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In vivo tissue imaging using near-infrared light suffers from low spatial resolution and poor contrast recovery
because of highly scattered photon transport. For diffuse optical tomography (DOT) and fluorescence molecular
tomography (FMT), the resolution is limited to about 5–10% of the diameter of the tissue being imaged, which
puts it in the range of performance seen in nuclear medicine. This paper introduces the mathematical formal-
ism explaining why the resolution of FMT can be significantly improved when using instruments acquiring
fast time-domain optical signals. This is achieved through singular-value analysis of the time-gated inverse
problem based on weakly diffused photons. Simulations relevant to mouse imaging are presented showing
that, in stark contrast to steady-state imaging, early time-gated intensities (within 200 ps or 400 ps) can in
principle be used to resolve small fluorescent targets (radii from 1.5 to 2.5 mm) separated by less than 1.5 mm.
© 2009 Optical Society of America

OCIS codes: 260.2510, 170.6960, 170.6920, 170.3660, 170.3010.
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. INTRODUCTION
ptical tomography refers to an ensemble of imaging
ethods designed to interrogate tissue using near-

nfrared light (NIR) transmission, where the transport
rocess interacts with its microscopic components. There
re two main categories of tomographic imaging applica-
ions, with each potentially probing different biological
echanisms. Fluorescence molecular tomography (FMT)

s used to localize optical contrast associated with the ac-
umulation or retention of fluorescent reporters, which
an be used to image specific cellular or organ-specific
rocesses [1–16]. The second approach, based on trans-
ission alone, is often referred to as diffuse optical to-
ography (DOT), and is used to study how light interacts
ith tissue based on absorption contrast from molecules

uch as hemoglobin and water [17–19]. Both approaches
se diffuse light measurement, which is known to lead to

ow resolution and blurry images. Typically, the reso-
ution of optical tomography is limited to several millime-
ers depending on the thickness of the tissue being im-
ged, which is comparable to nuclear imaging resolution.
ainly, there are three factors determining the reso-

ution: (1) the physical properties of light-matter trans-
ort, (2) the instrument design, and (3) the image recon-
truction method. The optimal combination of light
ransport with time-gated data, optimal instrument de-
ign, and an appropriate image reconstruction algorithm
an lead to dramatic improvements in image resolution.
his subject is analyzed here through numerical analysis
tudies of the signal and inversion process.

Photons propagating through tissue are either ab-
orbed or scattered, making it possible to model this with
1084-7529/09/061444-14/$15.00 © 2
eneral bulk tissue interaction coefficients. The absorp-
ion coefficient �a and scattering coefficient �s describe
heir probability of interaction per unit length. The aver-
ge distance covered by a photon between two scattering
ites in tissue (mean free path) is typically near 100 �m,
ut when isotropic scattering is approximated, then the
ransport (or reduced) scattering coefficient �s� is defined
or approximate isotropic scattering. The transport scat-
ering distance in tissue (or transport mean free path) is
pproximately 0.5 mm to 1.0 mm. This sets a fundamen-
al limit on the spatial resolution that can be attained
hen using diffuse optical imaging.
The second consideration that can degrade this reso-

ution limit further is determined by the instrument de-
ign. It has been shown that different combinations of
ources and detectors will lead to different reconstruction
mage quality [20]. In particular, singular-value analysis
f the DOT and FMT forward model has been performed
n order to design mathematical criteria that might be
sed to optimize the source–detector design [21–24]. How-
ver, it is generally expected that an optimal configura-
ion for optical tomography will be one which mimics
-ray computed tomography (CT), where there is as much
ircular symmetry as possible at the periphery of the tis-
ue being imaged.

An inherent characteristic of optical tomography is the
act that, even for excellent tissue sampling detection ge-
metries, the inverse problem is ill-conditioned [25]. In
ractice, this means that the problem is underdeter-
ined, implying that a large number of solutions exist for
given optical data set. By using an ideal tissue sampling

eometry, the symptomatic linear dependency of the mea-
009 Optical Society of America
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urements is minimized, thereby improving the condition-
ng of the problem. Then, a least-squares solver would be
xpected to converge to a unique solution corresponding
o a high-fidelity image for which the spatial resolution is
et by the aforementioned fundamental limit imposed by
iffuse imaging. However, this is not the case for diffuse
ptical tomography, as is well known, and will be ana-
yzed further here. In reality, reconstructing optical im-
ges is typically attained by finding a balance between
inimization of the residual norm and the size of the so-

ution through regularization. Here, size of the solution
hould be understood broadly as representing a math-
matical norm that can be used to include prior informa-
ion of the problem. For example, the main trend in opti-
al imaging consists of using structural anatomical
nformation from segmented CT or MR images as a way
o improve the conditioning of the optical imaging prob-
em [26–30]. Another approach consists of using multi-
pectral optical data to improve image quality [31,32].

An important consequence of the ill-posed nature of the
roblem is that the inversion is hypersensitive to noise.
herefore, the problem cannot be solved uniquely no mat-
er how many diffuse measurements are added to the
ata vector, even if it becomes an overconditioned prob-
em. Reducing the sensitivity to noise can be partially at-
ained by using regularization methods or using different
ata types. Here, the approach of choice consists of using
modeling method that allows the user a choice to im-

rove the conditioning of the matrix inversion problem
ithout the use of spatial or spectral priors, hence reduc-

ng the sensitivity to noise. To do this, the optical tomog-
aphy inversion is formulated with the ability to analyze
he effect of different optical data types that correspond to
odified light transport paths. Niedre et al. [33] have

hown that image reconstructions based on so-called
arly photons lead to significant resolution improvements
n the FMT images when imaging lung tumors in mice in
ivo. The forward modeling approach they use is based on
nalytic solutions to the radiative-transfer-equation
RTE) [34,35]. In effect, this approach allows capture of
arly photons that are highly scattered in the forward di-
ection and so deviate very little from the direction of
ravel. For any given source–detector pair, the path of
ravel of photons in the earliest time windows is much
arrower than the path that would have held for all time
ates. Decreasing time gates directly translate into nar-
ower more direct path photons, and this inherently im-
roves the resolution of imaging with this data set. DOT
pproaches have also been developed to reconstruct im-
ges based on early photons associated with nonfluores-
ent optical signals [36,37].

The main aim of this paper is to explain why a combi-
ation of appropriate light-transport modeling tech-
iques, photon detection technology, and image recon-
truction methods can lead to tomography with
ntrinsically higher spatial resolution as compared with
he majority of approaches that have been used in the
ast. The approach outlined is based on the FMT forward
odel constructed using a time-dependent finite-element
ethod (FEM) solution to the diffusion equation. The
odel is used to show that the forward problem for
eakly diffused photons produces a significantly im-
roved conditioning of the inversion matrix when com-
ared with that associated with a steady-state diffuse sig-
al. Evidence for this is provided through computation of
he condition number of the forward problem matrix as
ell as through detailed singular-value analysis (SVA).
he results of the SVA provide an intuitive explanation

or why the spatial resolution of optical tomography can
e improved so dramatically. Those findings are sup-
orted by actual image reconstructions performed for
imulated fluorescence data of a multiple target phantom
ith different levels of contrast.
Section 2 briefly presents the outline for time-domain

MT as well as a description of the preclinical instrument
otivating the detection geometry used in this work.
hen, Section 3 presents the general formulation of the

ime-dependent optical tomography problem, with the
erivation of the forward problem for time-gated diffused
uorescence signals and the inverse problem resolution
ethods used for image reconstruction. Section 4 pre-

ents the main results of this paper in the form of a SVA
f the problem with image recovery. The paper is con-
luded in Section 5 with discussions pertaining to limita-
ions and potential extensions of the results.

. BACKGROUND
. Fan-Beam Detection of Time-Domain Signals
he simulation results presented in this paper are per-

ormed based on a detection geometry mimicking a newly
eveloped time-domain tomography system [38]. The sys-
em utilizes a bed compatible for both FMT and x-ray CT
nstruments for small animal studies. FMT images
omplement the anatomical information from CT with
olecular information pertaining to extracellular and in-

racellular processes highlighted by either endogenous or
xogenous fluorophores. A schematic of the optical system
s shown in Fig. 1(a). The system was designed to utilize a
otating gantry, allowing use of a single source with a fan
eam configuration of photomultiplier tube (PMT) detec-
ors that rotate around the surface of the specimen. In
his configuration, fully noncontact excitation and detec-
ion is achieved, and a flexible number of measurements
an be obtained. Five optical channels (labeled D1 to D5
n the figure) use focused detection to collect the diffuse
ransmission of excitation and fluorescence signals from
he surface of the specimen.

In this work, optical tomography resolution improve-
ents are examined using data associated with time-

ated signals. The optical system design is based on time-
orrelated single photon counting (TCSPC) instrumen-
ation cards (Becker and Hickl, Berlin, Germany) and a
aser diode driver module (PicoQuant, Berlin, Germany)
ontrolling a 635 nm pulsed diode laser operating at
0 MHz and delivered to the rotating gantry by fiber op-
ics and focused through free space onto the animal tis-
ue. Diffusely transmitted fluorescence and excitation sig-
als are then collected from five lenses with an angular
eparation of 22.5°. These couple through fibers to the
ransmission (Tr) and fluorescence (Fl) channels, respec-
ively. The light is then collimated and spectrally sepa-
ated using filters. Hamamatsu H7422P-50 PMTs detect
he incident photons and generate a single analog pulse
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or each detected photon. Fig. 1(b) shows a sample
emporal-point-spread function (TPSF) acquired with the
ptical system as well as the corresponding impulse-
esponse-function (IRF). Time-referencing of the signals
s accomplished by approximating the initial time when
hotons hit the specimen surface as the mean time of the
RF. This approach allows sampling of the light into
2.5 ps time bins, and while the temporal response func-
ion of the laser through the system is close to 400 ps,
alibration allows accurate sampling of data down to near
he time resolution of the bins. Relative to photon detec-
ion based on ICCD cameras, PMT-based detection has an
ncreased sensitivity due to internal gain factors that are
ne or two orders of magnitude larger.

As schematically illustrated in Fig. 1(a), the photons
aking up a time-domain signal can be divided into three

onceptual categories: (1) ballistic photons, (2) weakly
cattered photons (WSP), and (3) diffused photons. The
allistic photons correspond to those particles that propa-
ate from the source to the detector without going
hrough scattering events, while the WSPs are those pho-
ons suffering only a limited number of scattering events
rior to detection.
As shown in the figure, the WSPs are associated with

ravel paths remaining relatively close to the direct line-

ig. 1. (Color online) Schematic representation of the optical in-
trument. Shown is a single excitation source position and the
ve channels. Diffuse light signals at the surface of the specimen
re collected using focalized detection. The detected signals are
hen separated and directed to two sets of PMTs dedicated to
uorescence and excitation signals at each fiber channel. This de-
ection geometry is that used for the simulations presented in
his paper. (b) Impulse-response-function (IRF) and sample fluo-
escence time-resolved signal acquired for one of the channels.
f-sight between the source and the detector. They corre-
pond to photons that were almost ballistic and ulti-
ately propagated in a highly forward directed manner,

argely because each scattering event is anisotropic with
he highest probability of scatter being in the forward di-
ection. In contrast to this, the diffuse photons are those
hat go through a large number of scattering events be-
ore being detected. Light transport for the diffuse pho-
ons can be modeled as a diffusion process. Indeed, it has
een shown that in the high scattering limit where �a
�s and when light transport distances are large enough

ompared to the photon transport mean free path, the
TE effectively reduces to the diffusion equation (see, for
xample, [39]). Diffused photons are the main contribu-
ors to a TPSF whenever those two physical conditions
re satisfied.
Evidently, the smaller the number of scattering events
photon suffers, the earlier it can be picked up by one of

he detectors. For example, [34] shows, based on analytic
olutions to the RTE, that the experimental signature of
allistic photons should be in the form of a prepulse in the
PSF centered around tb=n d /c, where d is the distance
etween the source and the detector on the surface, n is
he index of refraction of the medium, and c is the speed
f light. For all practical purposes, the contribution of bal-
istic photons is negligible in situations relevant for tissue
maging [34,40]. However, there are situations where the
ontribution of WSPs can be relevant. For example, con-
ider the case of small-animal imaging, which is the main
ocus of study here. Typically, the absorption in small ani-
als is rather large, and the distances between sources

nd detectors can be of the order of a few centimeters.
oth of these facts make it unlikely that the diffusion ap-
roximation to the RTE is valid for precisely modeling
arly photons. Therefore, several of the time bins after tb
ould be dominated by highly forward directed WSPs.
evertheless, in this paper light transport modeling is
one by solving the diffusion equation, because it allows
n examination of the transition between diffuse and
SP photons with continuous variation of the time bins

sed. The assumption made is that the conclusions that
re reached studying the forward problem for early dif-
used photons time-gates are relevant for the WSPs, and
t the very least, the trends observed are expected to be
ndicative of what would be seen if completed with a more
xhaustive transport model. A discussion pertaining to
he generalization of the diffusion-based results and how
hey relate to radiation transport modeling is presented
n section 5.

. Tissue Heterogeneities and Data Normalization
ne of the key features associated with FMT and, in par-

icular, with the instrument described in Subsection 2.A
s the fact that it acquires light signals at two different
avelengths. Indeed, the consensus that seems to have
merged in FMT consists of using the so-called Born nor-
alization approach [41]. This consists of reconstructing

mages based on raw fluorescence measurements normal-
zed by a measurement acquired at the light source exci-
ation wavelength. Formally, it can be shown that for ap-
ropriate detection geometries this normalization process
artially reduces the effect of high photon attenuation
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rom the fluorescence signal, thereby significantly reduc-
ng the importance of precisely knowing the optical tissue
roperties of the interrogated specimen [42–44]. This im-
lies that when using Born-normalized data sets it is
elatively safe to use a forward model assuming homoge-
eous optical properties. An educated guess for the aver-
ge values is then used based either on the literature or
n average background values obtained by TPSF fitting
rior to image reconstruction [45–47]. This approach con-
iderably simplifies the procedure by making it easier to
odel light propagation and by reducing the number of

nknowns to be reconstructed. In addition, these ratio
ata provide a normalization of the signal which reduces
odeling errors when the diffusion model used does not

xactly mimic the tissue shape, or when the fibers used
or imaging do not have consistent contact with the tis-
ue. This boundary error minimization provides an inher-
nt stability to the signal used which is critical for routine
pplication.
The critical feature that is required for the Born ap-

roach to work is that the tissue region that is producing
he fluorescence signal should be similar to that sampled
y the photons in the transmitted signal. In effect, the
deal geometry that satisfies this criterion is one where
he signal acquisition is done in transmission across the
maged specimen in a manner mimicking 360° x-ray ac-
uisition as performed in CT devices [see Fig. 1(a)].
In the remainder of this work, the assumption is made

hat the simulated input measurement vectors always
onsist of Born-normalized data. In the case of time-gated
ignals, the fluorescence and transmitted signals prior to
aking the ratio are assumed to be computed for the same
ime-gates. As will be evidenced in Subsection 3.B, the tis-
ue sampled by time-gates corresponding to early photons
s much narrower than for conventional steady-state sig-
als. This implies that the tissue volume sampled by fluo-
escence and transmission early photons are then even
ore similar, thereby further increasing the potential of

he Born ratio to reduce the impact of optical property
eterogeneities and boundary errors when compared with

maging based on steady-state measurements.

. MODELING METHODS AND
LGORITHMS

n this section, the basic formalism to model time-
ependent light transport in tissue is introduced within
he scope of a tomographic approach. Then, this notation
s applied to develop the formalism for the forward prob-
em associated with time-gated signals in FMT. The sec-
ion ends with important features of the inverse problem
esolution methods that emphasize those aspects relevant
o improving the image spatial resolution.

. Formulation for Time-Dependent Optical
omography
n the diffusion approximation limit, the modeled optical
roperties consist of a family of local tissue parameters
ncluding the absorption coefficient �a and the reduced
cattering coefficient �s� of the chromophores, the index
f refraction �n�, the absorption coefficient associated with
uorophores �� F�, as well as the quantum yield Q and
a F
he lifetime of the fluorophores ���. It should be noted that
ll these parameters will typically have a nontrivial spec-
ral dependence in tissue. For example, in the case of
OT imaging it is usually assumed that the only vari-
bles in the forward problem are �a��� and �s����. In the
ase of FMT, an approximation is usually made that the
nly variable affecting the fluorescence signal is �a

F. Of-
entimes, the lifetime is set to a constant close to that of
he value of the main fluorophore under study, and the
issue optical properties at the emission and excitation
avelengths are assumed constant and sometimes equal

n value [48]. Significant work has been done assuming
hat lifetime is the main variable of interest [49–51].
owever, in the case examined here, the early time be-
avior of the time-resolved pulsed laser signal is used as
he principal data type to set up the inverse problem.

Figure 2 shows a general tissue domain � where light
njection is assumed to be in the form of a collimated
eam sourced either by a steady-state, a frequency-
odulated, or a pulsed laser. For diffusion modeling pur-

oses, an isotropic time-dependent source term S�r , t� is
nserted one reduced scattering distance �1/�s�� under
he tissue boundary �� at �r , t�. Light collection is per-
ormed from a region including the point �r� , t��. Unless
therwise noted, it is assumed that both illumination and
ight detection are performed locally. This is done for sim-
licity in order not to obscure the main results with math-
matical formalism. It should be noted that the numerical
ethod described can model arbitrary illumination and

etection geometries.
The optical tomography forward problem is set up in

he form of an update equation predicting how much tis-
ue property variation will affect a signal, namely,

�S� = �
J=1

NV

AJ��J���J, �1�

here �J= ��a ,�s� ,�a
F,n ,QF,�� collectively represents all

odeled tissue properties at voxels labeled J, and ��

ig. 2. (Color online) Schematic representation of a turbid me-
ium � with boundary ��. The spatial distribution of optical
roperties is represented by � while a local perturbation over
his background is represented by ��. For modeling purposes,
n isotropic source term S�r , t� is inserted under the tissue sur-
ace at the place of entry of a collimated laser beam. The light
ransport solutions between different space-time locations are
abeled �.
J
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tands for the local variations responsible for predicted
ignal variations �S� over the signal S� associated with
ackground properties �J. AJ is the Jacobian for the
ransformation between �S� with respect to ��J. Effec-
ively, an optical tomography method consists of using a
arge number of measurements on �� to find those values
f �J minimizing the mismatch between experimental
easurements and signals that are predicted by the
odel based on the update equation. For problems where

he matrix A depends nonlinearly on the properties tar-
eted for reconstruction (as in DOT), nonlinear iterative
olvers are used, whereas if an approximation can be
ade to the effect that signal variations are linearly re-

ated to the reconstructed properties (as is the case for
MT), simpler linear reconstruction techniques can be
sed [41].
More specifically, the update equation associated with

ne optical measurement takes the form

�S���r��,t�� = N�
�

d3r�� dt��	1��1�r��,t������r��,t��


�	2��2�r�� − r��;t� − t���, �2�

here the 	’s are mathematical operators, and �� is a so-
ution to the diffusion equation at wavelength �. N is a

odel-dependent normalization constant, and the inte-
ral runs over all space–time points potentially contribut-
ng to the signal perturbation. For example, in the case of
OT the update equation takes the form

�S���r��,t�� 	 �
�

d3r�dt����r��,t����a�r���G�r�� − r��,t� − t��

+ ���r��,t����s��r��� · �G�r�� − r��,t� − t���, �3�

here � is a solution to the diffusion equation, while G is
Green’s function. Here construction of the update equa-

ion is attained numerically evaluating the photon prob-
bility distribution based on FEM [52,53]. Figure 3 illus-
rates this in the case of the evaluation of the steady-state
acobian corresponding to perturbations in �a—the first
erm in �S� in Eq. (3). This also corresponds to the
teady-state Jacobian used in FMT. In the case shown in
ig. 3, the local optical properties associated with each
ode of the mesh were set based on a segmented CT im-
ge of a mouse head shown in Fig. 3(d).Figure 3(a) shows
he photon fluence ��r�� associated with the source term,
hile Fig. 3(b) corresponds to the light sensitivity of the
etector G�r� , r��, which effectively corresponds to a solu-
ion to the diffusion equation with a delta-function source
erm. Figure 3(c) illustrates the corresponding Jacobian
hich, as shown in Eq. (3), is simply the product of the
elds shown in Fig. 3(a) and Fig. 3(b).

. Time-Gated Fluorescence Molecular Tomography
ubsection 3.A defined time-dependent update equations

or general optical tomography in cases where light trans-
ort is modeled as a diffusive process, and this is now ex-
ended within the case of a forward model for time-gated
MT signals.
Fluorescence from tissue can be modeled as a two-step

rocess beginning with the propagation of light from a
ollimated source to the fluorescent molecular targets fol-
owed by re-emission at a different wavelength. The first
tep is modeled by solving the differential equation

n

c

��x�r��,t��

�t�
− �Dx�r��� · ��x�r��,t�� + �a

x�r����x�r��,t��

= S�r��,t��, �4�

here D=1/3��a+�s��. In Eq. (4), the photon fluence and
he optical properties are evaluated at the laser excitation
avelength �x. Subsequent re-emission of light by the
uorophores at a longer wavelength is modeled by a sec-
nd coupled differential equation, where the source term
s time-dependent corresponding to the exponential decay
f the fluorescence excited by the photon field �x [54],

n

c

��e�r��,t��

�t�
− �De�r��� · ��e�r��,t�� + �a

e�e�r��,t��

= �
l=1

NF 
QF
l �F

l � dt��x�r��,t��CF
l �r���e−�t�−t��/�l� , �5�

here the photon fluence and the optical properties are
valuated at the re-emission wavelength �e. The summa-
ion on the right-hand-side of Eq. (5) is included to ac-
ount for the possibility of there being different fluores-
ent species (l=1, . . . ,NF, where NF is the number of
pecies). The photophysical properties of these species are
he fluorescent quantum yield QF, the extinction coeffi-
ient �F, the lifetime �, and the local concentration of fluo-
ophores CF��a

F=QF�FCF�. The formal solution to the sys-
em of Eqs. (4) and (5) is obtained using Greens’ theorem
54],

�e�r��,t��

= QF�F�
�

d3r�� dt��� dt��x�r��,t��CF�r���e−�t�−t��/�

Ge�r�� − r��,t� − t��, �6�

ig. 3. (Color online) Steady-state photon distribution associ-
ted with a diffusive light source inserted one reduced scattering
istance under the tissue surface. (b) Steady-sate photon sensi-
ivity distribution associated with a light collection point located
n the surface of the mouse head. (c) Photon sensitivity distribu-
ion associated with the source and detector location shown in (a)
nd (b). (d) Segmented CT image (1, brain; 2, skull; 3, rest of tis-
ues) used to project sources and detectors as well as to tag dif-
erent anatomical regions with different optical properties.
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here it is assumed for simplicity that there is only one
ype of fluorophore �NF=1�.

In order to bring the forward model Eq. (6) to a form
here it can be used as part of an inverse problem, an NV
ode FEM mesh of the tissue volume � is created fol-

owed by discretization of the spatial and time integrals.
he spatial resolution is set by that of the created mesh
hile the temporal resolution is thenceforth set to �t
10 ps in the numerical simulations. Assuming a large
umber of measurements Nm is collected, the forward
roblem associated with the signal in time-gate t� can be
ritten in the matrix form

�
�1

e

]

�Nm

e � = � A1
t��r�1� ¯ A1

t��r�NV
�

] � ]

ANm

t� �r�1� ¯ ANm

t� �r�NV
�
� 
 �

CF�r�1�

]

CF�r�NV
�� , �7�

here Ak
t��ri� is an element of the Jacobian matrix corre-

ponding to measurement k �k=1, . . . ,Nm� and voxel with
patial location ri �i=1, . . . ,NV�:

Ak
t��r�i� = QF�F� dt��� dt��x�r�i,t��e−�t�−t��/�


Ge�r�i − r�k,t� − t��. �8�

imilarly, inspection of Eq. (8) shows that the Jacobian
or one time bin, here t�, can be generalized to model the
ignal corresponding to any combination of time bins. For
xample, the forward model for a time-gate between t1
nd t2 is obtained with the following substitution in
q. (7):

Ak
t��r�i� → �

t�=t1

t2

Ak
t��r�i�. �9�

Riley et al. have shown in [55] that the use of local data
ypes, such as the slope of the rising TPSF, lead to more
table FMT reconstructions with an approach where the
orward model was based on an analytic expression for a
imple geometry. The more general approach used here
an be used to compute the Jacobian associated with the
ata type corresponding to the slope of the time-domain
ignal around t� located anywhere in the TPSF. This is
mplemented by the following substitution into Eq. (7):

Ak
t��r�i� →

Ak
t�−�t�r�i� − Ak

t�+�t�r�i�

2�t
. �10�

The fluence distributions Ge and �x in Eq. (8) are com-
uted by solving the time-dependent diffusion equation
ith the finite-element method. The solutions correspond

o NV probabilistic weights, one for each node in the
esh. The steady-state limit of the Jacobian consists of

valuating Eq. (9) for t1=0 ns and t2=10 ns. The t2
10 ns time limit corresponds to the end point of the
imulated time-window, where signals have decreased to
ero, as shown by inspection of the simulated TPSF in
ig. 6(a) below. Evaluating the Jacobian for one time bin

nvolves numerically performing two convolutions in
ime: one between the detector sensitivity function and
he exponential decay term of the fluorophore, and one be-
ween the resulting time-dependent expression and the
ime-dependent fluence produced from the light source.
inally, time-gated forward models are evaluated by per-

orming the sum of the Jacobians for all time bins from t1
o t2.

Figure 4 illustrates Jacobians numerically computed
or different time gates with t1=0 ns and �=1 ns. Specifi-
ally, the figure shows Jacobians associated with t2
50 ps, t2=150 ps, t2=300 ps and t2=10 ns. The first

hree time gates correspond to increasingly diffused pho-
ons, while the last one effectively corresponds to the
teady-state signal equivalent to that of a continuous-
ave source. For a given source–detector pair, inspection
f Fig. 4 clearly shows that the tissue sampled by propa-
ating photons is significantly reduced for early photons
s compared with the highly scattered steady-state sig-
al. Moreover, comparison of the Jacobians for homoge-
eous and heterogeneous optical properties highlights the
act that early photon signals appear less sensitive to the
resence of optical absorption heterogeneities.

. Inverse Problem Resolution Algorithms
inear systems of equations can be solved based on itera-

ive regularization approaches such as those based on
onjugate gradient methods. The end result then consists
f a sequence of iteration vectors xa, a=1,2,3. . ., that con-
erge to the desired solution. Such methods are generally
referable to direct methods when the coefficient matrix
s so large that it is too time-consuming or too memory-
emanding to work with an explicit decomposition of the
acobian matrix A. In FMT, the linear inverse problem is
ften solved based on iterative regularization methods
nd, in this way, a regularized solution is computed. Here,
e use the bound-constrained least-squares (BCLS) algo-

ithm [44,56] for solving problems corresponding to the
eneric objective function problem:

argmin
CF s.t. lCFu

�ACF − ��2 + �2�LCF�2, �11�

here the NV-dimensional vectors l and u are lower and
pper bounds on the optimization variables CF. The pa-
ameter � is a regularization coefficient that is used to
ontrol the norm �LC �2 while balancing it against the re-

ig. 4. (Color online) Diffusion photon sensitivity distributions
or the imaging geometry represented in Fig. 2 for a given
ource–detector pair. From left to right, sensitivity plots for in-
reasingly large time gates are shown with the last image corre-
ponding to a steady-state signal. The upper row shows distribu-
ions computed assuming that the diffusive medium has
omogeneous optical properties, while the bottom row of images
orresponds to a medium with heterogeneous optical properties.
F
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idual norm �ACF-��2. Typically, the matrix L can be en-
ineered to play a wide variety of roles including the in-
lusion of prior spatial information in the reconstruction
rocess.
Linear problems can also be solved using direct meth-

ds such as the singular-value decomposition (SVD) and
ts generalization to the matrix pair involved here (A, L).
VD decompositions are useful because they allow one to
nderstand the underlying problem in terms of vectors,
llowing direct manipulation of the fundamental spectral
nits from which tomography images are built. However,
sing direct methods is usually not practical in tomogra-
hy because most problems are associated with large
atasets. In fact, numerical algorithms performing de-
ompositions of large matrices are memory-consuming
nd usually cannot be run on individual processors. How-
ver, here we are considering smaller datasets that can be
sed with SVD decomposition of the forward model ma-
rices. This approach illustrates how the reconstructions
ased on the SVD decomposition work and is used to
how generalizations of more conventional and practical
terative regularization methods. Hence, SVA is used only
o gain an intuitive understanding of the underlying prob-
em here.

Basic SVD decomposition reformulates a forward
odel matrix A�Rm
n into the form

A = U�VT = �
i=1

n

ui�i�i
T �12�

here U= �u1 , . . . ,un��Rm
n and V= �v1 , . . . ,vn��Rn
n

re orthonormal norm matrices, and where the diagonal
atrix �=diag��1 , . . . ,�n� has non-negative diagonal ele-
ents appearing in non-increasing order ��1��2� . . .
�n�0�. The numbers �i are the singular values of A,
hile the vectors ui and vi are the so-called image and
ata singular vectors of A, respectively. A critical aspect to
olving a tomography inverse problem consists of finding
ethods allowing us to minimize as much as possible the

mpact of the intrinsic ill-conditioning of the forward
odel matrix. The degree of ill-conditioning can be used

s a measure of how much noise and intrinsic data-model
ismatch propagate into the solutions [57]. To a large ex-

ent the degree of ill-posedness can be evaluated by study-
ng the decay rate of the singular values, which in turn
ignificantly affects how noise propagates into the regu-
arized solutions. Using the SVD decomposition, the solu-
ion to the inverse problem can be rewritten as the sum
ver image singular vectors,

CF = �
i=1

NSVD f��i�

�i
��i

T��ui, �13�

here NSVD corresponds to the number of modes used to
uild the solution, and f��� is a regularization function.
ssentially, this expression is a spectral decomposition of

he solution as a sum over image singular vectors
eighted by a spectral coefficient. As a general rule, the

ingular values decrease with increasing values of the or-
er i, and the spatial frequency of the modes ui increases
ith i.
. RESULTS
ere the time-gated modeling approach presented in Sec-

ion 3 is used to show how reconstructing fluorescence im-
ges based on early diffused photon signals can signifi-
antly improve the intrinsically poor resolution of optical
omography.

. In silico Fluorescence Phantoms
imulated optical data sets were generated for two cylin-
rical phantoms, both containing three small fluorescent
nclusions. As seen in Fig. 5 (left-most column), one nu-

erical phantom has infinite fluorescent contrast, and
he other one has a more realistic contrast-to-background
atio of 6 to 1. The phantoms were designed with features
aking their use relevant in deriving conclusions appli-

able to mouse imaging. The radius of the phantom is R
12.5 mm and the optical properties of the bulk diffusive
edium are �a=0.02 mm−1 and �s�=1 mm−1—both for

he excitation and the emission wavelengths. The fluores-
ent inclusions have radii RI=2.5 mm, RII=2.0 mm, and
III=1.5 mm. The radii were chosen for consistency with
nimal model tumors routinely imaged with FMT. The
ize of the smallest inclusion was determined because it
oughly corresponds to the fundamental spatial reso-
ution limit set by diffusion theory. The centers-of-mass of
djacent inclusions in the phantom are separated by a
istance of �CM=2.5 mm, while the minimum distance be-
ween the edges is �e=1 mm.

Forward model data were calculated with the 2D diffu-
ion equation for a medium with homogeneous optical
roperties �a and �s� [53,58]. The choice of doing light
ransport simulations in 2D was made for simplicity and
o reduce simulation time. FMT matrices for three differ-
nt time-gated signals were generated, namely, T200 ps
0 ps–200 ps, T400 ps=0 ps–400 ps and the steady-state
ase TCW covering the full time window. As shown in Sub-
ection 3.B, the FMT inverse problem for any type of data
an be cast in the matrix form

ig. 5. (Color online) Target images reconstructed with the it-
rative regularization method BCLS. The first column corre-
ponds to the target images used to generate synthetic data for
ifferent time-gates. In the upper images, the fluorescence con-
rast is infinite, while in the lower ones the contrast is 6 to 1. Re-
onstructed images shown are for weakly diffused photon time-
ates 0–200 ps and 0–400 ps as well as for simulated steady-
tate signal for comparison purposes. No noise was added in the
imulated data for these reconstructions.
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�T = ATCF, �14�

here, in this case, T labels the time-gate under consid-
ration. Simulated data are generated for each time-gate
y multiplying the Jacobian, AT with the target fluores-
ence images shown in Fig. 5. Then, statistical noise fol-
owing a Gaussian distribution around the signal ampli-
ude is added to the synthetic data vectors. Four levels of
oise are considered, namely, 0%, 1%, 5%, and 10%.

. Singular-Value Analysis and Spatial Resolution
mprovement
xperimental data �T always contain noise, and the most
ritical aspect of solving an optical tomography inverse
roblem is controlling how much this noise is allowed to
ropagate into the reconstructed images. When using it-
rative reconstruction methods, one or several regulariza-
ion parameters are carefully chosen to allow convergence
oward those solutions that represent the better possible
ompromise between minimization of the residual norm
nd minimization of noise propagation in the final solu-
ion. An intuitive understanding of this is shown through
VA of the forward problem matrices for time-gated data
elative to steady-state.

As explained in subsection 3.C, reconstructed fluores-
ence images can be built by summing image singular
ectors of increasingly high spatial frequencies. The spa-
ial frequency of the modes increases with the order of the
ingular values i. Consequently, the number of modes
SVD that are used to build the solution can effectively be

egarded as a parameter controlling the spatial resolution
f the resulting fluorescence images. For example, Fig.
(a) shows the image singular vectors for i=1, 5 and 10 in
he case of FMT matrices for time-gates T200 ps and TCW.

hen forming a fluorescence image, those image singular
ectors ui are weighted against each other according to
he values taken by the spectral coefficient �vi

T�T� /�i. As
xplained further below, it is the behavior of those coeffi-

ients combined with the spatial frequency of the corre- t
ponding image singular modes that is setting an abso-
ute spatial resolution limit to optical tomography.

Maximizing the spatial resolution of a fluorescence im-
ge is attained by keeping as many high-spatial-
requency image singular modes ui in the solution as pos-
ible. This can be accomplished by truncating the sum in
q. (13) for i=NSVD as large as possible. The problem is

hat noise in the data vector limits the number of modes
hat can effectively be used when reconstructing an im-
ge. Indeed, when noisy data are used the spectral coeffi-
ients typically diverge for finite values of i. This implies
hat if the corresponding modes are kept in the solution,
hey will be the only ones contributing, potentially mak-
ng it appear, incorrectly, that the solution has a very high
esolution. However, all information pertaining to the un-
erlying physical content of the image has been lost. Cut-
ing off the divergent modes appropriately then amounts
o regularization of the solution.

Another possibility for obtaining a yet smoother regu-
arized solution consists of introducing a smoothing func-
ion f��� that is continuously decreasing from one to zero
s the singular-value order increases. The inflexion point
f the smoothing function is then located around the
alue where the spectral coefficients begin to misbehave.
t can be shown analytically that this approach is equiva-
ent to an iterative regularization Tikhonov method (for
xample, see [57]). In fact, an important point here is that
ny iterative method that is used to solve a linear inverse
roblem can, in principle, be formulated in terms of a
VD or a generalized SVD decomposition associated with
specific smoothing function. The reason this is so impor-

ant is that any conclusion that is derived based on SVA
onsiderations can in principle be translated to other
ore conventional approaches used to solve optical to-
ography problems.
To a large extent, the degree of ill-posedness of a prob-

em can be quantified by the decay rate of the singular
alues [57]. The importance of the decay rate can be

raced back to the fact that the computation of the spec-
ig. 6. (Color online) Decay curve of singular values (log-scale) as a function of their order i for two FMT forward model matrices cor-
esponding to weakly diffused photons (0–200 ps time-gate) as well as steady-state signal. The decay rate for the weakly diffuse photons
s significantly less favorable to noise propagation in the images. (b) Illustration of some image-singular modes for the same two forward

odels. At the same order, the spatial frequency of the modes associated with weakly diffused photons is typically smaller than those
ssociated with steady-state signal, again affording more leeway in reconstructing high-spatial-resolution images.
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ral coefficients involves evaluating the ratio 1/�i, which
ends to become very large for small singular values. If
he singular values are decreasing rapidly, then the spec-
ral coefficients weighting the image singular vectors will
ave a tendency to blow up for small values of i, thereby
ompromising the stability of the solution. Consequently,
he sensitivity to noise is going to be more important for
ases where the decay rate of the singular values is
arger. Figure 6(b) shows the decay curves of the singular
alues for two different time-gates, namely T200 ps and
CW. Inspection of this log-scale figure clearly reveals that

he decay rate associated with the steady-state forward
odel is significantly larger than that associated with

arly photons. This implies that the solutions for early
hoton data are more stable. This also means that the di-
ergence of the spectral coefficients will typically occur for
arger values of i in the case of early photon forward mod-
ls when compared to steady-state. Therefore, more high-
requency image singular modes can be used in a given
arly-photon solution, potentially leading to improved
esolution when compared with steady-state-based recon-
tructions.

As mentioned earlier, for a given singular order i, the
patial frequency of a mode appears higher for early pho-
ons than it does for steady-state [Fig. 6(a)]. This further
llustrates there is an increase in spatial resolution for
mages reconstructed based on early-photon signals. Fi-
ally, it can also be shown based on perturbation bound
heorems [57] that the error committed when solving an
nverse problem using a truncated SVD (at i=NSVD)—due
o noise and bad modeling—is proportional to the ratio
1/�Nsvd

. Again, this emphasizes the importance of insur-
ng that the singular-value decay rate is as slow as pos-
ible when choosing a forward model.

A measure that is often used to quantify the degree of
ll-conditioning of a system of linear equations is the con-
ition number of the Jacobian, which consists of the ratio
etween the largest and the smallest singular values.
inear systems associated with large condition number
atrices typically have a large number of linear depen-

encies, which makes them more susceptible to noise.
igure 7(a) shows a transmission TPSF that was gener-

ig. 7. (Color online) Illustration of the FMT forward model ma
n the signal: (a) simulated time-domain signal, (b) graph showin
here t is the x-axis value on the graph.
ted numerically for the in silico phantom described in
ubsection 4.A for the coaxial detection channel in Fig.
(a). Then, Fig. 7(b) shows the condition number of the
orresponding forward model matrix AT for different
ime-gate sizes. The time-gates considered here start at
1=0 ps. The x-axis on the graph corresponds to increas-
ng values of t2, that is, increasingly large time-gates with
he largest one �t2=2 ns� effectively corresponding to the
teady-state signal. Inspection of Fig. 7(b) shows that the
egree of ill-posedness as measured by the condition num-
er increases exponentially as a function of the time-gate
ize. This is certainly consistent with the results derived
n Subsection 4.B based on a singular-value decomposi-
ion approach. However, analyzing the ill-conditioning of
he optical tomography problem solely based on the con-
ition number is not sufficient to gain a clear intuitive un-
erstanding of the basic mechanisms at play.

. Fluorescence Reconstructions with Weakly
iffused Photons
econstruction results are now presented based on simu-

ations performed with the in silico phantoms described
n Subsection 4.A. As mentioned earlier, different levels of
oise were added to the time-gated data prior to inversion

ncluding 0%, 1%, 5%, and 10%. A discussion relating to
oise propagation in early-photon time-gates is presented
t the end of this section, placing these values in a more
ppropriate experimental context.
Throughout this section, inverse problem resolution re-

ults are presented only for tomography images obtained
ith the BCLS solver described in Subsection 3.C. It was

ound that the reconstruction results obtained with the
CLS solver are consistent with expectations gained by
erforming the SVA. Indeed, every reconstruction we
ave performed with BCLS was also performed using the
runcated SVD approach as well as the SVD method with
ikhonov smoothing function. The trends, in terms of sta-
ility to noise and spatial resolution improvements, were
aintained for all approaches. We are limiting the pre-

entation to BCLS results partly for conciseness and
artly because of the improved quality of the fluorescence
mages. In this case, our main criterion for judging the

ndition number as a function of the time-gates that are included
condition number of the matrix for time-gates from 0 ns to t ns,
trix co
g the
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uality of an image is based on a qualitative assessment
f the number of artifacts present in the solutions.

Part of the reason BCLS images are of better quality
ight be the non-negativity constraint that is imposed

hrough the merit function in Eq. (11)—l=0 and v=�. In-
eed, it has been observed repeatedly in the past that
MT images reconstructed using non-bound-constrained

terative regularization methods have a tendency to im-
ue images with nonphysical negative intensity values.
ll-conditioned systems of linear differential equations are
ssociated with a high degree of linear dependencies,
hich implies that for a given data vector there exist a lot
f candidate solutions with comparable residual norms.
mong that large number of solutions composing the de-
enerate landscape, non-bound-constrained solvers seem
o favor those solutions containing a subset of negative in-
ensity values. Imposing convergence toward positive-
efinite solutions is therefore also found to indirectly im-
rove the conditioning of the inverse problem.
In what follows the regularization parameter � is set to

ero in the objective function Eq. (11). The only regular-
zation parameter used in BCLS is the tolerance factor it-
elf, which corresponds to the targeted convergence value
f the residual norm of the solution. This regularization
arameter is henceforth referred to as �. Comparison
ith direct SVD-based inversion methods provides evi-
ence that � plays a role similar to that of the truncation
rder �NSVD� in the singular-value analysis presented in
ubsection 4.B. In this case though, smaller values of �

ead to solutions with higher intrinsic spatial resolution.
lso, the more noise there is in the data vector, the larger
needs to be to prevent noise from propagating into and

ominating the solution. This is in accord with the intui-
ive SVA arguments presented in Subsection 4.B: solu-
ions with a larger residual norm are built with a smaller
umber of high-spatial-frequency modes than solutions
aving a smaller residual norm.
Figure 5 shows reconstructions performed for different

ime-gates when no noise (0%) was added to the in silico
ata vectors. In a way, since these reconstructions were
ithout any noise, the results can be interpreted as the
est possible result based on the detection geometry
hown in Fig. 1(a): 32 sources, 5 detectors per source. In
he infinite fluorescent contrast case, clear spatial reso-
ution improvements can be seen to have been achieved
y using a time-gate consisting of photons as weakly dif-
used as possible. The improvement is quite dramatic
ince steady-state imaging cannot be used to resolve the
argets, while individual fluorescent sources can be dis-
inguished on the image reconstructed based on the
200 ps time-gate. Clear image improvements are also
oted for the T400 ps time-gate when compared with the
teady-state case. Indeed, the fluorescence intensity for
he smallest inclusion �RIII=1.5 mm� is correctly recov-
red for T400 ps yet it is not when using TCW.

In optical tomography, it is notoriously more difficult to
econstruct finite contrast targets [59]. The bottom row of
mages in Fig. 5 shows the 0% noise reconstructions for
he multiple targets phantom where the contrast associ-
ted with the inclusions is 6 to 1. Comparison with the in-
nite contrast results (upper row of images in Fig. 5)
hows that the reconstructed images are in general much
ore diffuse for finite contrast values even when early-
hoton time-gates are considered. Nonetheless, we find
hat although they cannot be distinguished, all three tar-
ets can be seen when using a weakly diffused signal cor-
esponding to the 0 ps–200 ps time-gate. The TCW image
hows a single diffuse blob with its highest intensity lo-
ated around the center of mass of the largest inclusion
RI=2.5 mm�. Then, comparison with the T200 ps and
400 ps images shows that decreasing the size of the time-
ate allows the other inclusions to start taking form. In
o way should these results be interpreted as a funda-
ental limit of early photon optical tomography. In fact,

mproving tissue sampling by increasing the number of
easurements is likely to further improve the quality of

he fidelity of the tomography images.

. Noise Propagation in Time-Domain Signals
n the scope of early diffused photon simulations, it is im-
ortant to understand the limitations of early times win-
ows in terms of inherent noise limits on imaging through
hick tissues. The stochastic noise associated with
CSPC-based PMT detection can be modeled by adding to
ach time bin a random value according to a Poisson dis-
ribution with the mean corresponding to the total num-
er of photon counts in each time bin. Then, the stochastic
oise in each bin is associated with the SNR as

SNR = �N, �15�

here N is the number of photons collected for a given
ime bin of the TPSF. For example, Fig. 8(b) shows two
ifferent simulated TPSFs for which stochastic noise was
dded. Therefore, increasing the total number of photons
ollected to build a TPSF increases the overall SNR of the
ignal. Often, the quality of a TPSF in terms of stochastic
oise is measured by the number of counts at the curve
eak corresponding to where the signal is maximal.

ig. 8. (Color online) Stochastic noise propagation in time-gated
PSF signals. The lower graph shows two curves (peak count of
00) where noise following a Poisson distribution with mean N
number of counts in individual time bins) was added. Time-
ates T200 ps, T400 ps, and TCW are highlighted. The upper image
hows how noise propagates into the time-gates for different
PSF peak counts. The x-axis for both pictures corresponds to
he end-point of the time-gate �t2�. The initial point of the time-
ates was always t =0 ns.
1
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enceforth, this quantity is referred to as the peak count
f a TPSF. The experimental parameters that can be var-
ed in order to improve the SNR for a given data set are
he laser power and the illumination/collection integra-
ion time when acquiring each measurement. Imaging
hrough thick and highly absorbing tissue requires in-
reasing either or both of these instrument parameters.

Figure 8(a) shows how stochastic noise propagates into
ifferent time-gate sizes for different levels of photon
eak count, namely, 102, 103, and 104. The variable on the
-axis of the figure corresponds to t2. The initial time in
he gate always corresponds to t1=0 ns. Inspection of the
raph shows that the exponential signal increase that is
ypical of early time bins of a TPSF leads to an exponen-
ial increase of the noise propagating in the early time-
ates. From a practical point of view, it is therefore ex-
ected that the product of laser integration time and
ower required to obtain good SNR datasets will also in-
rease exponentially as the size of the time-gates de-
reases. However, the modeled signal here is purely diffu-
ive and it is likely that in situations involving mouse
maging, for example, there will be a non-negligible WSP
omponent in the signal improving the count rate. This is
entioned here to clarify that the results shown in Fig.

(a) should be used only as an example illustrating the
rends associated with considering different count levels.

Based on the noise analysis presented above, the
horter the early-photon time-gate is, the smaller the cor-
esponding SNR will be. This can be problematic for to-
ography since the relevant inverse problem methods

end to be very sensitive to noise. The optimization game
hat needs to be played when considering early photon to-
ography consists of acquiring signals that have a good

nough SNR so the benefits discussed earlier—stability to
oise and improved spatial resolution—can be preserved
t a reasonable cost in terms of laser power and integra-
ion time.

Figures 9 and 10 show more realistic reconstruction re-

ig. 9. (Color online) Infinite contrast target image recon-
tructed with the iterative regularization method BCLS for dif-
erent levels of noise. The first column corresponds to the target
mage used to generate synthetic data for different time-gates.
econstructed images shown are for weakly diffused photon

ime-gates 0–200 ps and 0–400 ps as well as for simulated
teady-state signal for comparison purposes. Three different lev-
ls of noise are shown: 1%, 5%, 10%.
ults where different levels of noise are added to the
imulated data vectors. In agreement with the 0% noise
esults (Fig. 5), improvements in imaging fidelity are
ound for reconstruction based on weakly diffused signals.
erhaps the most salient feature of both the infinite and 6

o 1 contrast images is that the steady-state images are
articularly sensitive to noise. Indeed, all TCW images
hat were reconstructed with more than 1% noise have
ost all information relating to the original image, both in
erms of target localization and recovered fluorescence in-
ensity. Only in the case of 1% added noise can the ap-
roximate center of mass of the larger inclusion be recov-
red. In this case, it would be very difficult to predict that
here are other smaller inclusions.

There is another interesting observation that can be
ade by inspecting the 1% and 5% noise rows in Fig. 9. In

his case, the quality of the reconstructions for both
200 ps and T400 ps appear to be able to localize the center
f mass of all inclusions as well as to recover the correct
uorescence intensity. This is a sharp difference with the
esults obtained with the steady-state signal. On the
ther hand, the information content in the 10% noise im-
ges for the early-photon time-gates in Fig. 9 is essen-
ially equivalent to what is contained in the 1% TCW time-
ate. In other words, it does not appear that doing early-
hoton imaging with 10% noise would significantly
mprove the results obtained with steady-state imaging at
% noise level. Those findings for the infinite contrast
ases can essentially be transposed to the 6:1 contrast re-
ults shown in Fig. 10. The only exception is that in the
resence of a fluorescence background the fidelity of the
mages obtained with T200 ps is significantly improved
hen compared with those corresponding to T400 ps.

. DISCUSSION
. Spatial Resolution and Sensitivity to Noise
sing arguments derived from inverse problem consider-
tions, the analysis here illustrates why an instrument

ig. 10. (Color online) 6 to 1 contrast target image recon-
tructed with the iterative regularization method BCLS for dif-
erent levels of noise. The first column corresponds to the target
mage used to generate synthetic data for different time-gates.
econstructed images shown are for weakly diffused photon

ime-gates 0–200 ps and 0–400 ps as well as for simulated
teady-state signal for comparison purposes. Three different lev-
ls of noise are shown: 1%, 5%, 10%.
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esigned with tomographic fan-beam detection geometry
nd single-photon-counting technology can significantly
ncrease the spatial resolution of FMT if the data type is
hosen appropriately. This is an important prospect be-
ause optical tomography is a modality that has tradition-
lly been plagued with low resolution, low contrast recov-
ry, and ultimately low predictive power, when used as a
tand-alone imaging modality.

The main conclusions of this work are with respect to
he use of early-time photons in the FMT inverse prob-
em. Better conditioned inversion can be gained with
ime-gated data as compared with steady-state data. A
seful numerical measure of this behavior is found to be
he condition number of the Jacobian. For cases relevant
o small-animal imaging, this number was found to grow
xponentially with increasing size of the time-gates. For
xample, in Fig. 7 the condition number going from T200 ps
o the steady-state forward model matrix increases by a
actor of 450. Reconstructions using synthetic data from a
ealistic in silico phantom were performed and used to
how that, in accord with condition number analysis, the
arly-photon fluorescence tomography problem is signifi-
antly less sensitive to noise than its steady-state coun-
erpart. It is observed that this increased stability to
oise is accompanied by an improved intrinsic spatial res-
lution. In fact, early-photon tomography was shown to
ave the potential to resolve small fluorescence inclusions
aving their center of mass separated by a distance of
.5 mm. More precisely, as shown in Fig. 5, inclusions
aving a distance between their edges �e=1 mm could be
esolved in ideal conditions when using early-photon
ime-gates with no stochastic noise added. Even in such
deal situations, steady-state imaging is incapable of re-
olving the targets to a level that is comparable with
arly-photon imaging.

The prognostic analysis based on the condition number
f the Jacobian matrix is insufficient to gain a full under-
tanding of the underlying principles behind the en-
anced spatial resolution and limited noise sensitivity as-
ociated with early-photon fluorescence tomography. In
articular, the analysis does not allow one to disentangle
he cause of two main aspects affecting the quality of to-
ography images, namely, sensitivity to noise and intrin-

ic spatial resolution. Therefore, as a complement to
ondition-number considerations, a singular-value analy-
is of the time-gated FMT inverse problem was per-
ormed.

As a general rule, the spatial resolution of a recon-
tructed optical image is related to the number and the
patial frequency of the image-singular mode vectors that
an be used to build the solution. An analysis of the
mage-singular vectors associated with inverse problems
or different time-gates was performed. In general, it was
ound that for the same singular order (i) the spatial fre-
uency of the image vectors was usually larger for smaller
ime-gate matrices. This implies that if one were to use a
nite number of singular modes to reconstruct an image
NSVD�, then the resolution associated with early time-
ate images would be improved compared with larger
ime-gates and, in particular, with steady-state imaging.

However, one might argue that if the number of modes
hat are kept in the solution is not limited but kept as
arge as is possible—for the cases of Nm
NV matrices,
his number is min�Nm,NV�—then the resolution of early-
hoton images and steady-state images could be equiva-
ent. However, as illustrated in Fig. 5, this is found not to
e the case. Part of the reason for this might have been
xplained by the fact that the decay rate of the singular
alues associated with the steady-state problem is much
arger when compared with the early time-gated case [see
ig. 6(b)]. This implies that, even in the absence of noise,
he high-spatial-frequency components of the SVD solu-
ions will have an increased tendency to diverge because
f divisions by small numbers 1/�i, where i is large. Di-
erging high-frequency modes should not, of course, be
art of the solution because they would dominate over the
ower-frequency modes in which much of the physical in-
ormation is contained. Inspection of Fig. 6(b) shows that
he smallest singular value for the 0 ps–200 ps time-gate
s about two orders of magnitude larger than that corre-
ponding to the steady-state signal. This makes the high-
patial-frequency components potentially more sensitive
o both noise in the data vector as well as to the machine
recision value. Indeed, were the singular values associ-
ted with higher-frequency modes smaller than the ma-
hine precision, then those modes would diverge and be
endered nonaccessible for image reconstruction. How-
ver, for the particular inverse problems considered in
his work, the smallest singular values that were consid-
red are always safely above the machine precision value.
ssues relating to machine precision divergence will be
ncountered when considering denser data sets leading to
ank-deficient inverse problems that are associated with
igh content of redundant information.
Based on this argument, the increased intrinsic spatial

esolution of early-photon tomography can be thought of
athematically as being due to there being more high-

requency modes available for image reconstruction. Simi-
arly, a combination of slower singular-value decay rate
nd higher spatial frequency of the corresponding image-
ingular vectors can be used to explain the improved sta-
ility to noise associated with early-photon tomography.

. Generalization to Weakly Scattered Photons
he main challenge in early-photon imaging consists of
sing time-domain detection technology to collect signals
ssociated with those photons that have traveled along
aths that are as straight as possible between the source
nd the detector [33,36,37]. Ideally, the ballistic compo-
ent of the signal should be used in order to maximally

mprove on the poor spatial resolution of diffuse optical
maging. This is expected, of course, based on our intu-
tion developed working with x-ray CT systems. However,
or small-animal optical imaging, sampled tissue volumes
re usually such that the ballistic component of the signal
s negligible.

Typically then, as described in Subsection 2.A, early-
hoton signals are composed of a mixture of WSPs and of
eakly diffused photons. The main difference between

hese two types of particles is that the WSPs are highly
orward directed while the weakly diffused photons can
e modeled as a purely diffusive process. The key ques-
ion one needs to answer when devising a model for early
hotons consists in determining how much of the signal is
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omposed of weakly scattered photons compared with
eakly diffused photons. Their relative proportion is go-

ng to be affected by the thickness of tissue being imaged
s well as by the magnitude of the absorption. Also, in-
reasing the size of the early-photon time-gate will reduce
he proportion of WSP up to a point where diffused pho-
ons dominate the signal. Evidence is provided in [33]
hat the T200 ps time-gate contains a large fraction of

SPs in the case of an application that images lung tu-
ors with FMT.
In [33], light transport for WSPs is modeled with ana-

ytic solutions obtained from the cumulant approximation
o the RTE [35]. This allows the authors to build forward
odels with photon sensitivity functions that are thinner,
ith more of the photon weights localized along the direct

ine of sight between sources and detectors. This is to be
ontrasted with the diffusion model used in the work here
here the photon sensitivity distributions remained com-
aratively broad even in the case of the 0 ps–50 ps time-
ate, as shown in Fig. 4. This is simply a manifestation of
he fact that WSPs and ballistic photons are not modeled
y solutions to the diffusion equation. Of course, the fron-
ier between WSPs and weakly diffused photons is not a
iscrete one, and there is a smooth continuation between
iffusion-based solutions and RTE-based solutions. The
esults found here in terms of improved spatial resolution
nd increased stability to noise apply as well to inverse
roblems associated with RTE-based light transport
odeling.
In conclusion, there are two types of information a fluo-

escence tomography approach is expected to provide. Ide-
lly, the method should afford localization of small targets
nd it should quantify their relative fluorescence intensi-
ies. Often, appropriately calibrated FMT instruments
re able to measure only the total fluorescence emitted
rom a tissue without providing clear delineation of the
uorescence sources such as tumors. Here, we have
hown how and why the spatial resolution and quantita-
ive power of FMT can be significantly improved by opti-
izing tissue sampling and using time-domain technol-

gy to acquire early-photon signals.
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