone (2 × 10 mg/kg) or
betamethasone (2 × 0.4 mg/kg) on GD
15

Seizures induced by
flurothyl or kainic
acid on PND 15

Prenatal exposure to
betamethasone decreased
postnatal susceptibility to
flurothyl-induced clonic seizures
but not to kainic acid-induced
seizures. Prenatal hydrocortisone
did not affect seizure
susceptibility

Prenatal exposure to
glucocorticoids on seizure
susceptibility may be seizure
syndrome specific

Yum et al.,
2012

Prenatal restraint stress (2 × 45 min)
GD 15

Development-
specific spasms
triggered by NMDA
on PND 15

Prenatal stress significantly
accelerated onset and increased
number of NMDA-triggered
spasms

Prenatal stress may enhance
susceptibility to develop
triggered spasms in infant
rats. This finding is similar to
increased risk for
development of infantile
spasms in children of
mothers with gestational
stress

ADT, afterdischarge threshold; GD, gestational day; NMDA, N-methyl-Daspartate 3 alpha; PND, postnatal day; 5 alpha-THP, 5 alpha pregnan-3 alpha-ol-20-one.

Frontiers in Molecular Neuroscience www.frontiersin.org February 2014 | Volume 7 | Article 8 | 6

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Huang Early-life stress and seizure

protocol that included 60 min on postnatal days 4 and 5 (Edwards
et al., 2002). The comparison group included the other litter-
mates, which were briefly handled but not removed from the
mother. This postnatal manipulation had no effect on after-
discharge threshold or rapid hippocampal kindling rates when
assessed at 2 weeks of age.

To investigate the effects of maternal separation on the long-
term consequences of early-life status epilepticus, Lai et al. tested
whether maternal separation for 1 h affected the long-term seque-
lae of emotional disorders following seizure early in life (Lai
et al., 2006). Lai et al. used maternal separation that involved
1 h of isolation daily during postnatal days 2 and 9, and used
lithium-pilocarpine-induced status epilepticus on postnatal day
10 rats. As adults, anxiety-related behavior was assessed using
the elevated plus maze test and seizure susceptibility was assessed
by pentylenetetrazol-induced seizures. Rats exposed to maternal
separation and seizures demonstrated a reduced pentylenetetra-
zol threshold for seizure induction compared to non-handled
rats or rats exposed to isolation or seizure alone. Metyrapone
(a corticosterone synthesis inhibitor) treatment prior to seizure
did not reverse this enhanced excitability, indicating a partial role
of glucocorticoids in this context. Salzberg et al. examined the
effects of maternal separation on limbic excitability and the devel-
opment of amygdala kindling (Salzberg et al., 2007). Postnatal
stress was induced by separating pups from their mothers for
180 min daily from postnatal days 2–14. The comparison con-
dition was mother and pup separation for 15 min per day over
the same period, an exposure referred to as early handling. At
8 weeks of age, equivalent to young adult life, rats were tested
for the after-discharge threshold and subjected to rapid amygdala
kindling. Rats exposed to early-life stress exhibited significantly
lower seizure thresholds and an accelerated rate of kindling, com-
pared to early handled rats. These effects on limbic excitability
and epileptogenesis were specifically observed in female rats,
whereas males did not demonstrate changes in epilepsy outcomes,
despite demonstrating increases in anxiety-like behavior. Using
the rat amygdala-kindling model, Kumar et al. demonstrated
that early-life stress induced by maternal separation accelerates
the progression of focal limbic seizures to secondary generalized
convulsive seizures in adult rats (Kumar et al., 2011). Desgent
et al. used a two-hit model of TLE characterized by two early-life
insults: a freeze lesion-induced cortical malformation on post-
natal day 1, and a prolonged hyperthermic seizure on postnatal
day 10 (Desgent et al., 2012). They demonstrated that after both
insults, females did not develop MTLE while all males did. This
correlated with a rise in corticosterone levels on postnatal day 1
following the lesion, but only in males. Their data demonstrated
sexual dimorphism in the long-term vulnerability for developing
epilepsy in the lesion plus hyperthermia animal model of MTLE,
and suggested that the response to early-life stress at postnatal
day 1 contributed significantly to epileptogenesis in a sex-specific
manner (Desgent et al., 2012). Ali et al. demonstrated changes
in firing patterns in thalamocortical and hippocampal regions
resulting from both maternal separation and amygdala kindling,
which might reflect cellular changes underlying the enhanced vul-
nerability to kindling in rats that had been exposed to early-life
stress (Ali et al., 2013).

Similarly, Leussis and Heinrichs cross-fostered El pups to CD-
1 dams because CD-1 dams exhibit a higher quality of maternal
care than El dams. El pups raised by CD-1 dams experienced
delayed seizure onset and reduced seizure frequency, suggesting
that early-life environment can play an important role in shap-
ing the adult seizure phenotype (Leussis and Heinrichs, 2009).
It should be noted the El mouse model has not been verified
for its effect on early-life stress. In addition, El pups raised in a
biparental environment with both the El dam and sire attend-
ing the pups received more parental attention than El pups raised
by only the El dam, yet they showed an earlier development of
seizures (Orefice and Heinrichs, 2008). Together, early-life envi-
ronment can interact with a genetic predisposition to shape the
future seizure phenotype.

Van Campen et al. studied the effect of stress on seizure
frequency in childhood epilepsy. They found stress sensitivity
was reported in half of the children with epilepsy. They sug-
gested that experiencing negative life events might cause a larger
response to daily stressors, thereby increasing the likelihood
to induce epileptic activity in childhood (van Campen et al.,
2012). Table 2 summarizes the current rodent studies regard-
ing the impacts of postnatal stress upon seizure occurrence and
epileptogenesis.

EPIGENETIC MODIFICATIONS IN DEVELOPMENT
PROGRAMMING AND THE EFFECTS OF STRESS
Epigenetic modifications regulate gene expression without
altering the DNA sequence. Epigenetic changes involve DNA
methylation at cytosine-guanine sequences-CpG sites, his-
tone posttranslational modifications (histone methylation,
acetylation, phosphorylation, ubiquitylation, sumoylation,
and propionylation), and microRNAs (Gräff et al., 2011).
Epigenetic mechanisms control nucleosome spacing and how
they are condensed, which subsequently determines gene activ-
ity. Briefly, chromatin exists in an inactivated and condensed
state (heterochromatin) that prevents gene transcription, but
when activated to an open state (euchromatin), genes can be
transcribed.

It is now clear in both humans and animals that glucocorticois
and stress have a significant epigenetic impact, and the relation-
ship between the stress response and epigenetics in the brain is
bidirectional (Hunter, 2012). Epigenetic alterations have become
especially attractive to researchers in recent years, as increasing
evidence indicates that they can be induced by physical and social
exposure early in life (Meaney et al., 2007). For some neurobio-
logical disorders, exposure to environmental agents during early
developmental stages can epigenetically disturb gene regulation in
a long-term manner and cause significant pathological manifes-
tations later in life. This process is the latent early-life associated
regulation model by Lahiri et al. (2009).

Epigenetic dysregulation has been associated with prena-
tal IUGR and disease in both humans and rodents (Baserga
et al., 2007, 2010; Friso et al., 2008). Prenatal stress can cause
increased DNA methylation in the frontal cortex and hippocam-
pus (Mychasiuk et al., 2011; Matrisciano et al., 2013) and a lower
DNA methyltransferase 3a immunoreactivity in the dentate gyrus
in offspring (Sierksma et al., 2013).

Frontiers in Molecular Neuroscience www.frontiersin.org February 2014 | Volume 7 | Article 8 | 7

http://www.frontiersin.org/Molecular_Neuroscience
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_Neuroscience/archive


Huang Early-life stress and seizure

Table 2 | Summary of rodent studies investigating effects of postnatal stress in rodent models of epilepsy/epileptogenesis.

Author Manipulation in

postnatal life

Endpoint test of seizure

threshold or

epileptogenesis

Outcome measurements Conclusions/implications

Edwards
et al., 2002

Maternal separation
(1 h/day, PNDs 4–5)
Control: non-stressed
littermates

ADT and Hippocampus
kindling on PND 14

No effect on ADT or kindling rate Postnatal stress has no effect on
infant seizure susceptibility

Lai et al.,
2006

Maternal separation
(1 h/day, PNDs 2–9) and
SE induced by
lithium-pilocarpine
Control: normal rearing
and SE induced by
lithium-pilocarpine

pentylenetetrazole-
induced seizures at PND
100

Prolonged seizure duration and
reduced seizure threshold following
early life SE in stressed rats

Early life stress increases the
vulnerability to seizures in adulthood

Salzberg
et al., 2007

Maternal separation
(180 min/day, PNDs
2–14) Control: EH
(separation 15 min/day,
PNDs 2–14)

Rapid amygdala kindling
on ∼PND 56

Stress female rats had increased
kindling rate and reduced seizure
threshold; no differences in male

Early life stress contributes to
epileptogenesis. Effects are
sex-dependent

Orefice and
Heinrichs,
2008

Amount of parental
care between PNDs
2–21 on genetically
susceptible El mouse
seizure emergence

HISS test on PNDs
80–90

HISS testing of adult El offspring
revealed a deleterious effect of
biparental rearing as a second care
provider is a stressor in El pups

Early life stress increased seizure
suscebtibility in adult El mice

Leussis and
Heinrichs,
2009

Cross-fostering
genetically susceptible
El pups to a
seizure-resistant CD-1
mothers

HISS test on PNDs
80–90

cfos hypoactivity in hippocampus
and cortex on PNDs 35–40 as a
result of HISS. El mice offspring
with improved maternal care
showed delayed onset of
HISS-induced seizure susceptibility
on PNDs 80–90

Increased maternal care in
genetically susceptible El mouse
may have prophylactic benefits for
neural plasticity and adult seizure
susceptibility

Kumar et al.,
2011

Maternal separation
(180 min/day, PNDs
2–14) Control: EH
(separation 15 min/day,
PNDs 2–14)

Rapid amygdala kindling
on ∼PND 56

Stress rats has accelerating kindling
rates, enhanced corticosterone
response to kindled seizure,
decreased hippocampal pyramidal
cell numbers, and enhanced
kindling-induced neurogenesis in
adulthood

Alternations of hippocampal
pyramidal cell neurogenesis are
candidate mechanisms that early life
stress promotes vulnerability to
epileptogenesis. Effects are sex
dependent

Desgent
et al., 2012

Two early life insults: a
freeze lesion-induced
cortical malformation at
PND 1 and a
hyperthermic seizure at
PND 10

Video-EEG from PND 90
to 120

Increased susceptibility to PND 10
hyperthermia-induced convulsion in
PND 1 lesioned rat. Two hits in
females did not develop mesial
temporal lobe epilepsy while all
males did

Early life stress contributes to
epileptogenesis. Effects are
sex-dependent

Ali et al.,
2013

Maternal separation
(180 min/day, PNDs
2–14) Control: EH
(separation 15 min/day,
PNDs 2–14)

Amygdala kindling Hippocampus: stress rats had more
% APs firing in burst

Sress rats had enduring alterations
in the firing patterns of neurons in
the hippocampus that may underlie
the increased vulnerability to limbic
epileptogenesis

ADT, afterdischarge threshold; APs, action potentils; EEG, electroencephalogram; EH, early handling; HISS, handling-induced seizure susceptibility; PND, postnatal

day; SE, status epilepticus.
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Variations in maternal care in the rat result in differences in
hippocampal development and synaptic plasticity in the offspring
(Macrì and Würbel, 2006). Observational studies provide evi-
dence for two forms of maternal behaviors during the first week
of lactation: licking/grooming (LG) and the arched-back nursing
(ABN) posture (Liu et al., 1997; Francis et al., 1999). In the rat,
the adult offspring of high LG-ABN mothers show increased hip-
pocampal GR expression and enhanced glucocorticoid feedback
sensitivity compared to animals reared by low LG-ABN mothers
(Liu et al., 1997; Francis et al., 1999). In addition, adult offspring
of high LG-ABN mothers exhibited modest HPA stress responses
compared to animals reared by low LG-ABN mothers (Menard
and Hakvoort, 2007). In hippocampus, offspring from high LG-
ABN mothers had hypomethylation of CpG dinucleotides in the
exon 17 GR promoter sequence, and increased histone acetyla-
tion that might account for higher transcription of the GR gene
(Weaver et al., 2004). The maternal effect is mediated by enhanced
serotonergic activity and an increased expression of NGFI-A,
which binds the exon 17 GR promoter sequence (Weaver et al.,
2007). Cross-fostering experiments showed a causal relationship
between maternal care and changes in the exon 17 GR promoter
methylation (Weaver et al., 2005, 2006).

EPIGENETIC MODIFICATION IS A SHARED PATHOGENIC
SUBSTRATE OF BOTH EARLY-LIFE STRESS AND EPILEPSY
As stated above, epigenetic modifications underpin the program-
ming effects of early-life stress. Interestingly, a wealth of evidence
indicates that dysregulation of epigenetic mechanisms occurs
in several human epilepsy syndromes. Epigenetic mechanisms

can influence the acute deployment of genes resulting from
seizures themselves or can have gradual effects on the steady-state
expression profile of candidate genes that persist into epilepsy.
Epigenetic modifications can affect seizure and epilepsy in several
ways (Lubin, 2012; Roopra et al., 2012).

Firstly, histone acetylation is involved in epileptogenesis in
human epilepsy patients. Seizure activity results in gene expres-
sion changes, including alterations in mRNA levels for glutamate
receptor 2 and BDNF, the two well-characterized epileptogenesis-
related genes. Of interest, histone acetyltransferase-mediated
increases in histone acetylation levels at the promoter regions of
the glutamate receptor 2 and BDNF genes have been shown to
correlate with their gene expression changes following seizures in
an experimental animal model (Huang et al., 2002b).

Secondly, DNA methylation has been highlighted as a compo-
nent of the methylation hypothesis of epileptogenesis (Kobow and
Blumcke, 2011). DNA methyltransferase enzymes 1 and 3a specif-
ically, were increased in neurons from the temporal neocortices of
25 MTLE patients (Zhu et al., 2012). Using a rat model of MTLE,
Williams-Karnesky et al. identified an increase in hippocampal
DNA methylation that correlates with an increased DNA methyl-
transferase activity, disruption of adenosine homeostasis, and
spontaneous recurrent seizures. To test the effects of adenosine,
they used bioengineered silk implants to deliver a defined dose of
adenosine over 10 days to the brains of epileptic rats (Williams-
Karnesky et al., 2013). Adenosine implants reversed DNA hyper-
methylation seen in the epileptic brain, inhibited sprouting of
mossy fibers in the hippocampus, and prevented the progression
of epilepsy for at least 3 months (Williams-Karnesky et al., 2013).

FIGURE 1 | A conceptual diagram of how prenatal and postnatal

stress act on the hippocampus and HPA axis and lead to

neuropsychiatric disorders through epigenetic modifications, the

so-called DOHaD as presently understood. If the early programming
environment matches the later adult environment, the adults are

healthy. If mismatch occurs, the adults are more likely to have
diseases. Figure 1 also shows the increase seizure propensity in the
context of early-life stress. See text for details. DOHaD, development
origins of health and disease; HHPA, hippocampus and
hypothalamic-pituitary-adrenal.
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Thirdly, transcription factors are involved in epileptogene-
sis in human epilepsy patients. Repressor element-1 silencing
transcription factor and neuronal restrictive silencer factor serve
to repress gene expression through dynamic recruitment of epige-
netic complexes (Qureshi and Mehler, 2009). Of interest, repres-
sor element-1 silencing transcription has been implicated in the
regulation of several epileptogenesis specific factors, including
growth factors, neurotransmitter receptors, ion channels, circuit
excitability, and neurogenesis (Huang et al., 1999; McClelland
et al., 2011a,b; Roopra et al., 2012).

Fourthly, methyl-CpG-binding protein 2 can regulate neu-
ronal activity and is itself controlled by activity (Roopra et al.,
2012).

Taken together, early-life stress can prime seizure occurrence
and increases epileptogenesis. In addition, epigenetic modifi-
cation is a shared pathogenic substrate of early-life stress and
epilepsy.

COEXISTENCE OF EARLY-LIFE STRESS AND EARLY-LIFE
SEIZURES
Seizure is one of the most common pediatric emergencies, with
the highest incidence in the first year of life. Animal studies
have demonstrated early-life seizures differ from adult seizures
by the seizure behaviors, the electroencephalogram features, and
their consequences. Notwithstanding the higher susceptibility to
seizures, the immature brain is less vulnerable to seizure-induced
injuries than the mature brain (Dube et al., 2001; Holmes and
Ben-Ari, 2001; Huang et al., 2012). However, under some circum-
stances seizure in the immature brain can cause permanent brain
damage (Dube et al., 2006).

For humans, most early-life seizures occur in premature and
sick neonates (Scher et al., 1993; Miller et al., 2002; Scher, 2003)
who are hospitalized and separated from their mothers, and thus,
under stress (Field, 1994; Anand, 2000). Reciprocally, early-life
stress may prime the occurrence of seizures and act via glucocor-
ticoids, thereby potentiating the excitotoxic effects of concurrent
neurological insults (Sapolsky, 1996), such as seizure (Huang
et al., 2002a; Lai et al., 2006).

As stated above, early-life stress can prime the seizure occur-
rence and subsequent epileptogenesis. Currently, more attention
is being paid to the effect of early-life stress on adult-onset seizure;
however, little work has focused on the effect of early-life stress on
the early-life seizure (Beck and Gavin, 1976; Edwards et al., 2002;
Lai et al., 2006; Young et al., 2006; Velíšek, 2011; Yum et al., 2012).
Indeed, to study the coexistence of early-life stress and early-life
seizures is of both experimental and clinical importance.

THE CONCEPT OF DEVELOPMENT ORIGINS OF HEALTH AND
DISEASE (DOHaD)
Barker et al. noted that low birth weight was associated with an
increased risk of adverse outcomes in adulthood, such as coronary
heart disease, stroke, high blood pressure, and type 2 diabetes
(Barker et al., 1989). Gluckman et al. proposed the concept of
DOHaD by observing the enduring effects of the fetal environ-
ment on physical health and disease in adulthood. The process
of fetal programming or developmental plasticity is one of the
core assumptions of DOHaD (Gluckman et al., 2007). Gluckman

et al. use the concept of predictive adaptive responses to describe
the developing organism by making phenotypic responses during
development to obtain an adaptive advantage (Gluckman et al.,
2005). The fetus will predict and make adaptive responses to a
broad range of environmental cues to aid fitness and survival in
later life. If the prediction is correct, then there will be a good
match between the phenotype adopted and the environment in
which the organism will later live. If the prediction is poor, there
will be a mismatch between the environment experienced and
the phenotype induced. The authors propose that developmen-
tal mismatch triggers or exacerbates certain diseases and provide
a useful explanation for the DOHaD phenomenon (Gluckman
et al., 2005, 2007). Furthermore, the notion of epigenetic mod-
ifications is applied to the DOHaD approach (Waterland and
Michels, 2007). The DOHaD approach has become so popular
that an international society has been formed, and this society is
actively promoting research and collaboration in this area.

Figure 1 depicts the path form early-life adversity to long-term
neuropsychiatric disorders, along with the underlying molecu-
lar and cellular mechanisms and epigenetic modifications, with
a match or mismatch adaptation that leads to the final outcome.

CONCLUSIONS AND PERSPECTIVES
Early-life stress can elicit detrimental effects on hippocampal
development by altering the HPA axis, neuroplasticity, and behav-
ior. Developmental plasticity allows an organism to adapt to
environmental changes in the critical stages of early life. As
highlighted in this review, early-life stress programs the devel-
opment of the HPA axis, exerts profound effects on neural plas-
ticity, primes seizure occurrence, and increases epileptogenesis.
Epigenetic modifications play an important role in both early-life
stress and epilepsy.

A number of important points made throughout the
manuscript are reinforced here. Reducing damage done by pre-
natal and postnatal stress may help reduce the cost of treating
adult diseases. Protecting pregnant mothers from harmful stress
exposure and supporting programs to reduce stress or anxiety
during pregnancy might lead to improvements in the health
and well-being of their children later in life. Ideally, interven-
tion and prevention should be achieved before pregnancy begins.
In terms of postnatal stress, psychosocial interventions in early
life can affect brain development and thereby benefit children at
risk. Other perinatal adversities such as perinatal infection, nutri-
tional disorders, and toxin exposures must be cautiously avoided
and treated. The potential therapeutic value of pharmacologi-
cal agents, such as CRHR1antagonists, MR and GR antagonists
should be explored.

Recently, an increasing number of studies have shown that
early-life stress primes seizure occurrence and increases epilepto-
genesis. An increased understanding of the link between early-life
stress and epilepsy could improve the care and treatment of
patients with epilepsy, while also allowing better management of
other stress-related neurological disorders.

In the future, we will need to better determine the devel-
opmental windows during which preventative or therapeutic
interventions can reverse the adverse effects of developmental
programming. It will also be important to better understand
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stress biomarkers, especially epigenetic biomarkers. An increasing
number of studies have provided clues as to how early-life stress
induces changes at the cellular, molecular, and epigenetic levels.
Continued progress on these fronts will provide great insight into
disease mechanisms, in turn leading to the potential identification
of novel targets for therapy and prevention.
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