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Early pandemic COVID-19 case growth rates increase with
city size
Andrew J. Stier 1✉, Marc G. Berman 1,2 and Luís M. A. Bettencourt3,4

The current outbreak of COVID-19 poses an unprecedented global health and economic threat to interconnected human
societies. Strategies for controlling the outbreak rely on social distancing and face covering measures which largely disconnect
the social network fabric of cities. We demonstrate that early in the US outbreak, COVID-19 spread faster on average in larger
cities and discuss the implications of these observations, emphasizing the need for faster responses to novel infectious diseases
in larger cities.
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INTRODUCTION
The coronavirus pandemic of 2019–2021 (COVID-19) is an
unprecedented worldwide event. Its speed of propagation, its
international reach, and the unprecedented coordinated measures
for its mitigation are only possible in a world that is more
connected and more urbanized than at any other time in history.
As a novel infectious disease in human populations, COVID-19

has a number of quantitative signatures to its pattern of spread.
These signatures make its dynamics more difficult to contain but
also easier to understand, compared to well established con-
tagions such as influenza, for the following reasons.
First, because there is no history of previous exposure, all

human populations in contact with the virus are (presumably)
susceptible. Second, because COVID-19 is a respiratory disease, it
is easily transmissible resulting in high reproductive numbers, R=
2.2–6.5 (refs. 1–3), though considerable uncertainty remains about
these estimates. Third, COVID-19 appears to be characterized by
reproductive numbers above the epidemic threshold (R0 > 1)
everywhere around the world. This, despite slightly reduced
transmission associated with higher humidity and temperature4–7.
So, while heat and humidity may slow the spread of Covid-19,
they alone do not bring the reproductive number below 1 (i.e.,
the epidemic threshold). In addition, these reproductive numbers
are considerably higher than seasonal influenza8. Bringing the
disease reproductive number below the epidemic threshold
(R→ R < 1) is the main goal of all public health interventions;
once this is achieved the disease’s transmission chain reaction will
shut down.
The reproductive number is the product of two factors R= β/γ,

the infectious period 1/γ (a physiological property) and the
contact rate β, which is a property of the population, essentially
measuring the number of social contacts that can transmit the
disease per unit time. Of these, only the contact rate can be
changed via public health interventions.
In the absence of a vaccine, social distancing and face coverings

remain the only options to slow down the spread of the disease
and arrest potential mortality. Governments around the world
have enacted aggressive policies, including "shelter in place" and
emergency closures of all non-essential services, which carry
severe economic and social consequences. However, there is still a

great deal of uncertainty as to how strong social distancing
recommendations must be or how long they must last9,10. In
addition, regional and local variation in the severity of and
compliance with restrictions are likely to impact individual cities
differently.
Cities are predicated on extensive and intense face-to-face

socioeconomic interactions. These interactions make cities sources
of social and economic opportunity but also increase the
possibility of infectious disease transmission. Many measurable
properties of cities—from the size of their economies, to their
crime rates, to their miles of road length—are mediated by
socioeconomic interactions and are subject to well known scaling
effects with population size predicted by urban scaling theory11.
All of these relationships are tied to socioeconomic networks with
average degree (number of social connections per capita, k) that
increases approximately as a power law of city size k(N)= k0N

δ,
with δ≃ 1/6, and city size, N, as measured by population size11,12.
This is thought to then cause scaling of crime rates, infectious
disease spread, number of patents, etc., with city size (i.e.
population). We will refer to population/city size as the number
of people living in a Metropolitan Statistical Area (MSA).
For functional effects, including epidemics, occurring against

the ecological backdrop of cities, the underlying concept of a city
is that of daily networks of socioeconomic interactions. These are
most readily defined as integrated labor markets (commuting
zones), which in the US are defined by the Census since the 1960s
as MSAs13. These are the "city" definitions we use in our empirical
analyses. For example, the Chicago MSA represents an integrated
labor market, which includes 14 counties, across three states
(https://www.census.gov/programs-surveys/metro-micro/about/
delineation-files.html). The MSA definitions are revised annually by
the US Census to reflect highly socioeconomically linked urban
places, and are the result of theory and analysis at the US Census.
Though commuting ties have been used to link places, they also
encompass many other activities such as shared real estate and
labor markets, transportation networks, and environmental
protections. For these reasons, there is an effort to (re)create
analogous or improved urban functional definitions worldwide,
led by the Organization for Economic Co-operation and Develop-
ment (OECD)14. While adopting any other definition for the same
effect would require extraordinary arguments, other ways of
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demarcating the boundaries of cities have been proposed. For
example, morphological urban areas are defined via satellite
imagery by identification of contiguous areas of development that
can be distinguished from peripheral rural areas and areas of
lower-density development15. However, it is as-of-yet unclear
whether these alternate methods for demarcating city boundaries
are superior in any way. In addition, defining city boundaries by
integrated labor markets captures a variety of social interactions
relevant to disease transmission beyond labor market interactions.
For example, the variety of restaurants types has been shown to
be greater in larger cities (integrated labor markets)16. This
suggests that consumer patterns of choosing which restaurants to
visit (and socialize at) is meaningfully related to city size.
Consequently, we expect well principled (see below) analyses
that use MSAs as the definition of a city to capture the best
approximation to the vast milieu of social interactions that
create urban social life and form the basis for inter-individual
disease transmission.
Urban scaling theory, and the observed scaling relationships it

explains, are based on a number of parameters which are general
to cities and more broadly to human settlements across history17.
These parameters include, but are not limited to, transportation
costs, the economic benefits of social interactions, the typical
distance traveled per person, the total population, the embedding
of transportation networks into the physical area of settlements,
and the probability of different types of social and economic
interactions11. These factors combine into a cost–benefit calculus
for individuals embedded in the social and built spaces of cities. In
turn, this allows for the calculation of expected values for many
different urban quantities as functions of city size (i.e. they all scale
with city population size).
It is important to recognize that scaling relationships between

urban quantities and city population size give us a way to
calculate the "ecological" effects of urban networks—such as
disease transmissibility—but that these quantities are not a model
for the behavior at smaller scales, such as those of individuals or
neighborhoods. Behaviors at those smaller scales may vary from
the mean substantially because of contextual effects. This is a
fundamental point that we must heed in order to avoid
"ecological fallacies"18, which is why we do not make claims at
that level of analysis. A few additional considerations help make
these points more explicit.
First, the mathematical models that explain urban scaling

explicitly identify social network densification as the primary
mechanistic driver of many measurable properties of cities,
including innovation, economic output, and crime. Consequently,
these models explicitly link average outcomes for entire cities to
the local dynamics of social interactions that may naturally
transmit a disease, as averages over these local dynamics. Thus,
while a particular exposure to COVID-19 is the result of an
individual’s history of social contacts, the measurements of the
reproductive number and case growth rates are always a
population average over these histories. These measures account
for the average number of transmission events that infected
individuals originate on average in that population. For these
reasons, epidemics are often treated as the paradigm for collective
behavior on large ecological scales.
Second, urban scaling theory has been shown to apply to cities

and settlements, across cultures11, and across historical time
scales19–21. While the generality of urban scaling theory across
time and culture always allows for places and neighborhoods
within cities to deviate from the mean and follow more specific
patterns of organization, it does suggest that the average
densification of social interactions with the population size of
cities is a general organizational principle of (relatively) self-
contained human cities and settlements11.
Consequently, the densification of social networks in larger

cities is expected to be relevant to COVID-19 disease transmission,

which is known to spread primarily via social contacts10,22.
Specifically, as the average contact rate is proportional to degree
β∝ k(N) (see “Methods”), we expect that initial growth rates of
COVID-19 cases to be higher in larger cities (see “Methods”). For
example, based on data of mobile phone social networks in
Portugal12, people living in a city of 500,000 people have, on
average, 11 people in their mobile phone social network, while
people living in a city of 5,000,000 people have, on average, 15.
This means that individuals living in larger cities have more dense
social networks. Therefore, we expect the contact rate (and case
growth rate) to be larger in a city of five million compared to a city
of five hundred thousand. This has been previously demonstrated
with early epidemic case growth of AIDS, which spreads through
the sexual network subset of social networks23. However, we do
not expect this to hold later in the pandemic, as social distancing
and lockdowns disrupt the social networks of cities, specifically to
reduce contacts, and this modifies the urban scaling laws. Later in
the pandemic, when mitigation measures have been implemen-
ted, we expect neighborhood and individual variations in social
network size after social distancing [during complete lockdowns
this is roughly equivalent to household size, which has been
demonstrated to be a significant risk factor for COVID-19
transmission24,25], face covering compliance, and availability of
work-from-home26 to influence transmission rates. In addition,
neighborhood and individual differences in co-morbidities are
likely relevant to understanding the variance in morbidity and
mortality outcomes within cities, but are not accounted for here
where the focus is on transmission rates. As such, we first focused
only on the beginning of the pandemic because that is the time
period that was least affected by interventions to curb the spread
of COVID-19, which would disrupt the social networks and
socioeconomic connections that relate COVID-19 transmission
rates to city size.

RESULTS
Scaling of case growth rates
This is exactly what is found empirically. Figure 1a shows the
growth rate of COVID-19 cases from March 14 to March 24,
the first 11 days in which city level reported case numbers are
available, vs. city size (population). While larger cities were faster
to adopt preventative COVID-19 measures27, the first stay at
home order in the US was effective on March 17. As a result of the
incubation period for SARS-COV-2 (ref. 28), this period most likely
captures case growth before large-scale behavior modification as
instituted by local preventative physical/social distancing and
lock-down policies. This demonstrates that, in the US, the early
part of the pandemic was characterized by increasing case
growth rates with city size, consistent with the expected scaling
exponent of δ ~ 1/6. This scaling exponent matches other
socioeconomic scaling phenomena such as patents, wealth, and
information flow11,12,29,30. In contrast, Fig. 2 shows that this period
of higher case growth rates in larger cities was restricted to the
first few months of the pandemic. By the end of June, the scaling
exponent δ is consistent with 0 (i.e. no changes in case growth
rate by city size).
Since these results are based on the temporal growth rate of

cases they do not depend on the total number of tests
administered. Thus, our results are robust to discrepancies
between positive tests and actual cases as well as absolute
differences in testing capacity between cities, so long as levels of
testing are consistent in each place over time. While the observed
scaling of case growth rates with city size may be due to larger
cities ramping up testing faster than smaller cities, we are not
aware of any county or city level testing data for this early period
of the US outbreak that could be used determine the influence of
testing availability on these results.
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Urban scaling theory only explains some (though a significant
amount) of the variance in growth rates of COVID-19 cases
between cities (R2= 0.21), i.e. inter-city variation. Besides the
expected uncertainty in growth rate estimations, much of this
variance is likely due to unique characteristics of each city that
influences the speed with which COVID-19 spreads31. For example,
early pandemic hotspots in New York City were generally in dense
working-class and middle-income neighborhoods, while hotspots
in Chicago were generally in the city’s most vulnerable, low-
income neighborhoods32 (though, see ref. 33 for evidence that

early pandemic impacts were worst in New York City zip codes
with the highest social vulnerability). These unique characteristics
of individual cities and the neighborhoods within them could
include local differences in the ramping up of testing capacity,
international connectedness of each city, the type of available
public transportation, the distribution of job types across income
brackets, and the amount of long distance business travel that
each city depends on.
While other research has implicated population density in the

spread of COVID-19 (refs. 34,35), urban scaling theory and empirical
evidence suggest that population density increases ~N1−α (α= 2/
3) with city size36. The observed scaling exponent of COVID-19
case growth of [0.11, 0.20] ~ δ= 1/6 is thus inconsistent with a
pure population density effect (i.e., 1/6= δ < α= 2/3, see Supple-
mentary Fig. 6). Instead we associate the scaling relationship
observed here with the density of socioeconomic interactions37

which increase slower than population density with city size.
These predictions of urban scaling theory have been confirmed in
analyses showing that population density at the county level is
not a significant predictor of cumulative COVID-19 caseload after
accounting for county population24. In summary, a population
density account would predict a much more intense and faster
spread of COVID-19 in more dense cities than what urban scaling
theory predicts based on the growth of socioeconomic interac-
tions as cities increase in population.
A larger reproductive number for COVID-19 in larger cities has

two important consequences38–41. First, the reproductive number,
R, sets a finite threshold for how an epidemic outbreak propagates
in a population, just like the branching rate in a chain reaction42,43.
For R < 1, an introduced disease will die off because transmission
will be dampened. For R > 1, disease transmission will be amplified
and result in an epidemic where the disease is transmitted quickly
to almost everyone (see Fig. 1B). Because we expect R ~ Nδ to
increase with city size, we expect larger cities to be more
susceptible to contagious diseases, but also to the spread of
information (see below), which we believe is mediated by the
same mechanism, i.e. socioeconomic interactions.

Fig. 1 COVID-19 cases reported by state health agencies grow faster in larger cities. a Estimated exponential daily growth rates of COVID-
19 in US Metropolitan Areas (MSAs). These estimates were made with the assumption that cities were experiencing exponential growth of
cases. The growth rate of COVID-19 cases is approximately 2.4 times faster in New York–Newark–Jersey compared to Oak Harbour, WA. b In the
absence of effective controls, larger cities are expected to have more extensive epidemics than smaller cities (Eq. (1)). Higher values of R result
in a greater percentage of the population eventually infected, unless this effect is curbed by controls that reduce the social contact rate. The
translation of growth rates into reproductive numbers was obtained using an infectious period of 1/γ= 4.5 days. These estimated values of R
are high in some cases (e.g., New York City) compared to reports in other situations and may in part be the result of the acceleration of testing
in larger cities and specific places. Each estimate comes from the 11 previous (inclusive) days of data. Shaded regions represent 95%
confidence intervals from OLS scaling fits.

Fig. 2 Estimated scaling exponents (δ) for the scaling of COVID-19
case growth rates with city size in the US over the course of the
pandemic. The early pandemic is characterized by faster growth of
cases in larger cities, consistent with the predicted scaling exponent
δ= 1/6. This is followed by decreasing scaling towards no scaling δ
= 0, later in the pandemic as social distancing, lockdowns, and mask
wearing disrupt the social/transmission networks of cities. Shaded
regions indicate 95% confidence intervals.
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Second, the size of an epidemic outbreak, as measured by the
percent of the population that becomes infected, is also related to
the reproductive number. In complex epidemic models, this needs
to be computed numerically, but for a simple Susceptible-
Infected-Recovered (SIR) model42 we can integrate the dynamics
and write the explicit expression (see “Methods”)

S1
S0

¼ e�Rð1�S1=NÞ (1)

where S0 is the initial susceptible population size (before the
outbreak) and S∞ is the (smaller) final population of susceptible
people. A larger R ~Nδ leads to more extensive epidemics.
The percent of people infected at the end of the outbreak is
1− S∞/N which is larger in populations with larger R, such as in
larger cities. In addition, the vaccination rate, pR, or the fraction of the
population that must be removed from the susceptible class when
R > 1 to stop the outbreak44 is also expected to be dependent on
population size. In the SIR model, this is simply pR= 1− 1/R. As cities
get larger, the fraction of individuals who must be vaccinated or,
alternatively, follow social distance and face covering policies must
also increase (see Supplementary Fig. 2).

DISCUSSION
These observations have a number of implications that can inform
evolving national, regional, and local responses to the outbreak of
COVID-19 and help to shape response plans for future, novel
infectious diseases. First, it is particularly important for larger cities
to be able to act more quickly to contain surges in cases. Second,
measures taken to contain outbreaks9,10 will impact cities
differently based on city size. From the perspective of containing
the outbreak, larger cities require faster responses, which could
consist of a number of proven policies9,10, that can quickly reduce
R below the epidemic threshold. These distinctions may help to
bring more nuance to ongoing strategies for suppression and
control of COVID-19, including gradually restoring socioeconomic
activity in context appropriate and safe ways.
Because of their higher network density, insufficient social

distancing or face covering compliance in larger cities may lead
to bigger outbreaks and establish reservoirs for the disease,
which can continue to create introductions elsewhere45,46. These
dynamics may also play out within cities, though we caution in
ascribing causes to neighborhood level variance in transmission
rates from the present data. The results presented here suggest
that communities in which people interact more densely from
the perspective of disease transmission (e.g., downtowns) may
similarly act as contagion reservoirs which may prolong the
duration of outbreaks and potentially create secondary reinfec-
tion waves. However, the factors that lead to a higher density of
social interactions in one community, for example, household
size24,25 or employment in the service industry or essential
worker status26, can often be the result of long term structural
inequalities47–50. These factors must be accounted for when
attempting to explain causal sources of differences in transmis-
sion rates within cities and in planning responses to outbreaks. In
summary, our results apply to comparisons across cities, and not
to neighborhoods or areas within individual cities. That is an
important question, but one which these data and analyses
cannot address.
Finally, as strategies for controlling Covid-19 continue to evolve,

it is critical to keep in mind that almost everything that we
appreciate about urban environments, including their economic
prowess, their ability to innovate, and their role in their inhabitants
social and mental health, is predicated on network effects mediated
by socioeconomic interactions. The ability to succeed against a fast
emerging epidemic like COVID-19 depends on preserving person-
to-person connectivity (e.g., through technology), while stopping
disease transmission. Establishing safe types of socioeconomic

contact is therefore paramount so that we can succeed in
controlling COVID-19 while maintaining livelihoods, socioeconomic
capacity, and mental health.
The higher socioeconomic connectivity of larger cities in a fast

urbanizing world makes containing emergent epidemics harder.
But the density of socioeconomic connections in cities can also
facilitate the faster spread of information, social coordination, and
innovations necessary to stop the spread of COVID-19. This
information and associated actions can easily spread more rapidly
than the biological viral contagion. To fight an exponential, we
need to create an even faster exponential!

METHODS
Calculation of case growth rates
County level daily data from March 14 to December 14 (inclusive) were
aggregated to the city level (MSAs, which are integrated labor markets)
using delineation files from the US Office of Budget and Management
(https://www.census.gov/programs-surveys/metro-micro/about/delineation-
files.html). MSAs are groups of counties (in their entirety, i.e., not parts of
counties), which make up an interconnected labor market. To our
knowledge, the data covering March 14 through March 24 represent the
first 10 days in which aggregated county level case statistics were available
for the entire country51. Previously the few states that published county
level case data did so on state health department websites and there was
no central repository for COVID case data in the US. After preprocesing (see
Supplementary Materials) we subtracted deaths from cases in each city and
found the exponential growth rate r for each time-series of active cases (see
Supplementary Material). Finally we plotted the natural logarithm of r and
the natural logarithm of city population from 2018 census estimates51, and
performed an ordinary least-squares linear regression to determine the
slope of the scaling line.

DATA AVAILABILITY
The data generated and analyzed during this study are described in the following
data record: https://doi.org/10.6084/m9.figshare.14199629 (ref. 51). All data are
openly available online at the following places. The testing data are contained in
all csv files in GitHub at https://github.com/tomquisel/covid19-data/tree/master/
data/csv. Population data and Delineation data can be downloaded from The United
States Census Bureau. The Population data are contained in the file “co-est2018-
alldata.csv”, available at https://www2.census.gov/programs-surveys/popest/
datasets/2010-2018/counties/totals/, and the Delineation data are contained in the
file “list1_Sep_2018.csv”, available at https://www.census.gov/geographies/reference-
files/time-series/demo/metro-micro/delineation-files.html.
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