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Abstract

Aims/hypothesis The study aimed to assess the impact on neuropathy of simultaneous pancreas and kidney transplantation

(SPK) in individuals with type 1 diabetes.

Methods This longitudinal observational study examined neuropathic symptoms, deficits, quantitative sensory testing, neuro-

physiology, corneal confocal microscopy and skin biopsy results in 32 healthy (non-diabetic) control participants, 29 individuals

with type 1 diabetes and severe diabetic peripheral neuropathy [DPN] and 36 individuals with type 1 diabetes after SPK.

Results Following SPK, HbA1c, eGFR, triacylglycerols and HDL improved significantly (all p < 0.05). Compared with the DPN

group, which remained unchanged over the 36 month study period, corneal confocal microscopy assessments improved over

36 months following SPK, with increasing corneal nerve fibre density of 5/mm2 (95% CI 1.8, 8.2; p = 0.003) and corneal nerve

fibre length of 3.2 mm/mm2 (95% CI 0.9, 5.5; p = 0.006). The Neuropathy Symptom Profile and peroneal nerve conduction

velocity also improved significantly by 36months compared with DPN (2.5; 95% CI 0.7, 4.3; p = 0.008 and 4.7 m/s; 95% CI 2.2,

7.4; p = 0.0004, respectively), but with a temporal delay compared with the corneal confocal microscopy assessments.

Intraepidermal nerve fibre density did not change following SPK; however, mean dendritic length improved significantly at

12 (p = 0.020) and 36 (p = 0.019) months. In contrast, there were no changes in the Neuropathy Disability Score, quantitative

sensory testing or cardiac autonomic function assessments. Except for a small decrease in corneal nerve fibre density in the

healthy control group, there were no changes in any other neuropathy measure in the healthy control or DPN groups over

36 months.

Conclusions/interpretation SPK is associated with early and maintained small nerve fibre regeneration in the cornea and skin,

followed by an improvement in neuropathic symptoms and peroneal nerve conduction velocity.
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Abbreviations

CCM Corneal confocal microscopy

CDT Cold detection threshold

CNBD Corneal nerve branch density

CNFA Corneal nerve fibre area

CNFD Corneal nerve fibre density

CNFL Corneal nerve fibre length

DB-HRV Deep breathing heart rate variability

DPN Diabetic peripheral neuropathy

FDA Food and Drug Administration

GAP-43 Growth associated protein-43

IENFD Intraepidermal nerve fibre density

MDL Mean dendritic length

NDS Neuropathy Disability Score

NSP Neuropathy Symptom Profile

PGP9.5 Protein gene product 9.5

SPK Simultaneous pancreas and

kidney transplantation

TNFL Total nerve fibre length

VPT Vibration perception threshold

WDT Warm detection threshold

Introduction

Diabetic neuropathy is a major long-term complication of di-

abetes, which is associated with pain, foot ulceration and in-

creased mortality. There is currently no Food and Drug

Administration (FDA)-approved disease-modifying therapy

for diabetic neuropathy. Hyperglycaemia is associated with

the development and progression of diabetic neuropathy [1,

2]. Therefore, data from interventions improving or normalis-

ing blood glucose may be instructive in the choice of

endpoints and the design of clinical trials of new disease-

modifying therapies for diabetic neuropathy.

The Epidemiology of Diabetes Interventions and

Complications (EDIC) study and the Diabetes Control and

Complications Trial (DCCT) showed that intensive glycaemic

control reduced the progression of diabetic neuropathy [1].

However, normalisation of blood glucose with simultaneous

pancreas and kidney transplantation (SPK) showed no im-

provement in neurological deficits or autonomic function

and an initial improvement in sensory nerve conduction at

12months was not maintained at 24 or 42months [3]. A larger

study with a 10 year follow-up also demonstrated no impact of

SPK on neurological deficits or autonomic function, but there

was an improvement in neurophysiology [4]. Recent studies

have also shown no significant improvement in neurological

disability, nerve conduction, autonomic function or

intraepidermal nerve fibre density (IENFD) 2.5 and 8 years

after successful SPK [4–6]. It has been argued that the repair

of nerves is not possible in individuals undergoing SPK as

they have a severe neuropathy. However, we previously used

corneal confocal microscopy (CCM) and showed a significant

improvement in corneal nerve fibre density (CNFD) and

length 6 months after SPK [7]. Subsequently, we showed a

significant improvement in CNFD, branch density and length,

without a significant improvement in neurological disability,

quantitative sensory testing, autonomic function, neurophysi-

ology or IENFD, 12 months after SPK [8]. It was difficult to

reconcile the significance of the early improvement in corneal

nerve morphology without an improvement in the currently

accepted FDA endpoints for clinical trials of diabetic

neuropathy.

We have had the unique opportunity to assess neuropathy

over 3 years, utilising CCM and skin biopsy, alongside FDA-

accepted endpoints, in individuals undergoing SPK [9].
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Methods

Participant selection We assessed 36 individuals with type 1

diabetes and end stage renal failure undergoing SPK, 29 indi-

viduals with type 1 diabetes and severe diabetic peripheral

neuropathy (DPN) and 32 healthy (non-diabetic) control par-

ticipants from Central Manchester and Manchester Children’s

University Hospital. Exclusion criteria were a history of neu-

ropathy due to a non-diabetic cause and any history of corneal

trauma or surgery, or systemic or ocular disease that may

affect the cornea. The Central Manchester Research and

Ethics Committee approved this study and written informed

consent was obtained from all participants. This research ad-

hered to the tenets of the declaration of Helsinki.

Clinical and metabolic assessment Evaluations were under-

taken at baseline, prior to hospital discharge after SPK, and

at 6, 12, 24 and 36months. The control groups were evaluated

at the same time points, except 6 months. Study participants

underwent assessment of BMI, BP, HbA1c, lipid profile (total

cholesterol, LDL-cholesterol, HDL-cholesterol and triacyl-

glycerols) and eGFR.

Neuropathy assessment Symptoms of DPN were assessed

using the Neuropathy Symptom Profile (NSP). Neurological

deficits were evaluated using the modified Neuropathy

Disability Score (NDS). Vibration perception threshold

(VPT) was tested using a Neurothesiometer (Horwell,

Scientific Laboratory Supplies, Wilford, Nottingham, UK).

Cold (CDT) and warm (WDT) detection thresholds were

assessed on the foot using the TSA-II NeuroSensory

Analyser (Medoc, Ramat-Yishai, Israel). Sural sensory nerve

amplitude, conduction velocity and latency, and peroneal mo-

tor nerve amplitude, conduction velocity and latency were

determined by a consultant neurophysiologist using a Dantec

‘Keypoint’ system (Dantec Dynamics, Bristol, UK). Heart rate

variability was assessed with an ANX 3.0 autonomic nervous

system-monitoring device (ANSAR Medical Technologies,

Philadelphia, PA, USA).

Skin biopsy Three millimetre punch skin biopsies were obtain-

ed from the dorsum of the foot, approximately 2 cm proximal

to the second metatarsal head, under local anaesthesia (1%

lidocaine) at baseline (n = 12), 12 months (n = 12) and

36 months (n = 5) after SPK. Fifty micrometre sections were

immunostained using anti-human protein gene product 9.5

(PGP9.5) antibody (Abcam, Cambridge, UK) and nerve fibres

were demonstrated using SG chromogen (Vector

Laboratories, Peterborough, UK). Growth associated

protein-43 (GAP-43), a marker found in newly regenerated

nerve fibres [10], was immunolocalised using anti-human

GAP-43 antibody (Novus Biologicals, Abingdon, UK). The

biopsies were assigned a coded number and all nerve

morphology assessments were performed blinded to the case

diagnosis. IENFD was quantified according to established in-

ternational guidelines and expressed as number/mm [11].

IENFD reflects the number of nerves crossing the epidermal

basal membrane into the epidermis and does not account for

morphology of the nerve fibres inside the epidermis.

Therefore, additional morphological measures of the

intraepidermal nerve fibre were quantified. Mean dendritic

length (MDL) assessment was performed on PGP9.5-stained

sections according to previously described methods [12–14].

The images were captured on a Zeiss AxioImager 2 micro-

scope and Z-stack constructs of six sections were obtained

(Axiovision and ZEN lite programmes, Carl Zeiss

Microimaging, Jena, Germany). The MDL is the mean value

of all of the main nerve fibres from the point of their penetra-

tion through the basement membrane to their terminal portion

and is expressed as μm [14]. Total nerve fibre length (TNFL)

assessment was performed on Z-stack constructs of six adja-

cent GAP-43-stained sections. TNFL is the sum of all nerve

fibre profiles in the epidermis and is expressed as μm/mm2. A

recent study has shown that TNFL can identify nerve fibre

regeneration in a clinical trial of cibinetide in individuals with

small fibre neuropathy due to sarcoidosis [15].

Corneal Confocal Microscopy Participants underwent exami-

nation with CCM (Heidelberg Retinal Tomograph III Rostock

Cornea Module, Heidelberg Engineering, Heidelberg,

Germany) according to our established protocol [16]. A min-

imum of six non-overlapping images per individual (three per

eye) from the centre of the cornea were selected and quantified

in a masked fashion. Data derived from these images were

averaged for each eye and the mean of both eyes used in

subsequent data analysis. Four corneal nerve variables were

quantified: CNFD, the total number of major nerves/mm2 of

corneal tissue; corneal nerve branch density (CNBD), the

number of branches emanating from the major nerve trunks/

mm2; corneal nerve fibre length (CNFL), the total length of all

nerve fibres and branches (mm/mm2) within the area of cor-

neal tissue; and corneal nerve fibre area (CNFA), the total area

of the nerve fibre net (μm2/mm2). CNFA is a two-dimensional

measure which accounts for the length and variable thickness

of the corneal nerve fibre bundles. Analysis of corneal nerve

morphology was performed using automated software

(ACCMetrics for CNFD, CNBD and CNFL, and FIJI for

CNFA), as previously described [15].

Statistical analysis Statistical analyses were carried out using

SPSS for Mac (Version 19.0, IBM Corporation, New York,

NY, USA) and JMP (Version 11, SAS, Cary, NC, USA). All

data contained within Tables 1 and 2 are expressed as mean ±

SD. Plots show least squares mean ± SEM. The data were first

assessed for normality using the Shapiro–Wilk normality test.

Longitudinal change from baseline value for each study
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variable was estimated using a mixed model repeated mea-

sures analysis, which included participant group, time point

and group by time point as fixed effects and participant as a

random effect. Least mean squares differences within groups

were assessed, as well as the difference between the SPK and

DPN groups. Using data published in previous studies, a sam-

ple size of 21 participants was calculated to have 90% power

to detect within-patient change of 4 nerves per mm2 in CNFD.

Table 1 Demographic and biochemical data of participant groups

Variable Group Baseline 6 months 12 months 24 months 36 months

Age (years) SPK 48.6 ± 9.2 – – – –

DPN 61.9 ± 12.3 – – – –

HC 47.7 ± 1.6

Sex (F/M) SPK 11/25 – – – –

DPN 13/16 – – – –

HC 13/17 – – – –

Smoking (cigarettes/day) SPK 1.9 ± 3.4 – – – –

DPN 2.1 ± 5.1 – – – –

HC 0.4 ± 1.9 – – – –

Alcohol consumption (units/week) SPK 6.6 ± 9.9 – – – –

DPN 4.7 ± 7.8 – – – –

HC 2.8 ± 5.4 – – – –

Duration of diabetes (years) SPK 32.3 ± 10.5 – – – –

DPN 46.0 ± 13.9 – – – –

HC – – – – –

BP (mmHg)

Systolic SPK 131.8 ± 22.3 130.7 ± 4.2 130.7 ± 4.1 127.6 ± 5.7 123.2 ± 5.0

DPN 141 ± 23.9 – 141.4 ± 27.6 137.1 ± 24.9 132.5 ± 18.0

HC 129.5 ± 19 – 128.4 ± 15.5 127.1 ± 13.2 129.7 ± 10.2

Diastolic SPK 73.9 ± 10.5 70.9 ± 2.6 72.7 ± 2.3 68.5 ± 2.0 64.7 ± 2.7

DPN 72.8 ± 9.8 – 72.2 ± 19.1 68.8 ± 9.8 63.8 ± 8.9

HC 72.3 ± 10 – 70.3 ± 8.5 72.2 ± 7.2 71.9 ± 10.2

BMI (kg/m2) SPK 23.6 ± 5.3 – 25.3 ± 0.9 25.3 ± 0.8 26.2 ± 1.3

DPN 27.1 ± 3.6 – 26.8 ± 0.8 27.1 ± 0.7 26.5 ± 0.7

HC 27.9 ± 4.4 – 27.4 ± 5.1 27.1 ± 6.1 27.3 ± 4.9

HbA1c (%) SPK 8.4 ± 1.6 5.7 ± 0.9* 5.6 ± 1.1* 5.6 ± 0.9* 5.4 ± 0.7*

DPN 8.3 ± 1.3 – 8.3 ± 1.4 8.9 ± 1.9 8.0 ± 1.3

HC 5.7 ± 0.6 – 5.5 ± 0.4 5.5 ± 0.5 5.5 ± 3.0

HbA1c (mmol/mol) SPK 67.9 ± 16.9 38.4 ± 10.5* 37.6 ± 11.6* 38.3 ± 10.2* 39.0 ± 7.6*

DPN 66.7 ± 13.4 – 67.5 ± 14.8 68.3 ± 17.8 65.1 ± 14.8

HC 38.5 ± 3.3 – 37.1 ± 3.1 36.3 ± 3.2 37.1 ± 2.9

eGFR (ml min−1 [1.73 m]−2) SPK 14.6 ± 2.4 57.8 ± 4.9* 58.3 ± 4.8* 60.3 ± 4.2* 63.9 ± 5.1*

DPN 77.1 ± 20.6 – 73.1 ± 18.3 72.4 ± 17.0 75.2 ± 15.7

HC 83.5 ± 1.8 – 80.2 ± 9.6 83.1 ± 7.1 80.7 ± 8.6

Cholesterol (mmol/l) SPK 4.2 ± 0.9 4.1 ± 0.2 3.9 ± 1.0 4.1 ± 1.1 4.0 ± 0.9

DPN 4.3 ± 0.8 – 4.2 ± 0.8 4.0 ± 0.8 4.0 ± 0.7

HC 5.0 ± 1.5 – 4.9 ± 0.1 5.0 ± 0.6 5.1 ± 0.7

HDL-cholesterol (mmol/l) SPK 1.5 ± 0.5 1.5 ± 0.1 1.4 ± 0.5 1.5 ± 0.5 1.8 ± 0.8*

DPN 1.7 ± 0.6 – 1.8 ± 0.4 1.7 ± 0.4 1.7 ± 0.3

HC 1.5 ± 0.6 – 1.6 ± 0.3 1.5 ± 0.4 1.5 ± 0.4

LDL-cholesterol (mmol/l) SPK 2.1 ± 0.7 2.1 ± 0.8 2.1 ± 0.9 2.1 ± 0.9 1.8 ± 0.6

DPN 2.1 ± 0.6 – 2.0 ± 0.6 1.8 ± 0.5 1.8 ± 0.6

HC 3.0 ± 0.6 – 2.8 ± 0.5 2.8 ± 0.5 2.9 ± 0.6

Triacylglycerols (mmol/l) SPK 1.2 ± 0.4 1.2 ± 0.1 1.1 ± 0.5 1.1 ± 0.3 0.8 ± 0.3*

DPN 1.1 ± 0.6 – 0.9 ± 0.4 1.0 ± 0.5 0.9 ± 0.3

HC 1.4 ± 1.4 – 1.4 ± 1.1 1.5 ± 0.8 1.4 ± 0.7

Data are mean ± SD

*p < 0.05, **p < 0.01 compared with baseline

F, female; HC, healthy control; M, male
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Table 2 Neuropathy assessments over time in the study groups

Variable Group Baseline 6 months 12 months 24 months 36 months

NDS SPK 5.2 ± 3.7 5.3 ± 3.8 5.6 ± 3.6 3.1 ± 3.6 4.7 ± 3.7

DPN 4.1 ± 3.5 – 5.4 ± 3.2 5.4 ± 3.2 4.0 ± 3.3

HC 0.3 ± 0.8 – 0.2 ± 0.5 0.2 ± 0.9 0.2 ± 0.5

NSP SPK 5.3 ± 5.9 4.6 ± 6.6 5.1 ± 6.8 3.5 ± 7.5 2.5 ± 4.2*

DPN 6.0 ± 7.0 – 6.2 ± 6.1 7.2 ± 7.8 6.0 ± 7.4

HC 0.4 ± 1.1 – 0.4 ± 1.0 0.1 ± 0.4 0.1 ± 0.1

VPT (V) SPK 22.1 ± 13.5 19.5 ± 10.7 21.1 ± 14.3 19.1 ± 12.5 22.8 ± 17.1

DPN 21.6 ± 13.6 – 23.3 ± 13.9 23.3 ± 13.9 23.7 ± 14.6

HC 4.9 ± 3.4 – 6.3 ± 8.7 5.2 ± 3.1 4.4 ± 1.4

Sural amplitude (μV) SPK 3.6 ± 2.5 3.8 ± 2.6 4.4 ± 2.0 5.6 ± 1.9 6.9 ± 2.4

DPN 6.2 ± 6.4 – 5.7 ± 5.7 5.3 ± 4.9 5.9 ± 5.9

HC 19.8 ± 9.8 – 21.3 ± 8.3 21.1 ± 8.6 20.2 ± 7.5

Sural velocity (m/s) SPK 34.4 ± 7.9 36.3 ± 8.7 37.2 ± 8.6 37.0 ± 8.9 37.8 ± 8.2

DPN 38.7 ± 7.8 – 37.7 ± 7.8 36.4 ± 7.2 37.3 ± 8.5

HC 51.0 ± 4.6 – 50.5 ± 4.4 50.3 ± 5.5 50.3 ± 5.0

Peroneal amplitude (mV) SPK 1.4 ± 1.3 1.5 ± 1.4 1.6 ± 1.3 1.4 ± 1.2 1.8 ± 0.7

DPN 2.4 ± 1.9 – 1.8 ± 176 2.4 ± 1.9 2.8 ± 1.9

HC 5.8 ± 2.0 – 6.0 ± 1.7 5.3 ± 1.7 5.8 ± 1.8

Peroneal velocity (m/s) SPK 36.1 ± 5.1 37.9 ± 4.9 37.8 ± 6.3 38.0 ± 7.5* 40.9 ± 3.5**

DPN 37.4 ± 8.7 – 36.9 ± 8.5 37.0 ± 8.9 37.0 ± 8.8

HC 49.2 ± 3.4 – 49.0 ± 3.3 48.3 ± 5.0 48.8 ± 4.8

CDT (°C) SPK 16.0 ± 11.1 18.0 ± 11.0 16.8 ± 12.2 17.1 ± 12.1 17.6 ± 12

DPN 23.5 ± 8.2 – 22.3 ± 8.2 22.3 ± 8.2 23.1 ± 7.6

HC 27.8 ± 5.5 – 28.4 ± 2.3 27.1 ± 4.3 28.3 ± 1.6

WDT (°C) SPK 43.8 ± 4.9 44.3 ± 4.3 43.4 ± 4.9 42.8 ± 5.1 40.9 ± 4

DPN 40.8 ± 4.7 – 41.5 ± 4.4 41.5 ± 4.4 42.2 ± 5.1

HC 35.2 ± 6.8 – 38.3 ± 3.4 38.0 ± 3.5 37.1 ± 2.5

DB-HRV (beats/min) SPK 14.6 ± 14.9 10.1 ± 6.0 10.1 ± 7 10.6 ± 9.5 11.3 ± 7.4

DPN 10.0 ± 8.2 – 6.7 ± 8.9 15.3 ± 10.6 16.9 ± 8.4

HC 33.2 ± 10.1 – 31.7 ± 13.6 29.4 ± 13.0 30.5 ± 14.0

CNFD (number/mm2) SPK 9.2 ± 5.8 11.7 ± 6.2* 12.2 ± 8.4** 12.5 ± 6.6** 14.4 ± 5.0**

DPN 11.4 ± 5.6 – 12.6 ± 8.1 11.6 ± 6.9 9.0 ± 5.5

HC 30.8 ± 7.3 – 31.8 ± 3.9 28.9 ± 6.0 28.2 ± 5.7*

CNBD (number/mm2) SPK 9.7 ± 8.4 10.3 ± 8.3 13.2 ± 13.2 12.7 ± 8.9 15.0 ± 6.6*

DPN 10.6 ± 7.7 – 11.4 ± 8.6 10.6 ± 8.8 7.9 ± 4.8

HC 40.0 ± 17.3 – 43.7 ± 16.3 39.7 ± 13.3 36.3 ± 15.2*

CNFL (mm/mm2) SPK 7.1 ± 3.0 7.3 ± 2.7 8.2 ± 4.0 8.9 ± 3.5* 10.3 ± 2.0**

DPN 7.8 ± 2.8 – 9.2 ± 4.0 8.2 ± 3.3 7.6 ± 2.5

HC 17.8 ± 3.5 – 18.6 ± 2.5 17.1 ± 3.0 16.8 ± 3.0

CNFA (μm2/mm2) SPK 10,867 ± 4410 11,554 ± 4537 12,746 ± 6629 13,743 ± 5419* 15,394 ± 4893**

IENFD (number/mm) SPK 2.2 ± 2.5 – 2.9 ± 2.8 – 2.9 ± 1.9

DPN 5.2 ± 4.4 – – 3.4 ± 2.9 –

HC 9.6 ± 2.8 – – 9.5 ± 1.8 –

MDL (μm) SPK 10.9 ± 2.6 – 15.6 ± 4.8* – 18.0 ± 3.0**

TNFL (μm/mm2) SPK 2797 ± 3651 – 3954 ± 4927 – 2881 ± 2545

Data are mean ± SD

*p < 0.05, **p < 0.01 compared with baseline

HC, healthy control
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This assumes a 5% significance level, and that the SD of the

within-subject differences is 5.5.

Results

SPK improves metabolic variables At baseline, the control,

DPN and SPK cohorts did not differ significantly in age, sex

or alcohol consumption (Table 1). The SPK group had a signif-

icantly higher HbA1c (p < 0.001) and lower eGFR (p < 0.001),

total cholesterol (p < 0.001) and LDL-cholesterol (p < 0.001)

compared with control participants. Following SPK, HbA1c

and eGFR improved significantly (p < 0.05). Additionally,

there was a significant reduction in triacylglycerols (p < 0.05)

and increase in HDL (p < 0.05) (Table 1).

Participants with type 1 diabetes have a severe neuropathy

prior to SPK At baseline, the SPK group exhibited marked

small and large fibre abnormalities compared with the control

cohort. Neuropathic symptoms (NSP), deficits (NDS), quanti-

tative sensory thresholds (VPT, WDT, CDT), cardiac autonom-

ic function (deep breathing heart rate variability [DB-HRV])

and electrophysiology (sural and peroneal nerve amplitude

and velocity) were significantly abnormal compared with

healthy control participants (Table 2) (all p < 0.001). CNFD,

CNBD, CNFL and CNFA on CCM and IENFD on skin biopsy

were significantly lower at baseline in the SPK group compared

with control participants (all p < 0.001) (Table 2).

No change in neuropathy assessments in control participants

and participants with type 1 diabetes and severe neuropathy

over 36 months There was no significant change in NSP, NDS,

VPT, CDT, WDT, DB-HRV, sural and peroneal nerve ampli-

tude and velocity, CNBD, CNFL, or IENFD in the healthy

control and DPN groups over 36 months (Table 2). There was

a decrease in CNFD of 3.0 ± 1.3 fibres/mm2 (least squares

mean; p = 0.024) (Fig. 1a), which was an ~10% decrease from

baseline, at 36 months in control participants (Fig. 2a).

SPK is associated with early and maintained small nerve fibre

regeneration In the SPK group, corneal nerve fibre regenera-

tion was evident at 6 months and continued over 36 months

(Figs. 1a, b and 3). There was a significant improvement in

CNFD (Table 2; p = 0.035) 6 months after SPK, but no corre-

sponding change in any other measure of neuropathy (Table 2).

At 12 months, there was a significant improvement from base-

line in CNFD (p = 0.007), but no significant change in CNFL,

CNFA, NSP, NDS, VPT, CDT, WDT, DB-HRVor neurophys-

iology (Table 2). Corneal nerve morphology continued to im-

prove over follow-up, such that at 24 months CNFD (p < 0.01),

CNFL (p < 0.05) and CNFA (p < 0.05) were significantly in-

creased compared to baseline (Table 2) and at 36 months the

least squares mean CNFD of the SPK group had increased by 5

fibres/mm2 (95% CI 1.8, 8.2; p = 0.003) and CNFL by 3.2 mm/

mm2 (95% CI 0.9, 5.5; p = 0.006) over the DPN group. The

relative percentage change from baseline over the 36 month

time period for CNFD and CNFL for the SPK group was

~49% and ~38%, respectively, whereas the DPN group de-

creased by ~5% and ~7%, respectively (Fig. 2a, b).

A subgroup of SPK participants underwent skin biopsy at

baseline (n = 12), 12 months (n = 12) and 36 months (n = 5)

(Fig. 4). MDL increased significantly at 12 (p = 0.020) and 36

(p = 0.019) months, but there was no significant change in

IENFD or TNFL (Table 2).

There was a reduction in the number of participants follow-

ed from baseline (n = 36) to 6 (n = 25), 12 (n = 24), 24 (n = 24)

and 36 (n = 15) months. However, there was no significant

difference in the baseline clinical and neuropathy measures

between the individuals who were followed compared with

the individuals who were lost to follow-up (Electronic

Supplementary Material Table 1).

SPK is associated with a delayed improvement in symptoms

and neurophysiology The NSP (2.5; 95% CI 0.7, 4.3; p =

0.008; Fig. 1c) improved significantly from baseline in the

SPK group at 36 months. Similarly, peroneal nerve conduction

velocity improved at 36 months compared with baseline

(4.7 m/s; 95% CI 2.2, 7.4; p = 0.0004; Fig. 1d), with no change

in sural nerve amplitude (Fig. 1e). The relative change from

baseline of NSP at 36 months was ~ −46% (improvement) for

the SPK group compared with ~1% for the DPN group (Fig.

2c). The percentage change from baseline for the peroneal

nerve conduction velocity was ~10% for the SPK group com-

pared with ~ −3% for the DPN group (Fig. 2d), compared with

sural nerve amplitude changes from baseline of ~27% for the

SPK group and ~17% for the DPN group (Fig. 2e).

Discussion

This study shows that SPK in individuals with type 1 diabetes

results in small fibre regeneration of corneal nerve fibres as

early as 6 months and intraepidermal nerve fibres at

12 months, followed by an improvement in neuropathic

symptoms and neurophysiology by 36 months. However,

there were no improvements in neuropathic deficits, vibration

and thermal thresholds, cardiac autonomic function or

IENFD. Thus, our study shows an early and sustained im-

provement, but not normalisation, of some measures of small

fibre structure following SPK. An early study demonstrated

no impact on neurological deficits and autonomic function

and an initial improvement in sensory nerve conduction,

which was not maintained at 42 months [3]. A small, prospec-

tive study of 18 individuals undergoing SPK showed an im-

provement in median nerve conduction velocity at 48 months

[17], but another study showed no improvement in thermal
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thresholds [18]. The lack of improvement may reflect the sub-

jective variability in quantitative sensory testing, especially in

individuals with advanced neuropathy. A landmark study with

a follow-up over 10 years showed a significant improvement

in nerve conduction studies, but no impact on neurological

deficits or autonomic function [4]. Other studies assessing

cardiac autonomic function after SPK have also reported con-

flicting results [19, 20].

With regard to assessing improvements in structural abnor-

malities, small nerve fibres possess a greater ability to regen-

erate compared with large nerve fibres [21]. Experimental

studies have shown nerve regeneration in rats 15 months after

pancreas transplantation [22] and as early as 3 weeks after islet

cell transplantation [23]. In the present study, we have utilised

novel measures of small nerve fibre morphology to show cor-

neal and intraepidermal nerve fibre regeneration. This
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supports our previous studies showing that CCM can detect

early corneal nerve fibre regeneration within 12 months of

SPK [7, 8], after continuous subcutaneous insulin infusion

[24] and after treatment with cibinetide [25]. A recent study

has also demonstrated a significant 29% improvement in

CNFL after 12 months of treatment with omega-3 polyunsat-

urated fatty acids, with no change in neurophysiology or quan-

titative sensory testing [26]. In the present study, the improve-

ment in small fibres was associated with HbA1c normalisation

and an improvement in HDL and triacylglycerols, which are

known risk factors for the development of diabetic neuropathy

[27], although a change in neurotrophic support may also have

contributed [28]. There was no significant change in any of the

measures of neuropathy in control participants, apart from a

small reduction in CNFD, which is comparable with a study in

50 healthy control participants followed over 36 months [29].

We also show no significant worsening of neuropathy in indi-

viduals with type 1 diabetes and severe neuropathy over

36 months. This is consistent with three recent prospective

studies in cohorts of individuals with mild to moderate diabet-

ic neuropathy showing no or minimal deterioration in a range

of neuropathy measures [30–32], attributed to relatively good

control of risk factors for diabetic neuropathy.

Although IENFD is considered the gold standard for identi-

fying early small nerve fibre damage and repair, two studies

have shown no improvement in distal thigh IENFD 2.5 years

[5] and 8 years [6] after SPK, and we have also previously

shown no change in IENFD 12 months after SPK [8]. We

now show that there is no significant improvement in IENFD

up to 3 years after SPK. An increase in IENFD requires regen-

eration of the more proximal nerve fibres of the subepidermal

nerve plexus as opposed to the distal intraepidermal nerves,

where regenerationwill commence. Indeed, in the present study

we show that MDL, a measure of more distal intraepidermal

nerve regeneration, improves 12 and 36months after SPK. This

suggests that MDL, as opposed to IENFD, may have greater

utility in assessing early nerve fibre repair. Furthermore, studies

have shown that epidermal axons are capable of regrowth [33,

34], and GAP-43 has been used as an indicator of nerve regen-

eration [10, 35, 36]. In the present study, the length of

intraepidermal nerve fibres expressing GAP-43, expressed as

TNFL, also showed a trend for improvement.

A limitation of this study is the small number of individuals

assessed, especially those undergoing skin biopsy. However, it

is difficult to enrol large numbers of individuals undergoing

SPK to undergo extensive neuropathy phenotyping, especially

skin biopsy, over a long duration, due to their considerable

morbidity and mortality.

Fig. 4 Representative examples of 50 μm skin biopsy sections immuno-

stained for (a–d) PGP9.5 and (e–h) GAP-43 from a healthy control par-

ticipant (a, e) and an SPK patient (b–d, f–h) . (a) The healthy control

sample shows numerous long branching intraepidermal nerve fibres

(IENFs) reaching the upper epidermis and a well-developed subepidermal

nerve plexus. IENFs in an SPK patient at baseline (b) are sparse and short,

showing (c) elongation and (d) branching after 12 months. Red arrows

indicate nerves crossing the basement membrane and blue arrows show

the terminal part of the IENF. (e) GAP-43 immunostained nerve fibres

from the same healthy individual as in (a) are long and branching and

those from an SPK patient at baseline (f) and at 12 (g) and 24 (h) months

after SPK show a similar pattern as those stained for PGP9.5. Scale bars

in (a) and (e), 50 μm; scale bars in (b–d) and (f–h), 25 μm

Fig. 3 Corneal confocal images of the sub-basal nerve plexus in (a) a control participant and (b–f) an SPK patient at baseline (b) and at 6 (c), 12 (d), 24

(e) and 36 (f) months, showing small fibre regeneration. Scale bars, 50 μm
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In conclusion, individuals with type 1 diabetes show early

small nerve fibre regeneration, followed by an improvement

in neuropathic symptoms and neurophysiology. This suggests

that we need longer clinical trial durations in excess of 3 years

when utilising current FDA-accepted endpoints of symptoms,

signs and neurophysiology. Alternatively, we argue for the

inclusion of CCM and skin biopsy as co-primary endpoints,

to provide an early go/no go signal for clinical trials of

disease-modifying therapies in diabetic neuropathy.
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