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OBJECTIVE

Acylcarnitines were suggested as early biomarkers even prior to insulin resistance
in animal studies, but their roles in predicting type 2 diabetes were unknown.
Therefore, we aimed to determine whether acylcarnitines could independently
predict type 2 diabetes by using a targeted metabolic profiling approach.

RESEARCH DESIGN AND METHODS

A population-based prospective study was conducted among 2,103 community-
living Chinese individuals aged 50–70 years fromBeijing and Shanghai with amean
follow-up duration of 6 years. Fasting glucose, glycohemoglobin, and insulin were
determined at baseline and in a follow-up survey. Baseline plasma acylcarnitines
were profiled by liquid chromatography–tandem mass spectrometry.

RESULTS

Over the 6-year period, 507 participants developed diabetes. A panel of acylcanitines,
especially with long chain, was significantly associated with increased risk of type 2
diabetes. The relative risks of type 2 diabetes per SD increase of the predictive
model score were 2.48 (95% CI 2.20–2.78) for the conventional and 9.41 (95% CI
7.62–11.62) for the full model including acylcarnitines, respectively. Moreover,
adding selected acylcarnitines substantially improved predictive ability for incident
diabetes, as area under the receiver operator characteristic curve improved to 0.89
in the full model compared with 0.73 in the conventional model. Similar associa-
tions were obtained when the predictive models were established separately
among Beijing or Shanghai residents.

CONCLUSIONS

A panel of acylcarnitines, mainly involving mitochondrial lipid dysregulation, sig-
nificantly improved predictive ability for type 2 diabetes beyond conventional risk
factors. These findings need to be replicated in other populations, and the un-
derlying mechanisms should be elucidated.

The escalating global epidemic of type 2 diabetes has contributed considerably to
socioeconomic burdens in both developed and developing countries (1). To under-
stand biological mechanisms and improve clinical predictions, it is essential to
identify novel biomarkers to enhance the capability to predict early pathophysio-
logical changes (2). As a largely preventable disease, early prediction is the key to
control the epidemic trend of type 2 diabetes, particularly in those countries with
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large populations with prediabetes or
undiagnosed diabetes, such as China,
which has two-thirds of the patients
with undiagnosed diabetes (3).
The concept of “mitochondrial stress”

induced by mitochondrial lipid overload
and increased incomplete fatty acid
oxidation (FAO) has been proposed to
have an important impact on the path-
ogenesis of insulin resistance and diabe-
tes (4). This hypothesis postulates that
emerging FAO dysregulating prior to
insulin resistance and glucose deteriora-
tion may provide a unique window to
discover novel biomarkers for early de-
tection of diabetes. Carnitine is known
to play a pivotal role in transporting long-
chain fatty acids across the mitochondrial
inner membrane for b-oxidation (5). As
intermediates of carnitine metabolism,
acylcarnitines were previously used to
screen for genetic defects in FAO (6). Re-
cent studies in obese and diabetic animal
models showed that acylcarnitines might
reflectmild FAO dysregulation and “mito-
chondrial stress” (4). Moreover, different
profiles of acylcarnitines were detected
comparing cases of obesity, insulin resis-
tance, metabolic syndrome, or diabetes
with relevant controls (7–10). However,
it remains to be evaluated whether acyl-
carnitines are able to identify high-risk
individuals for future development of
type 2 diabetes.
With the rapid development of ad-

vanced metabolomic technology, omics-
based biomarkers are expected to be
used for earlier prediction and prevention
(2,11). Therefore, by utilizing a targeted
metabolomic profiling approach to accu-
rately quantify acylcarnitine profiles, we
aimed to investigate the predictive role
of certain acylcarnitines, individually and
collectively, for the incidence of type 2
diabetes and also to determine the extent
that including certain acylcarnitines could
enhance the predictive ability for the in-
cidence of type 2 diabetes beyond con-
ventional risk factors in a prospective
cohort of middle-aged and elderly Chi-
nese people.

RESEARCH DESIGN AND METHODS

Nutrition and Health of Aging
Population in China Study
The Nutrition and Health of Aging Pop-
ulation in China (NHAPC) study, conducted
in Beijing and Shanghai community-living
adults aged50–70 years at baseline,was a
prospective study aimed to investigate

the effects of environmental and genetic
factors and their interactions in the devel-
opment of metabolic diseases (12). In
2005, 3,289 residents were recruited
by a multistage sampling method (12).
Data on demographic variables, lifestyle,
and health information were collected
by a standardized questionnaire. Family
history of diabeteswas positive if a parent
or sibling had diabetes. Body weight,
height, and blood pressure were mea-
sured in a physical examination by
standardized procedures. In 2011, all par-
ticipants were invited to the 6-year
follow-up survey. The questionnaires
and anthropometric procedures in the
baseline survey were applied with minor
modifications in the follow-up survey
(13). Peripheral venous blood samples
were collected after overnight fasting.
Themeasurementsof glucose, glycohemo-
globin (HbA1c), and insulin were described
previously (12,14).

Among the 3,289 participants en-
rolled at baseline, 760 of them (23.1%)
either lost contact (n = 554) or refused
to participate (n = 206). Therefore, a
total of 2,529 eligible subjects were suc-
cessfully enrolled in the follow-up sur-
vey. After excluding 331 individuals with
diabetes at baseline, and 95 people
without a baseline acylcarnitine profile,
the current analysis consisted of 2,103
participants.

Ethical Approval
The study protocol was approved by the
institutional review board of the Insti-
tute for Nutritional Sciences. Written in-
formed consent was provided by all
participants.

Acylcarnitine Profile Measurements
Plasma acylcarnitine profiles were
measured by liquid chromatography–
tandem mass spectrometry (LC-MS/MS).
High-performance liquid chromatogra-
phy grade of acetonitrile and metha-
nol were obtained from Merck KGaA
(Darmstadt, Germany). Carnitine hydro-
chloride (C0), acetylcarnitine hydrochlo-
ride (C2), and acetyl chloride were
purchased from Sigma-Aldrich. 1-Butanol
was obtained from CNW Technologies
GmbH (Düsseldorf, Germany). Deuterium-
labeled carnitine and acylcarnitines
(NSK-B Set; Cambridge Isotope Laborato-
ries, Inc., Tewksbury,MA) (Supplementary
Table 1) were initially redissolved in 1 mL
methanol as stock solution of internal
standards (IS) for quantification. The

aliquots of quality control (QC) plasma,
by pooling the representative plasma
samples of the NHAPC study, were
adopted throughout sample test and
calibration curve preparation. Sample
preparation was modified from the
method developed by Vreken et al.
(15). Mixtures of 10 mL thawed plasma
or QC plasma and 90 mL methanol
containing 360-fold diluted IS were
vibrated and centrifuged (15 min,
16,000 rcf, 48C), and 80mL supernatants
were transferred and evaporated un-
der nitrogen flow (458C). Dried residues
were redissolved in freshly prepared
1-butanol/acetyl chloride (9:1, volume for
volume) for butyl ester derivatization
(658C, 15 min). Consequently, the deriva-
tives were dried under nitrogen flow
(458C), reconstituted in acetonitrile/
water (4:1, volume for volume), and
centrifuged (15 min, 16,000 rcf, 48C)
prior to performing LC-MS/MS analysis.

Chromatographic separation of free
carnitine and acylcarnitines was per-
formed on the 1260 HPLC system
(Agilent Technologies) with an HSS T3
column (3.03 100 mm, 3.5 mm; Waters
Corp.). The sampler and column temper-
atures were maintained at 48C and 408C,
respectively. The injection volume was
5 mL. The mobile phases contained
0.1% formic acid in ultrapure water (A)
and 0.1% formic acid in acetonitrile
(B). The flow rate of the mobile phase
was 0.35 mL/min. A gradient elution
program was performed as follows:
0–1 min, hold at 50% B; 9 min, 80% B;
11–16.5 min, 100% B; and 17–23 min,
50% B to re-equilibrate the column.
Mass spectrometric analysis was per-
formed on an Agilent 6410B QQQ mass
spectrometer in a positive ESI mode
with the following settings: capillary
voltage 4,000 V, source gas temperature
3008C, drying gas (pure nitrogen) flow
10 l/min, and nebulizer 40 c. The frag-
mentor was 120 V, and the collision en-
ergy was optimized for carnitine and
each acylcarnitine (20–50 eV). All targets
were monitored by transition precursor
and product (m/z = 85) in dynamic MRM
detection mode. MassHunter software
(version B.03.01; Agilent Technologies)
was used for instrument control and
data acquirement.

For calibration curves, the serial dilu-
tion (18-, 36-, 72-, 180-, 360-, 720-,
1,800-, 3,600-, 7,200-, and 18,000-fold
dilution) of stock IS in methanol (90 mL)
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and the aliquot of QC plasma (10 mL)
were mixed, prepared, and determined
according to the above protocol. The
calibration curves were obtained by
plotting the derivative’s peak area of
serially diluted IS to the corresponding
injection amount (pmol) on column.
Supplementary Table 1 showed good
linearity within wide range, lower limit
of quantitation, and precision. The acyl-
carnitines with a big retention time shift
(.0.1 min) or signal-to-noise ratio,10
were checked by hand. The acylcarnitines
below the lower limit of quantitation
in .50% of samples were excluded.
Finally, a total of 34 acylcarnitines with
high quality were included in the cur-
rent study. Endogenous concentra-
tions of acylcarnitines were quantified
in mmol/L by the calibration curves of
appropriate IS. Those acylcarnitines
without corresponding IS were quantified
with the calibration curve of chromato-
graphically neighboring or structurally
similar IS.

Ascertainment of Diseases
Incidence of type 2 diabetes during the
6-year follow-up period in the NHAPC
study was defined as presenting at least
one of the following components: 1)
self-reported doctor-diagnosed diabe-
tes, 2) taking antidiabetic medications,
and 3) fasting glucose $7.0 mmol/L
in the follow-up survey. Metabolic syn-
drome was defined based on the up-
dated National Cholesterol Education
Program Adult Treatment Panel III crite-
ria for Asian Americans (12). Impaired
fasting glucose was defined as 5.6#
fasting glucose ,7.0 mmol/L.

Statistical Analysis
Baseline plasma acylcarnitine concen-
trations and metabolic features were
compared between incident diabetes
case subjects and noncase subjects by
ANCOVA in eligible participants. Plasma
acylcarnitines and insulin were log
transformed to approximate normality.
Z scores of log-transformed acylcarnitines
were used to summarize short-,medium-,
and long-chain acylcarnitines, defined as
carbon chains #6, 7–14, and $16, re-
spectively. Partial correlation analysis
on ranks (Spearman correlation) was
used to calculate correlation coeffi-
cients among acylcarnitines, as well as
of acylcarnitines with fasting glucose,
HbA1c, and insulin in the baseline and
follow-up surveys, and their 6-year

changes, after adjusting for age, sex, re-
gion, and residence. Relative risks (RRs)
of type 2 diabetes per SD increase of
each acylcarnitine were calculated by
sequential logistic regressionmodels af-
ter controlling for age, sex, geographical
region (Shanghai or Beijing), residence
(urban or rural), current smoking (yes or
no), drinking (yes or no), physical activ-
ity (active or inactive), family history of
diabetes (yes or no), BMI, systolic blood
pressure, fasting glucose, and HbA1c at
baseline.

The elastic net regression model (16)
(implemented in the R package glmnet
[17]) was used to build a predictive
model for incident diabetes. Elastic net
regression is a regularized regression
combining the Lasso and Ridge penalties
to avoid overfitting and improve predic-
tion performance. The prediction accu-
racy based on parameters of lambda.1se
(more conservative) and lambda.min
(optimal output from the model) were
both examined. Since the results using
these two parameters were similar, only
the results for lambda.min (if unspeci-
fied) were presented. The predictive
model scores were computed as the
weighted sum of all covariates with
weights equal to the regression coeffi-
cients from the predictive models. The
RRs of type 2 diabetes per SD increase of
predictive model score were calculated
by logistic regression models. The RR
attributed to acylcarnitines selected by
the model was computed by taking the
acylcarnitine score as the weighted sum
of selected acylcarnitines, with weights
equal to the coefficients from the model,
and then estimate the RR due to the acyl-
carnitine score. Joint classification analyses
were also conducted to examinewhether
the baseline status of impaired fasting
glucose and metabolic syndrome could
modify the associations. The likelihood
ratio tests were used to assess statistical
significance of the interactions.

To obtain an unbiased estimate
of prediction accuracy, 10-fold cross-
validation was used. In each run, the
elastic net method was applied to 90%
of the samples and the model obtained
was applied to the remaining 10% of
samples. The area under the receiver
operator characteristic (ROC) curve
(AUC) was computed using the pre-
dicted probability of type 2 diabetes
and the true status of type 2 diabetes
for each sample. Moreover, a cross-

region prediction for the subpopula-
tions living in Beijing and Shanghai was
used to examine the robustness of our
prediction approach. Analyses were per-
formed using SAS version 9.3 (SAS Insti-
tute) and R version 3.0 (http://R-project
.org/). Two-sided P, 0.05was considered
as statistical significance. Bonferroni
correction was used for multiple testing
adjustment when analyzing individual
acylcarnitines in relation to incident di-
abetes risk.

RESULTS

Baseline Characteristics
During the 6-year follow-up, 507 (24.1%)
of the 2,103 eligible participants devel-
oped type 2 diabetes. Among them,
83 (16.4%) reported doctor-diagnosed
diabetes, 5 (0.99%) reported taking anti-
diabetic medications, and 419 (82.6%)
had fasting glucose $7.0 mmol/L in the
follow-up survey. The mean6 SD of glu-
cose and HbA1c values in incident dia-
betes and nondiabetes were 7.93 6
1 . 48 mmol / L and 6 .91 6 1 .06%
(52mmol/mol), and 6.016 0.58 mmol/L
and 6.34 6 0.40% (46 mmol/mol), re-
spectively. Baseline characteristics and
plasma acylcarnitine concentrations
were compared between incident diabe-
tes case subjects and noncase subjects
(Table 1). Compared with the noncase
subjects, the case subjects were more
likely to be Beijing residents and
have a family history of diabetes. They
also exhibited higher levels of BMI, sys-
tolic blood pressure, fasting glucose,
HbA1c, and insulin (all P , 0.05). With
respect to baseline plasma acylcarnitines,
the case subjects showed significantly
higher concentrations of C0, C3DC, C4,
C5, C5OH, C8:1, C10, C14OH, C14:1OH,
C16:1, C16:2, C18, C18OH, C18:1, C18:2,
C20, and C20:4 acylcarnitines, but
lower levels of 3-dehydroxycarnitine,
3-dehydrocarnitine, C7DC, C10DC, C12,
C12OH, and C12:1 acylcarnitines when
compared with their counterparts with-
out diabetes after Bonferroni correction.
Differences were also observed in several
acylcarnitines compared those with and
without impaired fasting glucose, as well
as those with and without metabolic syn-
dromeatbaseline (Supplementary Table 2).

Acylcarnitines and Metabolic Traits
The correlations were calculated among
baseline acylcarnitines (Fig. 1). Although
most acylcarnitines were correlated
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with each other, the highest correlation
coefficients (r.0.7)were clusteredamong
medium- and long-chain acylcarnitines. In-
terestingly, when assessing the correla-
tions between baseline acylcarnitines
and metabolic traits in the baseline

and the follow-up surveys, much higher
correlation coefficients with fasting
glucose were noticed in the follow-up
rather than in the baseline survey, espe-
cially for the long-chain acylcarnitines
(Supplementary Table 3). Stronger

correlations were also observed be-
tween baseline acylcarnitines and the
change of fasting glucose than be-
tween baseline acylcarnitines and base-
line fasting glucose. In contrast, the
correlation coefficients of acylcarnitines
with HbA1c and insulin were similar in
the baseline and the follow-up surveys
for most acylcarnitines.

Acylcarnitine Selection and Prediction
of Incident Type 2 Diabetes
At the 6-year follow-up, risk of type 2
diabetes was positively associated with
baseline free carnitine (C0) and C3DC,
medium-chain (C8:1, C10, C14OH, and
C14:1OH), and long-chain acylcarnitines
(C16:1, C16:2, C18, C18OH, C18:1,
C18:2, C20, and C20:4), and inversely as-
sociated with carnitine precursors (3-
dehydroxycarnitine and 3-dehydrocarnitine)
and medium-chain dicarboxylic (C10DC
and C12DC) and C12 acylcarnitines (C12,
C12OH, and C12:1), after adjusting for
age, sex, region, residence, smoking,
drinking, physical activity, family history
of diabetes, systolic blood pressure,
BMI, fasting glucose, and HbA1cwith Bon-
ferroni correction (Supplementary Table
4). When acylcarnitines were classified as
categories, only long-chain ones, but not
those of short- and medium-chain spe-
cies, were significantly associated with
high incident diabetes risk (P , 0.001),
in accordance with the consistent effects
for individual acylcarnitines (all P ,
0.001; except C16, P = 0.10).

The predictive models were con-
structed with the selected variables by
elastic net model. The RRs of type 2 di-
abetes per SD increase were 2.48 (95%
CI 2.20–2.78) for the conventional
model and 9.41 (95% CI 7.62–11.62)
for the full model (conventional risk
factors + acylcarnitines), with RR =
6.94 (95% CI 5.73–8.41) attributed to
the selected acylcarnitines (Table 2). In
joint classification analyses examining
whether baseline status of impaired
fasting glucose and metabolic syn-
drome could modify the associations
(Supplementary Table 5), none of the in-
teractions were statistically significant
(all P-interaction . 0.05).

The coefficients of full models after
running the elastic net model 10 times
were presented in Supplementary Table
6. To explore the predictive ability of
established models, ROC curve analyses
were performed (Fig. 2). The AUC was

Table 1—Baseline characteristics and acylcarnitines between incident diabetes
case subjects and noncase subjects

Nondiabetes
(n = 1,596)

Diabetes
(n = 507)

P for
difference

Male, n (%)* 673 (42.2) 225 (44.4) 0.51

Age (years)* 58.4 (6.1) 58.3 (5.9) 0.75

Beijing residents, n (%)* 687 (43.1) 306 (60.4) ,0.001

Rural residents, n (%)* 937 (58.7) 294 (58.0) 0.69

Current smoker, n (%) 456 (28.6) 145 (28.6) 0.12

Current drinker, n (%) 432 (27.1) 153 (30.2) 0.48

Family history of diabetes, n (%) 148 (9.3) 63 (12.4) 0.033

Low physical activity, n (%) 806 (50.5) 242 (47.7) 0.57

BMI (kg/m2) 23.9 (3.4) 25.5 (3.8) ,0.001

Systolic blood pressure (mmHg) 137 (21.7) 144 (22.8) ,0.001

Fasting glucose (mmol/L) 5.26 (0.53) 5.64 (0.57) ,0.001

RBC HbA1c, % (mmol/mol) 5.65 (0.40) (38) 5.86 (0.46) (41) ,0.001

Fasting insulin (mU/mL)† 12.9 (12.6–13.3) 13.7 (13.1–14.4) 0.004

Acylcarnitines (mmol/L)
C0 58.1 (14.8) 61.7 (14.9) ,0.001‡
3-Dehydroxycarnitine† 0.41 (0.40–0.42) 0.27 (0.26–0.29) ,0.001‡
3-Dehydrocarnitine† 2.74 (2.66–2.81) 2.09 (1.98–2.21) ,0.001‡
C2† 11.0 (10.8–11.3) 11.2 (10.8–11.5) 0.06
C3† 0.45 (0.44–0.46) 0.47 (0.45–0.48) 0.020
C3DC† (1022) 4.23 (4.14–4.32) 4.82 (4.66–4.99) ,0.001‡
C4† 0.20 (0.19–0.20) 0.21 (0.20–0.22) ,0.001‡
C5† (1022) 5.96 (5.84–6.08) 6.58 (6.34–6.82) ,0.001‡
C5OH† (1022) 0.52 (0.51–0.53) 0.56 (0.54–0.57) ,0.001‡
C5:1† (1022) 0.98 (0.96–1.01) 0.93 (0.90–0.96) 0.12
C6† (1022) 3.66 (3.59–3.74) 3.58 (3.48–3.69) 0.68
C6OH† (1022) 1.28 (1.25–1.30) 1.21 (1.16–1.25) 0.11
C6DC† (1022) 0.55 (0.53–0.57) 0.52 (0.50–0.56) 0.17
C7DC† (1022) 0.25 (0.25–0.26) 0.21 (0.20–0.22) ,0.001‡
C8† 0.20 (0.20–0.21) 0.21 (0.20–0.22) 0.14
C8:1† 0.44 (0.43–0.45) 0.53 (0.50–0.56) ,0.001‡
C10† 0.26 (0.25–0.27) 0.30 (0.28–0.31) ,0.001‡
C10DC† (1022) 0.49 (0.48–0.50) 0.46 (0.45–0.47) ,0.001‡
C12† (1022) 8.18 (7.97–8.40) 7.44 (7.13–7.75) ,0.001‡
C12OH† (1022) 0.73 (0.71–0.75) 0.66 (0.64–0.69) ,0.001‡
C12:1† (1022) 12.3 (11.9–12.6) 8.89 (8.46–9.33) ,0.001‡
C12DC† (1022) 0.61 (0.58–0.64) 0.50 (0.47–0.54) 0.015
C14† (1022) 2.20 (2.15–2.25) 2.16 (2.07–2.24) 0.41
C14OH† (1022) 0.84 (0.81–0.87) 1.67 (1.54–1.81) ,0.001‡
C14:1OH† (1022) 1.06 (1.02–1.10) 2.06 (1.90–2.23) ,0.001‡
C16† (1022) 8.46 (8.32–8.60) 8.79 (8.55–9.04) 0.002
C16:1† (1022) 3.47 (3.33–3.62) 6.64 (6.18–7.13) ,0.001‡
C16:2† (1022) 1.44 (1.39–1.50) 2.93 (2.70–3.17) ,0.001‡
C18† (1022) 4.55 (4.37–4.75) 11.3 (10.5–12.3) ,0.001‡
C18OH† (1022) 0.17 (0.17–0.18) 0.23 (0.22–0.24) ,0.001‡
C18:1† (1022) 4.05 (3.82–4.30) 9.90 (8.52–11.5) ,0.001‡
C18:2† 0.14 (0.13–0.14) 0.31 (0.29–0.33) ,0.001‡
C20† (1022) 0.38 (0.36–0.39) 0.73 (0.68–0.79) ,0.001‡
C20:4† (1022) 0.37 (0.35–0.38) 0.80 (0.74–0.87) ,0.001‡

Values are the arithmetic means (SD) unless otherwise stated. P values were calculated after
adjustment for sex, age, region (Beijing/Shanghai), and residence (urban/rural). Percentages
may not sum to 100 because of rounding. *Data not adjusted for its category. †Values are
geometric mean (95% CI). ‡Bonferroni–corrected statistical significance.
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0.73 (95%CI 0.70–0.76) in the conventional
model and significantly improved to 0.89
(95% CI 0.87–0.90) in the full model esti-
mated based on 10-fold cross-validation.

Cross-Region Prediction
Cross-region predictions were applied
to examine model robustness when ap-
plying to other regions in China. After
being stratified by region, the elastic net
models derived fromBeijing and Shanghai
participants separately were cross-validated.

ROCcurveswerepresented in Supplementary
Fig. 1, in which the AUCs were 0.82 (95%
CI 0.79–0.84) for the Shanghai model to
predict Beijing participants and 0.87 (95%
CI 0.85–0.90) for the Beijingmodel to pre-
dict Shanghai participants in the full mod-
els (s = lambda.min). The slight dropping
of AUC compared to the 10-fold cross-
validation result is not unexpected due
to the great reduction in sample size of
the training dataset for either region. When
comparing the parameter coefficients of

predictive models, the magnitude and
direction of coefficients estimated
based on the Beijing or Shanghai sub-
population or the entire population were
consistent, as well as among lambda.min
and lambda.1se models (Supplementary
Fig. 2).

CONCLUSIONS

By applying a mass spectrometry–based
acylcarnitine profiling platform, a panel
of acylcarnitines, especially long-chain
acylcarnitines, was found to be signifi-
cantly associated with future risk of
type 2 diabetes and also substantially
improved predictive ability for incident
diabetes beyond conventional risks, in-
cluding BMI and fasting glucose.

To the best of our knowledge, the cur-
rent study was the first study showing
that acylcarnitines could effectively pre-
dict incident diabetes, by an accurate
quantification of relevant metabolites
(18). Previously, studies in obese and di-
abetic animal models demonstrated the
links of acylcarnitines withmild FAO dys-
regulation and “mitochondrial stress,”
which led to or worsened insulin resis-
tance and glucose deterioration (4).
Moreover, treating myotube with acyl-
carnitines resulted in decreased Akt
phosphorylation and glucose uptake in
response to insulin stimulation (19). In-
deed, suppression of mitochondrial
fatty acid import or acylcarnitine syn-
thesis could alleviate lipid-induced insu-
lin resistance (4,19), supporting the
postulation that lipid-induced “mito-
chondrial stress” predates the emergence
of glucose deterioration and diabetes. To
date, only a few small case-control stud-
ies and a weight loss trial showed that
acylcarnitine profiles were associated

Figure 1—The correlations among baseline concentrations of acylcarnitines.

Table 2—Selected models and risk of incident diabetes

Variables in model
RR per SD increase of predictive

model score P-trend

Model 1 Age, sex, region, residence, smoking, drinking, physical
activity, family history of diabetes, BMI, fasting glucose,

HbA1c, and systolic blood pressure

2.48 (2.20–2.78) ,0.001

Model 2 (full model) Age, sex, region, residence, smoking, drinking, physical
activity, family history of diabetes, BMI, fasting glucose,

HbA1c, systolic blood pressure, and
3-dehydroxycarnitine, 3-dehydrocarnitine, C0, C3, C3DC,
C4, C5, C5OH, C6OH, C6DC, C7DC, C8:1, C10, C10DC, C12:1,
C12DC, C14:1OH, C16, C16:1, C16:2, C18, C18OH, C18:1,

C18:2, and C20:4

9.41 (7.62–11.62), among which 6.94
(5.73–8.41) was attributed to the

25 acylcarnitines

,0.001

The predictive model scores were computed as the weighted sum of all covariates with weights equal to the regression coefficients from the
predictive models built by the elastic net regression model.
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with insulin sensitivity (20,21). More-
over, significantly different acylcarnitine
profiles were observed among subjects
with normal glucose tolerance, pre-
diabetic states, or type 2 diabetes in
a German study (22). Recently, sev-
eral prospective studies indicated that
medium- and/or long-chain acylcarnitines
predicted cardiovascular events or mor-
tality in people aged .85 years or se-
lected patients undergoing cardiac
catheterization or dialysis (23–25). How-
ever, previous European studies using
the targeted BIOCRATES metabolomics
platform failed to demonstrate a signifi-
cant association between acylcarnitines
and incident diabetes (26,27). Notably,
the differences in study design, meth-
odology (LC-MS/MS vs. flow injection
analysis without chromatographic sep-
aration), and statistical analyses, as well
as ethnic differences in genetic back-
ground and lifestyle might also explain,
to a certain extent, the discrepancy
between our study and others. In the
current study, introducing selected
acylcarnitines to the predictive models
substantially improved the predictive
ability for type 2 diabetes beyond con-
ventional risk factors such as BMI and
fasting glucose (AUCs: 0.89 vs. 0.73)
(Fig. 2). Therefore, as a relatively simple
alternative approach to assess mitochon-
dria FAO dysregulation in vivo, specific

acylcarnitine patterns may be consid-
ered promising early biomarkers for di-
abetes prediction.

It was noticed that most of the long-
chain acylcarnitines were consistently
associated with increased risk of inci-
dent diabetes. Long-chain fatty acids
are oxidized predominately inside mito-
chondrion (28). They are transported
across the mitochondrion inner mem-
brane as long-chain acylcarnitines after
being esterified from activated long-
chain acyl-CoA by carnitine palmitoyl
transferase I (CPT1), and consequently
de-esterified by CPT2 to acyl-CoA for
b-oxidation (5). As initial metabolites
of b-oxidation, the accumulation of
long-chain acylcarnitines might reflect
relatively severe conditions of FAO dys-
regulation and mitochondrial overload
with an impaired tricarboxylic acid cycle
(4). Previously, obese individuals and in-
dividuals with diabetes were shown to
have higher nonesterified fatty acids
and long-chain acylcarnitines than those
of noncase subjects (7). Although the
underlining mechanism is unclear, stud-
ies in vitro showed that treatment
with long-chain acylcarnitines induced
insulin resistance and oxidative stress
in human myotubes (19), as well as reg-
ulated calcium efflux in cardiac tissue
and human ether-à-go-go-related gene
(hERG) channels in renal cells (29,30).

Likewise, the potential functional roles
of these long-chain fatty acid derivatives
might go beyond biomarkers of mito-
chondrial dysfunction.

Unlike those of long-chain acylcarnitines,
theassociationsofmedium-chainacylcarni-
tines with diabetes remain uncertain. One
plausible explanation might be that dif-
ferent precursors or metabolic compart-
ments are involved in the generation of
medium-chain acylcarnitines, which
could be later b-oxidation metabolites of
long-chain fatty acids, or directly esteri-
fied derivatives from medium-chain fatty
acids (31). In fact, controversial results of
medium-chain fatty acids were reported
as proinflammatory agents in some stud-
ies in vitro (32) but as antimicrobial, anti-
inflammatory agents in other studies
in vivo and in vitro (33,34). Certainly,
the role of medium-chain acylcarnitines
in metabolic disorders remains to be
elucidated. On the other hand, elevated
circulating 3-dehydroxycarnitine and
3-dehydrocarnitine, the precursors of
L-carnitine productions (35), were shown
to be associatedwith lower risk of incident
diabetes. Previously, carnitine was sug-
gested to improve insulin-stimulated
glucose utilization and type 2 diabetes–
related metabolic disorders in humans
and rodents (36–38). Although the mech-
anistic interpretation remains unclear, the
administration of 3-dehydroxycarnitine
in amousemodel lacking L-carnitine trans-
porter improved fatty acid metabolism
(39), implicating the potential benefits of
these carnitine precursors on maintaining
energy hemostasis.

Other interesting findings were that
dicarboxylic acid acylcarnitines with
odd chains or even chains exerted dif-
ferent impacts on the development
of type 2 diabetes. Malonylcarnitine
(C3DC) was suggested to be an indica-
tor to reflect malonyl-CoA levels (40).
Malonyl-CoA is one of the key regulators
in mammalian energy homeostasis by
inhibiting mitochondrial CPT1 and FAO
(41). Notably, insulin-resistant patients
with obesity and type 2 diabetes had
high muscle malonyl-CoA concentra-
tions (42). However, it remains unclear
whether malonyl-CoA accumulation, in-
dicated by accumulated C3DC, serves
as a feedback signal to suppress excessive
b-oxidation and mitochondria stress by
blocking CPT1 activity, thereby to switch
fuel utilization from fatty acids to glucose
in order to counteract lipid-induced

Figure 2—ROC curves for prediction of incident diabetes. Blue curve, conventional model includ-
ing age, sex, region, residence, smoking, drinking, physical activity, family history of diabetes, BMI,
fasting glucose, HbA1c, and systolic blood pressure, AUC = 0.73 (95% CI 0.70–0.76); red curve,
conventional model + acylcarnitines selected by elastic net model with s = lambda.min, AUC =
0.89 (95% CI 0.87–0.90).
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insulin resistance (4). Nevertheless, the
positive C3DC-diabetes association
in our study highlighted the role of
malonyl-CoA in diabetes pathogenesis.
Unlike odd-chain dicarboxylic acids,
even-chain dicarboxylic acids are de-
rived from v-oxidation of fatty acids
and thereafter undergo b-oxidation
(43). Intervention studies indicated that
sebacic acid (C10DC fatty acid) anddodec-
anedioic acid (C12DC fatty acid) had fa-
vorable impacts on glycemic control and
energy utilization in patients with type 2
diabetes (43). In accordance with these
findings, the observed inverse associa-
tions of C10DC and C12DC acylcarnitines
with incident diabetes in our cohort sup-
ported potential benefits of sebacic acid
and dodecanedioic acid in type 2 diabetes.
The elastic net model, performed suc-

cessfully in both predictive accuracy and
sparsity for the high-dimensional data
sets (16), was used in the variable selec-
tion and model construction. Further-
more, our results were cross-region
validated between Beijing and Shanghai,
two megalopolises in Northern and
Southern China with different lifestyles
and environmental exposures. How-
ever, our study also has some limita-
tions. First, only 77% of participants
were successfully followed up, and a
few baseline characteristics were found
different comparing those lost to follow-up
with all eligible participants, including
more urban residents, and high levels of
educational attainment, family income,
and plasma triglycerides (13). Neverthe-
less, the follow-up rate was comparable
to other prospective studies conducted
in comparable age-groups (44,45). Sec-
ond, the diagnosis of diabetes in the
current study was based on either self-
report, taking diabetes medications,
or a single fasting glucose, which did
not constitute a rigorous evaluation
for the presence or absence of diabetes.
Third, our participants are limited to
middle-aged and elderly Chinese adults,
who might have a higher risk of devel-
oping diabetes than Caucasians and
younger adults. Thus, it is unknown
whether the results could be extended
to other age, racial, and ethnic groups.
Finally, although our results were inter-
nally cross-validated, it is critical that
they are independently replicated in
different prospective cohorts.
In summary, the current study sug-

gested that acylcarnitines significantly

improved the predicting power for
type 2 diabetes when compared with
conventional risk factors, suggesting
the potential utility of acylcarnitines as
novel early predictors in diabetes risk
assessment. These findings need to be
replicated in other populations, and un-
derlying biological mechanisms should
be elucidated in future studies.
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