
Articles
https://doi.org/10.1038/s41591-020-0789-4

1Department of Computer Science, ETH Zürich, Zürich, Switzerland. 2Computational Biology Program, Memorial Sloan Kettering Cancer Center, New 
York, NY, USA. 3Tri-Institutional PhD Program in Computational Biology and Medicine, Weill Cornell Medicine, New York, NY, USA. 4Medical Informatics 
Unit, Zürich University Hospital, Zürich, Switzerland. 5Department of Intensive Care Medicine, University Hospital, University of Bern, Bern, Switzerland. 
6Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland. 7Swiss Institute for Bioinformatics, Lausanne, Switzerland. 
8Department of Biology, ETH Zürich, Zürich, Switzerland. 9Cardiovascular Intensive Care Unit, Auckland City Hospital, Auckland, New Zealand.  
10These authors contributed equally: Stephanie L. Hyland, Martin Faltys, Matthias Hüser, Xinrui Lyu, Thomas Gumbsch. 11These authors jointly supervised 
this work: Karsten Borgwardt, Gunnar Rätsch, Tobias M. Merz. ✉e-mail: karsten.borgwardt@bsse.ethz.ch; gunnar.raetsch@inf.ethz.ch;  
tobiasm@adhb.govt.nz

Critical illness is characterized by the presence or risk of 
developing life-threatening organ dysfunction. Critically ill 
patients are typically cared for in intensive care units (ICUs), 

which specialize in providing continuous monitoring and advanced 
therapeutic and diagnostic technologies.

ICU physicians are presented with large quantities of data from 
many patients stored in electronic patient-data management sys-
tems (PDMS), and it is increasingly difficult to identify the most 
important information for care decisions. The limited ability of 
humans to process such quantities of information can lead to data 
overload, change blindness and task fixation1. This increases the 
risk that clinicians do not readily recognize, interpret and act upon 
relevant information2,3. ICU patients are not continuously super-
vised or assessed by ICU nurses or physicians. Low nurse-to-patient 
ratios and lack of intensivist presence have been associated with 
delays in establishing adequate treatment for deteriorating patients4 
and with higher ICU mortality5–7.

Circulatory failure is common during critical illness, and moni-
toring of circulatory function is therefore an essential part of ICU 
patient management. The effects of circulatory failure are initially 
reversible in most patients4,8,9, but repeated or prolonged episodes of 
hypotension and high-dose vasopressors may worsen the progno-
sis10–12. Care providers intermittently assess monitored vital signs and 
rely on alarms for individual physiological measurements to identify 
patients at risk of deterioration. These alarm systems do not utilize 
comprehensive patient information, and alarms are therefore often 
non-specific13,14, leading to alarm fatigue15, which was rated seventh 
on the list of top ten technology hazards from the ECRI Institute16,17.

Machine-learning (ML) techniques excel in the analysis of 
complex signals in data-rich environments18–20. The abundance of 
data collected in the ICU and public availability of datasets such as 
MIMIC-III21 and eICU22 are key for developing the use of machine 
learning in this setting. Endpoints such as patient mortality23 and 
length of stay (LOS)24 are commonly tackled using predictive mod-
els. However, the accurate prediction of mortality or LOS is not of 
great importance for further treatment decisions after the initial 
decision to admit a patient to ICU. The prediction of events related 
to circulatory deterioration has been addressed by predicting ICU 
admission25, the onset of treatment26 or near-term mortality27, and 
more specific aspects such as hypotension28 and vasopressor use29.

In this work, we develop a new approach to detect circulatory fail-
ure in ICU patients on the basis of medical knowledge, large-scale 
data analysis and state-of-the-art ML techniques. We construct two 
early-warning systems, named circEWS and circEWS-lite, that are 
of differing complexity and alert clinicians to patients at risk of cir-
culatory failure within the next 8 h. We define a patient as being in 
circulatory failure if (1) arterial lactate is elevated (≥2 mmol l–1), and 
(2) either mean arterial pressure (MAP) ≤ 65 mmHg, or the patient 
is receiving vasopressors or inotropes (Extended Data Fig. 1a shows 
an example). We use the patient database from a large multidisci-
plinary ICU, containing routinely collected data from more than 
54,000 ICU admissions, to train the early-warning systems. We have 
developed a comprehensive analysis framework including data pre-
processing and cleaning, feature extraction and interpretation, and 
selection of large-scale supervised ML techniques to construct the 
early-warning systems.
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To evaluate the performance of our systems, we established an 
alarm/event-based evaluation measure, which assesses the fraction 
of circulatory-failure events correctly predicted (that is, an alarm 
was raised for this event) and the false-alarm rate (that is, there 
was an alarm but no event). For external validation, we applied and 
tested our circEWS-lite system to the MIMIC-III database.

Results
Preparation of a high time resolution ICU dataset (HiRID). The 
full dataset contained a total of 7,333 routinely collected physi-
ological variables, diagnostic test results and treatment parameters 
from 55,602 patient admissions to the ICU, resulting in more than 
3 billion data observations. Continuous measurements are recorded 
every 2 min; therefore, the dataset contains more observations at a 
higher temporal resolution than the 2 publicly available ICU datas-
ets (MIMIC-III21, 312 million; eICU22, 827 million observations)30. 
After applying exclusion criteria (Extended Data Fig. 2a,c), infor-
mation on 710 variables from 36,098 patient admissions collected 
between January 2008 and June 2016 remained for further process-
ing (Extended Data Fig. 3). There were 209 consistently measured 
variables used for model development after data merging by aggre-
gating pharmaceutical variables and summarizing measurement 
modalities of physiological variables (Fig. 1a, Extended Data Fig. 2c 
and Supplementary Fig. 1). The data was resampled to a 5-minute 
resolution using adaptive imputation (Fig. 1b). The patient’s circula-
tory state was annotated for each time point as ‘circulatory failure’ 
or ‘no circulatory failure’ (Fig. 1c). For 36.5% of time points, the 
annotation was not possible owing to lack of MAP or lactate mea-
surements. These states were annotated as ‘ambiguous’. Overall, we 
identified 45,886 circulatory-failure events in 11,046 patients, with 
mean event duration of 320 min. We found that ICU mortality cor-
related with longer duration and a higher number of events of cir-
culatory failure (Extended Data Fig. 4).

Development of a continuous risk score for prediction of cir-
culatory failure. Every 5 min, we aimed to determine the risk of a  
patient developing circulatory failure within the next 8 h using a 
continuous score. The features generated for the prediction task 
included static patient information, multi-scale summaries of time-
series history, measurement intensity of variables and shapelet pat-
terns (Fig. 1d–f and Supplementary Tables 1–3). We used SHAP 
(SHapley Additive exPlanations) values31 to assess the influence of 
each feature on the classifier output: positive and negative SHAP 
values indicate an increase or decrease of the prediction score, 
respectively. The dataset contained 15 million time slices, of which 
3.1% were labeled positive (circulatory failure within the next 8 h). 
An analysis framework for feature and model selection was devel-
oped. Among tested classifiers, gradient-boosted ensembles of deci-
sion trees (lightGBM32) offered the best performance (Extended 
Data Fig. 5c,d).

Two lightGBM classifiers with differing complexity were devel-
oped—the full and compact models. There were 5,278 features gen-
erated from the 209 variables in the HiRID data that were ranked 
according to mean absolute SHAP value31, which indicates their 
importance for predictions. The full model uses the top 500 fea-
tures, originating from 112 variables (Supplementary Table 4), and 
the compact model uses 176 features from 16 variables among the 
top 20 variables (Table 1) that are available in both the HiRID and 
MIMIC-III datasets. As a baseline, we developed a decision tree 
using only the last measurement of the variables included in the cir-
culatory-failure definition (MAP, lactate and dose of vasopressors/
inotropes), mimicking a threshold-based rule system. The areas 
under the receiver operator curves (AUROCs) of the full, com-
pact and baseline models were 0.940, 0.939 and 0.883, respectively  
(Fig. 2a). For rare events, as in our case, predictions with high preci-
sion are more difficult to obtain than low false-positive rates. Hence, 
the areas under the precision-recall curves (AUPRCs) are more 
informative and were 0.467, 0.454, and 0.254 for the full, compact 
and baseline models, respectively (Extended Data Fig. 6a). The con-
tinuous scores are a good proxy for time to failure (Extended Data 
Fig. 7a,b). After re-calibrating the continuous scores post hoc using 
isotonic regression, we obtained almost ideal concordance between 
the score and the observed risk (Extended Data Fig. 7c), with an 
overall Brier score33 of 0.02 and an area of 0.04 around the ideal 
calibration curve. We also tested calibration in various patient sub-
groups, and found that the model is well calibrated for most large 
patient subgroups, except patients with neurological conditions (see 
Supplementary Table 5).

The circulatory early-warning system. Our models generate a 
continuous prediction score every 5 min regarding the risk of cir-
culatory failure within the next 8 h. A threshold-based warning 
system derived from this score could lead to alarms every 5 min, 
causing alarm fatigue. We therefore developed an alarm system 
that implements a silencing policy: once an alarm is triggered, sub-
sequent alarms are suppressed for 30 min (Fig. 1g). The system is 
reset if the patient experiences circulatory failure and recovers. The 
effects of different factors in the circEWS alarm system are shown 
in Supplementary Tables 6–8. We applied this alarm algorithm to 
the predictions of our full and compact models, and named the 
resulting systems circEWS and circEWS-lite. The performance of 
the two systems is shown in Fig. 2b, using precision-recall curves34 
(PRC). Recall was defined as the fraction of events with any alarm 
in the preceding 8 h, and precision as the fraction of alarms which 
correctly predicted an event. Precision and recall measure perfor-
mance on the raised alarms and occurring events and are clinically 
more meaningful than time point-based measures. We observed 
circEWS and circEWS-lite significantly outperforming the base-
line (Extended Data Fig. 6b), also in a reclassification analysis 
(Supplementary Table 9, P < 0.05). We analyzed the number of 

Fig. 1 | Model development overview. a–c, Data preparation. a, Data on patient admissions were exported from the ICU PDMS and filtered according to 
the inclusion and exclusion criteria. Clinically implausible values, variable-specific errors and other artifacts were automatically excluded using variable-
specific algorithms. Variables coding the same active drug component with differing administration methods were merged to obtain the effective drug 
dose over time. Different monitoring modalities for the same parameter were merged. b, Adaptive imputation was performed by filling missing values 
using a patient and variable-specific imputation scheme to obtain a data point for every variable and time point in a 5-min time grid. c, The circulatory 
state was annotated according to the definition of circulatory failure. d–f, Machine learning. d, At each time point, four feature types (measurement 
intensity, multi-resolution summaries, instability history and shapelets) per variable were extracted. These feature types, together with static patient 
information representing patient characteristics, represented the data available at any given time point. e, To construct the binary prediction problem, each 
relevant time point was labeled as either ‘positive’ (circulatory failure (CF) will occur within the next 8 h) or ‘negative’ (circulatory failure will not occur 
within the next 8 h). f, A binary classifier to predict near-term circulatory failure was trained on the extracted labels and features. A gradient-boosted 
ensemble of decision trees was chosen as the classifier after comparison of different machine learning algorithms. g, Evaluation. The proposed early-
warning system for circulatory deterioration (circEWS) consists of the trained binary classifier, a decision threshold and a policy of silencing for a short 
period after alarms. The system was evaluated on the basis of the fraction of alarms that are correct (precision), and the fraction of circulatory failure 
events that are correctly predicted (recall). CF, circulatory failure; HR, heart rate; IQR, interquartile range; MAP, mean arterial pressure; T, temperature.
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alarms of a threshold-based alarm system with alarms triggered 
by abnormal values in key circEWS-lite variables (Supplementary 
Table 10) and found that 20–80 times more alarms were generated 
than by circEWS-lite at the same recall rate (Extended Data Fig. 6c).

The recall rate as a function of time before the occurrence of 
circulatory failure for fixed overall recall and precision is shown in  
Fig. 2c. We observe an increase in recall closer to the onset of circu-
latory failure, with 81.8% of the events identified more than 2 h in 

advance. The timeliness of circEWS alarms is illustrated in Fig. 2d, 
showing the temporal distribution of the first alarms and number 
of alarms in the 8-h window prior to deterioration. Considering the 
standard 8-h working shift common in the ICU, this would result 
in less than 1 alarm per patient per shift occurring, on average, 2 h 
and 32 min before circulatory failure. The effect of training set size 
on model performance was assessed by artificially subsampling 
patients at random and retraining the model. Model performance 
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decreased with subsampling and did not show obvious saturation 
effects, even at the full size of the data (Extended Data Fig. 5a,b).

Model performance in different patient cohorts. In all subsequent 
analyses with fixed thresholds, we chose a threshold leading to a 
recall of 90.0%, resulting in a precision of 29.6% for circEWS.

We evaluated the performance of circEWS in different cohorts 
with varying age, gender, severity of illness, acute physiology and 
chronic health evaluation (APACHE) diagnostic groups, and com-
pared medical and surgical as well as elective and emergency admis-
sions (Fig. 3a–c and Extended Data Fig. 8a,b). We found similar 
performance across most diagnostic groups, with the exception  
of patients with neurological conditions, for whom the model  

performs worse, with an event recall of 76.6% (compared with 
91.2% across other patients). For neurosurgical patients, the model 
exhibits a decreased precision of 8.1% compared with 30.0% in the 
rest of the patients. Patients with lower APACHE scores (0–15) have 
a lower precision of 19.7% compared with 30.5% in the rest of the 
cohort, which might be explained by their lower event prevalence. 
Emergency admissions have a lower recall of 88.2% compared with 
93.6% for elective admissions, whereas surgical admissions have a 
higher recall of 92.3% compared with 87.7% in the rest of patients 
(Extended Data Fig. 8b). The recall rate increases with respect to 
the length and time since the last event (Extended Data Fig. 8c,d).

Model performance over time. Figure 3d shows how the perfor-
mance of the model varies as time since admission increases. While 
the overall recall of the model is 90%, the performance is not uni-
formly distributed across a typical patient’s stay, with recalls of over 
95% attained within the first 8 h. After the first day, the overall recall 
of the model drops to around 83%. Using our dataset spanning 8 
years, we analyzed how changes in medical practice and patient 
characteristics may impact model performance in the future. We 
simulated this by fixing a test set comprised of patients admitted in 
2016, and 8 training sets for patients admitted in each of the years 
from 2008 to 2015, with each training set subsampled to have the 
same size (2,366 patients). In Fig. 3e, we report the performance of 
these eight models in terms of AUPRC and precision at fixed recalls 
(AUROC shown in Extended Data Fig. 8e). We observe an increase 
in performance the closer in time the test set is to the training set 
(Fig. 3e). When fitting an autoregressive model to the differences of 
the AUPRC values, we obtain a first-order term of size 0.14, which 
we interpret as the presence of a temporal drift35. This does not hold 
for the precision values (Fig. 3e), for which we can assume station-
arity (P = 5 × 10–5, n = 8 years, Dickley–Fuller test35).

Inspection of model features. In Fig. 4a, we list the top 15 features 
by mean absolute SHAP value and show the distribution across all 
predictions. Features from variables used to define circulatory fail-
ure rank highest. The relationship between feature value and SHAP 
value is illustrated in more detail for the features patient age and 
MAP in Fig. 4b,c, with further examples in Extended Data Fig. 9. 
Table 1 reports the 20 most relevant variables (a subset of them is 
used to define circEWS-lite). When removing each of these vari-
ables in turn, only the removal of lactate noticeably decreased 
performance (resulting AUPRC, 0.411 ± 0.037). Greedy forward 
selection of variables guided by performance on the validation set 
confirms lactate and MAP being the most important variables, as 
is also observed in the analysis based on SHAP values. The model 
performance begins saturating after adding around ten variables 
(Supplementary Table 11). Figure 4e shows the highest-ranking lac-
tate shapelet as an example from the shapelet feature class, illustrat-
ing that the SHAP value of this feature increases 5.5 h before the 
onset of deterioration. While these analyses show the overall effect 
of the features, SHAP values can also be inspected for individual 
predictions to identify the influential features (see Extended Data 
Fig. 1b,c).

Training predictive models on observational data is associated 
with the risk that changing patient management patterns, such as 
additional monitoring modalities and/or frequency in anticipation 
of impending circulatory failure, are included as important model 
features. Such a model may perform well on the previously observed 
data, but will fail to generalize to scenarios with differing clini-
cian behavior36. In Supplementary Table 12, we demonstrate that 
removing measurement-intensity-based features results in a drop 
in AUPRC of 0.024. To further assess the degree to which circEWS 
may suffer from this fragility, we analyzed the circEWS-lite model 
performance on an artificially re-sampled test set with regular mea-
surement intervals per variable. The measurement intervals were 

Table 1 | Top 20 ranked variables for the prediction of 
circulatory failure

Rank (std) Variable Important feature 
categories

1 (0.0) Lactate Current, Shapelet,  
Multi-resolution, Instability 
history, Measurement

2 (0.0) MAP Multi-resolution, Instability 
history, Current, Shapelet, 
Measurement

3 (5.3) Time since ICU admission N/A

4 (0.4) Patient age Static

5 (3.0) Heart rate Current, Multi-resolution, 
Measurement, Shapelet

6–9 (2.3) Dobutamine, milrinone, 
levosimendana, theophyllinea

Instability history,  
Multi-resolution

10 (5.3) Cardiac output Shapelet, Multi-resolution, 
Measurement

11 (3.5) RASS Current, Multi-resolution, 
Measurement

12 (34.6) INR Measurement,  
Multi-resolution, Current

13 (5.8) Serum glucose Multi-resolution, Current, 
Measurement

14 (4.4) C-reactive protein Multi-resolution, Current, 
Measurement

15 (7.9) Diastolic BP Multi-resolution, Shapelet, 
Measurement

16 (4.0) Peak inspiratory pressure 
(ventilator)

Current, Measurement, 
Multi-resolution, Shapelet

17 (7.9) Systolic BP Current, Multi-resolution, 
Measurement, Shapelet

18 (10.6) SpO2 Multi-resolution, Shapelet, 
Measurement

19 (17.8) Non-opioid analgesicsa Multi-resolution

20 (11.4) Supplemental oxygen Multi-resolution, 
Measurement, Current

The ranking was obtained by first ranking all 5,278 features according to their importance in 
explaining predictions of the development model and then greedily selecting clinical variables 
in a forward-selection procedure if they contribute to important features derived from these 
variables. The point estimate of the rank is obtained on the held-out data split, and the standard 
deviation of the rank was obtained on n = 5 development splits of the data. The last column lists 
the important feature categories for a variable, that is, the feature categories that contribute to 
the top 50 features overall. The categories are sorted by decreasing importance in terms of rank in 
the list of top features. aVariables not contained in MIMIC-III; these were not used in the compact 
model (and hence not in the circEWS-lite system), as they appear to be less commonly available. 
BP, blood pressure; RASS, Richmond Agitation Sedation Scale; INR, international normalized ratio 
(prothrombin time); N/A, not applicable; SpO2, peripheral oxygen saturation.
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chosen to match the expected minimal measuring interval for each 
variable according to standard clinical practice (Supplementary 
Table 13). The model performance decreased from 0.60 to 0.55 
AUPRC (Fig. 4d and Extended Data Fig. 10a,b). A model com-
parable to circEWS-lite was trained on a modified HiRID dataset  
that contained only the binarized feature information, that is, 
excluding the actual feature values and only providing information 
on time points of measurements. The performance of this model 
reduced drastically to 0.20 AUPRC on the original test set (Fig. 4d)  
and to 0.07 AUPRC on the re-sampled test set (Extended Data  
Fig. 10a,b; AUROC is 0.54, very close to the performance of the ran-
dom classifier).

External validation. The publicly available ICU dataset MIMIC-
III21 was used for external validation. The 16 variables required 
for circEWS-lite were identified in MIMIC-III (Table 1 and 
Supplementary Table 4). We performed identical pre-processing 
of the MIMIC-III data with minor modifications to account for a 
lower time-resolution in MIMIC-III. We report the performance 
of circEWS-lite on the MIMIC-III test set as MIMIC (validation) 
in Fig. 5a,b. Additionally, a model constructed on HiRID was  

fine-tuned on the MIMIC-III dataset by linearly interpolating its 
scores with a model trained on the MIMIC-III data; results are 
reported as MIMIC (fine-tuned). In both cases, we corrected the 
label prevalence to be equal to the prevalence in HiRID, enabling 
comparison of precision in Fig. 5b (before correction MIMIC-III 
has 1.8% versus HiRID 3.1% positive labels). We observed a slight 
performance decrease when the circEWS models were applied on 
MIMIC-III. This can be explained by the higher temporal resolu-
tion of HiRID, as shown by the performance of circEWS-lite when 
trained on an artificially downsampled HiRID dataset to match the 
time resolution of MIMIC-III (Fig. 5c). As shown in Extended Data 
Fig. 7e,f, model calibration of both continuous score and alarm 
system remain suitable when circEWS-lite calibrated on HiRID is 
directly applied to the MIMIC-III data.

Discussion
We have demonstrated that two variants of a machine learning-
based early-warning system (circEWS and circEWS-lite) can predict 
circulatory failure with very high recall—only a small fraction of 
events are missed. Since the prevalence of events is low, it is difficult 
to achieve a low false-alarm rate. Our system generates 2–3 false 
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proposed models with a baseline model. The full model contains 500 features (composed from 112 variables), and the compact model contains 176 features 
(composed from 16 variables). The baseline model used only variables included in the definition of circulatory failure and is based on a decision tree. b, 
Precision-recall curve for the circEWS and circEWS-lite alarm systems derived from the full and compact classification model from a. circEWS and circEWS-
lite use a 30-min silencing period after every occurring alarm during which no new alarm is triggered. Recall was defined as the fraction of events for which 
the system correctly raised an alarm from 8 h to 5 min before the event. Precision was defined as the fraction of alarms that are in a window of 8 h prior 
to a circulatory failure event. c, The fraction of events that correctly trigger an alarm is reported for each 30-min interval during the time period 8 h before 
circulatory failure occurs. d, Top, the distribution of timing of the first alarm in the 8 h before an event. The mean time from the first alarm to deterioration 
was 2 h and 32 min. Bottom, the distribution of alarms in 8 h windows that were not immediately followed by an event. In a–c, solid curves were derived from 
the held-out split, variation estimates were derived from n = 5 independent experiments in the development splits. Prec, precision; rec, recall.
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Fig. 3 | Model performance in different patient cohorts. a–e, Analyses use the circEWS model with a threshold corresponding to 90% recall (obtained 
on patients in the test set) corresponding to an overall precision of 30% and silencing of new alarms for 30 min. a, Recall and precision for patients in 
different APACHE diagnostic groups. Boxes in the box plot show IQR and the diamonds are outliers with values that lies outside the [minimum, maximum] 
range of the whiskers, where minimum = Q1 – 1.5 × IQR and maximum = Q3 + 1.5 × IQR (Q1, Q3 and IQR represent the first quartile, the third quartile 
and the interquartile range, respectively). b, Recall and precision for patients, as stratified by APACHE-III score. The notation (a/d) under each group 
name signifies that there were a numbers of patients with events among d numbers of patients in the group. c, Recall and precision as a function of patient 
age. d, Recall as a function of time since admission. Events (episodes of circulatory failure) are stratified on the basis of time lag after ICU admission. 
Top, the cumulative performance of the model; that is, at 8 h after admission the overall recall of the model is approximately 96%. Bottom, the recall for 
each indicated time interval. e, AUPRC (top) and precision at a fixed threshold (baseline prevalence shown in red) (bottom) as a function of the year 
for which the model was trained. Eight models were trained, each using one year of data between 2008–2015, and were tested on a dataset from 2016, 
for which we observe stationarity (P = 5 × 10−5, n = 8 years, Dickley–Fuller test). Box plots in a were derived from n = 6 independent experiments in the 
temporal splits; in panels b–e, solid curves were derived from the held-out split, and variation estimates were derived from n = 5 independent experiments 
in the development splits. P values for panels a and b (dependent 2-sample t test, Benjamini–Hochberg corrected): P = 0.038 for decreased event 
recall in patients with neurological conditions, P = 0.0006 for decreased precision in neurosurgical patients, P = 0.0004 for lower precision in patients 
with APACHE scores (0–15), P = 0.039 for lower recall in emergency admissions, P = 0.039 for higher recall in surgical admissions. n = 6 independent 
experiments in the temporal splits were used.
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alarms per day and patient, which we consider very low compared 
with other warning systems in clinical practice and low enough to 
be of clinical utility. circEWS—based on 500 features from 112 clini-
cal variables—performed best, but was only marginally better than 
circEWS-lite—which is based on 176 features derived from 16 of the 
20 most important variables. The performance was similar irrespec-
tive of diagnosis, the severity of illness and age—with a few notable 
exceptions (patients with neurological conditions). As expected, the 
recall rate of the model was highest immediately prior to circulatory 
failure. Nevertheless, most events could be detected several hours 
in advance. The alarm system was tested in an independent patient 
group from a different hospital and demonstrated comparable per-
formance as in the development data.

The main limitations of our study are related to the single-center 
design, which creates a risk of overfitting the model to the patient 
cohort and data at hand. However, the analyzed ICU admissions 
originate from a population covering the whole spectrum of ICU 
patients, and the external validation demonstrates the applicability 
of our model in other ICUs. Further, it was not possible to retro-
spectively identify patients in whom supra-normal blood pressure 
values were targeted. High blood-pressure targets are often set to 
maintain cerebral perfusion pressure in critically ill neurological or 
neurosurgical patients. These patients can have elevated lactate lev-
els due to localized intracerebral ischemia and sympathetic activa-
tion37,38, and therefore would fulfill our endpoint definition without 
being in circulatory shock. Their inclusion is likely to impair the 
model performance, and an inferior performance of circEWS was 
observed in this patient group.

circEWS was constructed with retrospective data collected in 
a clinical context. Our models rely on features whose presence 
depends on an active decision to measure by a healthcare provider. 
Excluding all parameters impacted by the decisions of healthcare 
providers from model development would eliminate most of our 
clinical information and is therefore not feasible. This opens up 
the possibility of bias by intensity of monitoring (related to bias by 
indication36), that is, changing patient monitoring patterns in antici-
pation of impending circulatory failure are included as important 
model features. Such a model would show a lower performance in 
a situation in which impending deterioration was not recognized 
already by a healthcare provider, defeating the purpose of an alarm 
system. This is especially relevant for prescribed measurements such 
as lactate, which may only be ordered if there is a concern about a 

patient. To understand this effect, we re-tested our model on an arti-
ficially regularly sampled test set (simulating the situation where the 
physician is unaware). We observed a small drop in performance 
compared with the original model, indicating that the model per-
formance is only weakly dependent on bias by monitoring intensity. 
We also observed that measurement pattern-dependent features are 
not among the top 15 model features of circEWS-lite and the perfor-
mance of a model trained only on intensity of monitoring patterns 
is poor.

Our data contains artifacts and errors, the removal (where possi-
ble) of which was automated. This ensures that similar performance 
can be expected once the model is applied on live data. The low 
prevalence of the endpoint was not artificially increased to improve 
apparent model performance, but left unchanged to mirror future 
applications of the model. Moreover, we use precision-recall mea-
sures to assess the model’s performance, which better reflects the 
system’s real-world performance than do ROC curves.

Conventional systems that help identify patients at risk of circu-
latory deterioration are based on variables known to determine cir-
culatory function and tight alarm limits are set. The reported rates 
of monitoring alarms in ICUs vary from 6.5 to 53.1 per hour and 
patient in different studies13,39–41, and the rate is estimated at about 
10 alarms per hour in our data. Often lacking clinical relevance, 
such alarms can lead to alarm fatigue15. circEWS integrates indi-
vidual patient information and a large variety of physiological mea-
surements from multiple organ systems to achieve a manageable 
number of timely alarms. On average, the system raises an alarm 
every 16 h for a stable patient (0.048 alarms per patient hour in the 
held-out test set). Of all events, 82% are identified more than 2 h in 
advance. This compares favorably with the total number of alarms 
and the number of false alarms using conventional systems, and 
gives the physician enough time for early assessment. In our evalu-
ation, we were not able to detect cases in which a treatment inter-
vention prevented a deterioration event. These would be counted 
as false positives and decrease the estimated precision of circEWS. 
We therefore expect that the precision in practice is higher than our 
estimate.

The ability to establish which features contributed to a predic-
tion ensures that this technology remains interpretable to its clini-
cal users. Using SHAP values, we see that the model identified 
established predictors determined by circulatory state, but also 
time-series representations, information from other organ systems, 
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patient characteristics and treatment parameters. Using SHAP  
values as a generalized approach to identify the underlying cause 
of circulatory failure is not possible, but SHAP values may help  
generate clinical hypotheses for specific events. Only the exclu-
sion of lactate from the top 20 variables identified by SHAP val-
ues resulted in markedly decreased performance. This indicates 
that there is redundancy across variables and features, which is also 
seen when we ablate entire feature categories. The high relevance 
of the lactate variable suggests that more frequent measurements of  
lactate might lead to an increase in model performance and allow 
for earlier detection of deterioration events42,43. The performance 
degradation of circEWS after the exclusion of lactate may be caused 
by the informativeness of the current lactate value estimate, the lac-
tate monitoring intensity, or a combination of both. However, the 
dependence on monitoring intensity patterns of our model was 
shown to be minor.

To assess the external validity of circEWS, we applied it to 
the MIMIC-III dataset. We observed that if we apply circEWS-
lite directly to MIMIC-III, its performance degrades markedly. 
However, a fine-tuned model trained on MIMIC-III and HiRID 
exhibits a performance that almost matches the performance 
in the HiRiD dataset. The remaining performance gap is likely 
related to the lower quantity of data available in MIMIC-III to train  
models (2.8 million versus 13 million time points in HiRID) and 
the lower temporal resolution (hourly sampling interval for physi-
ological variables in MIMIC-III versus sampling frequency of 2 min 
in HiRID). A comparison of performance in MIMIC-III with an 
artificially downsampled HiRID dataset, in which variables were 
downsampled to the same frequency as MIMIC, confirmed the 
lack of temporal resolution as the main factor explaining the per-
formance decrease. Even with the large training size available in 
HiRID, the model’s performance has not yet saturated (Extended 
Data Fig. 5a,b). Therefore, the more limited data in MIMIC-III may 
also be a factor resulting in lower performance.

The practice of medicine changes with new research and 
improved technologies. ML methods trained on historical data 
are therefore susceptible to reduced performance associated with 
future deployment. Our results indicate a slight increase in model 
performance the closer the development is to the test set, providing 
evidence for this effect. Moreover, medical practice varies between 
providers as well as institutions. The importance of this locational 
dataset shift is illustrated in our results by the better performance 
of the locally re-calibrated MIMIC (fine-tuned) model versus the 
directly applied MIMIC (validation) model. Our model should 
therefore not be seen as an unalterable and universal scoring system 
similar to typical ICU scores. In fact, we suggest that other ICUs use 
our methodology and local data to develop their own models, rather 
than applying the unaltered circEWS models. In a clinical setting, it 
will be important to continually monitor the quality of predictions 
using new data to constantly develop and re-calibrate the models to 
account for temporal changes and developments in practice. Only 
after retraining, fine tuning and recalibrating the system for the spe-
cific setting can state-of-the-art performance be achieved.

ML techniques have been applied to tasks in radiology44, 
pathology45 and critical care46,47 in retrospective clinical studies. 
Approaches spanning a spectrum of complexity have been devel-
oped to tackle clinical prediction problems, from linear models48,49 
to complex deep architectures50. In this work, we used gradient-
boosted ensembles of decision trees owing to their observed supe-
rior performance in our application and ease of interrogation. 
This model class has been successfully applied in many different 
domains51,52. While we tested other models, including recurrent 
neural networks, we found these approaches inferior. This finding 
reflects recent observations30 that careful feature design, combined 
with state-of-the-art ML approaches, can outperform deep learn-
ing. However, when more data is available for training the system,  

it is likely that more expressive deep architectures may ultimately 
prove superior.

Considering the demonstrated good performance of our models, 
we hypothesize that ML-based early-warning systems may help ICU 
staff to more rapidly identify patients at risk for development of cir-
culatory failure with a much lower false-alarm rate than conventional 
threshold-based systems. Our data show that even short periods of cir-
culatory failure over the length of stay are associated with an increase 
in ICU mortality, but do not prove a causal relationship. This finding 
is consistent with other clinical trials that indicate that repeated or 
prolonged episodes of hypotension and high dose vasopressors11,53, 
as well as delays in shock treatment9,54–58, are associated with higher 
mortality. We hypothesize that early identification and treatment of 
patients at risk of circulatory failure might lead to a reduction in mor-
tality, but this hypothesis has to be tested in a future prospective study 
and cannot be concluded from our data. Prospective research on the 
impact of model implementation on patient outcomes has to be con-
ducted before the clinical application of our models. Overall, we show 
that adaptive data-driven models have the potential to allow the shift 
from detection and treatment to automated prediction and, hopefully, 
prevention of organ system failure.
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Methods
Study design and setting. The study was designed as a retrospective cohort study 
for the development and validation of a clinical prediction model. The study was 
performed at the Department of Intensive Care Medicine of the Bern University 
Hospital, Switzerland (ICU), an interdisciplinary 60-bed unit admitting >6,500 
patients per year. Data processing, model training and analyses were performed 
at the Departments of Computer Science as well as Biosystems Science and 
Engineering at ETH Zürich, Switzerland.

Ethical approval and patient consent. The institutional review board (IRB) of 
the Canton of Bern approved the study. The need for obtaining informed patient 
consent was waived owing to the retrospective and observational nature of the 
study.

Participants and data sources. The study included all patients admitted to the 
ICU in the period between the implementation of the ICU electronic PDMS (GE 
Centricity Critical Care, General Electrics) in April 2005 and August 2016. The 
PDMS was used to prospectively register patient health information, measurements 
of organ-function parameters, results of laboratory analyses and treatment 
parameters from ICU admission to discharge.

The study flow chart is presented in Extended Data Fig. 2a. Patient admissions 
prior to 2008 were excluded from the analysis owing to frequent changes in 
variable identifiers during the run-in phase of the PDMS implementation. Patients 
without data for determining circulatory failure and patients receiving any form of 
full mechanical circulatory support, younger than 16 years or older than 100 years, 
or actively declining the use of their data for research purposes were excluded.

Analysis platform. All computational analyses were performed on a secure 
compute cluster environment located at ETH Zürich (https://scicomp.ethz.ch/wiki/
Leonhard). Python3, with numpy, pandas and scikit-learn formed the backbone of 
the data-processing pipeline.

Artifact removal. Artifact removal and correction was performed using variable-
specific algorithms to enable future live deployment and constituted a major effort. 
Four main types of artifacts were identified:
•	 Timestamp artifacts. Measurement time information was stored in two 

fields—the time the measurement was taken (SampleTime), and the time it 
entered the system (EnterTime). While the latter field was automatically filled, 
SampleTime can contain manual input errors, such as an incorrect month or 
year, disrupting the order of the time series, or falsely indicating unreasonably 
long ICU stays or gaps between measurements. Intervals longer than 1 d were 
identified and corrected as described in Supplementary Table 14. Timestamp 
artifacts existed in 3,530 (8%) of patient admissions.

•	 Variable-specific artifacts. Blood gas samples required a manual selection of 
the sample type as arterial or venous. As arterial is the default option, multiple 
venous samples were wrongly labeled as arterial. This was identified by 
comparing the oxygen saturation in the blood gas sample to the central venous 
saturation; if this difference was <10% of the s.d. of oxygen saturation (across 
the training data), the sample was re-labeled as venous. Patient height and 
weight were manually entered and sometimes accidentally interchanged. For 
weight and height measurements resulting in body mass indices (BMI) > 60 kg 
per m2 or < 10 kg per m2, height and weight were swapped if this resulted in a 
BMI in the range of 10–60 kg per m2.

•	 Out of range artifacts. For each variable, a range of possible values (including 
pathologic values) was defined—these are reported in Supplementary Table 
4 (column permitted range in variables tab). Values outside this range were 
deleted.

•	 Record duplication. The database contained records of the same variable for 
the same patient with the same timestamp. For non-pharmaceutical variables, 
one value was kept if the values of the duplicates were identical. Otherwise, 
we compared the standard deviation of the duplicates with the global standard 
deviation of the variable across all patients. If the former was <5% of the latter, 
we kept the mean of the duplicates. Otherwise, the duplicates were considered 
unreliable and deleted.

•	 For pharmaceutical variables, duplicates with an entry indicating a ‘zero’ dose 
were deleted. For duplicates of drugs applied as tablets or injections the sum 
of the recorded dose values was kept. For duplications with a status indicating 
none of the above, we took the mean of the dose.

•	 Processing pharmaceutical variables. We converted all pharmaceutical vari-
ables to either a rate or presence indicator. Drugs given as boluses such as 
injections and tablets were converted to an effective continuous rate over a 
time-period specified according to the estimated duration of action (Sup-
plementary Table 4, column ‘acting period (individual)’ in drugs tab). In cases 
where a quantitative rate is not possible, we used a binary flag to indicate if the 
drug (or drug class; see next section) was present.

Variable merging. The PDMS contained many instances of the same parameter 
being recorded using different identifiers (for example, different dilutions of 

vasopressors, different probe locations for core temperature measurements). 
Moreover, specific variables were infrequently observed (for example, foscavir was 
observed <50 times), but belonged to a meta-category (such as ‘Antiviral therapy’). 
To build a model that is less specific to the local patient cohort and setting, we 
used the following variable merging strategies, reducing our set of variables 
from 710 to 209. Identical medical core concepts recorded as different variable 
IDs were merged (for example, different probe locations for core temperature 
measurements). Identical pharmaceutical compounds were aggregated into one 
variable (Supplementary Fig. 1 and Supplementary Table 4).

Certain clinically less important compounds were aggregated to group variables 
regarding the targeted pharmaceutical effect (for example, non-opioid analgesics; 
Supplementary Table 4, columns ‘drug’ and ‘constituent drugs (if relevant)’ in drugs 
tab). This was performed for better temporal and inter-ICU generalizability by 
making the model features independent of the specific compound used. If this led 
to multiple measurements at the same time, the following strategies were used. For 
physiological parameters (such as temperature) or lab tests, we used the median 
of simultaneous measurements. For pharmaceutical variables, we used a weighted 
sum over simultaneous infusions, with weighting given by effective relative doses 
determined by analysis of the literature. Otherwise, we merged variables into a 
binary indicator denoting whether or not any drug from that class (for example, 
antibiotics) was present, or count how many drugs are present (Supplementary 
Table 4, column ‘merging ratio’ in drugs tab).

Circulatory state annotation. We annotated every 5-min interval of a patient’s 
stay with their current circulatory state using 3 types of variables: lactate (arterial 
and venous), MAP and presence of vasoactive/inotropic drugs. The state was 
established using a window of 45-min duration centered on the current time point. 
To reduce spurious calls due to transient states, in each such window all conditions 
had to be independently true for 30 min (not necessarily consecutive).

We defined the following three states:
•	 Patient currently not in circulatory failure: if MAP is >65 mmHg, vasoactive/

inotropic drugs are not present, and lactate is ≤2 mmol l–1.
•	 Patient currently in circulatory failure: MAP is ≤65 mmHg, or (not exclusive) 

vasoactive/inotropic drugs are present and lactate is >2 mmol l–1.
•	 Unknown/ambiguous: if any of the following conditions hold:
•	 No MAP or (interpolated) lactate is available in the 45-min windowMAP or 

vasoactive/inotropic drug criterion is met, but lactate is ≤2 mmol l–1

To enable state annotation at all time points, we imputed lactate values between 
measurements. We linearly interpolated lactate values between measurements, 
unless the patient’s lactate value had passed the threshold of 2 mmol l–1 in either 
direction. If a patient’s state had changed, from either low to high lactate or 
vice versa, we linearly interpolated depending on the interval between the two 
measurements. If they were less than 6 h apart we interpolated for the full period. 
Otherwise, we forward/backward filled for a maximum of 3 h and the remaining 
time points were left missing.

To handle the starts/ends of the stay, we filled forward/backward. If the 
patient’s first/last measurement was ‘normal’ (under the threshold), we backward/
forward filled indefinitely. If the measurement was abnormal, we filled backward/
forward for up to 3 h.

As this imputation scheme implicitly used information from the future, it 
was only used for annotating (and subsequently labeling) time points. Adaptive 
imputation and feature generation for model development were performed 
independently and as described below without using future information.

Labeling of future circulatory failure. All time points annotated as ‘no circulatory 
failure’ (that is, not currently in a circulatory event state) were labeled as ‘positive’ 
if circulatory failure occurs in the next 8 h, otherwise ‘negative’ (Fig. 1e). 
Ambiguously labeled time points were excluded from training and evaluation.

Patient-centered adaptive time series imputation. Our imputation strategy 
was based on the assumption that measurements are not missing at random, 
and that the level of missingness (that is, measurement rate) is informative for 
the rate of change of that variable. We used this measurement rate to define 
imputation parameters for each variable. These parameters were pre-computed 
on the training set. They consist of the median and interquartile range (IQR) 
of the sampling interval of each non-medication variable i, denoted as (mi, iqri) 
below. The imputation process created a time grid with step size 5 min, starting 
and ending at the patient’s first and last heart rate measurements, or ending at 
28 d after admission (whichever was shorter). This provided a unified definition 
of ‘beginning of stay’ corresponding to the start of basic monitoring, and avoids 
biasing the data towards patients with very long stays. Values were imputed for all 
variables independently at each grid point using the following process. Prior to the 
first measurement of a given variable, or if the patient had no measurements, we 
filled it in using a normal value (Supplementary Table 4, column ‘default value’ in 
variables tab). If the last measurement, as seen from the grid point, was less than 
mi + iqri minutes away, we used forward filling from the last value. Otherwise, we 
linearly returned to the median of the last 2 × (mi + 2 × iqri) min, as measured 
from the point where we entered the region where this imputation mode is applied, 
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for 2 × (mi + 2 × iqri) minutes in total. After that, we assumed that the value stayed 
constant at this median value (indefinite forward-filling), until the next valid 
measurement, if any, at which we returned to step 2. Static variables were imputed 
according to either the mean or the mode value in the training data, for continuous 
and categorical values, respectively.

We found that a similar performance can be achieved using simpler imputation 
strategies like indefinite forward filling or leaving unobserved time points as 
missing values. While this is surprising, it should be seen in the perspective of our 
feature choices, which are robust to missing data, and the robustness to missing 
data inherent in decision-tree based methods. Adaptive imputation achieves a 
more regular data format and provides estimates of current values based on prior 
clinical knowledge, which could be useful in a real-time monitoring setting. The 
adaptive imputation method could provide advantages if certain components of 
our methodology are replaced with models less robust to missing data, such as 
deep neural networks (DNN) or logistic regression.

Feature generation. Feature generation took the imputed data as input and 
generated features sample-wise on the 5-min grid. The first 30 min of a stay were 
ignored for feature generation, because the history of vital signs and lab tests 
contained insufficient information to generate reliable features. Six types of features 
were generated for each time-grid point. They included the current estimated 
value of a variable, and five others (described in detail below). Besides these feature 
classes, we also added ‘time since admission’ as an individual feature.
•	 Static features. Six static features (age, indicator of surgical admission, indica-

tor of emergency admission, APACHE diagnostic group, height and sex) were 
concatenated to each time-grid sample of a patient.

•	 Multi-resolution summaries. We constructed time windows of increasing size 
and extract summary statistics over each window to capture the temporal 
history of our data (Fig. 1d). The window sizes and statistics depended on the 
variable type and sampling rate. We classified each variable as either as high, 
low or medium frequency, according to its median sampling interval in the 
training set or estimated duration of action for drugs (Supplementary Table 4, 
in drugs tab). We defined four time windows for short, medium, long and very 
long time horizons for each frequency category, using prior clinical knowledge 
(Supplementary Table 1). We extracted the median, IQR and minimum and 
maximum values for continuous-valued variables, as well as a trend estimate 
for each of the time horizons. We reported a mean estimate rather than 
median for medications. For categorical and binary variables, we reported only 
the mode or mean, respectively. Additionally, we summarized the entire stay 
up to now with the summary functions mode, mean or median depending on 
the variable category. Our results suggest that considering several horizons 
(Supplementary Table 15) as well as different summary functions (Supplemen-
tary Table 16) increased performance.

•	 Instability history features. Assuming that patients who have already suffered 
circulatory instability are at increased risk of recurrence, we formed a set of 
features to capture the patient’s history of instability. We encoded the current 
state, time to the last pathologic state as well as the density of pathological 
states in the past. All of these refer to logical subconditions of our circulatory 
failure definitions (Supplementary Table 2). We set a value of 30 d (larger than 
the maximum length of a stay) if no abnormal state was measured. The density 
was defined as the ratio of the duration that the state was active during the 
length of the stay so far.

•	 Measurement-intensity based features. Since imputation removed information 
about when and how often measurements were performed, we reintroduced 
some of this information with this feature class for vital sign measurements 
and lab tests. We computed the time since the last (non-imputed) measure-
ment (30 d, if no measurement available), as well as the ratio of time points 
with measurements in the stay up to now.

•	 Shapelet-based features. A shapelet is a small time series subsequence that 
is discriminative for the class label and known to capture salient temporal 
dynamics of time series in a variety of application domains59. We used the 
computationally efficient S3M method60: for each variable, 300 subsequences 
were extracted with a padding of 5 min before any deterioration event, and 
these were labeled as cases. The same number of uniformly sampled time 
series from the remaining patients served as controls. The remaining param-
eters were adjusted according to the resolution of the variable (see Supplemen-
tary Table 3). As the resulting shapelet set might be very large (up to multiple 
1,000 shapelets per variable), the subsequent shapelet selection step created a 
feasible number of shapelet features per variable (in our case 20 shapelets per 
variable and length) that was representative of the space of all shapelets with 
the min–max approach. First, the shapelet with the highest accuracy in differ-
entiating cases from controls on the training dataset was selected. Afterward, 
shapelets were iteratively selected such that the minimal distance to the set of 
already selected shapelets was maximized until 20 shapelets are chosen. Sup-
plementary Table 17 shows that the min–max sampling performed similarly 
as random sampling or selecting the top 20 shapelets. A shapelet was used to 
construct a set of features per time point by concatenating the L2 distances 
between the shapelet and the history of a patient’s variable during the last 
4 h. This history of distances (dist–hist) approach outperformed other feature 

computation approaches as shown in Supplementary Table 17: single distance 
(distance), the minimum over all distances in the last 4 h (min) and counting 
the number of shapelets that have occurred in the last 4 h (count).

Supervised learning of deterioration prediction. We defined a binary prediction 
task to be performed every 5 min while a patient is not in circulatory failure on 
the time-point-based labels. To avoid overestimating the prospective performance 
of our model by a random assignment of patient stays to training, validation 
and test sets, we used an experimental design in which the test set contained the 
most recently admitted patients in the cohort (Extended Data Fig. 2d); we call 
this a ‘temporal split’. In a given temporal split, the full methodology was applied 
independently, including missing data imputation, feature extraction, model 
training and hyperparameter selection.

Five overlapping temporal splits were constructed, each containing admissions 
across 5 yr (Extended Data Fig. 2d). The admissions of the last year were split 1:1 
to define the validation and test sets, respectively. The remaining earlier admissions 
were used as training set of that split. The start of each subsequent split was shifted 
by six months. Further, the most recent 10% of patient admissions (November 
2015 to May 2016) were defined as the held-out evaluation set, which was not used 
for model development to avoid subtle overfitting to this dataset. This set was also 
split 1:1 into held-out validation and test sets. Using the rest of the available data 
as training data, this held-out set formed a special ‘held-out’ split, which was used 
to provide a point estimate of model performance. The five temporal splits were 
used to estimate the variability of model performance, containing disjoint test sets, 
and partially disjoint training sets. We report this variability as the s.d. over model 
performance in these splits. Lastly, an exploration split was defined, which assigns 
patients at random to training, validation and test set in proportions 8:1:1. This 
split was used to compare temporal generalization with the standard approach of 
randomly assigning admissions to training and test sets. Lastly, an exploration split 
was defined, which assigns patients at random to training, validation and test set 
in proportions 8:1:1. This split was used to compare temporal generalization to the 
standard approach of randomly assigning admissions to training and test sets and 
resulted in nearly identical model performance (AUROC in the temporal splits 
0.934 versus AUROC in the random splits 0.937).

Statistical methods. If not otherwise indicated, solid lines and performance 
metrics displayed in figures and tables refer to the performance in the test set of 
the ‘held-out’ split as described in the previous section. Shaded areas and numbers 
in parentheses refer to the s.d. across the respective evaluation metric in the test 
sets of splits ‘Temporal 1–5’ (n = 5). The center line of box plots shows the median, 
and the lower and upper limit show Q1 and Q3 respectively, where Q1 is the first 
quartile and Q3 is the third quartile. The lower whisker shows the first datum 
greater than Q1 – 1.5 × (Q3 – Q1), and the upper whisker shows the last datum 
less than Q3 + 1.5 × (Q3 – Q1), and additional points are outliers. In violin plots, 
the bandwidth is set to 0.2 for computing the Gaussian kernel density estimate 
and the density is not extended past extreme data points. When analyzing the 
effect of temporal gap between the test data and training data in terms of year of 
training data collection, we used the Dickley–Fuller test (P = 5 × 10−5, n = 8 years) 
to test for stationarity (precision/AUPRC values, Fig. 3e), and the two-sided Wald 
test (P = 0.051, n = 8 years) for testing a non-zero slope in a linear regression line 
fit (AUROC, Extended Data Fig. 8e). Performance in sub-cohorts was tested 
using a paired two-sided two-sample t test corrected by the Benjamini–Hochberg 
procedure for multiple comparisons, hereby the samples were paired using the 
n = 6 temporal splits (‘Temporal1–5’/‘Held out’ split) (Fig. 3).

Machine-learning approaches. We compared the following three state-of-the-art 
supervised ML techniques to learn to detect deterioration events:
•	 Gradient boosted ensemble of decision trees, and decision-tree baseline. The 

gradient boosting library lightGBM (version 2.2.1) was used for model fit-
ting32. The hyperparameter settings maximizing the AUPRC on the validation 
set were used to generate the predictions on the test set, after refitting on the 
training set. The model training process was stopped if the AUPRC on the 
validation set did not improve over 50 consecutive fitting iterations, resetting 
the model state to the best iteration before early stopping. Since lightGBM can 
deal natively with categorical data, we did not one-hot-code such data before 
model fitting. As this model achieved highest performance during system 
development, it was used for further analyses. To obtain the decision tree 
baseline, we set the number of trees to 1.

•	 Logistic regression. The class SGDClassifier from the scikit-learn library 
(version 0.20.0) was used for model fitting. The strength of the regulariza-
tion parameter was selected by maximizing the AUPRC on the validation set. 
Before fitting, continuous features were standardized (zero mean, one s.d.), 
and categorical features one-hot-encoded.

•	 LSTM-based recurrent neural network model. We constructed a long short-
term memory (LSTM)61 network comparison in TensorFlow 1.11.0. We used 
the same set of features as provided to lightGBM for fair comparison after 
intermediate results suggested worse performance when using only the raw 
variable values. Since a fraction of the features are static, a small-size single-
layer-perceptron (SLP) was used alongside the LSTM to learn from the static 
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features. The LSTM and the SLP output the hidden states for the dynamic and 
the static features, respectively, and by linear combination these two hidden 
states are fed into the output layer. Before training, all non-categorical features 
were standardized and categorical features one-hot-encoded.

Hyperparameter settings and grids for all models are listed in Supplementary 
Tables 18–21, if not otherwise described.

Variable and feature selection. The importance of individual features was 
measured using mean absolute SHAP values of predictions made on the validation 
set for each temporal split. Before SHAP values were computed, the negative 
instances in the validation set were sub-sampled to achieve a balanced dataset. The 
variable ranking was obtained with a greedy forward selection approach by which 
the variable associated with the feature with the largest mean absolute SHAP value 
considered the most important variable. This variable and all its features were then 
removed from the ranking and the procedure was repeated. The final ranking of 
important clinical variables was determined using the held-out split. The standard 
deviation of the ranks is computed on the five temporal splits used for model 
development. Optimal model performance was obtained using 500 features, and 
removing more features degraded performance (Extended Data Fig. 5e,f). These 
features, comprising 112 variables, are provided to the full model. We further 
identified the top 20 clinical variables using the ranking procedure (see Table 1) 
and excluded four variables not identifiable in MIMIC (‘non-opioid analgesics’, 
supplemental oxygen and two inotropes). The resulting 176 features from the 
remaining 16 variables formed the compact model.

Model calibration. We have performed an analysis of calibration (observed 
risk versus raw prediction score) for our proposed full and compact models as 
well as a post-hoc calibration (Extended Data Fig. 7). The raw prediction scores 
produced by the machine learning model (LightGBM) were post-hoc calibrated 
on the validation set of each temporal split, and evaluated on the test-set. We 
used isotonic regression, which fits a rank-preserving transformation between 
the original scores and transformed scores that minimizes the deviation between 
the target label and the prediction score. We used the scikit-learn library (version 
0.20.0) for fitting the isotonic regression model. Model calibration was evaluated 
using the area between the calibration curve and the ideal calibration curve, which 
represents perfect concordance between the prediction scores and the absolute 
risk. Twenty prediction score bins with regular spacing between the minimum/
maximum prediction score produced by a model were used. Defining the observed 
risk as the average time to circulatory failure, we noticed that the raw scores are 
already well-calibrated. Temporal model calibration was evaluated using the area 
between temporal risk and its linear regression fit. Moreover, comparing the 
compact model on HiRID to the same model in the MIMIC (validation) setting, 
we observe only minor differences, which suggests that the calibration of the 
prediction score with respect to time-to-deterioration is not affected strongly 
by patients drawn from different populations in our scenario. We also evaluated 
model calibration in different subgroups of the HiRID cohort, the results are 
summarized in Supplementary Table 5. We observe the strongest deviations from 
calibration in patients with neurological conditions (for full and compact model) 
and for categories that have fewer than one hundred patients (which we attribute to 
statistical estimation errors).

Early-warning system and evaluation. A core contribution of this work is an early-
warning system for circulatory failure within 8 h—circEWS. We built two variants, 
circEWS and circEWS-lite, based on the binary classifiers ‘full’ and ‘compact’ 
described above. The output of the classifier is a score between 0 and 1, which is 
converted to an alarm if it exceeds a fixed threshold. On top of this, we employed a 
silencing policy to reduce unnecessary repetitive alarms: for 30 min after an alarm 
is raised, any potential subsequent alarms were suppressed. If a patient experienced 
circulatory failure and recovered, the system was reset to allow new alarms after 
25 min—this lag period ensures the patient is out of the circulatory failure event 
before the system is reset. The effects of different silencing periods and system reset 
times are shown in Supplementary Tables 6 and 7. Our objective was to evaluate 
circEWS in a clinically relevant context, focusing on the percentage of circulatory 
failure events the system is able to detect and the rate of false alarms. Model 
precision was defined as the fraction of alarms that correctly predict the onset of an 
event (a period of circulatory failure) within the next 8 h. Model recall was defined 
as the fraction of events that are captured by an alarm. This is analogous to exon 
prediction in gene finding62. Significance of performance differences in patient 
sub-cohorts was assessed using a P < 0.05 cutoff using dependent two-sample t tests 
corrected for multiple-comparison testing with the Benjamini–Hochberg procedure, 
matched on the 6 temporal splits in which the experiment was replicated.

Assessing bias by intensity of monitoring. To perform the analysis shown in Fig. 
4d, we created an alternative version of the test set under a hypothetical setting in 
which clinicians follow a fixed measurement intensity for all patients, independent 
of any suspected circulatory deterioration. To achieve this, we defined ‘normal’ 
measurement intervals for all variables (Supplementary Table 13), and then 
resampled the data to conform to these intervals. If a patient has no measurement 
for a certain variable, we impute a normal value (Supplementary Table 4, column 

‘default value’ in variables tab) with additive Gaussian noise to every time point 
on a semi-regular time grid. The mean interval time is equal to the corresponding 
baseline interval and the s.d. of the grid interval is equal to half of the baseline. 
For a patient who has measurements for a certain variable, we use the following 
procedure: if the first measurement happens within the first baseline interval time, 
then starting from the time of the first measurement, we identify the next time 
point by a time shift of 1 baseline interval. For every new time point thus reached, 
and if the closest measurement is within a window of size of the baseline interval 
centered at the current time point, we keep the closest measurement and remove 
all other measurements between the current and the last time point. Otherwise, we 
impute the current new time point with the last closest measurement value with 
additive Gaussian noise. If the first measurement occurs after the first baseline 
interval, we impute a random time point within the first interval with the normal 
value plus Gaussian noise, and repeat the same processes as described for the case 
that the first measurement happens within the first baseline interval. The standard 
deviation of the Gaussian noise model for each variable is the median of the s.d. of 
the corresponding measurement values during each patient stay for all patients.

We confirmed that the resampling behaved as expected by comparing the 
sampling interval distribution for patients with events and without events in both 
the original data and the resampled data (Extended Data Fig. 10c,f,g).

We further generated a ‘binarized’ test set, where all measurements were 
replaced by binary values indicating the presence or absence of a measurement 
at that time point. Specifically, a binarized value on the time grid was defined as 
1 if there was a real measurement in the last 5 min prior to the grid point, and 0 
otherwise (results shown in Fig. 4d and Extended Data Fig. 10a,b). This setting 
preserves only information from measurement patterns. Further, we defined a 
negative control that combines the binarization with the resampling procedure 
(which aims to remove measurement intensity information), which we assume 
retains no or very little measurement pattern information (Extended Data Fig. 
10a,b). We observe that the AUROC in this setting is close to a random classifier 
(AUROC close to 0.5), confirming that the resampling strategy is effective, in that 
it removes the measurement pattern information almost completely.

External validation on MIMIC-III. MIMIC-III version 1.4 was used for external 
validation, including only patients admitted after 2008 and the introduction of 
MetaVision. Sixteen of the 20 most important variables (Table 1) were available and 
extracted. Non-opioid analgesics and supplementary oxygen could not be matched. 
The drugs levosimendan and theophylline were not used at Beth Israel Deaconess 
Center and were excluded. Since many of the artifact-removal steps described 
above are specific to HiRID, we applied only artifact removal using the same fixed 
variable-specific ranges on the MIMIC data. MIMIC data were converted into 
the correct format to be processed by the rest of the HiRID pipeline. Patient-state 
annotation, label generation and missing data imputation were performed as 
described above with minor modifications.

Imputation parameters. Part of our imputation pipeline required calculating 
the sampling interval for each variable. These intervals were not recomputed to 
provide similar data for validation to our existing model. Furthermore, we did 
not expect the ground truth of these values to vary much between ICUs, even if 
different down-sampling is used.

Time grid. The temporal resolution of MIMIC was different to that of HiRID. 
Nonetheless, to mirror the HiRID data structure as closely as possible, we resampled 
MIMIC to a 5-min grid, even if this introduces a large quantity of imputed data.

We consider two settings for evaluating circEWS-lite on MIMIC: MIMIC 
(validation), and MIMIC (fine-tuned). In the validation setting, we applied 
circEWS-lite on MIMIC, using the full dataset as a test set (in total 9,040 patients; 
Extended Data Fig. 2b). In the fine-tune setting, we applied the same processing as 
before, but re-trained the compact model to predict circulatory failure on MIMIC 
and linearly interpolated its prediction score with a base model trained on the 
HiRID data-set. The interpolation coefficient was optimized using event-based 
evaluation metrics on the validation set of each experimental split. We formed five 
replicates of MIMIC using Monte Carlo resampling, in each replicate assigning 
admissions at random to training/validation/test sets in the ratio 3:1:1. Since 
absolute admission times were not available in MIMIC, temporal splits could not 
be constructed. Our final performance estimate was the mean of the performance 
in each replicate’s test set, and the error estimate was the standard deviation 
over replicates. In the fine-tune setting, each MIMIC training set contained 
approximately 4,600 patients, with ~1,600 patients in the test sets.

To evaluate whether the performance discrepancy between HiRID and MIMIC 
is due to the sampling frequency, we downsampled variables with higher frequencies 
in HiRID than in MIMIC so that the sampling frequencies of the corresponding 
variables will be the same in both datasets. The downsampling process of each of 
those variables keeps the last observations within the shifting time-windows of the 
same length as the average sampling interval of that variable in the MIMIC dataset. 
And the step-size of the shifting window is the same as the window size.

Prevalence correction for MIMIC. The test sets used for MIMIC (validation) and 
MIMIC (fine-tuned) have different prevalences of positive events compared to the 
test set of the HiRID dataset. Therefore, to enable a comparison of the performance 
of circEWS-lite in terms of precision and recall between HiRID and MIMIC, we 
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corrected the precision-recall curves for MIMIC in Fig. 5 and Extended Data Fig. 
10d such that MIMIC would have the same positive event prevalence as HiRID. 
The uncorrected precision-recall curves are shown in Extended Data Fig. 10e. 
The correction was performed as follows. For the correction of the alarm/event-
based precision-recall curves for MIMIC, we computed the AUPRC of an alarm 
system that was based on a random classifier and with the same silencing policy 
as circEWS-lite for both HiRID and MIMIC, which we denote by preve (HiRID) 
and preve (MIMIC), respectively. The event prevalence of the dataset is defined as 
the AUPRC of a random alarm system. We downscale the number of false alarms 
observed in the MIMIC test set with:

s ¼
1

preve HiRIDð Þ � 1
� �

1
preve MIMICð Þ � 1

� �

to satisfy the assumption that the calibrated MIMIC dataset has the same event 
prevalence as HiRID.

The correction factor s is then multiplied with the false-alarm counts when 
computing precision on the MIMIC data in order to obtain corrected precision 
estimates.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
More information on HiRID is available on hirid.intensivecare.ai, and the full dataset 
can be downloaded from physionet.org. The computer code used in this research is 
available at www.github.com/ratschlab/circEWS under an open-source license.
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Extended Data Fig. 1 | Example patient stay. a: Variables. Visualization of a partial example patient stay with time after admission on the x-axis. Shown are 
the recorded values for this patient for the top-ranking variables. The bottom time series shows the prediction score of circEWS. The red region denotes 
an area where the patient is in circulatory failure. The dark grey area overlaid on the score time series (bottom) denotes the region where the event should 
be predicted (8 h before the beginning of circulatory failure). For this patient, the alarm is triggered at 90.1 h after admission (1.9 h before the event). RASS: 
Richmond Agitation Sedation-Scale. b, c: Influential SHAP values. As a measure of the influence of each feature, we use the difference of the average SHAP 
values for this feature comparing the time region 1 [65, 70] and 2 [87, 92]. We plot the 20 features with the largest increase in SHAP values and indicate 
the magnitude of the change by the size of the arrow. (Patient information: 48-year-old female patient with urosepsis).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Experimental design. a, Flow chart of the exclusion criteria applied to the HiRID patient cohort. b, Flow chart of the exclusion 
criteria applied to the MIMIC-III patient cohort. c, Flow chart of the exclusion, merging, and post-processing applied to the variables in the patient data 
management system of the HiRID cohort. d, Data split design. We formed five “replicate” splits with disjoint test sets (colored, dark), and partially 
overlapping training sets (grey). The validation and test sets consisted of the most recently admitted patients, whereas the validation patients (hatched) 
are from an earlier period. This enabled us to select a model more likely to be generalizable to the future. In addition, a held-out split was formed. The test 
set of the split was not used for developing the models described in the manuscript and only assessed for preparing the publication figures to avoid subtle 
overfitting to the dataset.
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Extended Data Fig. 3 | Patient characteristics.
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Extended Data Fig. 4 | Correlation of duration of circulatory failure and mortality. a, Mortality rate as a function of the duration of circulatory failure 
expressed as a fraction of length of stay in ICU. b, Cumulative mortality rate as a function of the frequency of occurrence of circulatory failure per hour of 
ICU admission. c: Decreasing trend of event onset occurrence by days of the patient stay in the ICU. d, First decreasing and then increasing trend of mean 
APACHE scores during the patient stay in the ICU.
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Extended Data Fig. 5 | Model & Training. a, b: Effect of training set size. Analysis of the effect of training set size on model performance by artificially 
subsampling patients at random and retraining the model. This analysis was performed using the circEWS alarm system evaluation policy. We observed 
that model performance decreases drastically when subsampling to less than 5% of the original training set size, and that the model did not show obvious 
saturation effects as we move to the full size of the data. c, d: Comparison of machine learning models. Comparison of machine learning approaches using 
ROC/PR curves. A linear model baseline (logistic regression; “LogReg”), a tree-ensemble based method (based on lightGBM, “GBM”; used to construct 
circEWS), an individual decision tree (based on lightGBM, “DecTree”), and a recurrent neural network (“LSTM”) were compared. The Tree models received 
identical input as given to GBM. The LogReg and LSTM received normalized feature values. We observed that gradient-boosting ensembles clearly 
outperform the other methods, followed by LogReg and LSTM/Tree models. e, f: Effect of number of features. We studied the effect of the number of 
features on model performance. Features were ranked by respective mean absolute SHAP values in a model trained on 50% of the data using all 5,278 
features. The dashed line indicates results from the model trained on 50% of the data; using the full training data is computationally prohibitive. For 1,763 
features the mean absolute SHAP value is non-zero. Inclusion of more features increases model performance until a saturation point occurs. SD: standard 
deviation.
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Extended Data Fig. 6 | Baseline Variations. a, Time-slice based labeling. Precision-recall curve comparing the full, compact, and baseline models on 
the task of predicting circulatory failure. b, Baseline variations. Additional decision-tree based baselines based on (a) all raw variables, (b) all variables 
included in the MEWS score (systolic blood pressure, heart rate, respiratory rate, temperature, AVPU score), (c) baseline including variables from 
endpoint definition (MAP, lactate). The MEWS baseline can be considered as a vital-sign-based baseline which mimics simple signal-processing 
algorithms based on constant thresholds. c, We consider a simple alarm system that raises an alarm whenever any abnormal value is observed for one 
of the circEWS-lite variables (excluding static and pharmaceutical variables). This system is comparable with current clinical practice in which individual 
monitoring modalities raise an alarm whenever observed values are abnormal. The event recall for this system is 0.957. The number of alarms for patients 
with and without events as well as the precision and recall rates of this system are compared to circEWS-lite with standard (recall = 0.90) and increased 
recall (recall = 0.957) setting. We observe that circEWS-lite generates 20 or 80 times fewer alarms than the abnormal-value based alarm system at the 
same recall rate for patients with or without events, respectively. The high number of alarms of the simple system can be partially explained by missing 
key features like alarm silencing and resetting, but also because a threshold-based system cannot combine information from multiple variables to make 
accurate predictions. SD: standard deviation.
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Extended Data Fig. 7 | See next page for caption.

Nature MedIcIne | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


Articles NaTurE MEDIcInEArticles NaTurE MEDIcInE

Extended Data Fig. 7 | Model calibration. a, b, Observed average time to circulatory failure vs. the raw prediction scores of the full and compact models on 
HiRID (a) and MIMIC (b). The dotted diagonal lines show a regression line fit to the observed average time to failure for the compact model (same model 
on HiRID and MIMIC, r-value −0.96/−0.93) c, d, Observed risk of circulatory failure within the next 8 h vs. the continuous risk scores (c) and the scores 
at time points when an alarm is produced (d) of the full and compact model (Raw) and their post-hoc calibrated counterparts (Cal.), (isotonic regression). 
The legend displays the mean/std of the absolute area between the calibration curve and the ideal calibration reference curve. Before computing areas, all 
curves were resampled to a regular grid covering [0,1]. The raw scores of the full and the compact model are not natural proxies for the probability of being 
in a 8 h window prior to circulatory failure due to the choice of the machine learning model (decision tree ensembles). However, they can be calibrated 
post-hoc using isotonic regression and then exhibit almost ideal calibration with a Brier score of 0.02 (not shown on plot) and an area around the diagonal 
reference curve of 0.04. e, f, Calibration of the (calibrated) compact model / circEWS-lite trained on HiRID and applied on MIMIC. The legend displays 
the mean/std of the absolute area between the calibration curve and the ideal calibration reference curve. Before computing areas, all curves were 
resampled to a regular grid covering [0,1]. We observe a slight overestimation of risk and a more unstable calibration across temporal splits. Calibration is 
still appropriate and does not seem to be strongly affected by patients drawn from a different population. The curves were corrected for the different label 
prevalence in the MIMIC cohort compared to the HiRID cohort. SD: standard deviation.
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Extended Data Fig. 8 | Performance of circEWS in different patient sub-cohorts and over time. a, b, circEWS performance in sub-cohorts categorized 
by gender and admission types. c, Effect of event duration on model performance. Very short ( = 5 min duration) events had the lowest recall, indicating 
that these may be spuriously labeled events. The model appears to excel at identifying very long events, however, the sample size is low (15 events with a 
duration longer than a day). d, Effect of time since previous event on model performance. The model exhibits lower recall for very short ( < 30 min) time 
periods after a previous period of circulatory failure. e, Other temporal generalization results. AUROC values for the temporal generalization experiment 
where the AUROC obtained for training data from different years is shown in black, and a linear regression line fit is shown as a dotted red line. A non-zero 
slope is significant at 10 % level with two-sided p-value of 0.051 using the Wald test. SD: standard deviation.
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Extended Data Fig. 9 | Further examples of relationship between SHAP value and feature value. Features were selected from the top 500 according to 
perceived clinical relevance and interpretability.
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Extended Data Fig. 10 | External validation and bias by intensity of monitoring. Effect of resampling and/or binarizing measurements in the test set to 
study “bias by intensity of monitoring”. Model performance does not strongly decrease if circEWS-lite is deployed to a test set with artificially created 
regular sampling for all variables (“Resampled” curve), compared with the original test set (“Original data” curve). The performance of a model based 
only on information about monitoring intensity using only binary measurement indicators has a much lower performance (“Binarized” curve). This effect 
is particularly strong when this model is applied to a data-set with both binarization/regular sampling (“Resampled & Binarized”) and results in close-to 
random performance. a, ROC curve, b, PR curve showing event-based analysis of the alarm system. c: External validation of the compact model using 
ROC-based analysis. d, e, Event-based PR (un)corrected. Event-based based PR curve comparing the performance of the circEWS-lite alarm system on 
the HiRID data-set and the three external validation settings (MIMIC Validation, Retrain and Fine-tune). In d), the MIMIC curves are corrected for the 
substantially lower label prevalence in the MIMIC data-set, implying equal performance of random classifiers on both data-sets. In e), the curves are not 
prevalence corrected. f, Resolution comparison. Performance of the compact model in the original HiRID data, an artificially downsampled HiRiD data-set 
to approximate the time-resolution of the MIMIC data-set, as well as the MIMIC data-set, in terms of ROC-based metrics. g, The measurement sampling 
intervals for lactate comparing HiRID to the resampled version (targeting baseline frequencies) used for the “bias by intensity of monitoring” experiment. 
On the left, the average interval between measurements per patient is shown. The middle panel depicts the sampling interval in 8 h windows before events 
(orange) and in windows not before events (blue). The right panel shows the number of observations in the 8 h window before the event comparing the 
resampled to the original dataset. We observe that after resampling the distribution of sampling interval is unimodal and closely concentrated on the 
baseline frequency. SD: standard deviation.
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system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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