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Early Life Supraphysiological Levels 
of Oxygen Exposure Permanently 
Impairs Hippocampal Mitochondrial 
Function
Manimaran Ramani1, Kiara Miller1, Jamelle Brown1, Ranjit Kumar2, Jegen Kadasamy1, 

Lori McMahon3,4, Scott Ballinger5 & Namasivayam Ambalavanan  1,3

Preterm infants requiring prolonged oxygen therapy often develop cognitive dysfunction in later 

life. Previously, we reported that 14-week-old young adult mice exposed to hyperoxia as newborns 
had spatial and learning deficits and hippocampal shrinkage. We hypothesized that the underlying 
mechanism was the induction of hippocampal mitochondrial dysfunction by neonatal hyperoxia. 

C57BL/6J mouse pups were exposed to 85% oxygen or room air from P2–P14. Hippocampal proteomic 
analysis was performed in young adult mice (14 weeks). Mitochondrial bioenergetics were measured in 
neonatal (P14) and young adult mice. We found that hyperoxia exposure reduced mitochondrial ATP-
linked oxygen consumption and increased state 4 respiration linked proton leak in both neonatal and 
young adult mice while complex I function was decreased at P14 but increased in young adult mice. 
Proteomic analysis revealed that hyperoxia exposure decreased complex I NDUFB8 and NDUFB11 and 
complex IV 7B subunits, but increased complex III subunit 9 in young adult mice. In conclusion, neonatal 
hyperoxia permanently impairs hippocampal mitochondrial function and alters complex I function. 

These hippocampal mitochondrial changes may account for cognitive deficits seen in children and 
adolescents born preterm and may potentially be a contributing mechanism in other oxidative stress 

associated brain disorders.

Many extremely preterm infants often require prolonged periods of supraphysiological oxygen (hyperoxia) expo-
sure for their survival. In addition, even preterm infants not receiving supplemental oxygen are exposed to a rel-
atively hyperoxemic environment compared to the hypoxemic normal intrauterine environment (PO2 25–35 mm 
Hg) during a critical developmental period for many organ systems. Preterm infants who require prolonged peri-
ods of oxygen supplementation are at higher risk of morbidities such as retinopathy of prematurity1,2 and chronic 
lung disease like bronchopulmonary dysplasia (BPD)3,4, probably as a consequence of chronic oxidative stress 
(OS). Children with BPD frequently exhibit deficits in executive function and cognition even in the absence of 
apparent brain injuries such as intraventricular hemorrhage and periventricular leukomalacia5–8. Although direct 
effects of OS and lung injury-induced systemic inflammation on the developing brain have been considered as 
possible etiologies, the exact mechanism(s) by which children with BPD develop cognitive dysfunction despite 
no apparent brain injury is not known.

Although the long-term detrimental effects of early hyperoxia exposure on lung development and function 
have been studied in depth, little is known about long-term effect of early hyperoxia exposure on brain devel-
opment and function. Previously, we have shown that in C57BL/6J mice, hyperoxia (85% oxygen [O2]) expo-
sure during the neonatal period (P2–14) (neonatal hyperoxia) leads to spatial memory and learning deficits, 
increased exploratory behavior, and shrinkage of area CA1 of the hippocampus when assessed at young adult age 
(14 weeks)9. Recently, our proteomic analysis of hippocampal homogenates from neonatal mice (P14) exposed 
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to hyperoxia from P2–14 indicated impairments in hippocampal protein synthesis and translation and predicted 
mitochondrial dysfunction10. Hyperoxic exposure can cause cell death11 and impair cell survival12 in the devel-
oping brain. Chronic OS due to O2 supplementation may negatively affect neuronal mitochondrial function and 
lead to neurodegenerative disorders13.

Area CA1, a region of the hippocampus crucial for the acquisition of long-term memory14–16, is highly vulner-
able to OS17. Mitochondria isolated from CA1 neurons have been shown to generate more reactive oxygen species 
(ROS) than any other regions of the hippocampus18. Adequate mitochondrial function is essential for mecha-
nisms required for learning and memory19 in the hippocampus. While mitochondrial dysfunction is associated 
with the pathogenesis of several neurodegenerative diseases in adults20, the impact of early-life mitochondrial 
dysfunction on long-term brain development and function is yet to be determined.

In this study, we hypothesized that prolonged hyperoxia exposure during the critical developmental period 
would permanently alter hippocampal mitochondrial function. Our objective was to determine the long-term 
changes in hippocampal mitochondrial respiratory complex protein expression and bioenergetic function in neo-
natal mice (P14) and young adult mice (14 weeks) exposed to hyperoxia from P2–P14.

Results
Targeted and global proteomics. Long-term effect of neonatal hyperoxia exposure on hippocampal mito-
chondrial complex I, II, and III protein expressions in young adult mice. Young adult mice exposed to hyper-
oxia as neonates had reduced amounts of complex I NADH Dehydrogenase [Ubiquinone] 1 Beta Subcomplex 
8 (NDUFB8), and complex I NADH Dehydrogenase [Ubiquinone] 1 Beta Subcomplex 11 (NDUFB11) subunit 
proteins (Table 1). The levels of other detected complex I subunits and of complex II subunits were comparable 
between the groups (Table 1). Complex III cytochrome b-c1 complex subunit 9 was increased in the hyperox-
ia-exposed group compared to air-exposed group (Table 1).

Long-term effect of neonatal hyperoxia exposure on hippocampal mitochondrial complex IV and V protein expres-
sions in young adult mice. Young adult mice exposed to hyperoxia as neonates had less cytochrome C oxidase 
subunit 7B (COX7B) protein compared to air-exposed groups (Table 2). The amounts of other detected complex 
IV and V subunits were similar between the groups (Table 2).

Bioinformatic analysis of differentially expressed hippocampal proteins. Differentially expressed 
hippocampal proteins in young adult mice following neonatal hyperoxia exposure. With a cut-off of ±1.5 
fold-change with P-value < 0.05 (by analysis of variance), and a false discovery rate of 5%, we identified a total 
of 196 hippocampal proteins that were differentially expressed in neonatal hyperoxia-exposed young adult mice 
compared to air-exposed young adult mice. Of these 196 proteins, 48 proteins were increased, and 148 were 
decreased following neonatal hyperoxia exposure. The heat map of the differentially expressed hippocampal 
proteins is shown in Supplemental Fig. S1. The full list of upregulated and downregulated proteins (limited to 
fold-change 1.5) in young adult mice exposed to neonatal hyperoxia are listed in Supplemental Tables S1 and S2, 
respectively. The top 10 differentially expressed hippocampal proteins in the hyperoxia-exposed young adult mice 
are listed in Table 3. The protein classes that are upregulated and downregulated by hyperoxia exposure are shown 
in Fig. 1A,B, respectively.

Long-term effect of effect of neonatal hyperoxia exposure on hippocampal biological processes in young adult mice.  
Differentially expressed hippocampal proteins were predominantly involved in biological processes of cellular 
process, metabolic process, biogenesis, and protein localization (Fig. 1C,D). Among the upregulated hippocampal 
proteins, functions of 20 (29.9%) proteins were associated with cellular process, 18 (26.9%) were proteins asso-
ciated with metabolic process, 9 (13.4%) were proteins associated with the biogenesis process, and 6 (9%) were 
proteins associated with the localization process (Fig. 1C). Among the downregulated proteins, functions of 62 
(27.8%) proteins were associated with the cellular process, 39 (18.1%) were proteins associated with metabolic 
process, 26 (12.1%) were proteins associated with biogenesis process, and 20 (9.6%) were proteins associated to 
localization process (Fig. 1D).

Top canonical hippocampal pathways regulated by neonatal hyperoxia exposure in young adult mice. The top 
canonical pathways that were most impacted by neonatal hyperoxia exposure are listed in Table 4. Bioinformatic 
analysis of differentially expressed hippocampal proteins predicated that mitochondrial function (P = 2.03E-06), 
oxidative phosphorylation (P = 1.25E-05), GABA receptor signaling (P = 1.26E-04), amyotrophic lateral sclerosis 
signaling (P = 4.09E-04), and amyloid processing (P = 5.34E-04) were impacted in young adult mice that had 
neonatal hyperoxia exposure. Fifteen proteins were associated with mitochondrial function, 11 were related to 
oxidative phosphorylation, 9 were related to GABA receptor signaling, 9 were proteins related to amyotrophic 
lateral sclerosis signaling, and 6 were proteins related to amyloid processing and were differentially expressed in 
the hyperoxia-exposed group.

Mitochondrial studies. Effects of neonatal hyperoxia exposure on hippocampal mitochondrial bioenergetics 
in neonatal mice (P14). Neonatal hyperoxia (exposure from P2–P14) exposure decreased both pyruvate/malate 
mitochondrial ATP linked (P = 0.01) and complex I enzyme activity (P = 0.01) at P14 (Fig. 2A,D, respectively). 
No differences were observed between hyperoxia-exposed and air-exposed controls in ATP linked O2 consump-
tion rates that utilized succinate (complex II substrate; P = 0.73) or complex IV activity (P = 0.99) (Fig. 2C,E, 
respectively), consistent with the hypothesis that the observed differences were related to a complex I defect. 
Examination of state 4 minus basal O2 consumption rates also suggested increased oxygen consumption in the 
hyperoxia-exposed group (P = 0.03), which could be linked to increased proton leak and/or oxidant generation 
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(Fig. 2B). Hyperoxia-exposed neonatal mice also had reduced citrate synthase activity (P = 0.01) (Fig. 2F), com-
pared to air-exposed neonatal mice.

Effects of neonatal hyperoxia exposure on hippocampal mitochondrial bioenergetics in young adult mice (14 
weeks). Similar to the observations in neonates exposed to hyperoxia, adult mice (14 weeks old) that under-
went neonatal hyperoxia exposure from P2–P14 had decreased mitochondrial ATP linked O2 consumption in 
the presence of complex I substrates (pyruvate/malate) (P = 0.01) (Fig. 3A) whereas in the presence of succinate 
(P = 0.74), no differences were observed relative to air-exposed controls (Fig. 3D). Similarly, no differences were 
observed in complex IV activity (P = 0.45) between exposed and unexposed control groups (Fig. 3G). Also, sim-
ilar to the hyperoxia-exposed newborn mice, oligomycin induced state 4 O2 consumption rates minus basal O2 
consumption rates were increased (P = 0.05) (Fig. 3C), consistent with increased proton leak and/or oxidant 
generation. However, unlike in neonates, complex I activity (P = 0.002) was significantly increased in the 14-week 
old mice exposed to hyperoxia as neonates (Fig. 3E). Subgroup analysis by sex also showed that young adult male 
mice exposed to hyperoxia as neonates had decreased ATP linked O2 consumption (One Way ANOVA, mean 
difference 36.7, P = 0.01) (Fig. 3B) and increased complex I activity (One Way ANOVA, mean difference 13.66, 
P = 0.03) (Fig. 3F) compared to air-exposed young adult male mice. The difference in citrate synthase activity 
(P = 0.78) seen in neonatal mice exposed to hyperoxia were no longer observed when assessed as young adults 
(Fig. 3H).

Molecule (Symbol)

Protein
Log Fold Change in 
Hyperoxia (vs. Air)

P value for 
protein change

Complex I Protein Subunits

NADH Dehydrogenase [Ubiquinone] 1 Alpha Subcomplex

   Subunit 2 (NDUFA2) −0.27 0.81

   Subunit 5 (NDUFA5) +0.65 0.38

   Subunit 6 (NDUFA6) −0.18 0.90

   Subunit 7 (NDUFA7) +1.34 0.23

   Subunit 8 (NDUFA8) +2.19 0.08

   Subunit 9 (NDUFA9) +0.82 0.51

   Subunit 10 (NDUFA10) −0.54 0.65

   Subunit 12 (NDUFA12) +1.36 0.36

   Subunit 13 (NDUFA13) +1.29 0.26

   Assembly Factor 3 (NDUFAF3) −0.90 0.58

   Assembly Factor 4 (NDUFAF4) +0.26 0.85

   Assembly Factor 5 (NDUFAF5) +0.09 0.94

NADH Dehydrogenase [Ubiquinone] 1 Beta Subcomplex

   Subunit 3 (NDUFB3) +0.02 0.98

   Subunit 4 (NDUFB4) −0.35 0.79

   Subunit 5 (NDUFB5) +0.42 0.78

   Subunit 7 (NDUFB7) +1.10 0.46

   Subunit 8 (NDUFB8) −2.65 0.04

   Subunit 10 (NDUFB10) +0.37 0.63

   Subunit 11, (NDUFB11) −2.37 0.034

NADH Dehydrogenase [Ubiquinone] 1

   Subunit C2 (NDUFC2) +0.07 0.95

NADH Dehydrogenase [Ubiquinone]

   Flavoprotein 1 (NDUFV1) +1.94 0.17

   Flavoprotein 2 (NDUFV2) +0.54 0.19

Complex II Protein Subunits

Succinate dehydrogenase

   Cytochrome b560 subunit (SDHC) +0.89 0.53

   Iron-sulfur subunit (SDHB) +0.82 0.49

   Flavoprotein subunit (SDHA) −0.14 0.64

Complex III Protein Subunits

   Cytochrome B5 Type B (CYB5B) −0.38 0.78

   Cytochrome b-c1 complex subunit 9 (UQCR10) +4.44 0.0005

Table 1. Long-term Effect of Neonatal Hyperoxia Exposure on Hippocampal Mitochondrial Complex I, II and 
III Proteins in Young Adult Mice (n = 5 in Air group, 6 in Hyperoxia group).
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Effects of neonatal hyperoxia exposure on hippocampal mitochondrial copy number in neonatal (P14) and young 
adult mice (14 weeks). No difference in the mitochondrial copy number was observed among the air- and 
hyperoxia-exposed neonatal mice (Fig. 4A). Similarly, no difference in the mitochondrial copy number was 
observed among air- and hyperoxia-exposed young adult mice (Fig. 4B).

Discussion
This is the first preclinical study to demonstrate the long-term adverse effect of early life hyperoxia on hippocam-
pal mitochondrial function and mitochondrial respiratory chain protein expression. We discovered that hyper-
oxia exposure during a critical developmental period permanently impairs hippocampal mitochondrial function, 
alters the expression of specific respiratory chain subunits for complexes I and III, and impairs complex I activity 
in the hippocampus. As spatial memory deficits and other cognitive problems in the mouse model of bronchopul-
monary dysplasia (BPD) correspond to the cognitive deficits seen in adolescents with BPD, these new observa-
tions suggest that permanent hippocampal mitochondrial dysfunction induced by early life oxygen exposure as a 
contributor to the pathophysiology of BPD associated cognitive dysfunction.

This study has several strengths. We have used unbiased proteomic analysis of whole hippocampal tissue using 
highly sensitive mass spectrometric methods. Rather than being limited to only mitochondrial proteins, our study 
also evaluated the long-term impact of early life oxygen exposure on all hippocampal proteins and used sophisti-
cated bioinformatics analysis to define long-term changes in the hippocampal signaling pathways. This study also 
evaluated mitochondrial bioenergetics induced by hyperoxia exposure during the critical developmental period 
(P14) and young adult age (14 weeks, the age at which we observed cognitive dysfunction in our previous study). 
In addition to citrate synthase assay, a surrogate measure of mitochondrial content, we also measured mitochon-
drial copy number, an alternative measure for mitochondrial content.

There are also a few limitations to this study. The proteomics and the mitochondrial bioenergetic studies 
were performed on the whole hippocampus instead of specific hippocampal subfields which are known to play 
different roles in memory and learning. Furthermore, since proteomic and bioenergetic studies were done from 
the whole hippocampus, it is not possible to determine whether these early life oxygen-induced changes in hip-
pocampal proteins and mitochondrial function were predominantly derived from neurons or glial cells or a 

Molecule (Symbol)

Protein
Log Fold Change in 
Hyperoxia (vs. Air)

P Value for 
Protein Change

Complex IV Protein Subunits

Cytochrome C Oxidase

   Subunit 2 (COX2) +0.67 0.06

   Subunit 4 Isoform 1 (COX41) +0.42 0.59

   Subunit 5A (COX5A) −1.42 0.33

   Subunit 5B (COX5B) +0.15 0.78

   Subunit 6A1 (CX6A1) +3.32 0.08

   Subunit 6B1 (CX6B1) +0.55 0.34

   Subunit 6C (COX6C) +0.19 0.87

   Subunit 7A2 (CX7A2) +0.96 0.51

   Subunit 7B (COX7B) −2.09 0.04

   Subunit 7C (COX7C) +0.39 0.39

   Assembly Factor 7 (COA7) +1.76 0.18

   Subunit NDUFA4 (NDUA4) +1.17 0.06

   Translational Activator 1 (TACO1) −0.74 0.58

Complex V Protein Subunits

ATP Synthase

   Protein 8 (ATP8) +0.66 0.25

   Subunit Alpha (ATPA) +0.16 0.34

   Subunit Beta (ATPB) +0.02 0.93

   Subunit Delta (ATPD) −0.34 0.78

   Subunit Gamma (ATPG) +0.44 0.48

   Subunit F (ATPK) −1.82 0.30

   Subunit O (ATPO) +0.47 0.23

   Subunit D (ATP5H) +0.73 0.06

   Subunit G (ATP5L) −0.33 0.85

   Subunit E (ATP5I) +0.89 0.11

   Subunit Epsilon (ATP5E) −1.35 0.36

   Subunit S (ATP5S) +0.88 0.37

Table 2. Long-term Effect of Neonatal Hyperoxia Exposure on Hippocampal Mitochondrial Complex IV and 
V Proteins in Young Adult Mice (n = 5 in Air group, 6 in Hyperoxia group).
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combination of both. In addition, proteomic methods often require large sample sizes, as there is often much 
variation from one sample to another, and even large differences may not end up being statistically significant. In 
this study, we focused on proteomics and mitochondrial bioenergetics only from the hippocampal homogenates, 
and not from other regions of the brain such as cerebellum, amygdala, corpus callosum, and white matter tracts 
which might also have impacted by hyperoxia exposur21–23. Even though hippocampal complexes I and IV activ-
ities were measured, complex III and complex V activities were not measured due to technical difficulties and the 
size of the hippocampus.

Though lung and brain development in newborn mouse pups corresponds to 24–28 weeks of gestation in 
human preterm infants, the highly efficient redox and gas exchange system of the C57BL6 mice24 requires sup-
raphysiological concentrations (85% O2) and a longer duration (P2–14) of oxygen exposure to induce human 
BPD-like lung pathology9,25. Our model, while not an exact simulation of the human preterm infant in the 

Protein (Symbol)
Log Fold Change in 
Hyperoxia Group P value

Up-regulated Proteins

Ras-related protein Rab-8A (RAB8A) +4.78 0.032

Cytochrome b-c1 complex subunit 9 (UQCR9) +4.44 0.0005

Regulator complex protein LAMTOR3 (LTOR3) +4.35 0.02

Mitochondrial Ribosomal Protein L11 (MRPL11) +4.19 0.003

Myelin proteolipid (PLP) +4.05 0.003

Down-regulated Proteins

Filamin-C (FLNC) −5.13 9.97E-07

Vacuolar Protein Sorting-Associated Protein 52 Homolog (VPS52) −4.74 1.79E-06

Integrin Beta-1 (ITB1) −4.50 5.77E-07

Glucose-6-Phosphate 1-Dehydrogenase X (G6PD1) −4.44 0.01

Teneurin-1 (TEN1) −4.38 0.0001

Table 3. Top 10 Differentially Expressed Hippocampal Proteins in Neonatal Hyperoxia-Exposed Young Adult 
Mice (n = 5 in Air group, 6 in Hyperoxia group, P = Hyperoxia vs. Air group).

Figure 1. Distribution of hippocampal proteins in young adult mice exposed to neonatal hyperoxia.  
(A) Graphical representation of the distribution of upregulated hippocampal proteins by class in the hyperoxia-
exposed group. (B) Graphical representation of the distribution of downregulated hippocampal proteins by class 
in the hyperoxia-exposed group. (C) Graphical representation of the distribution of upregulated hippocampal 
proteins by biological processes in the hyperoxia-exposed group. (D) Graphical representation of the 
distribution of downregulated hippocampal proteins by biological processes in the hyperoxia-exposed group.
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neonatal intensive care unit, reproduces both structurally the hippocampal shrinkage and functionally the asso-
ciated memory deficits26 seen in adolescents and young adults with BPD.

The hippocampus, a region of the brain that plays a vital role in consolidating short memory into long-term 
memory14–16, is highly vulnerable to oxidative stress17. Oxygen exposure causes neuronal cell death in develop-
ing brain11,12, and prolonged oxidative stress impairs neuronal mitochondrial function13. Neurons in the hip-
pocampus are critically dependent on their mitochondrial function for the strengthening of synapses, a cellular 
response responsible for the formation and maintenance of long-term memory27–29. In neurons, mitochondria 
generate about 90% of the ATP by oxidative phosphorylation. In oxidative phosphorylation, oxygen is the ter-
minal electron acceptor of the mitochondrial electron transport chain (ETC). ETC transfers electrons from high 
energy metabolites through a series of electron acceptors (carriers) to drive the generation of ATP from ADP30. 
The redox state of the respiratory chain is governed by the trans-membrane proton gradient and the membrane 
potential31. The redox energy used for ATP generation also leads to the production ROS32. Excessive ROS pro-
duction following hyperoxia exposure can potentially overwhelm antioxidant defense mechanisms and leads to 
mitochondrial damage33,34 and cellular death35.

Our mitochondrial functional assessments show that early life hyperoxia exposure not only reduces ATP linked 
oxygen consumption in the hippocampus in the neonatal period (P14) but also in the young adult (14 weeks). In 
addition, our study also shows a persistent increase in the rate of oxygen consumption at state 4 respiration, (a sur-
rogate measure of proton leak) in young adults exposed to hyperoxia as neonates, and suggests uncoupling between 
substrate oxidation and ATP synthesis. Alterations in mitochondrial coupling can alter ROS production36–38 and 
ATP synthesis39. Though the amount of ATP produced by the hippocampal tissue was not measured in this study, 
the decrease in ATP linked oxygen consumption and increase in state 4 proton leak both at P14 and 14 weeks sug-
gest that early life oxygen exposure permanently impairs mitochondrial efficiency in the generation of ATP. The 
neonatal hyperoxia-induced hippocampal mitochondrial dysfunction measured through bioenergetic studies in 
young adult mice is consistent with the mitochondrial dysfunction predicted through proteomic analysis.

Complex I (NADH: ubiquinone oxidoreductase), the first and largest enzyme in the ETC, has been consist-
ently shown to be vulnerable to oxidative stress-mediated dysfunction40. It is also thought to be the main site of 
ROS production41,42, and its impairment leads to an increase in ROS production43. Decreased complex I activity 
seen in hyperoxia-exposed neonatal mice suggests that oxygen exposure either directly or indirectly impairs 
complex I function. At 14 weeks, the targeted hippocampal proteomic analysis determined decreases in complex 
I NDUFB8 and NDUFB11 subunits in neonatal hyperoxia-exposed mice, inner membrane subunits that are 
located in the membrane arm of complex I together along with proton pumping subunits. While neither of these 
subunits is thought to be directly involved in catalysis, decreased levels of NDUFB8 associated with AD in rodent 
model44. However, mitochondrial bioenergetic studies indicated an increase in complex I activity at 14 weeks. 
The persistent decreased ATP linked O2 consumption and increased state 4 proton leak at 14 weeks despite the 
increase in complex I activity in the young adult mice exposed to hyperoxia suggest persistent mitochondrial 
dysfunction and inadequate compensation by the later increase in complex I activity following hyperoxia-induced 
decreases in the newborn. Neonatal hyperoxia did not affect complex IV activity either at P14 or 14 weeks sug-
gesting that either the complex IV enzyme is not as highly vulnerable to oxidative stress as complex I or it is well 
adapted to oxidative stress-induced injury. Though changes in hyperoxia-induced complex III and V activity are 
possible, comparable succinate-induced oxygen consumption between hyperoxia and air-exposed neonatal and 
young adult mice indicate that dysfunction in oxygen consumption noted with hyperoxia exposure is mainly 
induced by alterations in complex I function.

Mitochondrial metabolism and signaling pathways that regulate cell death are sexually dimorphic45. 
Compared to the female, the male hippocampus has a lower level of endogenous antioxidant defense systems46 
and produces more ROS47. We determined that hyperoxia-exposed young males had reduced ATP linked O2 con-
sumption and increased complex I activity compared to hyperoxia-exposed young females. These observations 
are clinically important because prematurity associated neurodevelopmental outcomes48 and neurodevelopmen-
tal disorders (e.g., Autism)49 preferentially affects male sex. Citrate synthase, a surrogate marker for mitochon-
drial volume50, was reduced by hyperoxia in neonates (P14) and normalized in young adults (14 weeks). However, 
when we independently verified the citrate synthase (mitochondrial content) results with mitochondrial copy 
number by qPCR, we did not observe any differences in mitochondrial copy number among the groups both 
either in neonatal or young adult mice. This suggests that even though early life hyperoxia exposure permanently 
impairs hippocampal mitochondrial function, it may not have significant short-term or long-term impact on 
hippocampal mitochondrial biogenesis.

Name P-Value

Overlap
(percentage; number of proteins 
differentially expressed/number 
of proteins in pathway)

Mitochondrial dysfunction 2.03E-06 8.8; 15/171

Oxidative phosphorylation 1.25E-05 10.1; 11/109

GABA receptor signaling 1.26E-04 9.5; 9/95

Amyotrophic lateral sclerosis signaling 4.09E-04 8.1; 9/111

Amyloid processing 5.34E-04 11.8; 6/51

Table 4. Top Canonical Pathways Involved in Neonatal Hyperoxia-Exposed Young Adult Mice by Ingenuity 
Pathway Analysis (Using Proteomics Data, n = 5 in Air group, 6 in Hyperoxia group, P = Hyperoxia vs. Air group).
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Figure 2. Effects of neonatal hyperoxia exposure on hippocampal mitochondrial bioenergetics in neonatal 
mice. A = ATP linked oxygen consumption, B = State 4 respiration proton leak, C = Succinate induced oxygen 
consumption, D = Complex I activity measured by assay, E = Complex IV activity measured by assay, and 
F = Citrate synthase activity measured by assay. Air-exposed: cyan bars with horizontal stripes and hyperoxia-
exposed: solid red bars; means ± SEM; n = 9 in air and 9 in hyperoxia. *p < 0.05 vs. air-exposed mice.

Figure 3. Effects of neonatal hyperoxia exposure on hippocampal mitochondrial bioenergetics in young 
adult mice. A = ATP linked oxygen consumption, B = ATP linked oxygen consumption by sex, C = State 4 
respiration proton leak, D = Succinate induced oxygen consumption, E = Complex I activity measured by assay, 
F = Complex I activity by Sex, G = Complex IV activity measured by assay, and H = Citrate synthase activity 
measured by assay. (A,C,D,E,G and G); air-exposed: cyan bars with horizontal stripes and hyperoxia-exposed: 
solid red bars; means ± SEM; n = 7–8 in air and 7–9 in hyperoxia. *p < 0.05 vs. air-exposed mice. (B,F); Air-
exposed females: solid cyan bars, air-exposed males: cyan bars with horizontal stripes, hyperoxia-exposed 
females: solid red bar, and hyperoxia-exposed males, red bars with angled stripes; means ± SEM; n = 4/sex/
group. *p < 0.05 = air-exposed mice vs. hyperoxia-exposed males by One Way ANOVA.
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In addition, hyperoxia-induced changes in the expression of Ras-related protein Rab-8A (involved in vesicu-
lar trafficking and neurotransmitter), Teneurin-1 (increases hippocampal dendritic arborization and spine den-
sity) and their roles in hyperoxia-induced cognitive dysfunction need further investigation. Also, reduction in 
hippocampal glucose-6-phosphate 1-dehydrogenase X (G6PD1) level in hyperoxia-exposed young adult mice 
suggests that early life hyperoxia exposure permanently impairs cytosolic oxidative phosphorylation, a process 
that is critical for the NADPH production. Since adequate NADPH level is essential for cellular oxidative stress 
regulation51, it is possible that impaired hippocampal oxidative phosphorylation in hyperoxia-exposed young 
adult mice could have also impaired its ability to defend against oxidative stress even under normal ambient air 
conditions.

Our data also indicate that aberrant GABAergic signaling52 and amyloid processing are associated with cog-
nitive deficits, and these pathways have been linked to neurodegenerative conditions53. Additional studies are 
needed to evaluate the contribution of these canonical pathways to impaired memory and hippocampal dys-
function induced by oxidative stress and to define how they interact with mitochondrial dysfunction. Since 
mitochondrial biogenesis is not impacted by early hyperoxia, we speculate that early oxidative stress possibly 
alterted complex I protein structure leading to an increase in mitochondrial ROS production which in turn may 
contribute to oxidative damage to mitochondrial DNA, altered mitophagy, and mitochondrial structure leading 
to long-term changes in complex I function and overall mitochondrial function (Supplemental Fig. S2). It is 
also possible that neonatal hyperoxia-induced phenotype might have originated not only from the initial insult 
(direct oxidative stress) to the complex I and other ETC enzymes but also due to the signaling pathways such as 
mitochondrial UQCR9, MRPL11 RAB8A, G6PD, and Teneurin-1 that are poorly compensated at a later point.

Conclusion
This study demonstrated that supraphysiological oxygen exposure during a critical period in neonatal devel-
opment has a permanent negative impact on hippocampal mitochondria. The pathophysiology of neonatal 
hyperoxia-induced permanent mitochondrial dysfunction is complex. Future studies designed to quantitate 
mitochondrial DNA damage, ATP, and ROS levels are needed to determine the mechanisms by which early hip-
pocampal complex I dysfunction induces permanent complex I dysfunction and the development of spatial mem-
ory deficits.

Materials and Methods
All protocols were approved by the UAB Institutional Animal Care and Use Committee (IACUC) and were 
consistent with the PHS Policy on Humane Care and Use of Laboratory Animals (Office of Laboratory Animal 
Welfare, Aug 2002) and the Guide for the Care and Use of Laboratory Animals (National Research Council, 
National Academy Press, 1996).

Animal model. C57BL/6J dams and their pups of both sexes were exposed to either normobaric hyperoxia 
(85% O2, N = 6) or normobaric 21% O2 ambient air (Air, N = 6) from the second postnatal day (P2) until postna-
tal day 14 (P14), returned to room air, and maintained on standard rodent diet and light/dark cycling in microiso-
lator cages until 14 weeks of age (Fig. 5A)25. An additional set of mice were exposed to either 85% O2 (Hyperoxia, 
N = 6) or 21% O2 (Air, N = 6) and sacrificed at P14 (Fig. 5A).

At 14 weeks, hippocampal proteins were analyzed using unbiased proteomic profiling using mass spectrom-
etry. Initially, the targeted protein analysis was performed for hippocampal mitochondrial respiratory complex 
proteins. Subsequently, bioinformatics analysis was conducted on all other differentially expressed hippocampal 
proteins between hyperoxia and air-exposed groups. At P14 and 14 weeks of age, hippocampal tissues were ana-
lyzed for mitochondrial bioenergetic functions, complex I, IV, citrate synthase activity, and mitochondrial copy 
number.

Figure 4. Effects of neonatal hyperoxia exposure on hippocampal mitochondrial DNA copy number in 
neonatal and young adult mice. A = Mitochondrial copy number relative to air exposed controls in neonatal 
(P14) mice and B = Mitochondrial copy number relative to air exposed controls in young adult (P14) mice. Air-
exposed: cyan bars with horizontal stripes and hyperoxia-exposed: solid red bars; means ± SEM; n = 6 in air and 
6 in hyperoxia. *p < 0.05 vs. air-exposed mice.
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Mass spectrometry. At 14 weeks, following cervical dislocation, the whole brain was harvested from the mice, 
and hippocampi were removed in a sterile manner10. Then, Tissue was homogenized using Qiagen tissue lyser 
(Qiagen, MD, USA) in T-PER + Halt protease inhibitors + PMSF solution, and protein assay was performed using 
BCA protein assay kit (Thermo Fisher Scientific, MA, USA)54. The mass spectrometric analysis of hippocampal 
proteins was performed as previously described10.

Proteomics data assessment. Differentially expressed proteins (fold change ± 1.5 fold and p < 0.05) were identi-
fied using T-test and further analyzed. As previously done10, functional analysis was performed using PANTHER 
(Protein ANalysis THrough Evolutionary Relationships)55 and Ingenuity Pathway Analysis (QIAGEN Inc. MD, 
USA). Heat maps were generated using pheatmap package V.1.0.7 in R program.

Mitochondrial bioenergetic studies (high-resolution respiratory). Whole hippocampus (right) was 
harvested and placed in ice cold artificial cerebrospinal fluid that contained glucose, BSA, EGTA, pyruvate, and 
mitochondrial respiration buffer, as previously described56. Briefly, hippocampal tissue was permeabilized with 
saponin (5 mg/mL, 30 minutes) and high-resolution respirometry performed using a two-channel respirometer 
(Oroboros Oxygraph-2k with DatLab software; Oroboros, Innsbruck, Austria). Reactions were conducted at 37 °C 
in a 2 ml chamber containing air-saturated mitochondrial respiration buffer (MiR03) under continuous stirring.

As illustrated in Fig. 4B, O2 consumption rates were measured in the presence of substrates (5 mM 
malate, 15 mM pyruvate, 2.5 mM ADP,10 mM succinate), and inhibitors (0.5 µM oligomycin, 5um antimy-
cin A) to assess state 2 (substrate alone), state 3 (substrate + ADP) and oligomycin induced state 4 respiration 
rates. Non-mitochondrial oxygen consumption was determined in the presence of antimycin A. Adenosine 
triphosphate (ATP) linked O2 consumption rate was determined by State 3 (substrates + ADP) - State 4 (oli-
gomycin) = ATP linked rate. Non-ATP linked O2 consumption rate was determined by State 4 (oligomycin) – 
non-mitochondrial oxygen consumption (antimycin A). Potential differences in O2 consumption rates based 
upon substrate utilization at complex I or II were assessed using pyruvate/malate or succinate, respectively, in the 
presence of ADP.

Complex I, IV and citrate synthase activity assays. Complex I, IV, and citrate synthase activities were 
measured from hippocampal (left) homogenates as previously described57–59; complex I activities were measured 
from freshly extracted tissues.

Figure 5. Schematics of the animal model and mitochondrial respiratory protocol. (A) Represents schematic of 
hyperoxia exposure from P2–14 and experimental studies done at P14 and 14 weeks. (B) Represents schematic 
of the mitochondrial respiratory protocol used in the high-resolution respirometry with sequentially added 
substrates and the calculations to assess the mitochondrial bioenergetic function using whole hippocampal 
tissue. ST2PM = State 2 respiration with pyruvate and malate, ST3PM = State 3 respiration with pyruvate 
and malate, ADP = Adenosine diphosphate, ST3PMS = State 3 respiration with pyruvate, malate and 
succinate, ST4 = State 4 respiration following oligomycin, ATP Linked O2 = Adenosine triphosphate linked 
O2 consumption, ST4 Proton Leak = State 4 respiration proton leak, ROX = Residual O2 consumption, and 
Baseline = Baseline O2 consumption.
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Mitochondrial DNA copy number (qPCR). Mitochondrial DNA copy number was determined by QPCR 
as previously described60. Briefly, DNA was extracted from hippocampus homogenates from neonatal (P14) 
and young adult (14 weeks) mice exposed to room air or hypoxia from P2–14 using a Qiagen DNA® Mini Kit 
(Qiagen). DNA was quantified via fluorescence using Quant-iT™ PicoGreen™ dsDNA Assay Kit (Invitrogen). 
15 ng of DNA from each sample was used for quantitative PCR (qPCR). PCR products underwent electrophoresis 
for 2 hours at 90 volts on 10% polyacrylamide gels. Gels were stained with ethidium bromide for 45 minutes and 
imaged on an AmershamTM Imager 600 (GE Healthcare). All samples were loaded in duplicate and mitochondrial 
DNA copy number was quantified by measuring band intensities for each age group relative to age-matched room 
air-exposed controls using ImageQuant (GE Healthcare).

Statistical analysis. Results were expressed as means ± SE. Multiple comparisons testing (Student-Newman- 
Keuls) was performed if statistical significance (p < 0.05) was noted by ANOVA.
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