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Abstract. Alzheimer’s disease (AD) is characterized by a progressive
decline in the cognitive functions accompanied by an atrophic process
which can already be observed in the early stages using magnetic res-
onance images (MRI). Individualized prediction of future progression
to AD, when patients are still in the mild cognitive impairment (MCI)
stage, has potential impact for preventive treatment. Atrophy patterns
extracted from longitudinal MRI sequences provide valuable information
to identify MCI patients at higher risk of developing AD in the future.
We present a novel descriptor that uses the similarity between local im-
age patches to encode local displacements due to atrophy between a
pair of longitudinal MRI scans. Using a conventional logistic regression
classifier, our descriptor achieves 76% accuracy in predicting which MCI
patients will progress to AD up to 3 years before conversion.
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1 Introduction

Alzheimer’s disease (AD) is characterized by a progressive decline of the cognitive
abilities. Before being diagnosed as probable AD, patients usually go through a
mild cognitive impairment (MCI) stage. The earliest signs of neurodegeneration
can be observed using magnetic resonance images (MRI) already at the MCI
stage [7]. Machine learning techniques have taken advantage of this fact to char-
acterize individuals at different stages of the disease. Cuingnet et al. [6] presented
a comparison of 10 methods for discrimination of healthy controls (HC) and AD
patients with different degrees of neurodegeneration. The most common MRI-
based features used for discrimination include tissue probability maps, cortical
thickness, hippocampal morphometry or a combination of them [14].

Among the personalized medicine approaches related to AD, the discrimi-
nation between patients that will remain stable in the MCI stage (i.e., s-MCI)



and the ones that will progress to AD in the future (i.e., p-MCI) is possibly the
one with most potential impact. Successful early identification of p-MCI patients
opens up the possibility for improving clinical trials aimed at assessing preventive
care treatments. Moradi et al. [9] specifically focused on the discrimination of
p-MCI vs. s-MCI patients up to 3 years prior to conversion. Tong et al. [12] also
identified p-MCI subjects depending on their similarity with a pre-defined dic-
tionary containing both HC and AD subjects. This latter work was inspired by
an hippocampal grading method by Coupé et al. [4] (i.e., SNIPE) that assessed
hippocampal abnormality based on local similarities to a pre-defined training li-
brary. The grade produced by SNIPE could discriminate s-MCI vs. p-MCI with
high accuracy.

The structures in the medial temporal lobe (MTL), including the hippocam-
pus, are among the first ones to be atrophied during the early stages of AD [11].
Strictly speaking, atrophy can only be measured using repeated acquisitions
from the same subject over time (rather than using a single MRI, as in the
above methods). Several approaches agree in finding atrophy rates in the MTL
structures following the trend AD > MCI > HC [2, 3]. However, these approaches
are not designed for personalized predictions at the individual level and can only
reveal the general trends in the population.

We propose a novel method to describe, with a high level of detail, the atro-
phy patterns across a pair of MRI scans from the same subject at different time
points. The proposed descriptor is suitable for being used by machine learning
techniques for personalized medicine. Inspired by patch-based label fusion in
multi-atlas segmentation [5], our descriptor computes local patch-wise similari-
ties between baseline and follow-up images. Therefore, one-to-many correspon-
dences are used to encode local displacements. For the early prediction of AD, we
feed the proposed high-dimensional descriptors extracted from the hippocampal
region to a conventional logistic regression classifier.

Other learning-based methods use longitudinal data to predict AD in the
first stage of the pathology. Zhu et al. [15] proposed a constrained SVM specif-
ically designed for longitudinal data. Jie et al. [8] proposed a constrained re-
gression for the prediction of the evolution of cognitive scores in AD patients.
The main difference between these methods and the proposed one is that the
former ones propose longitudinally-aware classifiers that use conventional MRI
images, whereas we propose longitudinally-specific descriptors that can be used
by conventional classifiers.

2 Method

We present an atrophy descriptor between a pair of baseline Bi and follow-up
Fi images for the i-th patient, aimed at capturing the subtle atrophy patterns
discriminating s-MCI and p-MCI patients. In order to bring the pair of images
into correspondence while still preserving the local differences due to atrophy, we
affinely register the follow-up image to its baseline. We use the notation F→B

i

to denote that the follow-up image has been registered to its corresponding



baseline. In the case that we have more than one follow-up image per patient,
we can divide the entire sequence into a set of pairs baseline / follow-up and treat
them independently. The proposed method is divided in the following steps: (i)
defining the region-of-interest (ROI), (ii) computing the patch-based similarity
maps, (iii) building the atrophy descriptor and (iv) learning the classifier.

2.1 Region of Interest

We extract the high-dimensional atrophy descriptors from a ROI around the
hippocampus. As shown in the literature, the hippocampus is among the first
regions to be atrophied due to AD [11] and therefore it is a reasonable choice
as ROI for early prediction of AD [5, 6]. We propagate the hippocampal ROI,
denoted as Ω, from a template image T onto each baseline Bi using spatial warp-
ings TT→Bi obtained via non-rigid image registration. The hippocampal ROI in
the template was computed by dilating (with a structuring element of 3× 3× 3)
the hippocampal segmentation obtained through multi-atlas segmentation [5].
Fig. 1 shows the hippocampal ROI (in red) overlaid onto the template.

Fig. 1. Hippocampal ROI (in red) overlaid onto a template image.

Finally, let us denote as
(
Bi (x) , F→B

i (x)
)
, x ∈ Ωi, the pair of voxel intensi-

ties at corresponding location x within the ROI Ωi in the baseline and follow-up
images of a given subject.

2.2 Patch-based Similarity Maps

We encode the atrophy patterns as one-to-many correspondences between each
point in the baseline x ∈ Ωi and the neighboring points in the follow-up x′ ∈ Nx,
where Nx is a cubic neighborhood of size s3 around point x. This gives high-
dimensional information about local displacements undergone by each point be-
tween the two scans. We use the similarity between image patches to compute
the local correspondences, where the patches centered at x and x′ in the base-
line and follow-up images are defined respectively as PB

i (x) ,PF
i (x′). In our

experiments we use a patch size of 3× 3× 3.



For each subject, we compute a set of similarity maps W
(j)
i , j = 1 . . . s3, one

for each offset in the cubic neighborhood Nx, as follows:

W
(j)
i (x) = exp

(
−‖PB

i (x)− PF
i (Nx (j)) ‖22

h2

)
(1)

where Nx (j) is the j-th offset in the cubic neighborhood and we use the expo-
nential of the negative sum of squared differences as measure of patch similarity
with a normalization constant h =

∑
j ‖PB

i (x)−PF
i (Nx (j)) ‖2. Fig. 2 shows ex-

amples of similarity maps across each neighbor offset in a cubic 27-neighborhood.

Fig. 2. Each of the 27 tiles shows the similarity map for a different neighbor, with
red and blue denoting higher and lower similarities, respectively. We have used a cubic
neighborhood of size s3 = 3×3×3 = 27. Tiles in each group of 9 are coherently placed
according to their neighborhood offset within the sagittal plane. The three groups
correspond to neighbors along the sagittal axis.

2.3 Atrophy Descriptors

The proposed atrophy descriptors are built by encapsulating the similarity maps

W
(j)
i into feature vectors according to the following steps:

1. We spatially align to a reference space the similarity maps, denoted as W̃
(j)
i ,

using the inverse non-rigid transformations between template and baselines
T −1
T→Bi

(recall that similarity maps originally lie in the space of their baseline
images).

2. To compensate for moderate registration errors, we smooth the warped sim-
ilarities using a Gaussian kernel of width σ.

3. We build the longitudinal atrophy descriptor for i-th subject, denoted as
zi, by concatenating the similarities across ROI locations and neighbors,

i.e.,
{
W̃

(j)
i (x) |x ∈ Ω, j = 1 . . . s3

}
(in practice, we subsample the locations

with a step size ρ along each dimension in order to reduce redundancy and
decrease the vector’s length).



The length of the final vector is approximately |Ω| ·s3/ρ3. In our experiments
we set σ = 1.0, s3 = 27 and ρ = 2.

2.4 Learning

Given the atrophy descriptors computed in the previous section in a population
of training subjects {zi, i = 1 . . . n}, we learn a logistic regression classifier to
predict the future outcome of each patient, denoted as yi = {−1, 1}, for s-MCI
and p-MCI, respectively. Prior to learning, we select the most important features
by training a random forest classifier with 1000 trees on the future outcome of
each patient. As input to the logistic regression classifier, we only use the features
with an importance above 0.5 · µ, where the importance is computed according
how much a feature decreases the average impurity on the forest and µ is the
average importance across features6. After the feature selection step, we train
a logistic regression classifier by minimizing the empirical loss over our training
data subject to some regularization constraint. We define the optimization as:

min
v,b

n∑
i

1

1 + exp (−yi (v>z′i + b))
+ λ‖v‖1 , (2)

where v and b are the parameters of the logistic regression classifier and z′i is
the vector of selected features from the i-th subject. The first term penalizes the
classification errors and the second term, modulated by the scalar λ, enforces
the sparseness of the coefficients-vector v through the L1-norm. The sparsity
regularization is suitable when the number of features is much larger than the
number of training samples, as in our case. Given the atrophy descriptor ex-
tracted from a new testing subject z, first we obtain z′ by picking the most
important features as determined during training and then we classify it as p-
MCI or s-MCI according to the output of the function: sign (f (z′;v, b)), where
f (·) is the learned logistic regression classifier.

3 Experiments

We evaluate our method in classification experiments between MCI patients that
remain stable (i.e., s-MCI) and MCI patients that will progress to AD in the
following 3 years (i.e., p-MCI). We use the same subset of ADNI7 as in [9, 12],
containing 164 p-MCI and 100 s-MCI subjects8.

We use the first scan (i.e., baseline, Bi) and second scan (i.e., follow-up Fi) of
each subject in order to compute the atrophy descriptors. Images are corrected
for inhomogeneities with the N4 algorithm [13] and their histograms linearly
matched to a reference template [10]. Follow-up images Fi are affinely registered

6 This is implemented in the feature importance attribute of the random forest
classifier in scikit-learn package in Python

7 http://www.adni-info.org/
8 More details at: https://sites.google.com/site/machinelearning4mcitoad/



to their respective baselines Bi with ANTs [1]. Subsequently, also with ANTs,
we compute non-rigid spatial transformations from the MNI152 template to each
of the baselines TT→Bi .

For each subject, we build the atrophy descriptors as follows:

1. The hippocampal ROI is propagated from the template to each of the base-
lines Bi, as described in Sec. 2.1.

2. Similarity maps W
(j)
i are computed using baseline and registered follow-up

scans, as described in Sec. 2.2.
3. Atrophy descriptors zi are built after smoothing and subsampling the warped

similarity maps W̃
(j)
i , as described in Sec. 2.3.

Alternatively, we also compute more compact representations by decompos-
ing the similarities at each point through PCA. We took the first 10 components
explaining > 90% of the variance of the data.

Table 1 shows the average classification accuracy obtained by logistic re-
gression with the proposed atrophy descriptors in 10-fold cross-validation ex-
periments (with and without PCA decomposition) for a range of regularization
strengths λ.

λ = 0.1 λ = 1.0 λ = 10 λ = 50 λ = 100 λ = 200 λ = 300 λ = 500

original 0.709 0.744 0.745 0.745 0.766 0.757 0.754 0.753

PCA 0.715 0.732 0.742 0.737 0.733 0.737 0.713 0.741
Table 1. Accuracy of the proposed method in 10-fold cross-validation classification of s-
MCI and p-MCI subjects for increasing regularization strenghts. First row corresponds
to the original proposed descriptor. Second row corresponds to the proposed descriptor
with an additional PCA decomposition step.

As we can see in Table 1, the additional PCA decomposition step degrades
the discrimination accuracy, thus suggesting that some important information
may be lost after the linear decomposition in the present application. Note that,
even we only sacrifice 10% of the variance of the data in the PCA decomposition,
we may also lose some structure imposed by the normalization of the similarities
(i.e., similarities may not add up to one after the reconstruction).

For comparison, in Table 2 we show the results reported by state-of-the-art
methods in s-MCI vs. p-MCI classification using MRI features (including some
methods using the same dataset as ours).

Comparing results in Table 2, we can see that our method achieves state-of-
the-art performance. Our results are directly comparable to [9, 12], since we use
the same dataset. It is worth noting that [9, 12] use the whole brain whereas we
only use the hippocampal ROI. On the other hand, we use a pair of baseline and
follow-up scans whereas [9, 12] only use single baseline scan for classification.
Coupé et al. [4] also focused on the hippocampal ROI (including enthorinal
cortex), suggesting that this area might convey important information for early



Cross-sectional Longitudinal

Method Moradi
[9] *

Tong
[12] *

Coupé
[4]

Wolz
[14]

Zhu
[15]

Jie
[8]

proposed

Perform. 0.747 0.789 0.74 0.68 0.76−0.84 0.757 0.766
Table 2. Perfomance in s-MCI vs. p-MCI classification of state-of-the-art methods
using only MRI features. The former 4 methods in the table use only a single baseline
MRI for classification whereas the latter 3 use at least one longitudinal follow-up as
well. See the main text for details about performances reported as an interval. Methods
with an asterisk (*) have been evaluated in the same dataset as the proposed method.

AD classification [11]. As another difference, results of [4, 14] correspond to early
prediction of up to 4 years before conversion, whereas our results (as well as those
in [9, 12]) correspond to prediction up to 3 years before conversion. The rest of
longitudinal methods (i.e., [15, 8]) use at least 4 follow-up scans for each subject,
whereas we use only 1 baseline and 1 follow-up scan. Zhu et al. [15] discriminate
between progression to AD at intervals 18, 12, 6 and 0 months with accuracies
0.76, 0.81, 0.83 and 0.84, respectively, hence the interval 0.76−0.84 in the table.

4 Conclusions

We have presented a high-dimensional atrophy descriptor for early AD prediction
using longitudinal MRI data. We achieve state-of-the-art performance by feeding
our proposed descriptor to a conventional logistic regression classifier. Results
suggest that our descriptor is suitable for capturing subtle atrophic patterns
distinguishing s-MCI and p-MCI patients up to 3 years before conversion. In-
deed, the hippocampal ROI is a suitable region for prediction in the early stages
because it is among the first areas revealing atrophy due to AD [11]. Other
methods have also focused in this ROI, achieving comparable performance to
methods using the whole brain [4]. Effective ways to reduce the dimensionality
should be explored in order to extend the use of the proposed descriptor to larger
areas of the brain. Results in [15] suggest room for improvement in using the full
sequence of follow-up scans (instead of the first 2 ones). Possible lines of future
work include combining our descriptor extracted from full follow-up sequences
with longitudinally-aware classifiers.
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